
HAL Id: inria-00176007
https://hal.inria.fr/inria-00176007

Preprint submitted on 2 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Battling windmills with Coq: formal verification of a
compilation algorithm for parallel moves

Laurence Rideau, Bernard Serpette, Xavier Leroy

To cite this version:
Laurence Rideau, Bernard Serpette, Xavier Leroy. Battling windmills with Coq: formal verification
of a compilation algorithm for parallel moves. 2007. �inria-00176007�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50358683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00176007
https://hal.archives-ouvertes.fr

Battling windmills with Coq:

formal verification of a compilation algorithm

for parallel moves

Laurence Rideau (laurence.rideau@inria.fr)
INRIA Sophia-Antipolis Méditerranée

Bernard Paul Serpette (bernard.serpette@inria.fr)
INRIA Sophia-Antipolis Méditerranée

Xavier Leroy (xavier.leroy@inria.fr)
INRIA Paris-Rocquencourt

Abstract. This article describes the formal verification of a compilation algo-
rithm that transforms parallel moves (parallel assignments between variables) into
a semantically-equivalent sequence of elementary moves. Two different specifications
of the algorithm are given: an inductive specification and a functional one, each with
its correctness proofs. A functional program can then be extracted and integrated
in the Compcert verified compiler.

1. Introduction

Parallel assignment is a programming construct found in some pro-
gramming languages (Algol 68, Common Lisp) and in some compiler
intermediate languages (the RTL intermediate language of the GNU
Compiler Collection). A parallel assignment is written (x1, . . . , xn) :=
(e1, . . . , en), where the xi are variables and the ei are expressions possi-
bly involving the variables xi. The semantics of this parallel assignment
is to evaluate the expressions e1, . . . , en, then assign their respective
values to the variables x1, . . . , xn. Since the left-hand side variables can
occur in the right-hand side expressions, the effect of a parallel assign-
ment is, in general, different from that of the sequence of elementary
assignments x1 := e1; . . . ;xn := en. Welch (1983) gives examples of
uses of parallel assignments.

Compiling a parallel assignment instruction amounts to finding a
serialisation – a sequence of single assignments x′1 = e′1; . . . ;x

′
m = e′m

– whose effect on the variables xi and on other program variables is
the same as that of the source-level parallel assignment. Since parallel
assignment includes permutation of variables (x1, x2) = (x2, x1) as a
special case, the generated sequence of elementary assignments cannot,
in general, operate in-place over the xi: additional storage is necessary
under the form of temporary variables. A trivial compilation algorithm,

pmov.tex; 2/10/2007; 10:54; p.1

2

outlined by Welch (1983), uses n temporaries t1, . . . , tn, not present in
the original program:

t1 := e1; . . . ; tn := en; x1 := t1; . . . ; xn := tn

As shown by the example (x1, x2) = (x2, x1), it is possible to find more
efficient sequences that use fewer than n temporaries.

Finding such sequences is difficult in general: Sethi (1973) shows
that compiling a parallel assignment over n variables using at most
K temporaries, where K is a constant independent of n, is an NP-
hard problem. However, there exists a family of parallel assignments
for which serialisation is computationally easy: parallel assignments of
the form (x1, . . . , xn) := (y1, . . . , yn), where the right-hand sides yi are
restricted to be variables (either the xi variables or other variables). We
call these assignments parallel moves. They occur naturally in compilers
when enforcing calling conventions (Appel, 1992). May (1989) shows
another example of use of parallel moves in the context of machine code
translation. It is a folklore result that parallel moves can be serialised
using at most one temporary register, and in linear time (May, 1989).

The purpose of this paper is to formalize a compilation algorithm
for parallel moves and mechanically verify its semantic correctness,
using the Coq proof assistant (Coq development team, 2007; Bertot
and Castéran, 2004). This work is part of a larger effort, the Compcert
project (Leroy, 2006; Blazy et al., 2006; Bertot et al., 2006), which aims
at mechanically verifying the correctness of an optimizing compiler for
a subset of the C programming language. Every pass of the Compcert
compiler is specified in Coq, then proved to be semantics-preserving:
the observable behavior of the generated code is identical to that of the
source code.

The parallel move compilation algorithm is used in the pass that en-
forces calling conventions for functions. Consider a source-level function
call f(e1, . . . , en). Earlier compiler passes produces intermediate code
that computes the values of the arguments e1, . . . , en and deposits them
in locations l1, . . . , ln. (Locations are either processor registers or stack
slots.) The function calling conventions dictate that the separately-
compiled function f expects its parameters in conventional locations
l′1, . . . , l

′
n determined by the number and types of the parameters. The

register allocation phase is instructed to prefer the locations l ′1, . . . , l
′
n

for the targets of e1, . . . , en, but such preferences cannot always be
honored. Therefore, the pass that enforces calling conventions must,
before the call, insert elementary move instructions that perform the
parallel move (l′1, . . . , l

′
n) := (l1, . . . , ln). Only two hardware registers

(one integer register, one floating-point register) are available at this
point to serve as temporaries. Therefore, the naive compilation algo-

pmov.tex; 2/10/2007; 10:54; p.2

3

rithm for parallel moves will not do, and we had to implement and
prove correct the space-efficient algorithm.

The formal specification and correctness proof of this compilation al-
gorithm is challenging. Indeed, this was one of the most difficult parts of
the whole Compcert development. While short and conceptually clear,
the algorithm we started with (described section 3) is very imperative
in nature. The underlying graph-like data structure, called windmills
in this paper, is unusual. Finally, the algorithm involves non-structural
recursion. We show how to tackle these difficulties by progressive re-
finement from a high-level, nondeterministic, relational specification of
semantics-preserving transformations over windmills.

The remainder of this paper is organized as follows. Section 2 defines
the windmill structure. Section 3 shows the folklore, imperative seri-
alisation algorithm that we used as a starting point. Two inductive
specifications of the algorithm follow, a non-deterministic one (sec-
tion 4), and a deterministic one (section 5), with the proofs that they
are correct and consistent. Section 6 derives a functional implementa-
tion from these specifications and proves consistency with the inductive
specifications, termination, and correctness. Section 7 proves additional
syntactic properties of the result of the compilation function. In sec-
tion 8, the correctness result of section 6 is extended to the case where
variables can partially overlap. Concluding remarks are presented in
section 9.

The complete, commented source for the Coq development
presented here is available at http://gallium.inria.fr/~xleroy/

parallel-move/.

2. Definitions and notations

An elementary move is written (s 7→ d), where the source register s
and the destination register d range over a given set R of registers.
Parallel moves as well as sequences of elementary moves are written as
lists of moves (s1 7→ d1) • · · · • (sn 7→ dn). The • operator denotes the
concatenation of two lists. We overload it to also denote prepending a
move in front of a list, (s 7→ d) • l, and appending a move at the end of
a list, l • (s 7→ d). The empty list is written ∅.

We assume given a set T ⊆ R of temporary registers: registers that
are not mentioned in the initial parallel move problem and that the
compiler can use to break cycles. We also assume given a function
T : R → T that associates to any register s a temporary register T (s)
appropriate for saving the value of s when breaking a cycle involving s.
In the simplest case, only one temporary tmp is available and T is the

pmov.tex; 2/10/2007; 10:54; p.3

4

Figure 1. Examples of windmills

constant function T (s) = tmp. In more realistic cases, architectural
or typing constraints may demand the use of several temporaries, for
instance one integer temporary to move integer or pointer values, and
one floating-point temporary to move floating-point values. In this ex-
ample, T (s) selects the appropriate temporary as a function of the type
of s.

A parallel move (s1 7→ d1) • · · · • (sn 7→ dn) is well defined only if
the destination registers are pairwise distinct: di 6= dj if i 6= j. (If a
register appeared twice as a destination, its final value after the parallel
move would not be uniquely defined.) We can view a parallel move as
a transfer relation. Each move (si 7→ di) corresponds to an edge in the
graph of this relation. A parallel move is well defined if every register
has at most one predecessor for the transfer relation.

Although this property is similar to the specification of forests (set
of disjoint trees), it allows cycles such as (r1 7→ r2) • (r2 7→ r1). This is
unlike a tree, where, by definition, there exists a unique element – the
root – that has no predecessor.

Relations verifying the “at most one predecessor” property corre-
spond to sets of disjoint windmills. A windmill, in our terminology, is a
cycle – the axle – whose elements are the roots of trees – the blades –.
Figure 1 figure shows a set of 4 windmills: the general case, the special
case of a tree, a simple cycle with four registers, and the special case
of a self-loop.

3. An imperative algorithm

There are two special cases of parallel move problems where serializa-
tion is straightforward. In the case of a simple cycle, i.e. an axle without

pmov.tex; 2/10/2007; 10:54; p.4

5

any blade, the transfer relation is:

(rn 7→ r1) • . . . • (r2 7→ r3) • (r1 7→ r2)

Serialization is done using a single temporary register t = T (r1):

t := r1; r1 := rn; . . . ; r3 := r2; r2 := t.

The other easy case corresponds to a transfer relation that is a tree,
such as for instance

(r1 7→ r2) • (r1 7→ r3) • (r2 7→ r4)

In this case, serialization corresponds to enumerating the edges in a
bottom-up topological order:

r4 := r2; r2 := r1; r3 := r1.

C. May (1989) describes an algorithm that generalizes these two special
cases. This algorithm follows the topology of the transfer relation. First,
remove one by one all the edges that have no successors, emitting the
corresponding sequential assignments in the same order. (In windmill
terminology, this causes the blades to disappear little by little.) Eventu-
ally, all that remains are simple, disjoint cycles (windmill axles) which
can be serialized using one temporary as described above.

We now consider a variant of this algorithm that processes blades
and axles simultaneously, in a single pass. The algorithm is given in
figure 2 in Caml syntax. It can be read as pseudo-code knowing that
a.(i) refers to the i-th element of array a.

It takes as arguments two arrays src and dst containing respectively
the source registers s1, . . . , sn and the target registers d1, . . . , dn, as well
as the temporary-generating function tmp. The elementary moves pro-
duced by serialization are successively printed using the C-like printf

function.
The algorithm implements a kind of depth-first graph traversal using

the move_one function that takes an edge (srci 7→ dsti) of the transfer
relation as an argument. In line 9 and 10, all successors of dsti are
handled. Line 17 handles the case of an already analysed edge. In the
case of line 12, it is a simple recursive call. In the case of line 14, a cycle
is discovered and a temporary register is used to break it.

When exiting this loop on line 19, all the nodes that can be reached
by dsti have been analysed, the edge (srci 7→ dsti) is serialized and
marked as analyzed.

When a cycle is discovered, the stack of active calls to move_one

correspond to the edges ((rn 7→ r1), . . . , (r2 7→ r3), (r1 7→ r2)) and, at

pmov.tex; 2/10/2007; 10:54; p.5

6

1 type status = To_move | Being_moved | Moved

2

3 let parallel_move src dst tmp =

4 let n = Array.length src in

5 let status = Array.make n To_move in

6 let rec move_one i =

7 if src.(i) 6= dst.(i) then begin

8 status.(i) ← Being_moved;

9 for j = 0 to n - 1 do

10 if src.(j) = dst.(i) then

11 match status.(j) with

12 | To_move →
13 move_one j

14 | Being_moved →
15 printf "%s := %s;\n" (tmp src.(j)) src.(j);

16 src.(j) ← tmp src.(j)

17 | Moved →
18 ()

19 done;

20 printf "%s := %s;\n" dst.(i) src.(i);

21 status.(i) ← Moved

22 end in

23 for i = 0 to n - 1 do

24 if status.(i) = To_move then move_one i

25 done

Figure 2. A one-pass, imperative algorithm to compile parallel moves

line 14, the edge (r1 7→ r2) is analysed again. The side effect of line
16 thus necessarily acts on the edge that started the recursion of the
move_one function, i.e. the edge at the bottom of the stack. The main
loop, lines 23 to 25, ensures that all edges are analyzed at least once.

4. Nondeterministic specification

The algorithm in figure 2 does not lend itself easily to program proof:
first, it is written imperatively, making it quite removed from a math-
ematical specification; second, it commits to a particular strategy for
solving the problem, obscuring the essential invariants for the correct-
ness proof. In this section, we develop an abstract specification of the
steps of the algorithm, and show that these steps preserve semantics.
This specification is not deterministic: it does not constraint which step
must be taken in a given state.

pmov.tex; 2/10/2007; 10:54; p.6

7

In the algorithm of figure 2, notice that every edge of the transfer
relation begins in the state To_move (line 5), then takes the state
Being_moved (line 8), and finally reaches the state Moved (line 21).
Rather than associating a status to each edge, we will represent the
current state of the compilation as three disjoint lists of edges, each list
containing edges having the same status. The state is therefore a triple
(µ, σ, τ) of lists of edges: µ is the to-move list, σ the being-moved list
and τ the moved list.

Each step of the algorithm will either extract an element from the to-
move list µ and add it to the being-moved list σ, or remove an element
of the latter and add it to the moved list τ .

The being-moved list σ is used as a stack, simulating the recursive
calls to the move_one function in the imperative algorithm. In addition
to pushing and popping moves from the beginning of σ, the last element
of σ can also be modified when a cycle is discovered.

The last component of the state, the moved list τ , is used to accumu-
late the sequence of elementary moves that the imperative algorithm
emits using the printf function. Moves are successively added to the
front of the list τ . Therefore, the elementary moves listed in τ are to
be executed from right to left.

4.1. Inference rules

The inference rules below define a rewriting relation ⊲ between states
(µ, σ, τ). Each rule describes a step that the compilation algorithm is
allowed to take. A run of compilation is viewed as a sequence of rewrites
from the initial state (µ, ∅, ∅) to a final state (∅, ∅, τ), where µ is the
parallel move problem we set out to compile, and reverse(τ) is the
sequence of elementary moves generated by this compilation run.

(µ1 • (r 7→ r) • µ2, σ, τ) ⊲ (µ1 • µ2, σ, τ)
[Nop]

The first rule deals with the case where the transfer relation has
an edge (r 7→ r) whose source and destination are identical. This case
is specially handled at line 7 of the imperative algorithm. Note that
in this imperative algorithm, this edge is not annotated as Moved and
keeps the status To_move until the end of the algorithm. Nevertheless
this edge cannot result from a recursive call of the function move_one

because, in this case, the caller would correspond to an edge (s 7→ r)
and that would violate the fact that the transfer relation is a windmill:
indeed, there would exist two different edges with the same destination.
It is therefore valid to move the test of line 7 up to the level of the main
loop at line 24.

pmov.tex; 2/10/2007; 10:54; p.7

8

The [Nop] rule, as written, is a particular case of the following [Start]
rule. This shows that the test on line 7 of the imperative algorithm is
not required for the validity of the algorithm and can be regarded as
an optimization.

(µ1 • (s 7→ d) • µ2, ∅, τ) ⊲ (µ1 • µ2, (s 7→ d), τ)
[Start]

The [Start] rule corresponds to the first call to the move_one func-
tion at line 24. We know that in this case no edge has the status
Being_Moved and this rule will thus be the only one to handle the
case where the being-moved list is empty.

(µ1 • (d 7→ r) • µ2, (s 7→ d) • σ, τ)
⊲ (µ1 • µ2, (d 7→ r) • (s 7→ d) • σ, τ)

[Push]

The [Push] rule corresponds to the recursive call at line 13. If the
edge being analysed is (s 7→ d) (i.e. the top of the being-moved list)
and if there exists a successor (d 7→ r) in the to-move list, the latter is
transferred to to the top of the being-moved stack.

(µ, σ • (s 7→ d), τ) ⊲ (µ, σ • (T (s) 7→ d), (s 7→ T (s)) • τ)
[Loop]

The [Loop] rule corresponds to the special case at lines 15 and 16
where a cycle is discovered. This rule is of more general use. Indeed,
it is not essential to check the presence of a cycle before inserting a
transfer using a temporary register. Thus, lines 15 and 16 can also be
moved up to the level of the main loop (line 24). The fact that one uses
the temporary register only in the case of a cycle must be regarded
as an optimization. The crucial issue is to make sure that a transfer
through a temporary register must be used whenever a cycle arises.
This is ensured by the next rule.

NoRead(µ, dn) ∧ dn 6= s0

(µ, (sn 7→ dn) • σ • (s0 7→ d0), τ)
⊲ (µ, σ • (s0 7→ d0), (sn 7→ dn) • τ)

[Pop]

The [Pop] rule corresponds to returning from a recursive call to
the function move_one. The first premise of this rule, NoRead(µ, dn), is
formally defined as

NoRead(µ, dn)
def
= (µ = µ1 • (s 7→ d) • µ2 ⇒ s 6= dn).

This premise checks that the edge (sn 7→ dn) under study no longer has
its successor dn in the to-move list. It therefore prevents the [Push] rule

pmov.tex; 2/10/2007; 10:54; p.8

9

from being used if the value of dn is still needed. The second premise,
dn 6= s0, makes sure that the [Pop] rule cannot be used if dn participates
in a cycle, forcing the use of the [Loop] rule instead in the case of a
cycle.

NoRead(µ, dn)

(µ, (s 7→ d), τ) ⊲ (µ, ∅, (s 7→ d) • τ)
[Last]

The [Last] rule corresponds to returning from the main loop at line
24. It is a special case of the [Pop] rule. As in the special case of the
[Nop] rule, observe that a to-move list of the form ((r 7→ r)) can either
be eliminated by the [Nop] rule, or rewritten to itself in two steps
([Start] then [Last]), or rewritten to ((T (r) 7→ r) • (r 7→ T (r))) using a
temporary register (rules [Start] then [Loop] then [Last]). These three
results are equally valid.

4.2. Well-formedness invariant

In preparation for proving the semantic correctness of the rewriting
rules, we first define a well-formedness property that acts as a crucial
invariant in this proof.

DEFINITION 1 (Invariant). A triple (µ, σ, τ) is well-formed, written
⊢ (µ, σ, τ), if and only if:

1. µ • σ is a windmill:
µ • σ = (l1 • (si 7→ di) • l2 • (sj 7→ dj) • l3) ⇒ di 6= dj .

2. The µ list does not contain temporary registers:
µ = µ1 • (s 7→ d) • µ2 ⇒ (s /∈ T ∧ d /∈ T).

3. The σ list can only use a temporary register as the source of its last
edge: σ = σ1 • (s0 7→ d0) ⇒ d0 /∈ T and σ1 = σ2 • (s 7→ d) • σ3 ⇒
(s /∈ T ∧ d /∈ T).

4. The σ list is a path: σ = ((rn−1 7→ rn) • . . . • (r2 7→ r3) • (r1 7→ r2))

Notice that if µ is a windmill and does not use any temporary register,
then the initial triple (µ, ∅, ∅) is well-formed.

LEMMA 1 (The invariant is preserved). The rewriting rules trans-
form a well-formed triple into a well-formed triple. If S1 ⊲ S2 and
⊢ S1, then ⊢ S2.

Proof. By case analysis on the rule that concludes S1 ⊲ S2. For S1 =
(µ, σ, τ), only the [Push] rule adds an element to σ, but the edge thus
added extends the path already present in σ.

pmov.tex; 2/10/2007; 10:54; p.9

10

4.3. Dynamic semantics for assignments

To state semantic preservation for the rewriting relation, we need to
give dynamic semantics to the parallel moves µ and the sequential
moves σ and τ occurring in intermediate states. Let V be the set of
run-time values for the language. The run-time state of a program
is represented as an environment ρ : R → V mapping registers to
their current values. Assigning value v to register r transforms the
environment ρ into the environment ρ[r ← v] defined by

ρ[r ← v] =

{

r 7→ v
r′ 7→ ρ(r′) if r′ 6= r.

(We assume that assigning to a register r preserves the values of all
other registers r′, or in other terms that r does not overlap with any
other register. We will revisit this hypothesis in section 8.)

The run-time effect of a parallel move µ is to transform the current
environment ρ in the environment [[µ]]//(ρ) defined as:

[[(sn 7→ dn) • · · · • (s0 7→ d0)]]//(ρ) = ρ[d0 ← ρ(s0)] . . . [dn ← ρ(sn)]

In this definition parentheses are omitted, as we require that µ is a
windmill. The following lemma, showing that the order of moves within
µ does not matter, is intensively used in our proofs:

LEMMA 2 (Independence). If µ = µ1•(s 7→ d)•µ2 is a windmill, then

[[µ]]//(ρ) = [[(s 7→ d) • µ1 • µ2]]//(ρ)

Proof. By induction on µ1. The base case µ1 = ∅ is trivial. For the
inductive step, we need to prove that the first two elements of µ1 can be
exchanged: (ρ[d0 ← ρ(s0)])[d1 ← ρ(s1)] = (ρ[d1 ← ρ(s1)])[d0 ← ρ(s0)].
The windmill structure of µ1 implies that d0 6= d1, and therefore this
equality is verified.

The run-time effect of a sequence of elementary moves τ , performed
from left to right, is defined by:

[[∅]]→(ρ) = ρ

[[(s 7→ d) • τ]]→(ρ) = [[τ]]→(ρ[d← ρ(s)])

The sequences of elementary moves τ appearing in the states of the
rewriting relation are actually to be interpreted from right to left,
or equivalently to be reversed before execution. It is therefore useful
to define directly the semantics of a sequence of elementary moves τ
performed from right to left:

[[∅]]←(ρ) = ρ

[[(s 7→ d) • τ]]←(ρ) = ρ′[d← ρ′(s)] where ρ′ = [[τ]]←(ρ)

pmov.tex; 2/10/2007; 10:54; p.10

11

LEMMA 3 (Reversed sequential execution). For all sequences τ of el-
ementary moves, [[τ]]←(ρ) = [[reverse(τ)]]→(ρ).

Proof. Easy induction over τ .

DEFINITION 2 (Equivalent environments). We say that two environ-
ments ρ1 and ρ2 are equivalent, and we write ρ1 ≡ ρ2, if and only if all
non-temporary registers have the same values in both environments:

ρ1 ≡ ρ2

def
= ∀r /∈ T , ρ1(r) = ρ2(r).

DEFINITION 3 (Semantics of a triple). The dynamic semantics of
the triple (µ, σ, τ) corresponds to first executing τ sequentially from
right to left, then executing µ • σ in parallel:

[[(µ, σ, τ)]](ρ) = [[µ • σ]]//([[τ]]←(ρ)).

Notice that for initial states, [[(µ, ∅, ∅)]](ρ) = [[µ]]//(ρ), while for final
states, [[(∅, ∅, τ)]](ρ) = [[τ]]←(ρ) = [[reverse(τ)]]→(ρ).

4.4. Correctness

LEMMA 4 (One-step semantic preservation). The rewriting rules pre-
serve the semantics of well-formed triples: if S1 ⊲ S2 and ⊢ S1, then
[[S1]](ρ) ≡ [[S2]](ρ) for all environments ρ.

Proof. By case analysis on the rule used to derive S1 ⊲ S2. We write
S1 = (µ, σ, τ).

− Rule [Nop]: use the fact that ρ[r ← ρ(r)] = ρ.

− Rules [Start] and [Push]: use the order independence lemma 2.

− Rule [Loop]: exploit the fact that µ and σ do not use the tem-
porary register introduced by the rule.

− Rule [Pop]: the expected result follows from

[[(sn 7→ dn) • µ • σ]]//([[τ]]←(ρ)) = [[µ • σ]]//([[(sn 7→ dn) • τ]]←(ρ))

This equality holds provided that register dn does not appear as a
source in µ•σ. For µ, this is ensured by the first premise. For σ, this
follows by induction from the fact that σ is a path. The base case
comes from the premise dn 6= s0. The inductive case is provided
by the windmill structure of σ.

− Rule [Last]: special case of rule [Pop].

pmov.tex; 2/10/2007; 10:54; p.11

12

This lemma is easily extended to ⊲∗, the reflexive transitive closure
of ⊲:

LEMMA 5 (Semantic preservation). Several steps of rewriting
preserve the semantics of well-formed triples: if S1 ⊲∗ S2 and
⊢ S1, then [[S1]](ρ) ≡ [[S2]](ρ) for all environments ρ.

Proof. By induction on the number of steps.

As a corollary, we obtain the main semantic preservation theorem
of this section.

THEOREM 1 (Correctness of ⊲∗). If µ is a windmill containing no
temporary register, and if the triple (µ, ∅, ∅) can be rewritten into
(∅, ∅, τ) then the parallel execution of µ is equivalent to the sequential
execution of reverse(τ):

(µ, ∅, ∅) ⊲∗ (∅, ∅, τ) ⇒ [[µ]]//(ρ) ≡ [[reverse(τ)]]→(ρ).

5. Deterministic specification

The next step towards an effective algorithm consist in determinising
the inductive rules of section 4 by ensuring that at most one rule
matches a given state, and by specifying which edge to extract out
of the to-move list in the rules [Nop], [Push] and [Start].

((r 7→ r) • µ, ∅, τ) →֒ (µ, ∅, τ)
[Nop′]

s 6= d

((s 7→ d) • µ, ∅, τ) →֒ (µ, (s 7→ d), τ)
[Start′]

The first two rules treat the case of an empty being-moved list and
consider only the first element on the left of the to-move list µ.

NoRead(µ1, d)

(µ1 • (d 7→ r) • µ2, (s 7→ d) • σ, τ)
→֒ (µ1 • µ2, (d 7→ r) • (s 7→ d) • σ, τ)

[Push′]

The [Push′] rule treats the case in which the analysed edge has a
successor in the µ list. It imposes to consider the leftmost successor
found in µ.

pmov.tex; 2/10/2007; 10:54; p.12

13

NoRead(µ, r0)

(µ, (s 7→ r0) • σ • (r0 7→ d), τ)
→֒ (µ, σ • (T (r0) 7→ d), (s 7→ r0) • (r0 7→ T (r0)) • τ)

[LoopPop]

NoRead(µ, dn) ∧ dn 6= s0

(µ, (sn 7→ dn) • σ • (s0 7→ d0), τ)
→֒ (µ, σ • (s0 7→ d0), (sn 7→ dn) • τ)

[Pop′]

These two rules treat the case where the analysed edge has no suc-
cessor in the to-move list, and the being-moved list contains at least two
elements. The [LoopPop] rule is the [Pop] rule in the case of a cycle.
Remark that this rule, unlike the corresponding nondeterministic rules,
pops the analysed edge. This particularity ensures that every rule moves
at least one edge. The termination proof in section 6 uses this fact.

NoRead(µ, d)

(µ, (s 7→ d), τ) →֒ (µ, ∅, (s 7→ d) • τ)
[Last′]

The [Last′] rule treats the final case where the being-moved list
contains only one element.

Since these deterministic rules are instances or combinations of the
nondeterministic ones, the following two lemmas are trivial.

LEMMA 6 (Inclusion →֒ ⊆ ⊲∗). If S1 →֒ S2, then S1 ⊲∗ S2.

Proof. By case analysis. The [LoopPop] case uses the transitivity of ⊲∗.

LEMMA 7 (Inclusion →֒∗ ⊆ ⊲∗). If S1 →֒
∗ S2, then S1 ⊲∗ S2.

Proof. By induction on the number of steps.

Notice that the deterministic rules implement a strategy that is
slightly different from that of the imperative algorithm. Indeed, during
the imperative algorithm, when a temporary register is used to break a
cycle, the analysed edge can still have a successor. This is not the case
for the [LoopPop] rule.

Semantic preservation for the deterministic rules follows immedi-
ately from theorem 1 and lemma 7. However, to obtain an algorithm,
we still need to prove that the rules are indeed deterministic and that
a normal form (i.e. the final state (∅, ∅, τ)) always exists. To do so, we
now give a functional presentation of the deterministic rules.

pmov.tex; 2/10/2007; 10:54; p.13

14

6. The functional algorithm

From the deterministic rules in section 5, it is easy to build a function
stepf that performs one step of rewriting. Compiling a parallel move
problem, then, corresponds to iterating stepf until a final state is
reached:

pmov S =

match S with

| (∅, ∅ , _) ⇒ S

| _ ⇒ pmov (stepf S)

end

However, such a function definition is not accepted by Coq, because it is
not structurally recursive: the recursive call is performed on stepf(S)
and not on a structural sub-term of S. To define the pmov function,
we will use the Coq command Function, which provides a simple
mechanism to define a recursive function by well-founded recursion
(Balaa and Bertot, 2002; Barthe et al., 2006). To this end, we first
define the stepf function that executes one computation step, then a
measure function which will be used to justify termination, and finally
the theorem establishing that the measure decreases at each recursive
call.

6.1. The one-step rewriting function

We define the one-step rewriting function stepf in a way that closely
follows the deterministic rules of section 5. It takes a state S as argu-
ment and returns a state S ′ such that S →֒ S ′. The function is defined
by case analysis in figure 3.

The first case (line 3) does not correspond to any of the induc-
tive rules: it detects a final state (∅, ∅, τ) and returns it unchanged.
The other cases correspond to the deterministic rules indicated in
comments.

The reg eq function decides whether two registers are equal or not.
The split move function takes as arguments a mill t, a list of edges,
and a register d. If this register is the source of an edge from list t,
the function returns this edge – (d,), and the two remaining sub-lists.
This breaks the t list into t1 • (d, r) • t2 like the [Push] rule does.

Finally, the replace last source function takes as argument a list
b of edges and a register r, and replaces the source of the last edge of b
with r: hb • (s 7→ d) becomes hb • (t 7→ d) (confer the [LoopPop] rule).

Since the definition of the stepf function is close to the deterministic
specification, the following theorem is easily proved:

pmov.tex; 2/10/2007; 10:54; p.14

15

Function stepf (st: state) : state :=

match st with

| State ∅ ∅ _ ⇒ st (∗ final state ∗)
| State ((s, d) • tl) ∅ l ⇒

if reg_eq s d

then State tl ∅ l (∗ s = d ; rule [Nop] ∗)
else State tl ((s, d) • ∅) l (∗ s 6= d ; rule [Start] ∗)

| State t ((s, d) • b) l ⇒
match split_move t d with

| Some (t1, r, t2) ⇒ (∗ t = t1 • (d 7→ r) • t2 ∗)
State (t1 • t2) (∗ rule [Push] ∗)

((d, r) • (s, d) • b)

l

| None ⇒
match b with

| ∅ ⇒ State t ∅ ((s, d) • l) (∗ rule [Last] ∗)
| _ ⇒

if is_last_source d b (∗ check if b = • (d 7→) ∗)
then State t (∗ rule [LoopPop] ∗)

(replace_last_source (temp d) b)

((s, d) • (d, temp d) • l)

else State t b ((s, d) • l) (∗ rule [Pop] ∗)
end

end

end.

Figure 3. The one-step rewriting function

LEMMA 8 (Compatibility of stepf and →֒). S →֒ stepf(S) if S is
not a final state (i.e. not of the form (∅, ∅, τ)).

Proof. By case analysis on the shape of S and application of the cor-
responding rules for the →֒ relation.

6.2. The general recursive function

The general recursive function consists in iterating the stepf function.
To ensure termination of this function, we need a nonnegative integer
measure over states that decreases at each call to the stepf func-
tion, except in the final case (∅, ∅, τ). Examination of the deterministic
rewriting rules and of the lengths of the to-move and being-moved lists
reveals that:

− either an edge is removed from the to-move list and and the being-
moved list is unchanged (rule [Nop]);

pmov.tex; 2/10/2007; 10:54; p.15

16

− or an edge is transferred from the to-move list to the being-moved
list (rules [Start] and [Push]);

− or the to-move list remains the same while an edge is transferred
from the being-moved list to the moved list (rules [LoopPop], [Pop],
and [Last]).

Therefore, either one of the to-move or being-moved lists loses one
element, or one element is transferred from the former to the latter.
Decrease is achieved by giving more weight to the to-move edges, as
the following meas function does:

DEFINITION 4 (The triple measure).
meas(µ, σ, τ) = 2× length(µ) + length(σ).

LEMMA 9 (Measure decreases with →֒).
If S1 →֒ S2, then meas(S2) < meas(S1).

Proof. By case analysis on the rules of the →֒ relation and computation
of the corresponding measures.

Combining this lemma with lemma 8 (compatibility of stepf with
→֒), we obtain:

LEMMA 10 (Measure decreases with stepf). If S is not a final state,
i.e. not of the form (∅, ∅, τ), then meas(stepf(S)) < meas(S).

We can then define the iterate of stepf using the Function com-
mand of Coq version 8:

Function pmov (S: State) {measure meas st} : state :=

if final_state S then S else pmov (stepf S).

where final state is a boolean-valued function returning true if its
argument is of the form (∅, ∅, τ) and false otherwise. Coq produces
a proof obligation requiring the user to show that the recursive call
to pmov is actually decreasing with respect to the meas function. This
obligation is trivially proved by lemma 10. Coq then generates and
automatically proves the following functional induction principle that
enables us to reason over the pmov function:

(∀S, final state(S) = true ⇒ P (S, S))
∧ (∀S1, S2, final state(S1) = false ∧ P (stepf(S1), S2)

⇒ P (S1, S2))
⇒ (∀S,P (S, pmov(S)))

Using this induction principle and lemma 8, we obtain the correct-
ness of pmov with respect to the deterministic specification.

pmov.tex; 2/10/2007; 10:54; p.16

17

LEMMA 11. For all initial states S, pmov(S) is a final state (∅, ∅, τ)
such that S →֒∗ (∅, ∅, τ).

6.3. The compilation function

To finish this development, we define the main compilation function,
taking a parallel move problem as input and returning an equivalent
sequence of elementary moves.

Definition parmove (mu: moves) : moves :=

match pmov (State mu ∅ ∅) with

| State _ _ tau ⇒ reverse tau

end.

The semantic correctness of parmove follows from the previous re-
sults.

THEOREM 2. Let µ be a parallel move problem. If µ is a mill and does
not mention temporary registers, then [[parmove(µ)]]→(ρ) ≡ [[µ]]//(ρ) for
all environments ρ.

Proof. By definition of parmove and lemma 11, we have parmove(µ) =
reverse(τ) and (µ, ∅, ∅) →֒∗ (∅, ∅, τ). By lemma 7, this entails
(µ, ∅, ∅) ⊲∗ (∅, ∅, τ). The result follows from theorem 1.

Here is an alternate formulation of this theorem that can be more
convenient to use.

THEOREM 3. Let µ = (s1 7→ d1) • · · · • (sn 7→ dn) be a parallel move
problem. Assume that the di are pairwise distinct, and that si /∈ T and
di /∈ T for all i. Let τ = parmove(µ). For all initial environments ρ,
the environment ρ′ = [[τ]]→(ρ) after executing τ sequentially is such
that

1. ρ′(di) = ρ(si) for all i = 1, . . . , n;

2. ρ′(r) = ρ(r) for all registers r /∈ {d1, . . . , dn} ∪ T .

Proof. By theorem 2, we know that ρ′ ≡ [[µ]]//(ρ). For (1), since di /∈ T ,
we have ρ′(di) = [[µ]]//(ρ)(di) = ρ(si) by lemma 2. For (2), we have
ρ′(r) = [[µ]]//(ρ)(r), and an easy induction on µ shows that [[µ]]//(ρ)(r) =

ρ(r) for all registers r that are not destination of µ.

pmov.tex; 2/10/2007; 10:54; p.17

18

Finally, we used the Coq extraction mechanism (Letouzey, 2003)
to automatically generate executable Caml code from the definition
of the parmove function, thus obtaining a verified implementation of
the parallel move compilation algorithm that can be integrated in the
Compcert compiler back-end.

7. Syntactic properties of the compilation algorithm

In this section, we show a useful syntactic property of the sequences
of moves generated by the parmove compilation function: the registers
involved in the generated moves are not arbitrary, but either appear
in the initial parallel move problem, or are results of the temporary-
generating function T .

More formally, let µ0 = (s1 7→ d1) • · · · • (sn 7→ dn) be the initial
parallel move problem. We define a property P (s 7→ d) of elementary
moves (s 7→ d) by the following inference rules:

(s 7→ d) ∈ µ0

P (s 7→ d)

P (s 7→ d)

P (T (s) 7→ d)

P (s 7→ d)

P (s 7→ T (s))

We extend this property pointwise to lists l of moves and to states:

P (l)
def
= ∀(s 7→ d) ∈ l, P (s 7→ d) P (µ, σ, τ)

def
= P (µ) ∧ P (σ) ∧ P (τ)

Obviously, the property P holds for µ0 and therefore for the initial
state (µ0, ∅, ∅). Moreover, the property is preserved by every rewriting
step.

LEMMA 12. If S1 ⊲ S2 and P (S1) hold, then P (S2) holds.

Proof. By examination of the nondeterministic rewriting rules. The
result is obvious for all rules except [Loop], since these rules do not
generate any new moves. The [Loop] rule replaces a move (s 7→ d) that
satisfies P with the two moves (T (s) 7→ d) and (s 7→ T (s)). The new
moves satisfy P by application of the second and third inference rules
defining P .

It follows that the result of parmove(µ0) satisfy property P .

LEMMA 13. For all moves (s 7→ d) ∈ parmove(µ0), the property
P (s 7→ d) holds.

Proof. Follows from lemmas 7, 11 and 12.

pmov.tex; 2/10/2007; 10:54; p.18

19

As a first use of this lemma, we can show that for every move in
the generated sequence parmove(µ0), the source of this move is either
a source of µ0 or a temporary, and similarly for the destination.

LEMMA 14. For all moves (s 7→ d) ∈ parmove(µ0), we have s ∈
{s1, . . . , sn} ∪ T and d ∈ {d1, . . . , dn} ∪ T .

Proof. We show that P (s 7→ d) implies s ∈ {s1, . . . , sn} ∪ T and d ∈
{d1, . . . , dn}∪T by induction on a derivation of P (s 7→ d), then conclude
with lemma 13.

Another application of lemma 13 is to show type preservation for
the compilation of parallel moves. Assume that every register r has
an associated type Γ(r). We say that a list of moves l is well typed if
Γ(s) = Γ(d) for all (s 7→ d) ∈ l.

LEMMA 15 (Type preservation). Assume that temporaries are gener-
ated in a type-preserving manner: Γ(T (s)) = Γ(s) for all registers s. If
µ0 is well typed, then parmove(µ0) is well typed.

Proof. We show that P (s 7→ d) implies Γ(s) = Γ(d) by induction on a
derivation of P (s 7→ d), then conclude using lemma 13.

8. Extension to overlapping registers

So far, we have assumed that two distinct registers never overlap: as-
signing one does not change the value of the other. This is not always
the case in practice. For instance, some processor architectures expose
hardware registers that share some of their bits. In the IA32 architec-
ture, for example, the register AL refers to the low 8 bits of the register
EAX. Assigning to AL therefore modifies the value of EAX, and conversely.

Overlap also occurs naturally when the “registers” manipulated by
the parallel move compilation algorithm include memory locations,
such as variables that have been spilled to memory during register
allocation, or stack locations used for parameter passing. For example,
writing a 32-bit integer at offset δ in the stack also changes the values
of the stack locations at offsets δ + 1, δ + 2 and δ + 3.

It is not straightforward to generalize the parallel move compilation
algorithm to the case where source and destination registers can overlap
arbitrarily. We will not attempt to do so in this section, but set out
to show a weaker, but still useful result: the unmodified parallel move
algorithm produces correct sequences of elementary assignments even

pmov.tex; 2/10/2007; 10:54; p.19

20

if registers can in general overlap, provided destinations and sources do
not overlap.

8.1. Formalising overlap

In the non-overlapping case, two registers r1 and r2 are either identical
r1 = r2 or different r1 6= r2. When registers can overlap, we have three
cases: r1 and r2 are either identical (r1 = r2) or completely disjoint
(written r1 ⊥ r2) or different but partially overlapping (written r1 ⊲⊳
r2).

We assume given a disjointness relation ⊥ over R×R, which must
be symmetric and such that r1 ⊥ r2 ⇒ r1 6= r2. We define partial
overlap r1 ⊲⊳ r2 as (r1 6= r2) ∧ ¬(r1 ⊥ r2).

In the non-overlapping case, the semantics of an assignment of
value v to register r is captured by the update operation ρ[r ← v],
characterized by the “good variable” property:

ρ[r ← v] =

{

r 7→ v
r′ 7→ ρ(r′) if r′ 6= r.

To account for the possibility of overlap, we define the weak update
operation ρ[r ⇐ v] by the following “weak good variable” property:

ρ[r ⇐ v] =

{ r 7→ v
r′ 7→ ρ(r′) if r′ ⊥ r
r′ 7→ undefined if r′ ⊲⊳ r.

As suggested by the fatter arrow ⇐, weak update sets the target
register r to the specified value v, but causes “collateral damage” on
registers r′ that partially overlap with r: their values after the update
are undefined. Only registers r′ that are disjoint from r keep their old
values.

Using weak update instead of update, the semantics of a sequence τ
of elementary moves becomes

[[∅]]⇒(ρ) = ρ

[[(s 7→ d) • τ]]⇒(ρ) = [[τ]]⇒(ρ[d⇐ ρ(s)])

8.2. Effect of overlap on the parallel move algorithm

In this section, we consider a parallel move problem µ = (s1 7→ d1)•· · ·•
(sn 7→ dn) and assume that the sources s1, . . . , sn and the destinations
d1, . . . , dn satisfy the following hypotheses:

1. No temporaries: si ⊥ t and di ⊥ t for all i, j and t ∈ T .

pmov.tex; 2/10/2007; 10:54; p.20

21

2. Destinations are pairwise disjoint: di ⊥ dj if i 6= j.

3. Sources and destinations do not partially overlap:
si 6= dj ⇒ si ⊥ dj for all i, j.

4. Temporaries do not partially overlap with any register:
t 6= r ⇒ t ⊥ r for all t ∈ T , r ∈ R.

Hypotheses (1), (2) and (4) ensure that assigning a destination or a
temporary preserves the values of other destinations and temporaries.
Hypotheses (1), (3) and (4) ensure that assigning a destination or a
temporary preserves the values of all source registers.

These hypotheses are easily satisfied in our application scenario
within the Compcert compiler. Hardware registers never partially over-
lap in the target architecture (the PowerPC processor). Properties of
the register allocator ensure that the only possibility for partial overlap
is between stack locations used as destinations for parameter passing,
but such overlap is avoided by the calling conventions used.

Since r1 ⊥ r2 ⇒ r1 6= r2, hypothesis (1) ensures that no temporary
occurs in sources and destinations, and hypothesis (2) ensures that µ
is a mill. Therefore, the initial state (µ, ∅, ∅) is well-formed.

We now set out to prove a correctness result for the sequence of
elementary moves τ = parmove(µ) produced by the parallel move
compilation function. Namely, we wish to show that the final values
of the destinations di are the initial values of the sources si, and that
all registers disjoint from the destinations and from the temporaries
keep their initial values. To this end, we define the following relation ∼=
between environments:

ρ1
∼= ρ2

def
= (∀r /∈ D, ρ1(r) = ρ2(r))

where D is the set of registers that partially overlap with one of the
destinations:

D
def
= {r | ∃i, r ⊲⊳ di}

In other terms, ρ1
∼= ρ2 holds if ρ1 and ρ2 assign the same values

to registers, except perhaps those registers that could be set to an
undefined value as a side-effect of assigning one of the destinations.

LEMMA 16. r /∈ D if r is one of the destinations di, or one of the
sources si, or a temporary t ∈ T .

Proof. Follows from hypotheses (1) to (4).

Using the relation ∼=, we can relate the effect of executing moves
using normal, overlap-unaware update and weak, overlap-aware update.

pmov.tex; 2/10/2007; 10:54; p.21

22

LEMMA 17. Consider an elementary move (s 7→ d) where
s ∈ {s1, . . . , sn} ∪ T and d ∈ {d1, . . . , dn} ∪ T . If ρ1

∼= ρ2, then
ρ1[d← ρ1(s)] ∼= ρ2[d⇐ ρ2(s)].

Proof. We need to show that

ρ1[d← ρ1(s)] (r) = ρ2[d⇐ ρ2(s)] (r) (∗)

for all registers r /∈ D. By definition of D, either r = di or r ⊥ di

for all destinations di. By hypothesis (4), either r = t or r ⊥ t for all
temporaries t ∈ T . Therefore, either r = d or r ⊥ d.

In the first case r = d, the left-hand side of (*) is equal to ρ1(s) and
the right-hand side to ρ2(s). We do have ρ1(s) = ρ2(s) by hypothesis
ρ1
∼= ρ2 and the fact that s /∈ D by lemma 16.
In the second case r ⊥ d, using the good variable property and the

fact that r 6= d, the left-hand side of (*) is equal to ρ1(d). Using the
weak good variable property, the right-hand side is ρ2(d). The equality
ρ1(d) = ρ2(d) follows from hypothesis ρ1

∼= ρ2.

The previous lemma extends to sequences of elementary moves, per-
formed with normal updates on one side and with weak updates on the
other side.

LEMMA 18. Let τ be a sequence of moves such that for all (s 7→ d) ∈
τ , s ∈ {s1, . . . , sn} ∪ T and d ∈ {d1, . . . , dn} ∪ T . If ρ1

∼= ρ2, then
[[τ]]→(ρ1) = [[τ]]⇒(ρ2).

Proof. By structural induction on τ , using lemma 17.

THEOREM 4. Let µ = (s1 7→ d1) • · · · • (sn 7→ dn) be a parallel move
problem that satisfies hypotheses (1) to (4). Let τ = parmove(µ). For
all environments ρ, writing ρ′ = [[τ]]⇒(ρ), we have

1. ρ′(di) = ρ(si) for all i = 1, . . . , n;

2. ρ′(r) = ρ(r) for all registers r disjoint from the destinations di and
from the temporaries T .

Proof. Define ρ1 = [[τ]]→(ρ). By theorem 3, we have ρ1(di) = ρ(si) for
all i, and ρ1(r) = ρ(r) for all r /∈ {d1, . . . , dn} ∪T . By lemma 14, every
move (s 7→ d) ∈ τ is such that s is either one of the sources si or a
temporary, and d is either one of the destinations di or a temporary.
Since ρ ∼= ρ holds trivially, lemma 18 applies and shows that ρ1

∼= ρ′.
Let di be one of the destinations. We have ρ′(di) = ρ1(di) since

di /∈ D by lemma 16. Moreover, ρ1(di) = ρ(si). The expected result
follows.

pmov.tex; 2/10/2007; 10:54; p.22

23

Let r be a register disjoint from the destinations di and from the
temporaries T . By definition of D, r /∈ D, therefore ρ′(r) = ρ1(r).
Moreover, ρ1(r) = ρ(r) since r /∈ {d1, . . . , dn} ∪ T . The expected result
follows.

9. Conclusions

Using the Coq proof assistant, we have proved the correctness and
termination of a compilation algorithm that serialises parallel moves.
The main difficulty of this development was to find an appropriate set
of atomic transitions between intermediate states of the algorithm, and
prove that they preserve semantics; once this is done, the proof of the
algorithm proper follows easily by refinements. The Coq development is
relatively small: 570 lines of specifications and 625 lines of proof scripts.

The approach followed in this article enabled us to slightly improve
the imperative algorithm from section 3 used as a starting point. In
particular, the functional algorithm looks only for cycles involving the
edge that started the recursion of the move_one function (i.e. the last
element of the being-moved list, whereas the imperative algorithm looks
for cycles anywhere in this list. The correctness proof for the ⊲ relation
implies that looking for the cycle from the bottom of the being-moved
stack is sufficient: in the case for the [Pop] rule, we proved that all
elements of the being-moved list except the last one cannot have the
destination dn as source.

While specified in terms of parallel moves, our results can probably
be extended to parallel assignments (x1, . . . , xn) := (e1, . . . , en) where
every expression ei mentions at most one of the variables xj .

Although efficient in practice, neither the initial imperative algo-
rithm nor the functional algorithm proved in this paper are optimal
in the number of elementary moves produced. Consider for instance
the parallel move (r3, r2, r1) := (r1, r1, r2). The algorithms generate a
sequence of 4 moves: r3 := r1; t := r2; r2 := r1; r1 := t, where t is a
temporary. However, the effect can be achieved in 3 moves, using the
destination register r3 to break the cycle: r3 := r1; r1 := r2; r2 := r3.
Preliminary investigations suggest that the nondeterministic specifica-
tion of section 4 can be extended with one additional rule to support
this use of a destination to break cycles. However, the functional al-
gorithm would become much more complex and require backtracking,
possibly leading to exponential complexity.

A direction for further work is to prove the correctness of an imper-
ative, array-based formulation of the parallel move compilation algo-
rithm, similar to the algorithm given in section 3. We are considering

pmov.tex; 2/10/2007; 10:54; p.23

24

using the Why tool (Filliâtre, 2007; Filliâtre, 2003) to conduct this
proof. It raises several difficulties. The two nested loops and the num-
ber of arrays needed (src, dst and status) imply large invariants.
Moreover the proof obligations generated by Why are huge and hard
to work with. Furthermore, due to the side effects over arrays, delicate
non-aliasing lemmas must be proved.

References

Appel, A. W.: 1992, Compiling with continuations. Cambridge University Press.
Balaa, A. and Y. Bertot: 2002, ‘Fonctions récursives générales par itération en théorie

des types’. In: Journées Francophones des Langages Applicatifs 2002. INRIA.
Barthe, G., J. Forest, D. Pichardie, and V. Rusu: 2006, ‘Defining and reasoning

about recursive functions: a practical tool for the Coq Proof Assistant.’. In:
Proc. 8th Int. Symp. on Functional and Logic Programming (FLOPS’06), Vol.
3945 of Lecture Notes in Computer Science. pp. 114–129, Springer.

Bertot, Y. and P. Castéran: 2004, Interactive Theorem Proving and Program Devel-
opment – Coq’Art: The Calculus of Inductive Constructions, EATCS Texts in
Theoretical Computer Science. Springer.

Bertot, Y., B. Grégoire, and X. Leroy: 2006, ‘A structured approach to proving
compiler optimizations based on dataflow analysis’. In: Types for Proofs and
Programs, Workshop TYPES 2004, Vol. 3839 of Lecture Notes in Computer
Science. pp. 66–81, Springer.

Blazy, S., Z. Dargaye, and X. Leroy: 2006, ‘Formal verification of a C compiler front-
end’. In: FM 2006: Int. Symp. on Formal Methods, Vol. 4085 of Lecture Notes
in Computer Science. pp. 460–475, Springer.

Coq development team: 1989–2007, ‘The Coq proof assistant’. Software and
documentation available at http://coq.inria.fr/.

Filliâtre, J.-C.: 2003, ‘Verification of non-functional programs using interpretations
in type theory’. Journal of Functional Programming 13(4), 709–745.

Filliâtre, J.-C.: 2003–2007, ‘The Why software verification tool’. Software and
documentation available at http://why.lri.fr/.

Leroy, X.: 2006, ‘Formal certification of a compiler back-end, or: programming a
compiler with a proof assistant’. In: 33rd symposium Principles of Programming
Languages. pp. 42–54, ACM Press.

Letouzey, P.: 2003, ‘A new extraction for Coq’. In: Types for Proofs and Programs,
Workshop TYPES 2002, Vol. 2646 of Lecture Notes in Computer Science. pp.
200–219, Springer.

May, C.: 1989, ‘The parallel assignment problem redefined’. IEEE Transactions on
Software Engineering 15(6), 821–824.

Sethi, R.: 1973, ‘A note on implementing parallel assignment instructions’. Infor-
mation Processing Letters 2(4), 91–95.

Welch, P. H.: 1983, ‘Parallel assignment revisited’. Software Practice and Experience
13(12), 1175–1180.

pmov.tex; 2/10/2007; 10:54; p.24

