3,760 research outputs found

    Unifying Functional Interpretations: Past and Future

    Full text link
    This article surveys work done in the last six years on the unification of various functional interpretations including G\"odel's dialectica interpretation, its Diller-Nahm variant, Kreisel modified realizability, Stein's family of functional interpretations, functional interpretations "with truth", and bounded functional interpretations. Our goal in the present paper is twofold: (1) to look back and single out the main lessons learnt so far, and (2) to look forward and list several open questions and possible directions for further research.Comment: 18 page

    From IF to BI: a tale of dependence and separation

    Full text link
    We take a fresh look at the logics of informational dependence and independence of Hintikka and Sandu and Vaananen, and their compositional semantics due to Hodges. We show how Hodges' semantics can be seen as a special case of a general construction, which provides a context for a useful completeness theorem with respect to a wider class of models. We shed some new light on each aspect of the logic. We show that the natural propositional logic carried by the semantics is the logic of Bunched Implications due to Pym and O'Hearn, which combines intuitionistic and multiplicative connectives. This introduces several new connectives not previously considered in logics of informational dependence, but which we show play a very natural role, most notably intuitionistic implication. As regards the quantifiers, we show that their interpretation in the Hodges semantics is forced, in that they are the image under the general construction of the usual Tarski semantics; this implies that they are adjoints to substitution, and hence uniquely determined. As for the dependence predicate, we show that this is definable from a simpler predicate, of constancy or dependence on nothing. This makes essential use of the intuitionistic implication. The Armstrong axioms for functional dependence are then recovered as a standard set of axioms for intuitionistic implication. We also prove a full abstraction result in the style of Hodges, in which the intuitionistic implication plays a very natural r\^ole.Comment: 28 pages, journal versio

    On Affine Logic and {\L}ukasiewicz Logic

    Full text link
    The multi-valued logic of {\L}ukasiewicz is a substructural logic that has been widely studied and has many interesting properties. It is classical, in the sense that it admits the axiom schema of double negation, [DNE]. However, our understanding of {\L}ukasiewicz logic can be improved by separating its classical and intuitionistic aspects. The intuitionistic aspect of {\L}ukasiewicz logic is captured in an axiom schema, [CWC], which asserts the commutativity of a weak form of conjunction. This is equivalent to a very restricted form of contraction. We show how {\L}ukasiewicz Logic can be viewed both as an extension of classical affine logic with [CWC], or as an extension of what we call \emph{intuitionistic} {\L}ukasiewicz logic with [DNE], intuitionistic {\L}ukasiewicz logic being the extension of intuitionistic affine logic by the schema [CWC]. At first glance, intuitionistic affine logic seems very weak, but, in fact, [CWC] is surprisingly powerful, implying results such as intuitionistic analogues of De Morgan's laws. However the proofs can be very intricate. We present these results using derived connectives to clarify and motivate the proofs and give several applications. We give an analysis of the applicability to these logics of the well-known methods that use negation to translate classical logic into intuitionistic logic. The usual proofs of correctness for these translations make much use of contraction. Nonetheless, we show that all the usual negative translations are already correct for intuitionistic {\L}ukasiewicz logic, where only the limited amount of contraction given by [CWC] is allowed. This is in contrast with affine logic for which we show, by appeal to results on semantics proved in a companion paper, that both the Gentzen and the Glivenko translations fail.Comment: 28 page

    Focusing and Polarization in Intuitionistic Logic

    Get PDF
    A focused proof system provides a normal form to cut-free proofs that structures the application of invertible and non-invertible inference rules. The focused proof system of Andreoli for linear logic has been applied to both the proof search and the proof normalization approaches to computation. Various proof systems in literature exhibit characteristics of focusing to one degree or another. We present a new, focused proof system for intuitionistic logic, called LJF, and show how other proof systems can be mapped into the new system by inserting logical connectives that prematurely stop focusing. We also use LJF to design a focused proof system for classical logic. Our approach to the design and analysis of these systems is based on the completeness of focusing in linear logic and on the notion of polarity that appears in Girard's LC and LU proof systems

    Reasoning about Knowledge in Linear Logic: Modalities and Complexity

    No full text
    In a recent paper, Jean-Yves Girard commented that ”it has been a long time since philosophy has stopped intereacting with logic”[17]. Actually, it has no

    Dialectica Categories for the Lambek Calculus

    Full text link
    We revisit the old work of de Paiva on the models of the Lambek Calculus in dialectica models making sure that the syntactic details that were sketchy on the first version got completed and verified. We extend the Lambek Calculus with a \kappa modality, inspired by Yetter's work, which makes the calculus commutative. Then we add the of-course modality !, as Girard did, to re-introduce weakening and contraction for all formulas and get back the full power of intuitionistic and classical logic. We also present the categorical semantics, proved sound and complete. Finally we show the traditional properties of type systems, like subject reduction, the Church-Rosser theorem and normalization for the calculi of extended modalities, which we did not have before

    The intuitionistic temporal logic of dynamical systems

    Get PDF
    A dynamical system is a pair (X,f)(X,f), where XX is a topological space and f ⁣:X→Xf\colon X\to X is continuous. Kremer observed that the language of propositional linear temporal logic can be interpreted over the class of dynamical systems, giving rise to a natural intuitionistic temporal logic. We introduce a variant of Kremer's logic, which we denote ITLc{\sf ITL^c}, and show that it is decidable. We also show that minimality and Poincar\'e recurrence are both expressible in the language of ITLc{\sf ITL^c}, thus providing a decidable logic expressive enough to reason about non-trivial asymptotic behavior in dynamical systems
    • …
    corecore