37 research outputs found

    A note on forbidding clique immersions

    Full text link
    Robertson and Seymour proved that the relation of graph immersion is well-quasi-ordered for finite graphs. Their proof uses the results of graph minors theory. Surprisingly, there is a very short proof of the corresponding rough structure theorem for graphs without KtK_t-immersions; it is based on the Gomory-Hu theorem. The same proof also works to establish a rough structure theorem for Eulerian digraphs without K⃗t\vec{K}_t-immersions, where K⃗t\vec{K}_t denotes the bidirected complete digraph of order tt

    The structure of graphs not admitting a fixed immersion

    Full text link
    We present an easy structure theorem for graphs which do not admit an immersion of the complete graph. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall

    The structure of graphs not admitting a fixed immersion

    Get PDF
    We present an easy structure theorem for graphs which do not admit an immersion of the complete graph. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall

    Immersion of complete digraphs in Eulerian digraphs

    Get PDF
    A digraph GG \emph{immerses} a digraph HH if there is an injection f:V(H)→V(G)f : V(H) \to V(G) and a collection of pairwise edge-disjoint directed paths PuvP_{uv}, for uv∈E(H)uv \in E(H), such that PuvP_{uv} starts at uu and ends at vv. We prove that every Eulerian digraph with minimum out-degree tt immerses a complete digraph on Ω(t)\Omega(t) vertices, thus answering a question of DeVos, Mcdonald, Mohar, and Scheide.Comment: 17 pages; fixed typo

    Unavoidable Immersions and Intertwines of Graphs

    Get PDF
    The topological minor and the minor relations are well-studied binary relations on the class of graphs. A natural weakening of the topological minor relation is an immersion. An immersion of a graph H into a graph G is a map that injects the vertex set of H into the vertex set of G such that edges between vertices of H are represented by pairwise-edge-disjoint paths of G. In this dissertation, we present two results: the first giving a set of unavoidable immersions of large 3-edge-connected graphs and the second on immersion intertwines of infinite graphs. These results, along with the methods used to prove them, are analogues of results on the graph minor relation. A conjecture for the unavoidable immersions of large 3-edge-connected graphs is also stated with a partial proof
    corecore