4,718 research outputs found

    Low Correlation Sequences over the QAM Constellation

    Full text link
    This paper presents the first concerted look at low correlation sequence families over QAM constellations of size M^2=4^m and their potential applicability as spreading sequences in a CDMA setting. Five constructions are presented, and it is shown how such sequence families have the ability to transport a larger amount of data as well as enable variable-rate signalling on the reverse link. Canonical family CQ has period N, normalized maximum-correlation parameter theta_max bounded above by A sqrt(N), where 'A' ranges from 1.8 in the 16-QAM case to 3.0 for large M. In a CDMA setting, each user is enabled to transfer 2m bits of data per period of the spreading sequence which can be increased to 3m bits of data by halving the size of the sequence family. The technique used to construct CQ is easily extended to produce larger sequence families and an example is provided. Selected family SQ has a lower value of theta_max but permits only (m+1)-bit data modulation. The interleaved 16-QAM sequence family IQ has theta_max <= sqrt(2) sqrt(N) and supports 3-bit data modulation. The remaining two families are over a quadrature-PAM (Q-PAM) subset of size 2M of the M^2-QAM constellation. Family P has a lower value of theta_max in comparison with Family SQ, while still permitting (m+1)-bit data modulation. Interleaved family IP, over the 8-ary Q-PAM constellation, permits 3-bit data modulation and interestingly, achieves the Welch lower bound on theta_max.Comment: 21 pages, 3 figures. To appear in IEEE Transactions on Information Theory in February 200

    Large Zero Autocorrelation Zone of Golay Sequences and 4q4^q-QAM Golay Complementary Sequences

    Full text link
    Sequences with good correlation properties have been widely adopted in modern communications, radar and sonar applications. In this paper, we present our new findings on some constructions of single HH-ary Golay sequence and 4q4^q-QAM Golay complementary sequence with a large zero autocorrelation zone, where H≥2H\ge 2 is an arbitrary even integer and q≥2q\ge 2 is an arbitrary integer. Those new results on Golay sequences and QAM Golay complementary sequences can be explored during synchronization and detection at the receiver end and thus improve the performance of the communication system

    Modulation Diversity in Fading Channels with Quantized Receiver

    Full text link
    In this paper, we address the design of codes which achieve modulation diversity in block fading single-input single-output (SISO) channels with signal quantization at receiver and low-complexity decoding. With an unquantized receiver, coding based on algebraic rotations is known to achieve modulation coding diversity. On the other hand, with a quantized receiver, algebraic rotations may not guarantee diversity. Through analysis, we propose specific rotations which result in the codewords having equidistant component-wise projections. We show that the proposed coding scheme achieves maximum modulation diversity with a low-complexity minimum distance decoder and perfect channel knowledge. Relaxing the perfect channel knowledge assumption we propose a novel training/estimation and receiver control technique to estimate the channel. We show that our coding/training/estimation scheme and minimum distance decoding achieve an error probability performance similar to that achieved with perfect channel knowledge

    Multilevel Coded Modulation for Unequal Error Protection and Multistage Decoding—Part I: Symmetric Constellations

    Get PDF
    In this paper, theoretical upper bounds and computer simulation results on the error performance of multilevel block coded modulations for unequal error protection (UEP) and multistage decoding are presented. It is shown that nonstandard signal set partitionings and multistage decoding provide excellent UEP capabilities beyond those achievable with conventional coded modulation. The coding scheme is designed in such a way that the most important information bits have a lower error rate than other information bits. The large effective error coefficients, normally associated with standard mapping by set partitioning, are reduced by considering nonstandard partitionings of the underlying signal set. The bits-to-signal mappings induced by these partitionings allow the use of soft-decision decoding of binary block codes. Moreover, parallel operation of some of the staged decoders is possible, to achieve high data rate transmission, so that there is no error propagation between these decoders. Hybrid partitionings are also considered that trade off increased intraset distances in the last partition levels with larger effective error coefficients in the middle partition levels. The error performance of specific examples of multilevel codes over 8-PSK and 64-QAM signal sets are simulated and compared with theoretical upper bounds on the error performance

    A Generalized Construction of OFDM M-QAM Sequences With Low Peak-to-Average Power Ratio

    Full text link
    A construction of 22n2^{2n}-QAM sequences is given and an upper bound of the peak-to-mean envelope power ratio (PMEPR) is determined. Some former works can be viewed as special cases of this construction.Comment: published by Advances in Mathematics of Communication

    Multilevel Coded Modulation for Unequal Error Protection and Multistage Decoding—Part II: Asymmetric Constellations

    Get PDF
    In this paper, multilevel coded asymmetric modulation with multistage decoding and unequal error protection (UEP) is discussed. These results further emphasize the fact that unconventional signal set partitionings are more promising than traditional (Ungerboeck-type) partitionings, to achieve UEP capabilities with multilevel coding and multistage decoding. Three types of unconventional partitionings are analyzed for asymmetric 8-PSK and 16-QAM constellations over the additive white Gaussian noise channel to introduce design guidelines. Generalizations to other PSK and QAM type constellations follow the same lines. Upper bounds on the bit-error probability based on union bound arguments are first derived. In some cases, these bounds become loose due to the large overlappings of decision regions associated with asymmetric constellations and unconventional partitionings. To overcome this problem, simpler and tighter approximated bounds are derived. Based on these bounds, it is shown that additional refinements can be achieved in the construction of multilevel UEP codes, by introducing asymmetries in PSK and QAM signal constellations

    Notes on analogue and digital amplitude modulation

    Get PDF
    Notes on AM, DSBSC, QAM, BPSK, 4QAM, 8PSK, 16QA
    • …
    corecore