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Multilevel Coded Modulation for Unequal Error
Protection and Multistage Decoding—Part II:
Asymmetric Constellations

Motohiko Isaka Member, IEEE Marc P. C. FossorierMember, |IEEE
Robert H. Morelos-Zaragoz&enior Member, IEEEShu Lin Fellow, IEEE and
Hideki Imai, Fellow, IEEE

Abstract—in this paper, multilevel coded asymmetric mod- UEP channel coding should be designed based on the character-
ulation with multistage decoding and unequal error protection jstics of the source encoder output, with respect to the proportion
(UEP) is discussed. These results further emphasize the factynq the desired quality of each bit stream. This motivates the use

that unconventional signal set partitionings are more promising f if tic) si | tellati togeth ith
than traditional (Ungerboeck-type) partitionings, to achieve of nonuniform (asymmetric) signal constellations together wi

UEP capabilities with multilevel coding and multistage decoding. Unconventional partitionings [3] to obtain additional freedom in
Three types of unconventional partitionings are analyzed for the code construction.

asymmetric 8-PSK and 16-QAM constellations over the additive  Previous work on coded modulation for UEP with asym-
white Gaussian noise channel to introduce design guidelines. metric constellations has been presented in [3]-[5], all for the

Generalizations to other PSK and QAM type constellations follow " . . . .
the same lines. Upper bounds on the bit-error probability based additive white Gaussian noise (AWGN) channel, and in [6]

on union bound arguments are first derived. In some cases, these@nd [7] for the Rayleigh/Rician fading channels. Multilevel
bounds become loose due to the large overlappings of decisioncodes were designed based on minimum squared Euclidean

regions associated with asymmetric constellations and uncon- distance (SED) for the AWGN channel [3], and by minimum
ventional partitionings. To overcome this problem, simpler and symbol and product distance for the Rayleigh fading channel

tighter approximated bounds are derived. Based on these bounds, . . . ; .
it is shown that additional refinements can be achieved in the [6], and computer simulations at relatively high bit-error rates

construction of multilevel UEP codes, by introducing asymmetries (BER'’s). However, asymptotic evaluations based on distance
in PSK and QAM signal constellations. parameters alone are insufficient for designing multilevel codes

Index Terms—Asymmetric constellations, multilevel coded With, multistage decoding, since the multiple rgprg;entations
modulation, multistage decoding, unequal error protection, union Of signal labels affect the error performance significantly at
bound. practical BER. Signal constellations named “32-diamond con-
stellation” have been designed based on cutoff rate arguments
for Rayleigh/Rician fading channels in [7]. However, this
approach only deals with limited cases, and cutoff rate argu-
U NCONVENTIONAL signal set partitionings are a goodments do not predict the code performance precisely in many

approach to achievenequal error protectiofUEP) ca- situations. The fact that no general theoretical analysis on the

pabilities in multilevel coded modulation and multistage debit-error performance has been derived for multilevel codes has
coding [1], as shown in the companion paper [2]. In generabksulted in somewhaid hoccode constructions (although in
[5] an upper bound for trellis codes with maximume-likelihood

decoding is presented). Therefore, a systematic approach for

Paper approved by J. Huber, the Editor for Coding and Coded Modulatithe construction of multilevel UEP codes is desired.

of the IEEE Communications Society. Manuscript received October 8, 1998; |, this paper multilevel coded asymmetric modulations with
revised March 30, 1999 and August 2, 1999. This work was supported in part ltist d ’ di d UEP biliti di dto ob
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national Collaborative Research Grant 8048, the National Science Foundatiain additional refinements in the matched design of source-
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nications Conference (GLOBECOM'98), Sydney, Australia, November 199gperformance is discussed. Upper bounds on the bit-error prob-
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bound, and representing two codewords which differuin Y Y
positions defines a distin@w-dimensional decision region. ° o LR o
These 2w-dimensional decision regions simply correspond ' ) o0
to the underlying two-dimensional constellation, replicated o

in w orthogonal dimensions, so that Pythagoras’ theorem X X
holds. This method applies to conventional Ungerboeck-type o e o0
partitioning [9], as shown in [2] and [10]. However, for ¢ ° .. PP PP
many unconventional partitionings (possibly together with L , L L
asymmetric constellations), different pairs of code sequences _A'Z '_A1 0 A1' IAz _A; _'A1 0 A‘1 'Az

considered in the union bound share the same decision regions,

so that Pythagoras’ theorem no longer holds. In this case, @ (b)

the line joining the code sequences of each pair considerggl 1. Nonuniform constellations: (a) 8-PSK and (b) 16-QAM.
in the 2w-dimensional Euclidean space is no longer always

orthogonal to the decision region considered by the decoder. As. . . . . .
: : etric modulations in this paper. lblock partitioning [2],
a result, the distance between the code sequence considered an oo : LS,
. . o - signal points in a subset are contained in disjoint half planes
the corresponding decision region is no longer always obtaing :
at each level. It can be regarded as an opposite approach to

from independent contributions of the symbols Composqgngerboeck partitioning, in which the number of nearest

this code sequence. A second approach in evaluating teﬁghbors is minimized at the expense of intra-set distance. As

pairwise-error probability is therefore necessary, as presenpe . . : :
in [2] although this case has not been explicitly discriminated.; result, UEP capabilities are easny achieved by using more
owerful component codes at the first levels of partitioning.

It is observed that, as the distribution of nearest r"a'ghbdl%ﬁis approach is suitable fdr levels of error protection with

depends on the asymmetries, the union bound becomes logsé L . .
the same levels of partitionin@¥{-ary signal constellations).

in some cases, because of the important overlappings of dF(‘S:In the other hanchybrid-type partitioningstake the advan-

sion regions. As a remedy, a tighter and simpler approximatgd I . i
upper bound is derived, by considering the asymmetries and C%\{ges of both partitioning methods to gié < I < L)-levels

. . . . of error protection. Two partitionings are considered. Direct
respon_dlng equivalent numbers of nearest nelghbqrs. This nﬁVY)rid or hybrid-1 partitioningt [2] is obtained by applying
bound IS bqsed on Pythagoras thep rem and_ constitutes Onlyb%@ck partitioning to the first/ — 1) index levels, followed by
approximation for many unconventional partitionings.

The same set partitioning strategies are also applied %%,g [ +1) levels of Ungerboeck partitioning, with</ < L.

16-QAM constellations. It is shown that the extensions of tr}% orctgzt tgietslr;te[pjjrr]eteercti)oaescs ngiﬂf(;a?nthgng;i:%t%;hg least
analytical methods developed for 8-PSK allow in many caslesp y+ng P g

to derive tight bounds on the bit-error probability associat gvels have been designed based on block partitioning. Mixed

. . . . hybrid or hybrid-1l partitioning can be considered as another
with QAM signaling. In some cases, however, a second im? .
. : . P Strategy to trade off the performance of lower index levels for

provement to the union bound is required. This is due to the . : . . .
an increase in the proportion of most important bits (MIB).

fact that, for some unconventional partitionings, overlappin%e partitioning is done such that, at lower index levels, some

of error regions defined from the union bound may correspond . . L
ey signal points are grouped as in Ungerboeck partitioning. Note
to correct decisions.

Based on these tight analytical bounds, it is shown that adgi]-at Itis p_ossmle 1o mix theslaybnd_typeappr.oaf:heg In one
. , . ; constellation, by applying the hybrid-I partitioning in higher
tional refinements in choosing the number of UEP levels, an . AT .

. ; index levels and the hybrid-1l partitioning in lower index levels,
the error performances associated with each level, can be

complished with asymmetric constellations. gl?hough this extension is not treated in this paper. These

: . . . ree partitionings are depicted in Fig. 2 for an asymmetric
The rest of the paper is organized as follows: In Section [l : T .
. . : : “PSK constellation. The set partitionings are represented in
asymmetric 8-PSK and 16-QAM signal constellations in multl[— . . ) S .
: . . the figures in such a way that, at first partitioning level, signal
level coded modulation for multistage decoding and UEP are in- " .
. o .points are partitioned by color (black and white) and at the
troduced. Upper bounds on bit-error probability based on unién .
. o : econd level by symbols (square and circle).
bound arguments and tighter approximations are derived o
three types of partitioning for asymmetric 8-PSK in Section Il . .
In Section IV, the error performances for asymmetric 16-QAM" Asymmetric 8-PSK and 16-QAM Constellations
with the three unconventional partitioning methods are derived.In Sections Il and 1V, the unconventional partitionings de-
Finally, conclusions on this work are given in Section V. scribed above are extended to asymmetric 8-PSK and 16-QAM
constellations. The 8-PSK constellation of interest in this paper
is depicted in Fig. 1(a). This eight signal point constellation can
be viewed as the augmentation of a pair of points in a quadrant
byag0-j(j =1, 2, 3) ° phase rotated version of itself [11].
A. Set Partitionings Let « (degrees) be the angle between two signal points in a
We consider three types of unconventional partitioningguadrant of an 8-PSK signal constellation, wheranges from

originally propos_,ed in [2] an_d 8] for Sym”f'?F”C PSK (and 1Since another hybrid-type partitioning is considered, “hybrid” in Part | [2]
QAM) constellations, to provide UEP capabilities with asymis referred to as “hybrid-I" in this paper.

II. UNCONVENTIONAL SET PARTITIONINGS OF ASYMETRIC
CONSTELLATIONS FORUEP
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Fig. 2. Asymmetric 8-PSK constellation with: (a) block partitioning; (b) hybrid-I partitioning; (c) hybrid-Il partitioning.

TABLE |

LIST OF UNCONVENTIONAL PARTITIONINGS FORASYMMETRIC 8-PSK MODULATIONS

Partitioning | Ny No N; 5% 5% 532
Block 05 05 1 [4sin®(T=r)  4sin’(B2n) 4 sin”(=Z=7)

Hybrid-I(a) [05 1 1 | 4sin® 936—0“ T  4sin®(%57) 2

Hybrid-I (b) [ 0.5 0.5 1 | 4sin? 936"0“ ) 4sin®( 9§6_0“ ) 2

Hybrid-I (c) |05 1.5 1 4sin® 2 4sin® 7 2
Hybrid-II | 1 1 1 |4sin®(Fin) 4 —4sin’(;5m)  4sin’(357)

0to0 90. The projection of signal points on fkie (X -)coordinate as opposed t@: Afl? for Ungerboeck partitioning [9]. This re-

axis takes four values; A, —A,, A;, andA,, where duction in error coefficient is realized at the expense of a non-
increasing intra-set distance at each level of the partitioning.
. 90 — « . . . . :
Ay = sin < 7r> Consequently, the first decoding stage achieves an impressive
360 coding gain, but the third decoding stage degrades in perfor-
Ay = cos <90 @ ) (1) Mmance. These characteristics can be refined with an asymmetric
360 constellation by choosing different valuesoin Fig. 2(a). Note

at, as expected, in the limiting case- 0, the constellation of

. 2(a) tends to a Gray mapped quadrature phase-shift keying
PSK) constellation indexed by the first two label bits.
Decoding and the associated error performance analysis can
be given in the same fashion as for the symmetric constellation
case [2], and are briefly reviewed in the following. Note that the
decision regions in this case cannot be replicatedtprthog-
onal two-dimensional constellations in contrast with the cases
treated in [10], because different code sequences share the same

In this section, upper bounds are derived on the bit-error pradecision regions as can be seen in Fig. 2(a).

ability for coded asymmetric 8-PSK modulations and the threeAssume the all-zero codeword is transmitted in the first
types of unconventional partitionings represented in Fig. 2 ov@econd) level, and defing, € C; (j = 1,2) as the decoded
the AWGN channel. These upper bounds are union bounds dedeword of Hamming weights. Decoding can be achieved
fined from the evaluation of pairwise-error probabilities. They using the projection of the received signal components on
corresponding parameters are given as follows in Table I: hire X - (Y'-)coordinate axis. Consider, for the nonzero positions
brid-1: ) 0 < o < 45;b) 45 < « < 90; and c)ae = 45 in  of ¢, ¢ components of the corresponding signal sequence have
which N;(7 = 1, 2, 3) denotes the average number of neareptojection valueA; and the othefw — i) components have
neighboring signal points at thi¢h partitioning level andf de- projection valueA,. The SED between the transmitted signal
notes the intra-set SED. Fgr= 1, 2, 3, let C; be the binary sequence and the decision hyperplanet Xo+---+X,, =0
(n, k;, d;) error correcting code applied as a component co@ssociated with this pairwise error is given by [2]
to thejth level, and let1? denote the number of codewords of 1
weightw in C;. dp(i) = — (i + (w 1) Aa)” @

respectively, for unitary radius. Also considered are 16—QAI€I1.
constellations such as those depicted in Fig. 1(b), with poi
coordinates in the sdt-A;, £A,} and normalized ta\? +
AZ = 1.

I1l. ERROR PERFORMANCE ANALYSIS OF CODED
ASYMETRIC 8-PSK MODULATION WITH
MULTISTAGE DECODING AND UEP

A. Upper Bounds on BER with Block Partitioning whereA; and A, vary with the choice ofy, as indicated by

In block partitioning [2], signal points in a subset are con(l). Note that the number of such hyperplane(#i}samong the
tained in disjoint half planes, as shown in Fig. 2(a). At the firgbtal 2% error events.
and second partitioning levels, the average number of nearesAssuming encoding in systematic form, the probability of a
neighbor sequences ($/2)% Af]) with ¢ = 1, 2, respectively, biterrorF;, overthe ANGN channel, with a nonuniform 8-PSK
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Fig. 3. Upper bounds and simulation results for an asymmetric 8-PSKg. 4. RequiredE,/N, at P, = 10~° with nonuniform 8-PSK and
constellation withe = 22.5 and block partitioning. parameterv: block partitioning.

constellation and block partitioning, at levglj = 1, 2, can be s set toar = 22.5, and the overall rate of this multilevel code

upper bounded by union bound arguments as [12] is R = 1.968 75 bits/symbol. Soft decision decoding based on
ordered statistics [13] was applied to all the simulations in this
b, < B paper, with sufficient reprocessing order to achieve practically

A P w © SRE optimum performance at each decoder stage. It can be observed
= gA,(u{)z—w > <L )Q < N b d%(i)) (3) thatthe upper bounds in (3) and (6) are tight, and that this multi-
w=d; i=0 0 level code shows three levels of error protection capability, with

proportions of bits at each level different from those reported in
whereR = (k1 + k2 +ks)/n is the overall rate of the multilevel [7].

code in bits/symbolk, /Ny denotes the energy per information  The required, /N, to achieveP, = 10—, where the boundis

bit to noise ratio, and sufficiently tight, is calculated in Fig. 4 by the upper bounds in (3)
1 0o , and (6) as a function af for a nonuniform 8-PSK constellation.
Qz) = \/T/ e /2 dn. (4) Thecomponentcodesarethe (64,18,22), (64,45, 8),and (64,63,
T Je

2)ex-BCHcodesatthefirst, second, andthirdlevels, respectively.
An upper bound on bit-error probability for the third IeveIThe overall rate i.968 75 bits/symbol. The requirefl;, /N, to

of nonuniform 8-PSK constellations can be obtained by Simpaf)é:hieve the same bit-error probability with uncoded QPSKis also
union bound arguments, with, = 2sin((c/360)7), as shown as a reference. Compared with uniform 8-PSK constella-

tions (@ = 45), a lower bit-error probability can be provided at
A s w RE, the firstand second levels in nonuniform 8-PSK constellations if
P, <P = Z —A®Q <1 / Wwé%) ) (5) «is smallerthan 45, due to the enhanced intra-set distances. On
" 0 the other hand, the performance of the third level degrades be-
) . cause the signal points within a quadrant get closer for smaller
However, these bounds do not consider propagation of eIQL§ es of.. For this choice of component codes, good tradeoffs
between stages, which is expected with extremealues. To i, grror performance between the three decoding stages are pos-
encompass error propagation effects to the third decoding stagje foro < 60. Fore > 60, the error performance ofthe second

the results in [2] are extended to approximate the upper boyggoging stage becomes worse than that of the third stage, pro-

as vided correct decisions at the second stage were made. However,
11 asshowninFig. 4, errors propagate so that both stages have about
P S8, + 50, + 50, (6)  the same error performance.

w=dgz

Note that there does not occur any error propagation from t@e Upper Bounds on BER with Hybrid-I Partitioning
first stage to the second because the corresponding decodlngybrid_l partitioning [2] for 8-PSK constellation is realized

processes are independent. by introducing Ungerboeck partitioning at the second level, as
B. Results for Block Partitioning shown in Fig. 2(b). Therefore, the error performance of the first
The upper bounds derived above are compared with compugrel is the same as for block partitioning. On the other hand,
simulations in Fig. 3. The component codes are the (64, 30, 24§ intra-set distance of the third partitioning level is enhanced to
extended BCH (ex-BCH) code for the first level, the (64, 57, 4§ = 2 regardless of, with increased average nearest signal se-
ex-BCH code for the second level, and the (64, 39, 10) ex-BQitdiences at the second level, as discussed later. By proper choice
code forthethirdlevel of block partitioning. The angle in Fig. 1(a)f the component codes, the error performances of the last two
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levels can be balanced out so that two levels of error protectionWith error propagation, the upper bounds can be again ap-
are achieved. proximated by
For & < 45, the average number of nearest signal points
in Fig. 2(b) is one at the second partitioning level. However, P, <P
for half the points in each half-plane corresponding to the de- - 1
coding of first stage, a second neighbor (at greater distance) ex- Py, <P}, + §Pb1
ists, which results in increased multiplicity, as shown in the fol- 1
lowing. On the other hand, far > 43, only one of the two Py, <P+ SRS 9)
points has one nearest signal point, while both have one nonn-
earest neighbor. Note that symmetric constellation with 45 It should be noted that (9) can give an overestimation of error
is the intersection of these two cases in which all the neighbgropagation from the second to the third decoding stages. This
have equivalent contributions. is true especially whern is small, because the labeling of the
For a nonuniform 8-PSK constellation, the upper bounds dhird partitioning level can be viewed as block partitioning. In
the BER for the first and third levels are the same as for blothis case, however, a better code design can be found and the
partitioning, and are given by (3) and (5), respectively, aftéssue of error propagation is not investigated further.
modifying the valués. Next, a union bound on the error perfor-
mance of the second stage for hybrid-I partitioning is presentgal. Approximated Bound for the Second Stage of Hybrid-I
This bound is derived by evaluating the pairwise-error probRartitioning
the chavibuton of neighboring signal poits difers fom hay " ("6 f0llowing, a simple approsimation of (8) based
considered in the analysis of uniform 8-PSK given in [2]. FoEm Pythagoras’ theorem with respect to the constellations

ianal points wh octi I i dinat i Fig. 2(b) is derived. Consider first the case < 45. As

B e e eroomy e cc[1eToned previusl, “r poits” have 1w neghborng
2 . . . ’ ignal poi he SED? D3 ively. This impli

to the two neighboring points a®? = 4sin®(ax/360) and signal points at the SED and Dy, respectively. This implies

. .~ thatthet ding decision boundafi®s; and DL
D3 = 4sin? ((90 — a)7/360), respectively. The other signal al *he "Wa corresponcing decision boun L an 2

points (referred to as “outer points”) have one nearest sigri%F located at the SED{/4 and D3 /4, respectively. Let us
point at distanced? = 4 sin?(ar /360). nsider how much effects these neighboring signal points

: e . . otally have when that of the closest signal point is normalized
In evaluating the pairwise-error probability, again the SE y gha'p

) . 0 1. This defineseffective number of nearest neighboex:
between transm@ted. and decode(_j sequence 1S nee(.jed.- Astgﬁding the conventional concepts in [2], [14], and [15] where
posgd o the denvauon of (3) a distinct decision region 1S age umber of neighboring signal points is counted only for
somattled ;V 'EE each F,’at'rr] of codislzque:ces cons_lgleretdl. CO% fametric constellations. For a transmitted signal psiahd
quently, Fythagoras theorem nolds. Assume without 0SS gy, corresponding received signal patntiefine the likelihood
generality that the all-zero sequence is transmitted at the second., oo
level and denote byv the weight of an incorrectly decoded *

codeworde,, at the second level. As an “inner point” (or “outer
w point” ( _ p(r — 5|2 = D}/4ls)

point”) is selected with probability 1/2, it can be assumed that L, =

50 < i < ) “iner pointe” (signal pints Wi 00" pir — s = D3/4ls)

i(0 < i < w) “inner points” (signal points with label#00 21

in which z is arbitrary) andw — ) “outer points” (“z01”) are eXp(_ RE, &)

transmitted. For this codeworel,, consider an error event in _ No 4

which, for thes transmitted “inner points,5(0 < j < 4) sym- o RE, D?

bols correspond to erroneous “inner pointst11”) at distance Xpl — No 4

D32, and the remaining — j) symbols correspond to erroneous RE

“ H ” fu ” 2 . H — _ b 2 _ 2

outer points” (“z10") located atD?. The (w — 4) transmitted = eXP{ A (D3 Dl)} : (10)

“outer points” have only one nearest neighbor locatedat

It follows from Pythagoras’ theorem that the SED between thghis definition suggests that theffective number of nearest
transmitted sequence and the incorrectly decoded codeword RBHyhborsassociated with “inner points” can be estimated as
be expressed as (1 + L,) with respect to the SED?. Note that hybrid-I parti-
2 2 0 N\ 2 tioning with symmetric 8-PSK modulation(= 45) is a special
dp =(i = J)Dy + 5D + (w — i) Dy case withL, = 1. Since half of the points (“inner points”) in
=(w — j)D? + jD;. ) Fig. 2(b) correspond to this case, and half of the points (“outer
From union bound arguments, an upper bound on the error peeints”) have only one nearest neighbor, #ffective error co-
formance with respect to the second decoding stage is givenefficient B,, associated with the SERD? for hybrid-I parti-
tioning becomes
P, <P}

A = W o = (W (i RE, N w4 @) [0 i i
R EEO0(ER)  weEe()ren
i=0

w=ds i=0 j=0
(8) =1+ La/2)"AQ. (11)
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Fig. 5. Upper bounds and simulation results for an asymmetric 8-PSKg. 6. RequiredE,/N, at P, = 103 with nonuniform 8-PSK
constellation withy = 40 and hybrid-I partitioning. constellations and parameter hybrid-I partitioning.

The same arguments as in [2] can now be applied to obtairPUe to the tightness of the upper bounds at the BER°10
an approximation for an upper bound on the error performanse bounds can be used to devise a UEP coded system as

of the second level, which results in for block partitioning. In Fig. 6, the requireH, /Ny to achieve
P, = 1073 is calculated based on the derived bounds for the
A & RE;, hybrid-1 partitioning and uncoded QPSK. The component codes
b, <P, = Z Bl wD? (12)  are the (64, 30, 14), (64, 30, 14), and (64, 63, 2) ex-BCH codes
w=d2

at the first, second, and third levels, respectively, and the overall

code rate ig? = 1.921 875 bits/symbol. Forx < 40, the multi-

level code has two levels of protection, while f#ir < « < 60,

error propagation from second to third decoding stage is not as

severe. The require, /Ny for the third level is constant within

this range, because the intra-set distance of the third partitioning
levelis constant regardless@fIf & becomes too large, then the

B, Z 2_“’A§f)< )(1/L YT 1+ 1/Ly,) error performance of the first level dominates the other levels

and errors propagate.

If «is larger than 45, thef; > D, and the effective number
of nearest neighbors for an “inner point” beconjés+ 1/ L, ),
andl1/L,, for “outer points.” Therefore, far > 45, theeffective
error coefficientis defined as

= (1/2 +1/La) A (13) _ _ .
F. Upper Bounds on BER with Hybrid-1l Partitioning

and Py} is defined as in (12) after replacidd; by D3. Another partitioning scheme in Fig. 2(c), referred to as

In [15] and [16], it is pointed out that for uniform constel-hybrid-II [8], is given by clustering signal points and labeling
lations and multistage decoding, the effective error coefficieatcording to Ungerboeck set partitioning rules at lower index
can be expressed as the product of: 1) the number of componienéls. Compared with block partitioning, the intra-set distance
codewords with Hamming weight and 2) thewth power of the  at the second level is enhanced at the cost of increasing the
average number of nearest signal points for each signal poinhiimber of decision regions for the first level. In the limiting
a subset, for QAM constellations with Ungerboeck-type pari¢asen = 0, this partitioning naturally becomes an Ungerboeck
tioning. The above technique can be regarded as a generalizagitipped QPSK constellation.
to asymmetric constellations, to consider the effects of secondwith hybrid-1l partitioning, upper bounds on the bit-error
nearest neighbor points, when Pythagoras’ theorem applies.probability for the second- and third-stage decoders follow di-

rectly from the union bound,
E. Results for Hybrid-1 Partitioning

As an example, component codes are selected as the (64, 3@ <P Z EAEUJ)Q RE, w52 ji=23.
14) ex-BCH code both at the first and second levels, and the wed; " 2No
(64, 63, 2) ex-BCH code at the third level. The angle is set to (14)
« = 40 and the overall code rate 8 = 1.921 875 bits/symbol. However, at the first decoding stage, the effect of nonnearest

The curves derived from (8) and (12) overlap at all signal-taeighbors cannot be ignored whemecreases and Pythagoras’
noise ratio (SNR) values, as expected. The simulation resutgorem no longer holds since different pairs of code sequences
and corresponding union bounds, for all levels are depictedshare the same decision region in Fig. 2(c). In this case, the
Fig. 5 together with the performance of uncoded QPSK. Twamion bound should be considered in terms of the cluster con-
levels of UEP are provided with relatively small proportion ofaining two signal points of a quadrant. Due to the symmetry of
MIB. the decision regions in Fig. 2(c) with respect to the first-stage



780

labeling, it can be assumed that the all-zero sequence is tra
mitted at all the levels without loss of any generality due to th:
uniform symmetry of the constellation. That is, all the trans
mitted signals are labeled “000.” As before, defimeas the
Hamming weight of an erroneous decoded codewgrat the
first stage. By considering the-dimensional decision hyper-
plane corresponding t{0 < ¢ < w) X-coordinate axes and
(w — ¢) Y-coordinate axes with respect to Fig. 2(c), the assc
ciated pairwise-error probability can be derived based on tt
SED between the transmitted signal sequence representing
all-zero codeword and this hyperplane, which can be express
in the same form as (2). As a result, a union bound for the fir¢
decoding stage of hybrid-Il partitioning is given by

~ N (v 2 (s
PIFEDS <>Q< dpw)

(15)
whered%(¢) is given in (2). Again, (9) based on (14) and (15)
is used to include error propagation.

log10(Pb)

2RE,
No

P, <P 2

G. Approximated Bound for the First Stage of Hybrid-II
Partitioning

The upper bound (15) for the first decoding stage becom:
loose when a powerful component code (with large minimurg
Hamming distance) and small values @fare chosen, due to &
the important overlappings of decision regions in2hedimen- 8
sional space associated with.

Based on Fig. 2(c), a similar approximation as for hybrid-
partitioning follows after defining:

exp<_
L, =
exp <—

Note that all the signal points have now the same distribution qund)
neighbors. An approximated upper bound for the error perfor-
mance of the first level of hybrid-II partitioning is obtained by
regarding(1 + L,,) as theeffective number of nearest neighbors
associated with any signal point in Fig. 2(c), so that

* A - w ur RE
P, <P 2> zAEUl)(l—i—La) Q <’/2_N§w6%>' (17)

w=dy

RE,

AQ
No 2)
RE,

—Ag)
0

N

—ew{ - (a3 aD}. a9

d Eb/No (dB)

Equation (17) follows from applying Pythagoras’ theorem frong
Fig. 2(c) to the2w-dimensional space associated with the erng
event of weightw considered. Although not exact since (15~
cannot be derived based on Pythagoras’ theorem [as oppo:
to (7)], this approach provides a simple yet tight approximatio
which can be justified by simple geometrical arguments.

H. Results for Hybrid-II Partitioning

As an example, consider as component codes the (64, 30, &) 9. Required, /N, at P,

30

25

20 |

15

10 r
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Fig. 7. Upper bounds and simulation results for first-stage decoding:
asymmetric 8-PSK constellation with = 30 and hybrid-Il partitioning.
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Fig. 8. Upper bounds and simulation results for an asymmetric 8-PSK
constellation withae = 30 and hybrid-Il partitioning (AB: approximated
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ex-BCH code at the first level, the (64, 57, 4) ex-BCH code atrameter: hybrid-1I partitioning.

the second level, and the (64, 39, 10) ex-BCH code at the third
level. The angle is set ta = 30, and the overall rate of this
multilevel code isk = 1.968 75 bits/symbol.

80

90

10—> with nonuniform 8-PSK and

In Fig. 7, simulation results of the first level are compared
with (15) and (17). As a reference, the truncated union bound
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Fig. 10. Signal labeling of 16-QAM constellation with: (a) block partitioning; (b) hybrid-I partitioning; and (c) hybrid-1l partitioning.

TABLE I
PARAMETERS ASSOCIATED WITHPARTITIONINGS OF A 16-QAM ASYMMETRIC CONSTELLATION
Partitioning | Ny N» N3 Ny 6% 45% 6§ 6:;)

Block 05 05 1 1 |4A? 4A7 (Ax — Ay)? (Ax — Ag)?

Hybrid-I(a) { 0.5 0.5 0.5
HybridI (b) |05 2 1
Hybrid-I(c) 0.5 25 1.5

Hybrid-11 1 025 1

4A? 4A3 (Mg — A1) +4A7 (A +A))2
1A% (Ag - Ay)? 2(Ag — Ag)? (Ao + Ay)?
0.4 0.4 0.8 1.6

4A3 8A? (Ag — Ay)? (Ag — Ap)?

=

assuming only one nearest signal poink (= 0” in Fig. 7) is Forj = 1,2, 3, 4, let C; be the linear binaryn, k;, d;)
also plotted. The approximation in (17) meets the simulatigrror correcting code applied as component codgthdevel,
results for BER'’s lower tham0—3 and is tighter than the exactand letA’ denote the number of codewords of weightin
union bound. In addition, it can be observed that consideriag. Let R = (ky + k2 + k3 + k4)/n bits/symbol be the rate of
only the nearest signal poinL{ = 0) does not give an upper the multilevel code.

bound for this value ofx. Simulation results and union bounds

for all levels are included in Fig. 8 and compared with uncodel Upper Bounds on BER and Results with Block Partitioning

QPSK; ) ) .. The derivation of the upper bound on the BER for block par-

InFig. 9, the required; /Ny to achiever, = 107" is de- iigning with the 16-QAM constellation depicted in Fig. 10(a)
picted for the hybrid-Il partitioning and uncoded QPSK. Thg,)5\ys the same line of arguments as for 8-PSK constellations.
component codes are the (64, 18, 22), (64, 57, 4), and (64, S1yfi), hound for the first and second levels can be represented by
ex-BCH codes at the fl_rst, seconq, and third levels, respegtlve(lg) after replacing; andAs in (2) by proper values. Based on
The overall code rate i5.968 75 bits/symbol. Three protection {ha union bound, upper bounds on the bit-error probability for
levels are possible for < 35, and only two for35 < a < 60.  {he third and fourth decoding stages of the 16-QAM constella-

tions considered are given by
IV. ERRORPERFORMANCEANALYSIS OF CODED ASYMETRIC

16-QAM MODULATION WITH MULTISTAGE DECODING . A " w o) RE, )
AND UEP Py, <P S Y —ADQ | g w(Be — A7,

w=d; 0

In this section, multilevel UEP coded modulation based j=3 4. (18)
on asymmetric 16-QAM is analyzed for the AWGN channel.
This is because compared with asymmetric PSK signaling, inThe required, /N, to achieveP, = 10~%, where the bound
some cases new considerations are necessary when evaluagisgfficiently tight, is depicted in Fig. 11 as a function &f
the corresponding error performances. 16-QAM constellatiofeg nonuniform 16-QAM constellations. The component codes
with block, hybrid-I, and hybrid-1l partitioning are depicted inare the (64, 18, 22) ex-BCH, (64, 24, 16) ex-BCH, (64, 36,
Fig. 10(a)—(c), respectively. The parameters associated wi?) ex-BCH, and 64, 45, 8) ex-BCH codes. The overall rate
the three partitionings are compared in Table Il (hybrid-is 1.921 875 bits/symbol. The same behavior as for 8-PSK with
a)0 < A; < 1/V/10; b) 1//10 < A; < 1/4/2; and c) block partitioning is observed. That is, for the first and second
A; = 1/4/10) whereN;(j = 1, 2, 3, 4) denotes the averagelevels, the error performance is enhanced with larger values of
number of nearest neighboring signal pointgthtpartitioning A; due to the increased intra-set distance, at the expense of
level. larger bit-error probabilities for the remaining levels.
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Fig. 11. Requiredt, /Ny at P, = 10~® with nonuniform 16-QAM and Fig. 12. Required®; /N, at P, = 10~* with nonuniform 16-QAM and
parameter\: block partitioning. parameter\: hybrid-I partitioning.
B. Results of Hybrid-I Partitioning decoding, any:-tuple is a valid candidate codeword at the re-

maining levels. Letv denote the Hamming weight of a decoded
Hybrid-1 partitioning [2], originally proposed for uniform codeworde,, € C;. Then, at the first-stage decodey, defines
8-PSK and 64-QAM, can be extended to asymmetric 16-QAM,,_dimensional decision hyperplanes again consisting of either
constellations as shown in Figs. 10(b) and 1(b). The first. or v-coordinate axes from two-dimensional spaces.
partitioning level is realized with block partitioning while the assume that among the correspondingymbols;(0 < i <
other partitionings are done with Ungerboeck partitioning. ) symbols are transmitted as “001%4{0 < j < (w — %))
The theoretical analysis of this scheme follows the same |i”§3ﬁﬂbols are transmitted as “0000,” afd — i — j) symbols
as [2] and Section Ill. The requireHf, /Ny at P, = 107" is a5 “0010” or “0001.” Note that there exigt~i~7 possibili-
calculated as a function @, in Fig. 12. The component codestjeg of signal point selections among “0010” and “0001.” Due
selected are the (64, 18, 22), (64, 16, 24), (64, 36, 12), and (@the symmetry of the points “0010” and “0001” with respect
57, 4) ex-BCH codes, with an overall code rdte= 1.984375. {5 the X- and Y -coordinate axes, assume first, without loss
In this case, two levels of error correcting capability are obtainggl generality, that all théw — i — ) signal points are trans-
with a relatively small proportion of MIB well protected fdt;  itted as “0010.” The corresponding symbols are associated
large enough. Note that the derived bounds at levels 2—4 gfgn (w — i — 5) dimensions obtained from a combination of
not very tight, because of the large multiplicity at the secongt. andy -coordinate axes. Consider thedimensional hyper-
level and the associated error propagation to third and fougfine formed fromk(0 < k < (w — i — j)) Y-coordinate axes
decoding stages. Consequently, the actual requiigtNo is  and(w — i — j — k) X-coordinate axes with respect to “0010.”
about0.5 dB better than that plotted in the figure. Then the SED between the transmitted signal sequence and this
2w-dimensional hyperplane can be written as [2]

C. Upper Bounds on BER with Hybrid-1l Partitioning

. 1., . .
While both block and hybrid-1 partitionings with QAM sig- @71 (-1 k) = = (s +j 8 + kAL + (w—i=j—k) A}

naling follow the same analyses as those derived in Section IlI 1. } 2
for PgK signaling, new cons)i/derations have to be brought to hy- ~w {E+E)AL + (w -t = k) A2} (19)
brid-11 partitioning for QAM signaling. Compared with block
partitioning (see Table 1), hybrid-Il partitioning has a larger avat the first-stage decoder, we ha@¥—i~7 possibilities of
erage error coefficient at the first level (1 versus 0.5), but h@ﬁoosing(w — i — j) values among “0001” and “0010,” each
both a smaller average error coefficient and a larger intra—Qﬁ;{ﬁning a distinct hyperplane. Also, since both “0000” and
distance at the second level. This implies that a weaker co@®11” have two nearest neighboring decision regions [see
can be used at the second level of the hybrid-II partitioning, apipg_ 10(c)], we have2iti corresponding distinct hyperplanes
therefore allows to assign more information bits. As a resufigsociated with these two labels. Considering all the combi-
hybrid-II partitioning achieves larger proportion of MIB at thenations of variables, j, andk which define4® error events,
cost of a degradation in error performance. the corresponding union bound provides the following upper

1) First Decoding Stage:Again, and without loss of gener- hound on the BER associated with the first decoding stage:
ality, assume that the all-zero codeword is transmitted at the first

level, and due to the symmetry of the labeled constellation with n
respect to the second level, consider that the all-zero codeword b, <P 2 E { EA(l)pl (20)
. . . — 1 w w

is also transmitted at the second level. Recall that for multistage n

w=d1
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where The value(1 + L, ) can be viewed as the average number
Wi i of nearest neighbors with respect to the SBB in the un-

W w—i . w—i—j
Pro =47 Z <w) <w 1_ Z) oitj Z gu—i—j derlying constellation of Fig. 10(c). Hence (25) follows by ap-

im0 j=0 i =0 plying Pythagoras’ theorem from Fig. 10(c) to the-dimen-
L SEE sional space associated with the error event of weigtwnsid-
N b2 (w. ik ered. Although not exact, this approach provides a simple and
L Q N, Pl( » 9 ) ! . . . . .
0 tight approximation as for PSK constellations. This bound is re-
w owi W) N ferred to as thepproximated bounth the following.
=27 Z Z <L ) < j ) Equations (21) and (25) generally provide loose upper bounds

even at moderate SNR if the minimum Hamming distadcef
—i— 2RE the first level component code is relatively large. This is due to
("7 )e ( 2w, k)) @)

the fact that the overlappings of the decision regions considered
previously not only are nonnegligible, but also correspond to
2) Second Decoding Stages similar approach provides an correct decisions, as suggested from Fig. 10(c). Defitle=
upper bound orP,,, the bit-error probability associated withl, 2) as
the second decoding stage. After observing that signal points
labeled by “01xx” can be at three possible distances from the _ < 2RE, 2) _
N - a=Q A =12 (28)
decision lineY” = X in Fig. 10(c) (namehD; = v2A, D, = No
V2(A1 4 Ay)/2, andDs = v/2A,), the union bound provides
N Given that the signal point “0011” is transmitted, the proba-
A Z EA(Q)pQW (22) bility of making an error in the two-dimensional space becomes
v 2¢1(1 — ¢1). Note that, in the argument of (21), the nearest

w=dsy . ; . .
neighbor is counted as two by ignoring the overlap of erroneous
where decision regions, and thus the probability of error in two-dimen-
w w—i w—i—j . sional space i&q¢;. Sinceg; corresponds to error events at dis-
Do =47 Z Z < ) < ) tanceA, in the two-dimensional space, the effective number of

i=0 j=0 k=0 nearest neighbors can be viewed®85— ¢, ) in this case. Con-
i 2REb sideringi such signal points, the corresponding effective error
("7 T e (Y et i b)) @3

coefficient can be expressed &1 — ¢1)}*. The same argu-
ments apply to the signal point “0000,” although the contribu-
and tion to the bound is much smaller. As a result, (25) can be re-
1 placed by the following equation
2 .. . .
dPQ(w7 ¢ T, k) = E{I[’Dl + (J + k)D W w—i

rw=i=j=Rpgt @) pexz 3 (F)("])a-wia-wy

3) Third and Fourth Decoding Stagesthe bit-error proba- =0
bility for the third and fourth decoding stages of the 16-QAM (14 La)* 9Q 2RE, 42, (w, 5) (29)
constellations with hybrid-II partitioning are the same as that of N w

block partitioning given by (18). Finally, (9) is readily extended
to the four-stage decoding case to include error propagationin (20). This bound gives a tighter approximated bound, espe-
cially at low SNR, and is calleomproved approximated bound

D. Approximation Techniques for the First Stage of Hybrid-11in the following.
Partitioning

With the arguments of Section IlI-G based on Pythagorag' Results for Hybrid-ll Partitioning

theorem, (21) can be approximated by The bounds derived in the previous section are compared
) with simulation results, and subsequently, the performance of

o o—w L= [ w\ [w—i the proposed partitioning is discussed based on the bounds.
Prw 2 Z Z < ) < j ) Consider a coded asymmetric 16-QAM constellation and, as
- component codes, the (64, 10, 28) ex-BCH code for the first
(w, 7.)> (25) level, the (64, 45, 8) ex-BCH code for second level, the (64, 36,

i=0 =0

v

2RE, 2
"Ny Per 12) ex-BCH code for third level, and the (64, 36, 12) ex-BCH
code for fourth level. The overall rate of this multilevel code is
where R = 1.984 375 bits/symbol.
2 o A2 L A2 In Fig. 13, simulation results of the first-stage decoder are
dpop(w, §) = (w — )AL +jA (26) compared with (20) based on (21), (25), and (29), respectively.
and Itis observed that, whereas the first two bounds are loose (about
2 dB away atP, = 10~?°), the improved approximated bound is
Lo = exp{—RE, /No(A2 — AD)}. (27) quite tight. Simulation results for all the levels are depicted in
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Fig. 13. Upper bounds and simulation results for first-stage decodingig. 15. RequiredE, /N, at P, = 10— with nonuniform 16-QAM and
symmetric 16-QAM constellation and hybrid-II partitioning. parameter\; : hybrid-1l partitioning.
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Fig. 14. Upper bounds and simulation results for a symmetric 16—QAI)Aig_ 16. RequiredE, /Ny at P, = 10— with nonuniform 16-QAM and
constellation and hybrid-1I partitioning (IAB: improved approximated bo“”d)parameteml: block partitioning (2.953 125 bits/symbol).

Fig. 14 and compared with the best bounds or approximati
derived in Sections IV-C and IV-D.
In Fig. 15, the required;, /N, to achievel, = 10—, where

0)-1\5 an example, the requirell, /N, at P, = 10~° has been
depicted in Fig. 16 for block partitioning, with a reference of
- X . . uncoded 8-AMPM constellation. The component codes are
bounds are sufficiently tight, is calculated as a functiod\ef (64, 30, 14) ex-BCH code, (64, 39, 10) ex-BCH code, (64, 57

e e s CECH coce, and (6, G5 ) - CH code, respecvely
uriev wvirtuary P USERd the overall rate is 2.953 125 bits/symbol. Even with higher

the error propagation from the first (and se_cond) level(s). Ontrale codes, powerful UEP capabilities can be maintained by
other hand, it can be observed that the first and second IevC S0sina prober constellation parameters. This observation
require smallerE;, /N, at a constant BER, ad; gets larger, g prop P )

while the performance of the third and fourth levels deteriorat]:au.rther supports the advantages of the multilevel coding with

Finally, it should be noted that the 16-QAM coded modue_lsymmetnc modulation and multistage decoding,
lation schemes with approximately 2 bits/symbol discussed
in this section are only for illustration of the tightness of
the bounds introduced. That is, this does not preclude theMultilevel coded modulation with multistage decoding
use of a 16-QAM coded modulation scheme with UEP arahd UEP capabilities have been discussed and analyzed, in
3 bits/symbol. In order to increase bandwidth efficiencygonjunction with asymmetry in the signal constellations, to

it is clear that component codes of larger rates need to pevide more flexibility to the coding scheme. Three types of
selected, compared to the above cases. This naturally resplgtitionings have been considered. To illustrate the design
in relatively weaker error protection capabilities for a giveguidelines, a theoretical analysis on the bit-error probabilities
signal constellation. However, this problem can be overcorfm 8-PSK and 16-QAM signaling over the AWGN channel

by again considering asymmetry in the signal constellatiorfsas been presented. Upper bounds by union bound arguments

V. CONCLUSION
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have been derived for each partitioning strategy. The uppgr4] Y. Kofman, E. Zehavi, and S. Shamai (Shitz), “Performance analysis of

bounds are very tight for block partitioning, but become loose

a multilevel coded modulation systeniZEE Trans. Communvol. 42,
pp. 299-312, Feb./Mar./Apr. 1994.

in some cases for other hyb”d'type partitionings, mamly dueflS] T.J. Lunn and A. G. Burr, “Number of neighbors for staged decoding of

to important overlappings of decision regions. To overcome
this problem, a tighter simple approximation technique ha:r_IG 1993.
been proposed. The resulting approximated bounds are tig ]t]
and, in conjunction with the union bound, can closely predict
the performance of multistage decoding of multilevel codes
designed from asymmetric constellations. The additional
degrees of freedom introduced by the asymmetries provide
further refinements which become useful in matching UHE
channel coding with hierarchical source coding.

Although this paper focuses on asymmetric 8-PSK a
16-QAM constellations with certain degrees of regularity, t
general code constructions and the associated performa

block coded modulation,Electron. Lett, vol. 29, pp. 1830-1831, Oct.

G. J. Pottie and D. P. Taylor, “Multilevel codes based on partitioning,”
IEEE Trans. Inform. Theorwol. 35, pp. 87-98, Jan. 1989.

Motohiko Isaka (S'94-M’'99) received the B.E.
and M.E. degrees in electronic engineering, and
the Ph.D degree in information and communication
engineering, all from the University of Tokyo,
Tokyo, Japan, in 1994, 1996, and 1999, respectively.
He is currently with the Institute of Industrial
Science, University of Tokyo, Tokyo, Japan, as a

Postdoctoral Fellow. His current interests include
coding theory, coded modulation, communication
theory, and cryptography.

Dr. Isaka is a member of the IEICE.

analyzes presented can be extended to many more general
arbitrary signaling constellations.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their suggestions that were very helpful in improving the qualit
of the present paper.

Marc P. C. Fossorier (S’90-M’95) was born in An-
nemasse, France, on March 8, 1964. He received the
B.E. degree from the National Institute of Applied
Sciences (INSA), Lyon, France, in 1987, and the M.S.
and Ph.D. degrees from the University of Hawaii at
Manoa, Honolulu, in 1991 and 1994, respectively, all
in electrical engineering.

In 1996, he joined the Faculty of the University of
Hawaii, Honolulu, as an Assistant Professor of Elec-

REFERENCES

[1] H.Imaiand S. Hirakawa, “A new multilevel coding method using error:

correcting codes [EEE Trans. Inform. Theorwol. IT-23, pp. 371-377, trical Engineering. He was promoted to Associate
May 1977. Professor in 1999. His research interests include

[2] R.H. Morelos-Zaragoza, M. P. C. Fossorier, S. Lin, and H. Imai, “Muldecoding techniques for linear codes, communication algorithms, combining
tilevel coded modulation for unequal error protection and multistage d0ding and equalization for ISI channels, magnetic recording, and statistics.
coding—Part I: Symmetric constellation$EEE Trans. Communvol. ~ He co-authored (with S. Lin, T. Kasami, and T. Fujiwara) the bdoklises
48, pp. 204—213, Feb. 2000. and Trellis-Based Decoding Algorithni§orwell, MA: Kluwer, 1998).

[3] A. R. Calderbank and N. Seshadri, “Multilevel codes for unequal error Dr. Fossorier was a recipient of a 1998 l\_latlonal Science Foundation Career
protection,”|EEE Trans. Inform. Theotwol. 39, pp. 1234-1248, July Development Award. He has served as Editor for the IERENBACTIONS ON
1993. COMMUNICATIONS since 1996, as Editor for the IEEE Communications Letters

[4] L. F. Wei, “Coded modulation with unequal error protectioi2EE ~ Since 1999, and he is currently the Treasurer of the IEEE Information Theory

Trans. Communyol. 41, pp. 1439-1449, Oct. 1993. Society.

[5] G. Taricco and E. Biglieri, “Pragmatic unequal error protection coded
schemes for satellite communications,” fimroc. 5th Communication
Theory Mini-Conf., GLOBECOM'96London, U.K., Nov. 1996, pp.
1-5.

[6] N. Seshadri and C.-E. W. Sundberg, “Multi-level block coded module
tion with unequal error protection for the Rayleigh fading chanrigly’
Trans. Telecommuywol. 4, no. 3, pp. 325-334, May/June 1993.

[7] A. Seeger, “Hierarchical channel coding for Rayleigh and Rice fading
in Proc. 6th Communication Theory Mini-Conf., GLOBECOM'97
Phoenix, AZ, Nov. 1997, pp. 208-212. 1

[8] M. Isaka, R. H. Morelos-Zaragoza, M. P. C. Fossorier, S. Lin, and +
Imai, “Coded modulation for satellite broadcasting based on unconve
tional partitionings,”IEICE Trans. Fundamentalsol. E81-A, no. 10,
pp. 2055-2063, Oct. 1998.

Robert H. Morelos-Zaragoza(S'83—M'89-SM’98)
was born in Houma, LA. He received the B.S. and
M.S. degrees in electrical engineering from the
National Autonomous University of Mexico, Mexico
. City, in 1985 and 1987, respectively, and the Ph.D.
degree in electrical engineering from the University
of Hawaii at Manoa, in 1992.
P From August 1992 to March 1993, he was an
Assistant Professor at the Center of Telecommuni-

) ) ) . ‘i’ cations of the Instituto Tecnoldgico y de Estudios
[9] G. Ungerboeck, “Channel coding with multilevel/phase signd BEE Superiores de Monterrey, Monterrey, NL, México.
Trans. Inform. Theoryvol. IT-28, pp. 55-67, Jan. 1982. From 1993 to 1994, he was a Visiting Research Associate at the Department
U. Wachsmann, R. F. H. Fischer, and J. B. Huber, “Multilevel codes Information and Computer Science, Osaka University, Osaka, Japan. From
Theoretical concepts and practical design ruléSEE Trans. Inform. 1994 to 1995, he was a JSPS Postdoctoral Fellow at the Graduate School of
Theory vol. 45, pp. 13611391, July 1999. o _Information Science, Advanced Institute of Science and Technology, Nara,
D. Divsalar, M. K. Simon, and J. Yuen, “Trellis coding with asymmetricjapan. From March 1995 to June 1997, he was a Research Associate at the
modulations,TEEE Trans. Communvol. COM-35, pp. 130-141, Feb. |nstitute of Industrial Science, the University of Tokyo, Tokyo, Japan. From
1987. _ _ _ N June 1997 to July 1999, he was with the Channel Coding Group of LSI Logic
M. P. C. Fossorier, S. Lin, and D. Rhee, “Bit error probability for maxCorporation, Milpitas, CA. Since August 1999, he has been a researcher with
imum likelihood decoding of linear block codes and related soft-dehe Advanced Telecommunications Laboratory, SONY Computer Science
cision decoding methodsJEEE Trans. Inform. Theoryvol. 44, pp. | aboratories, Inc., Tokyo, Japan. His research interests include error control
3083-3090, Nov. 1998. coding, coded modulation, and design of digital communications systems.
M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block pr, Morelos-Zaragoza is a member of Eta Kappa Nu and the Institute of Elec-
codes based on ordered statisti¢EEE Trans. Inform. Theorywol. 41,  tronics, Information and Communication Engineers (IEICE) of Japan.
pp. 1379-1396, Sept. 1995.

[10]

[11]

[12]

(23]



786

Shu Lin (S'62-M'65-SM’'78-F'80) received the

B.S.E.E degree from the National Taiwan University,

' Taipei, Taiwan, R.O.C., in 1959, and the M.S.

~ and Ph.D. degrees in electrical engineering fron

"Ir-") (%_ﬁ‘ Rice University, Houston, TX, in 1964 and 1965,
- respectively.

N~ In 1965, he joined the Faculty of the University

| of Hawaii, Honolulu, as an Assistant Professor

e of Electrical Engineering. He was promoted to
‘g\ Associate Professor in 1969, and to Professor i

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 48, NO. 5, MAY 2000

Hideki Imai (M'74-SM'88-F'92) was born in
Shimane, Japan, on May 31, 1943. He received
the B.E., M.E., and Ph.D. degrees in electrical
engineering from the University of Tokyo, Tokyo,
Japan, in 1966, 1968, and 1971, respectively.

From 1971 to 1992, he was on the faculty of
Yokohama National University, Yokohama, Japan.
In 1992 he joined the faculty of the University of
Tokyo, where he is currently a Full Professor in the
Institute of Industrial Science. His current research

1973. In 1986, he joined Texas A&M University, interests include information theory, coding theory,

College Station, as the Irma Runyon Chair Professor of Electrical Engineerirgyptography, spread-spectrum systems and their applications.
In 1987, he returned to the University of Hawaii. From 1989 to 1995, he servedDr. Imai was elected an |IEEE Fellow for his contributions to the theory of
as the Chairman of the Department of Electrical Engineering. He retired frasnded modulation and two-dimensional codes in 1992. He has chaired sev-
the University of Hawaii in 1999 and joined the University of California aeral committees of scientific societies such as the IEICE Professional Group
Davis, where he is now a Visiting Professor. He spent 1978-1979 as a Visitioig Information Theory. He served as the editor for several scientific journals of
Scientist at the IBM Thomas J. Watson Research Center, Yorktown Heigh&ICE, IEEE, etc. He has chaired many international conferences such as the
NY, where he worked on error control protocols for data communicatioh993 IEEE Information Theory Workshop and 1994 International Symposium
systems. He spent the academic year of 1996-1997 as a Distinguished Visitngnformation Theory and Its Applications (ISITA'94). Dr. Imai has been on
Professor at the Nara Advanced Institute of Science and Technology, Nahe Board of IEICE, the IEEE Information Theory Society, Japan Society of
Japan, and as a Visiting Chair Professor at the Technical University of Municecurity Management (JSSM), and the Society of Information Theory and Its
Munich, Germany. He has published more than 100 technical papers in IEEgplications (SITA). He has served as President of the IEICE Engineering Sci-
TRANSACTIONS and other prestigious refereed journals and more than 2@bces Society and SITA. He received Excellent Book Awards from IEICE in
conference papers. He is the author of the bégk|ntroduction to Error-Cor- 1976 and 1991. He also received the Best Paper Award (Yonezawa Memorial
recting Codes(Englewood Cliff, NJ: Prentice-Hall, 1970). He co-authoreddward) from IEICE in 1992, the Distinguished Services Award from the As-
(with D.J. Costello) the bookError Control Coding: Fundamentals and sociation for Telecommunication Promotion Month in 1994, and the Telecom
Applications (Englewood Cliffs, NJ: Prentice-Hall, 1982), which has beersystem Technology Prize from the Telecommunication Advancement Founda-
widely adopted either as a text for a course in error control coding or agian and Achievement Award from IEICE in 1995. In 1998, he was awarded the
reference for practicing communication engineers over the world for the laSblden Jubilee Paper Award by the IEEE Information Theory Society.
17 years. He also co-authored (with T. Kasami, T. Fujiwara and M. Fossorier)
the book, Trellises and Trellis-Based Decoding Algorithn{dlorwell, MA:
Kluwer, 1998). He has contributed chapters for six other books. He has been
awarded several patents. A convolutional code constructed by him in 1965
was used in NASA's Pioneer 9 solar orbit space mission, launched in 1968.
He has served as the Principal Investigator on 25 research grants. His current
research areas include algebraic coding theory, coded modulation, turbo
coding, low-density parity-check codes, soft-decision decoding, error control
systems, and satellite communications.

Dr. Lin is a member of the IEEE Information Theory Society and the IEEE
Communications Society. In 1991, he was the President of the IEEE Information
Theory Society. He served as the Associate Editor for Algebraic Coding Theory
for the IEEE TRANSACTIONS ONINFORMATION THEORY from 1976 to 1978, and
as Program Co-Chairman of the IEEE International Sysposium on Information
Theory, held in Kobe, Japan, in June 1988. He also served as Co-Chairs for
a number of IEEE Information Theory Workshops and a number of Interna-
tional Communication Conferences and Symposia. He was a recipient of the
Alexander von Humboldt Research Prize for U.S. Senior Scientists in 1996 and
the IEEE Third Millenium Medal for his outstanding contributions in error con-
trol coding and engineering education.



	San Jose State University
	SJSU ScholarWorks
	5-2000

	Multilevel Coded Modulation for Unequal Error Protection and Multistage Decoding—Part II: Asymmetric Constellations
	Motohiko Isaka
	Marc P. C. Fossorier
	Robert H. Morelos-Zaragoza
	Shu Lin
	Hideki Imai
	Recommended Citation


	Multilevel coded modulation for unequal error protection and multistage decoding-part II: asymmetric - Communications, IEEE Transactions on

