research

Modulation Diversity in Fading Channels with Quantized Receiver

Abstract

In this paper, we address the design of codes which achieve modulation diversity in block fading single-input single-output (SISO) channels with signal quantization at receiver and low-complexity decoding. With an unquantized receiver, coding based on algebraic rotations is known to achieve modulation coding diversity. On the other hand, with a quantized receiver, algebraic rotations may not guarantee diversity. Through analysis, we propose specific rotations which result in the codewords having equidistant component-wise projections. We show that the proposed coding scheme achieves maximum modulation diversity with a low-complexity minimum distance decoder and perfect channel knowledge. Relaxing the perfect channel knowledge assumption we propose a novel training/estimation and receiver control technique to estimate the channel. We show that our coding/training/estimation scheme and minimum distance decoding achieve an error probability performance similar to that achieved with perfect channel knowledge

    Similar works

    Full text

    thumbnail-image