87 research outputs found

    A Normalizing Intuitionistic Set Theory with Inaccessible Sets

    Full text link
    We propose a set theory strong enough to interpret powerful type theories underlying proof assistants such as LEGO and also possibly Coq, which at the same time enables program extraction from its constructive proofs. For this purpose, we axiomatize an impredicative constructive version of Zermelo-Fraenkel set theory IZF with Replacement and ω\omega-many inaccessibles, which we call \izfio. Our axiomatization utilizes set terms, an inductive definition of inaccessible sets and the mutually recursive nature of equality and membership relations. It allows us to define a weakly-normalizing typed lambda calculus corresponding to proofs in \izfio according to the Curry-Howard isomorphism principle. We use realizability to prove the normalization theorem, which provides a basis for program extraction capability.Comment: To be published in Logical Methods in Computer Scienc

    Normalization of IZF with Replacement

    Full text link
    ZF is a well investigated impredicative constructive version of Zermelo-Fraenkel set theory. Using set terms, we axiomatize IZF with Replacement, which we call \izfr, along with its intensional counterpart \iizfr. We define a typed lambda calculus \li corresponding to proofs in \iizfr according to the Curry-Howard isomorphism principle. Using realizability for \iizfr, we show weak normalization of \li. We use normalization to prove the disjunction, numerical existence and term existence properties. An inner extensional model is used to show these properties, along with the set existence property, for full, extensional \izfr

    Extracting Programs from Constructive HOL Proofs via IZF Set-Theoretic<br> Semantics

    Full text link
    Church's Higher Order Logic is a basis for influential proof assistants -- HOL and PVS. Church's logic has a simple set-theoretic semantics, making it trustworthy and extensible. We factor HOL into a constructive core plus axioms of excluded middle and choice. We similarly factor standard set theory, ZFC, into a constructive core, IZF, and axioms of excluded middle and choice. Then we provide the standard set-theoretic semantics in such a way that the constructive core of HOL is mapped into IZF. We use the disjunction, numerical existence and term existence properties of IZF to provide a program extraction capability from proofs in the constructive core. We can implement the disjunction and numerical existence properties in two different ways: one using Rathjen's realizability for IZF and the other using a new direct weak normalization result for IZF by Moczydlowski. The latter can also be used for the term existence property.Comment: 17 page

    Proof-irrelevant model of CC with predicative induction and judgmental equality

    Full text link
    We present a set-theoretic, proof-irrelevant model for Calculus of Constructions (CC) with predicative induction and judgmental equality in Zermelo-Fraenkel set theory with an axiom for countably many inaccessible cardinals. We use Aczel's trace encoding which is universally defined for any function type, regardless of being impredicative. Direct and concrete interpretations of simultaneous induction and mutually recursive functions are also provided by extending Dybjer's interpretations on the basis of Aczel's rule sets. Our model can be regarded as a higher-order generalization of the truth-table methods. We provide a relatively simple consistency proof of type theory, which can be used as the basis for a theorem prover

    On the strength of proof-irrelevant type theories

    Full text link
    We present a type theory with some proof-irrelevance built into the conversion rule. We argue that this feature is useful when type theory is used as the logical formalism underlying a theorem prover. We also show a close relation with the subset types of the theory of PVS. We show that in these theories, because of the additional extentionality, the axiom of choice implies the decidability of equality, that is, almost classical logic. Finally we describe a simple set-theoretic semantics.Comment: 20 pages, Logical Methods in Computer Science, Long version of IJCAR 2006 pape

    The extended predicative Mahlo universe in Martin-Lof type theory

    Get PDF
    This paper addresses the long-standing question of the predicativity of the Mahlo universe. A solution, called the extended predicative Mahlo universe, has been proposed by Kahle and Setzer in the context of explicit mathematics. It makes use of the collection of untyped terms (denoting partial functions) which are directly available in explicit mathematics but not in Martin-Lof type theory. In this paper, we overcome the obstacle of not having direct access to untyped terms in Martin-Lof type theory by formalizing explicit mathematics with an extended predicative Mahlo universe in Martin-Lof type theory with certain indexed inductive-recursive definitions. In this way, we can relate the predicativity question to the fundamental semantics of Martin-Lof type theory in terms of computation to canonical form. As a result, we get the first extended predicative definition of a Mahlo universe in Martin-Lof type theory. To this end, we first define an external variant of Kahle and Setzer\u27s internal extended predicative universe in explicit mathematics. This is then formalized in Martin-Lof type theory, where it becomes an internal extended predicative Mahlo universe. Although we make use of indexed inductive-recursive definitions that go beyond the type theory IIRD\mathbf {IIRD} of indexed inductive-recursive definitions defined in previous work by the authors, we argue that they are constructive and predicative in Martin-Lof\u27s sense. The model construction has been type-checked in the proof assistant Agda

    Extended calculus of constructions

    Get PDF

    Realizability with Stateful Computations for Nonstandard Analysis

    Get PDF
    In this paper we propose a new approach to realizability interpretations for nonstandard arithmetic. We deal with nonstandard analysis in the context of intuitionistic realizability, focusing on the Lightstone-Robinson construction of a model for nonstandard analysis through an ultrapower. In particular, we consider an extension of the ?-calculus with a memory cell, that contains an integer (the state), in order to indicate in which slice of the ultrapower ?^{?} the computation is being done. We shall pay attention to the nonstandard principles (and their computational content) obtainable in this setting. We then discuss how this product could be quotiented to mimic the Lightstone-Robinson construction
    • …
    corecore