
An Extended Calculus of Constructions

Zhaohui Luo

Ph. D.

University of Edinburgh

iLJ!II

,4iTio,*

zo

Abstract

This thesis presents and studies a unifying theory of dependent types ECC -

Extended Calculus of Constructions. ECC integrates Coquand-Huet's (impred-

icative) calculus of constructions and Martin-Löf's (predicative) type theory with

universes, and turns out to be a strong and expressive calculus for formalization

of mathematics, structured proof development and program specification.

The meta-theory of ECC is studied and we show that the calculus has good

meta-theoretic properties. The main proof-theoretic result is the strong nor-

malization theorem, proved by using Girard-Tait's reducibility method based

on a quasi normalization theorem which makes explicit the predicativity of the

predicative universes. The strong normalization result shows the proof-theoretic

consistency of the calculus; in particular, it implies the consistency of the em-

bedded intuitionistic higher-order logic and the decidability of the theory. The

meta-theoretic results establish the theoretical foundations both for pragmatic

applications in theorem-proving and program specification and for computer im-

plementations of the theory. ECC has been implemented in the proof develop-

ment system LECO developed by Pollack.

In ECC, dependent E-types are non-propositional types residing in the pred-

icative universes and propositions are lifted as higher-level types as well. This

solves the known difficulty that adding strong E - types to an impredicative system

results in logical paradox and enables s-types to be used to express the intuition-

istic notion of subsets. s-types together with type universes hence provide useful
11

abstraction and module mechanisms for abstract description of mathematical

theories and basic mechanisms for program specification and adequate formal-

ization of abstract mathematics (e.g., abstract algebras and notions in category

theory). A notion of (abstract) mathematical theory can be described and leads

to a promising approach to abstract reasoning and structured reasoning. Program

specifications can be expressed by E-types, using propositions in the embedded

logic to describe program properties (for example, by an equality reflection result,

computational equality can be modeled by the propositional Leibniz's equality

definable in the theory). These developments allow comprehensive structuring of

formal or rigorous development of proofs and programs.

Also discussed is how the calculus can be understood set-theoretically. We ex-

plain an w-Set (realizability) model of the theory. In particular, propositions can

be interpreted as partial equivalence relations and the predicative type universes

as corresponding to large set universes.

111

Acknowledgements

I would like most of all to express my gratitude to my supervisor Rod Burstall

who not only brought me into the research area and provided many interesting

ideas, able guidance and helpful advice, but also gave me a lot of help and

encouragement in many aspects. From him, I have learned a lot about research

methodology as well as scientific knowledge.

I would also thank Susumu Hayashi, Eugenio Moggi and Thierry Coquand

for their insights and many helpful discussions, from which I have learned a lot

about logics, type theories, categorical models etc.. Particularly, I am in debt

to Hayashi for the wide-ranging discussions we had in Edinburgh from which I

benefited very much, for his patience in listening to my detailed explanation of

the proof of strong normalization, and for his many good suggestions; to Moggi

for introducing me to the work on w-sets and modest sets, reading a draft of this

thesis and giving many suggestions; and to Coquand for the deep influence of his

work and his remarks on and suggestions to my work.

Many discussions with Paul Taylor and Randy Pollack, in particular those

about theory mechanisms, have proved very helpful; from them, I have learned

much about proof development systems.

Thanks also go to Henk Barendregt, Stefano Berardi, Yves Lafont, Pierre-

Louis Curien, Herman Geuvers, Furio Honsell, Gerard Huet, Martin Hyland,

Jose Messeguer, Christian-Emil Ore, Andy Pitts, Gordon Plotkin, John Power,

Anne Salvesen and Don Sannella for the helpful discussions we had.
iv

I also thank the staff, students and my friends in Edinburgh who enabled me

to study and work in so good an environment.

I was financially supported by the Studentship of the Edinburgh University

and the Overseas Research Students Award.

My thanks to my wife Dejuan can not be expressed enough in any way.

V

Declaration

I hereby declare that this thesis has been composed by myself, that the work is

my own, and the ideas and results that I do not attribute to others are due to

myself.

vi

Contents

1 	Introduction 1

1.1 	Type Theories and Computer Science 2

1.1.1 	Type theories as logical systems 2

1.1.2 	Applications in computer science 7

1.2 	Motivations and Overview of the Thesis 13

1.3 	Related Work 18

2 	ECC: an Extended Calculus of Constructions 21

2.1 	A Formal Presentation of ECC 21

2.1.1 	The term calculus 21

2.1.2 	Judgements and inference rules 24

2.2 	Informal Explanations 26

2.2.1 	Judgements and validity of contexts 27

2.2.2 	Propositions and the impredicative universe Prop 	. . . 28

2.2.3 	Non-propositional types and predicative universes Type d 29

2.2.4 	Lifting of propositions and E-types as subsets 33

2.2.5 	Conversion and full cumulativity 35

3 Basic Meta-theoretic Properties 	 39

3.1 	Properties of the Term Calculus39

3.2 Derivable Judgements and Derivability47

vii

3.3 Principal Types 	 . 	60

4 Quasi Normalization 	 64

	

4.1 	Environment 67

	

4.2 	Levels of Types69

4.3 The Quasi Normalization Theorem72

4.3.1 	ECC 73

4.3.2 An inductive proof of quasi normalization75

4.3.3 Quasi normalization: a summary86

4.4 A Complexity Measure of Types87

5 	Strong Normalization 90

5.1 	Girard-Tait's Reducibility Method 91

5.1.1 	Saturated sets and candidates of reducibility 92

5.1.2 	Separability of types v.s. type-valued functions 96

5.2 	The Strong Normalization Theorem 97

5.2.1 	Possible values of terms 97

5.2.2 	Assignments and valuations 100

5.2.3 	Interpretation of terms 102

5.2.4 	Soundness of the interpretation 107

5.2.5 	The strong normalization theorem 113

6 	Logical Consistency and Decidability 115

6.1 	The Embedded Higher-order Logic 115

6.1.1 	The embedded logic 116

6.1.2 	Logical consistency 120

6.1.3 	A conservativity conjecture 122

6.2 	Decidability 	
125

6.2.1 	Decidability of conversion and cumulativity 125

VIII

lx

6.2.2 Decidability of type inference and type checking125

7 	A Set-theoretic Interpretation 129

7.1 Understanding the Calculus in the u-Set Framework 131

7.2 Interpretation of Valid Contexts 133

7.3 Interpretation of Universes Type 3 and H/E-types 135

7.4 Interpretation of Universe Prop and Propositions 138

7.5 Discussions 141

8 Theory Abstraction in Proof Development 	 144

8.1 	A Notion of Theory 145

8.2 	Abstract Reasoning148

8.3 	Structured Reasoning 149

8.3.1 	Proof inheritance149

8.3.2 	Sharing by parameterization150

8.4 	Discussions 153

9 Some Issues in Program Specification and Programming 	157

9.1 Program Specification and Equality Reflection158

9.2 Programming at Predicative Levels162

9.2.1 Embedding stratified polymorphism in ECC163

9.2.2 	Existential types and discussion166

10 Conclusions and Further Research 	 169

Bibliography 	 171

Notation and Symbols 	 184

Index 	 188

Chapter 1

Introduction

Computer scientists and mathematicians consider various constructions: mathe-

matical objects like proofs and theorems and computational objects like programs

and specifications. We consider every construction as an object of certain type;

in other words, mathematical objects and computer programs are all associated

with their types. Such a view forms a basic starting point of type theories and

strongly typed programming languages.

This thesis presents and studies a unifying theory of dependent types, ECC

- Extended Calculus of Constructions. ECC integrates Coquand-Huet's calcu-

lus of constructions [CH88][Coq85] and Martin-Löf's type theory with universes

[ML73,84], and turns out to be a strong expressive calculus for formalization of

mathematics, structured proof development and program specification.

In this introduction, we first give a general and brief discussion about type

theories as logical systems and their applications in computer science, by which

we hope to provide enough background knowledge and references. Then, we

discuss our research motivations and give an overview of the thesis. Related

work is also briefly discussed.

1

INTRODUCTION 	 2

1.1 Type Theories and Computer Science

1.1.1 Type theories as logical systems

The principle of propositions-as-types (or formulas-as-types), also known as the

Curry-Howard correspondence, is the key idea for viewing (intuitionistic) type

theories as logical systems and to apply type theories (and constructive mathe-

matics in general ') to computer science. It was discovered by Curry [CF58] and

Howard [How69], and further developed by many others (c.f., [Sco70][ML73,84]

[dB801). This principle establishes the relationship between type systems and

logical systems for natural deduction.

According to the principle of propositions-as-types, a proposition (formula)

A corresponds to the type of its proofs, A ° , and a construction of the truth of

proposition A to an object in the corresponding type A ° . For example, according

to Heyting's intuitionistic semantics [Hey7l], the proposition A D B (A implies

B) is asserted to hold if, and only if, we have a construction which, whenever

given a construction of proposition A, gives a construction of proposition B. In

other words, a construction of A D B is a function that maps the proofs of A to

proofs of B. The set of the constructions of proposition A D B corresponds to

the function space A ° - B° whose elements (functions) can be expressed by A-

notation. Based on such a correspondence, various typed A-calculi can be viewed

as logical systems, where proof terms correspond to derivations. For instance,

• Simply typed A-calculus (see [H587][Bar84]) corresponds to the intuition-

istic propositional logic. For this correspondence, see [How69].

The Edinburgh Logical Framework (LF) [HHP87] (or Automath type the-

'We do not discuss the more general relationship between constructive mathematics and

computer science but only discuss type theories. We then miss the other systems like type-free

theories (c.f., [Myh75][Fri77][Fe179][Bee85][HN88]). See [Hay89] for a general survey.

INTRODUCTION
	 3

ory [dB80][vD801) corresponds to the intuitionistic first-order logic. For

this correspondence, see [Ber89a][BGeu89] where it is proved that LF is a

conservative extension of intuitionistic first-order logic.

Girard's higher-order polymorphic A-calculus Fw [Gir72] corresponds to

intuitionistic higher-order propositional logic. For this correspondence, see

[Gir7l].

We shall not give a general overview of development of type theories as logical

systems. For details and general comparisons of these systems, we refer to the

references above, and particularly, the recent work by Barendregt who describes

a cube of typed A-calculi which gives a clear picture of several related systems

[Bar89a] and introduces generalized type systems (a notion due to Berardi and

Terlouw) which may be viewed as logical systems [Bar89b].

Discussed below are several type theories which are well-known by now and

based on which our extended calculus of constructions is developed.

Martin-Löf's type theory

In 1971, Martin-Löf formulated the first version of his type theory [ML71], aiming

at a type system comparable with ZF set theory and formalizing category theory

(e.g., the category of all categories). A basic axiom of this system is that there

is a type of all types. 2 However, this axiom is too strongly impredicative to

be logically consistent; this first version of Martin-Löf's type theory is logically

inconsistent in the sense that every type is non-empty - shown by Girard and

known by now as Girard's paradox. The introduction of a type of all types

was based on the following ideas. First, according to Russell's doctrine of types

2 Burstall and Lampson proposed such an idea of a type of all types in designing the pro-

gramming language Pebble [BLam84] with the motivation for modular typeful programming.

Also see [Card86] for a further development of this idea.

INTRODUCTION 	 4

[Rus03], the range of significance of a propositional function forms a type, i.e.,

the class of propositions forms a type; secondly, quantification over propositions

and predicates is allowed; finally, propositions and types are identified, i.e., every

proposition is a type and vice versa. 3 Suppose U is the type of all propositions,

then U is also the type of all types by the identification. Therefore, type U of all

types naturally occurs and, in particular, it is the type of itself. The discovery

of the logical incoherence of the idea of a type of all types led Martin-Löf to

completely dispense with the impredicativity occurring in simple type theory

(c.f., [Chu40]) and turn to predicative type systems.

In Martin-Löf's (predicative) type theory [ML73,84], propositions and types

are still identified, but the type of all types is replaced by an infinite sequence of

type universes U0 U1 : U2 Hence, one can not quantify over all propositions

or predicates, although quantification over each universe is allowed. Reflection

principle is used to make sure that the introduction of universes leads to stronger

power of the theory, for example, to define transfinite types. Besides dependent

product types (11-types) and the basic types like finite types and the type of

natural numbers, dependent strong sum (E-types) is introduced as a basic type

constructor playing the roles of (strong) existential quantifier [How69] and ex-

pressing the intuitionistic notion of subsets [Bis67][Kre68]. A new equality type

constructor is also introduced. There are basically two versions of Martin-Löf's

predicative type theory, one with weak (intensional) equality types [ML73] and

the other with strong (extensional) equality types [ML84]. The weak equality

type reflects the definitional equality, while the strong equality is equivalent the

judgemental equality. The system with weak equality types is decidable, but that

3This identification of types with propositions is a distinguishing feature of Martin-Löf's

type theories, in his predicative theories [ML73,84] as well as the first impredicative version.

However, the author thinks that propositions can be viewed as types, but not necessarily vice

versa.

INTRODUCTION
	

5

with strong equality types is not.

Martin-Löf's type theory is one of the main attempts to formulate correct

formal systems for formalizing constructive mathematics as described by Bishop

[Bis67]. Because of the close relationship between type theories and (typed func-

tional) programming languages, Martin-Löf's type theory can also be viewed as

a programming language [ML82].

Girard-Reynolds' polymorphic ,\-calculus

The higher-order polymorphic A-calculus Fw was introduced by Girard [Gir7l,72,

861, and independently by Reynolds [Rey74]. 4 The important idea is that of

polymorphic types which allows quantification and abstraction over types. For

example, for a type variable t ranging over all types, Vt.t -f t is also a type;

it is the type of the polymorphic function At.Ax t .x. Such a type formation is

impredicative or circular since V1.t -* t is formed by quantifying over all types

including itself and a polymorphic function can be applied to any type which

may be the type of the function as well. Girard showed that the (higher-order)

polymorphic A-calculus is strongly normalizing (hence logically consistent) using

the reducibility method and extended the Gödel interpretation to higher-order

arithmetic [Gir72]. F' can be viewed as a logical system of natural deduction

for intuitionistic higher-order propositional logic [Gir7l].

Impredicativity also allows one to represent many useful data types by a

coding technique [BB85]. For example, the type of natural numbers can be rep-

resented as VU -* (t - t) -*t which has the Church numerals as its normal

objects. Proof-theoretic results show that the number-theoretic functions repre-

sentable in F' are exactly those provably total in higher-order arithmetic [Gir73].

Furthermore, the existential quantifier can also be defined [GP85] [Rey83], which

can be used to express abstract data types [GP85].

4 Reynolds formulated the second-order A-calculus as a programming language.

INTRODUCTION

Semantically, types in polymorphic A-calculus can not be understood as arbi-

trary sets in the usual sense. As shown by Reynolds [Rey84J[RP88], the ordinary

set-theoretic model for simply typed A-calculus can not be extended to the poly-

morphic A-calculus. However, it was shown by many people that polymorphism

can be understood intuitionistically (e.g. , [Tro73b) [Gir72] [Mog85] [LM88] [Pi t87]).

As shown by Girard [Gir72], an attempt to extend the impredicative polymor-

phism to the level of connectives would result in a logically inconsistent system.

It was from this that Girard realized the inconsistency of the first version of

Martin-Löf's type theory [ML71] in which the above extension can be translated.

In the other direction, one may consider weakening the impredicative polymor-

phism into stratified polymorphism, as considered by Leivant [Lei89].

Co quand-Huet 's calculus of constructions

The calculus of constructions (CC) was introduced by Coquand and Huet [CH88]

[Coq85], based on ideas from Martin-Löf's type theory, Girard's higher-order

polymorphic A-calculus and de Bruijn's Automath [dB80]. Like Martin-Löf's

type theory, it uses judgements with contexts and has dependent product as the

basic type constructor. Like Fw, it is impredicative as one can quantify over

all propositions (of type Prop, the type of the propositions which is the only

constant type) to form propositions. (F" is a subsystem of CC.) The basic idea

is to relax Martin-Löf's requirement of identification of propositions with types so

that the type Prop of the propositions to be a large type instead of a proposition

(propositions are considered as 'small types'). However, the product of a family

of propositions indexed by any type is still a proposition (impredicativity).

CC is a higher-order functional system proposed for intuitionistic higher-order

logic. Coquand[Coq86b][Coq85] studied its meta-theory and proved that it is

strongly normalizing (and hence logically consistent and decidable) by extend-

INTRODUCTION 	 7

ing Girard-Tait's reducibility method [Gir72][Tai75]. 5 Combining impredicativity

with dependent product types provides a rather strong power for formalization

of mathematics. For example, Leibniz's equality between two objects of the same

type can be defined [CH85].

Semantically, as is the case with polymorphic A-calculus, propositions can not

be understood as arbitrary sets. The intuitionistic set-theoretic model for poly-

morphic A-calculus can be extended to CC; this was considered by many people

including [HPit87][Ehr88][Luo88a] who extended the model of partial equivalence

relations for second-order A-calculus to CC, and [Str88] who considered model

construction for CC in Cartmell's framework of contextual categories [Car78,86].

CC is a very strong functional system. As Girard pointed out, any further

attempt to extend the calculus must be very cautious [Gir86]. Adding another

impredicative level to the calculus would result in a logically inconsistent system

in which Girard's paradox can be deduced [Coq86a]. Similarly, adding (type-

indexed) strong dependent sum as proposition constructor would also lead to

logical inconsistency [Coq86a][HH86][MH88] (see section 2.2.4 for a further dis-

cussion).

1.1.2 Applications in computer science

Type theories have been related to many areas in computer science, especially

in programming methodology and proof development systems. In researches in

programming methodology, which is closely related to but has different emphasis

from software engineering, computer scientists try to look for solid theoretical

foundations on the basis of which they may develop a science of programming

or program development. Proof development systems or proof engineering (c.f.,

[Bur861), besides being an important research area of its own interest, attracts

5 Another attempt to prove the strong normalization of CC is by Pottinger [Pot87}.

INTRODUCTION 	 8

more and more interest in computer science now that the need to verify various

proof obligations in formal or rigorous program development has been recog-

nized. Research on type theories has interesting applications in these aspects

and provide good theoretical foundations for proof development systems, formal

specifications and correct development of programs.

Proof development systems

Curry-Howard correspondence is the basis for type theories to be used in proof

development systems. Under this paradigm, a type theory is viewed as a logical

system to formalize mathematical problems; to prove a theorem expressed as a

type is to find an object of that type, and proof-checking is just type-checking.

We discuss several systems below. 6

Automath, which was led by de Bruijn, is the earliest project of using type

systems as the basis to 'check mathematics' on computers (see [dB80] for a survey

of the project). Various typed ,\-calculi have been proposed and used as basic

languages of Automath to do proof checking, most of which correspond to first-

order languages (see [vD80] for a study of the language theory). In Automath

project, de Bruijn developed a notational system to represent bound variables by

their reference depths, known as de Bruijn notation [dB72,78], which has become

a basic technique in implementations of proof checkers. A considerable amount

of proof-checking has been done in Automath; for example, Jutting [Jut77] trans-

lated and checked Landau's book of analysis.

Based on Constable's idea of constructive mathematics as a programming

language [Con7l] and later on Martin-Löf's type theory, the Cornell group de-

veloped the proof development system NuPRL [Con86]. NuPRL's type theory is

6 W only discuss some proof development systems closed related to type theories and miss

many other systems like Edinburgh LCF [GMW79], Cambridge LCF [Pau87], Isabelle [Pau88]

and AProlog [MN87].

INTRODUCTION 	 9

based on Martin-Löf's type theory with strong equality [ML84] and has quotient

types, subset types, inductive types and partial function spaces. (For details,

see [Con861.) The type system is not decidable; not every well-typed term has a

normal form. NuPRL is a refinement proof development system with a sophisti-

cated environment including a window system; users develop proofs by backward

reasoning and using tactics.

An early proof checker for the calculus of constructions [CH88] was imple-

mented by Huet at INRIA [CH85] and a new implementation and further de-

velopment is now in progress [Hue89]. In [CH85], many examples are given to

show how the calculus can he used to formalize mathematical problems in the

early implementation. In Edinburgh, Pollack has developed a refinement proof

development system LEGO [Po189][LPT89] based on Huet's early implementa-

tion. LEGO implements various related type systems, including Edinburgh LF

[HHP87] (see below), the calculus of constructions [CH88] and the Extended Cal-

culus of Constructions [Luo89a,bJ we are about to describe. (See [Bur89b] for a

simple introduction to proof checking in LEGO.)

The Edinburgh Logical Framework (LF) [HHP87] was developed in Edinburgh

as a system of dependent types for defining and implementing different logics.

The general framework allows one to describe various logical systems so that

their implementations can be done 'once for all' by the common proof checker

• for LF and makes it possible to study problems like proof-searching in a general

way (c.f., [Plo87]). Many logical systems have been described in LF [AHH87].

An early implementation was done by Griffin [Gri87] and the system LEGO

implements a version of LF as well. LF type theory is predicative and corresponds

to intuitionistic first-order logic [Ber89a][BGeu89]. As a formal system, it can be

viewed as a subsystem of the calculus of constructions.

INTRODUCTION
	

10

Programming methodology

\-calculus has been used as a theoretical model of functional programming (c.f.,

functional programming languages Lisp [McC62], Hope [BMS81], ML [Mi184],

Pebble [BLam84][LB88] and Quest [Card891). Playing a role of partial specifi-

cation, types have been recognized as an important organizing mechanism for

reliable program development and ordered evolution of software systems. Taking

advantage of typing facilities in programming languages and using sophisticated

type systems, this has even led to a distinguishable programming style called

typeful programming [Card89]. One can find more discussions on this aspect in

[CW85] [Card89].

Besides this close relationship of type theories with programming languages,

Curry-Howard correspondence also allows people to use type theories in program

specification, program verification and program derivation. This is because the

principle of propositions-as-types can also be explained as 'programs as objects'

(or programs as proofs); in other words, a program which computes a value of a

type corresponds to a construction of the type. For example, in Martin-Löf's type

theory, a judgement of the form a:A can be read in the following ways [ML82,84]:

• a is an object of type A;

• a is a proof of proposition A;

• a is a program (or implementation) satisfying specification A;

• a is a solution to problem A.

Therefore, based on Curry-Howard correspondence, suitable type theories may

be viewed as programming logics in which one can describe and reason about

program specification and program development.

Program specifications have been studied quite extensively in computer sci-

ence (for example, algebraic specification languages like Clear [BGog80], Acti

INTRODUCTION 	 11

[EFH83], OBJ [FGJM85] and ASL [ST881). In type theory, a specification may

be formulated as a type. In particular, s-types provide a nice mechanism for de-

scribing program specifications. For example, a specification of sorting programs

for lists of natural numbers can be expressed as follows:

Sorting =df Hl:List(N). El':List(N). sorted(l, 1')

where sort ed(l, 1') is the proposition expressing that 1' is the sorted list of 1. An

object of type Sorting is a function sorting which, when applied to a list 1 of

natural numbers, returns a value which is a pair (l',p) such that 1' is the sorted

list of 1 and 'p is a proof of this.

Notice that, based on the above formulation of specifications, looking for a cor-

rect implementation of a specification like Sorting is just to find an object (proof)

of the type (proposition) Sorting. Program development corresponds to proof de-

velopment in type theory. Such a programming methodology is seriously taken by

the Cteberg group based Martin-Löf's type theory [NPS89]. Particularly, they

investigated how to extract programs from proofs, called program extraction . 7 In

order to delete redundant proof information from the extracted programs, they

introduced subset types to Martin-Löf's type theory [NP83][SS88].

Programs in Martin-Löf's type theory are (primitive) recursive functions,

which are just like ordinary functional programs. However, as mentioned above,

in impredicative systems like FW or CC, data types may be defined and func-

tions can be represented by coding. Based on this, an impredicative type system

may provide a way of 'non-recursive programming'. Mohring [Moh89] studied

how to extract Fw programs from proofs in the calculus of constructions. How-

7 Deductive approaches to program extraction or program synthesis have been considered

by many others in different settings. Manna and Waldinger [MW71] considered an approach

in classical logic. Some people use realizability method to consider program extraction in

constructive settings; e.g., Hayashi's program extraction system PX [HN88] and Mohring's

work [Moh89] in the calculus of constructions.

INTRODUCTION 	 12

ever, it seems that the coding representation of data types and functions has not

been well-understood yet and whether it supports a nice programming style is

still a problem. How to do specifications in the calculus of constructions [CH88]

does not seem to have been paid enough attention. This is partly because of

the fact that (type indexed) s-types are inconsistent with impredicativity, which

prevented people from using E-types to describe specifications. In the extended

calculus of constructions we are going to describe, we show how s-types can be

used to describe program specifications.

One may rewrite the specification of sorting programs in another way:

Sorting = cu >.1f:List(N) - List(N). Hl:List(N). sorted(l,f(l))

Then, an implementation of this specification is a pair consisting of a sorting

program and a proof of the correctness of the program. This gives a view of

program verification or correct program development. Burstall calls such a pair

a 'deliverable' and develops an approach to program development based on this

and using the extended calculus of constructions [Bur89a].

Abstraction and modularization

The issue of abstraction and modularization has been one of the central concerns

in the design of programming and specification languages. It is also important in

proof engineering (proof development). Its importance becomes apparent when

people start to do real program (software) development or to use computers to

develop large proofs (say, program verifications); i.e., programming or proving

in the large. To meet such a challenge, one needs to express abstract structures

and modularize program/proof development so that large programming/theorem-

proving tasks can be conquered in a structured way. As in programming, types

(and rich type structures) can also provide useful mechanisms for modular devel-

opment of proofs and specifications. (See chapter 8 for more discussions.)

INTRODUCTION
	

13

Two important aspects of modular mechanisms are information hiding and

sharing between module structures. Abstract data types are considered in a

type-theoretic setting (second-order \-calculus) by Mitchell and Plotkin [MP85],

where they explain how existential types can be used to express information

hiding. Three existing ways to handle the problem of structure sharing are

simply explained in [Bur84] which are: sharing by equation in Standard ML

[HMM86][Mac86], sharing by parameterization in Pebble [BLam84][LB88] and

sharing by history in Clear [BGog80]. In particular, rich type structures play an

essential role in the second style as we shall explain in section 8.3.

In interactive theorem-prdving systems, a notion of theory is needed to struc-

ture proof development. Burstall et al. considered how a notion of theory can

be used to structure development of specifications in the design of specification

language Clear [BGog80] and Sannella and Burstall considered how such an idea

can be applied to theorem prover LCF [SB83]. Based on the extended calculus

of constructions, we shall develop a notion of theory and an approach to abstract

structured reasoning.

1.2 Motivations and Overview of the Thesis

Our basic motivations may be summarized as looking for a (logically) strong and

(structurally) expressive formal system which provides

• strong reasoning power as a logical system,

• basic mechanisms for adequate formalization of mathematics and program

specifications, and

• structural mechanisms for modular development of proofs and programs.

The basic approach we have taken is to develop such a formal system as a type

theory which encorporates strong logical power (by the Curry-Howard correspon-

INTRODUCTION 	 14

dence) and rich type structuresas structural mechanisms.

We present and study a type theory ECC - Extended Calculus of Con-

structions. ECC is developed based on Coquand-Huet's calculus of construc-

tions [CH88][Coq851 and the ideas of type universes and E-typesin Martin-Löf's

type theory [ML73,84]. It extends the calculus of constructions by E-types and

fully cumulative (predicative) type universes and may also be considered as an

impredicative extension of Martin-Löf's type theory with universes by adding a

new (impredicative) universe Prop of propositions.

We have thus integrated the (logical) power of impredicativity with the (struc-

tural) power of predicative universes and E-types into a unifying theory of de-

pendent types. The known difficulty that the introduction of E-types together

with impredicativity leads to logical paradox [Coq86a][HH86][MH88] is solved

by adding E-types as non-propositional types in the predicative universes of the

calculus and lifting propositions as higher-level types. Type inclusions between

universes are coherently generalized to the other types by introducing a syntactic

cumulativity relation over terms so that a nice unicity of typing is obtained based

on a simple notion of principal type.

This development results in a stronger and more expressive higher-order cal-

culus which has an embedded intuitionistic higher-order logic and provides rich

type structures for formalization of mathematics, abstract structured reasoning

and program specification. Particularly, s-types in ECC, together with uni-

verses, provide a useful abstraction mechanism so that abstract structures can

be naturally expressed and mathematical theories can be abstractly described and

structured, leading to a comprehensive structuring of development of proofs and

programs. In another aspect, formalization of mathematics can be done based on

a strong higher-order logic and the type universes make it possible to formalize

abstract mathematics (e.g., abstract algebras and notions in category theory).

Furthermore, the strong and flexible polymorphism in the calculus provides a

INTRODUCTION
	

15

higher-order module mechanism which can describe parameterized modules and

support structure sharing by parameterization in the style of Pebble.

ECC has good meta-theoretic properties. For example, we have

• Church-Rosser property for the basic untyped term calculus;

• Type-preserving substitution (or the Cut operation) is admissible;

• Subject reduction theorem (closedness of typing over reduction);

• Weakening and strengthening lemmas;

• The existence of principal (or the most general) types.

The main proof-theoretic result about the calculus is:

• Strong Normalization: Every well-typed term is strongly normalizable.

i.e., every reduction sequence starting from a well-typed term is terminating.

This result shows the proof-theoretic consistency of the calculus. Its proof

uses Girard-Tait's reducibility method [Gir72][Tai751 and is based on the proofs

of strong normalization for the calculus of constructions [CH88] by Coquand

[Coq86b] and Pottinger [Pot87}. One of the special key points of this proof is to

find a suitable ranking of the types to make explicit the predicativity of the pred-

icative universes. We do this by proving a quasi-normalization theorem which

enables us to define a two-dimensional ranking measure of types.

Several important corollaries of the strong normalization theorem are:

• Logical consistency of the embedded logic;

• Decidability of conversion and the cumulativity relation for well-typed terms;

• Decidability of type inference and type checking;

• Equality reflection, i.e., the propositional Leibniz's equality definable in the

calculus reflects the definitional (or computational) equality (conversion).

INTRODUCTION 	 16

These results establish the theoretical foundations for both pragmatic applica-

tions and machine implementations. The logical consistency is the most basic

requirement for the system to be used for formalization of mathematics, theorem-

proving and program specification. The decidability results and type-inference

algorithm can be directly applied to a computer implementation of proof devel-

opment systems based on the calculus and the meta theorems are useful for a

good implementation. 8

Based on the rich type structures (E-types and universes, in particular) of

ECC, we discuss a notion of (abstract) theory for abstract structured reasoning.

Such a theory mechanism allows a good modularization of proof development

and makes it possible to build up useful theory bases for large theorem-proving.

Program specifications can be expressed by >1-types in a similar style to using

Martin-Löf's type theory as we discussed in section 1.1.2, but propositions in the

embedded higher-order logic are used to express program properties. In particu-

lar, Leibniz's equality can be used to model the definitional (or computational)

equality (c.f., [13ur89a]); the theoretical soundness of this modeling is justified by

the equality reflection result mentioned above.

We also discuss the model-theoretic aspect of the calculus. We explain how

the calculus can be understood set-theoretically in the w—Set framework devel-

oped by Moggi and Hyland [Mog85][Hyl82,87]. In particular, propositions in

the impredicative universe are interpreted as partial equivalence relations and

the predicative type universes can be interpreted as corresponding to large set

universes.

In chapter 2, the calculus ECC is formally presented and informal explana-

tions of the primitive notions in the theory are given together with some remarks

on design decisions.

8 ECC has been implemented in the proof development system LEGO developed by Pollack

[Po189] [LPT89].

INTRODUCTION
	

17

Chapter 3 studies the basic meta-theoretic properties of the calculus, includ-

ing those about conversion and the cumulativity relation, properties of derivable

judgements, admissibility results like subject reduction, weakening and strength-

ening, and the typing properties like those about principal types.

Chapter 4 proves the quasi normalization theorem and defines a two-

dimensional ranking measure of types, which make explicit the predicativity of

the non-proositiona1 types and establish a necessary result for us to prove strong

normalization.

Chapter 5 proves the strong normalization theorem, using Girard-Tait's re-

ducibility method based on a slightly more general definition of saturated sets

and the quasi-normalization result.

Chapter 6 considers two important corollaries of the normalization property

- logical consistency and decidability. In section 6.1, the embedded higher-

order logic is described and proved to be consistent. We also conjecture that it

is a conservative extension of the intensional intuitionistic higher-order logic and

give a discussion. Decidability results are discussed in section 6.2; in particular,

we describe an algorithm for type inference (and type checking) and prove its

correctness.

Chapter 7 discusses a set-theoretic interpretation of the calculus in the —Set

framework. We explain how the main constructs can be understood set-

theoretically.

Chapter 8 describes an approach to abstract structured reasoning, based on a

notion of abstract theory. We show how abstract reasoning can be done by proof

instantiation and structured reasoning by proof inheritance and parameterized

sharing.

Chapter 9 considers some issues in program specification and programming.

We show that Leibniz's equality reflects the conversion relation and hence can be

used to model definitional equality in specifications. We also briefly discuss how

INTRODUCTION 	 18

the predicative part of ECC may provide programming facilities by stratified

polymorphism and rich type structures (e.g., abstract data types).

In chapter 10, we discuss further research topics and directions, including

some open problems.

1.3 Related Work

We briefly discuss some related work below, some of which has been mentioned

in section 1.1.

The calculus of constructions (CC) was first studied by Coquand in his thesis

[Coq85] and also in [CH88][CH85] etc.. Its meta theory, proof of normalization

theorem in particular, can be found in [Coq85][Coq86b] and [Pot87]. Girard-

Tait's reducibility method [Gir72][Tai75] is the general method used to prove

normalization of CC. Our proof of strong normalization for ECC is also based

on the method.

Type universes were first introduced in Martin-Löf's type theory [ML73,84]

and also appeared in NuPRL's type theory [Con86]. The idea of extending CC by

universes appeared in [Coq86a], where the Generalized Calculus of Constructions

(CCC) was presented. 9 The strong normalization theorem for Constructions

with infinite type universes was first proved in [Luo88b] (and this thesis, also

see [Luo89a,b]). Based on the results in [Luo88b], the type-checking problem for

CCC was considered by Harper and Pollack [HPo189]; because CCC does not

have the property of type unicity (see section 2.2.5), the resulted algorithm is

rather complicated compared with that for ECC (as sketched in [Luo89a] and

described in this thesis).

E- types were considered by Howard [How69] and become well-known by Martin-

9 1n the presentation of GCC in [Coq86a] (page 235), the rules stating Type, : Type i were

inadvertently missing.

INTRODUCTION 	 19

Löf's work [ML73,84]. A similar idea of using E-types to express modular

structures occurs in researches of programming languages (e.g., [BLam84] and

[Mac86]). The idea of lifting propositions (in the impredicative universes of

Constructions) as higher-level types, in order to use E-types to express abstract

structures and mathematical theories, was investigated in [Luo88a] [Luo89a,b].

Recently, Coquand [Coq89} and Streicher [Str88] considered using an explicit

lifting operator to lift propositions, and view the calculus with type inclusions as

an abbreviation [Coq89].

There are several existing works on the semantic aspects of Constructions

including the following. Hyland and Pitts [HPit87] developed a general approach

to categorical semantics of Constructions-like calculi, where an extension of CC

with E-types and unit types is presented with the motivation of investigating

semantics. Streicher [Str88] studied a semantics of CC based on the notion of

contextual category [Cart78,86]. After Moggi [Mog85] found out that there is a

small internal complete category in the category of w-sets [Hyl82], with a notion

of completeness which is enough to interpret Girard- Reynolds' polymorphic .\-

calculus, Hyland [Hyl87] defined a stronger notion of completeness which can be

used to model the calculus of constructions. Ehrhard [Ehr88] sketched an u-Set

model of CC. An -Set model of CC (with E-types and lifting of propositions

as types) was described in [Luo88a]. In [Luo89] (and this thesis), the model in

[Luo88a] is also extended to the type universes (using an idea of Hayashi).

Burstall [Bur89a] developed an approach to program development, using the

extended calculus of constructions and the system LECO. He uses E-types to

express specifications in a similar style as [NPS89], but uses Leibniz's equality

to model computational equality and gives a categorical explanation of the ap-

proach. The formulation and proof of the equality reflection result in this thesis

was motivated by Burstall's work on specifications.

The proof development system LEGO is developed by Pollack in Edinburgh

INTRODUCTION
	

20

[Po189][LPT89]. It implements several related type theories, including ECC

presented in this thesis. One of the interesting features of the system is that it

supports 'universe polymorphism' [Hue87][HPo189] so that indices of universes

may be omitted in practice.

Chapter 2

ECC: an Extended Calculus of

Constructions

In this chapter, the calculus ECC is formally described, followed by some infor-

mal explanations and remarks on design decisions.

2.1 A Formal Presentation of ECC

ECC consists of an underlying term calculus and a set of rules for inferring

judgements.

2.1.1 The term calculus

The basic expressions of the calculus are called terms, given by the following

definition.

Definition 2. 1.1 (terms) Terms are inductively defined by the following clauses:

. The constants Prop and Type3 (j E w), called kinds, are terms;

• Variables (x,y) are terms;

21

THE CALCULUS ECC 	 22

• If M, N and A are terms, so are the following:

Hx:M.N, Ax:M.N, MN, Ex:M.N, pairA (M,N), 7r 1 (M), 7r2 (M).

We use T to denote the set of terms. 	 U

In Hx:M.N, Ex:M.N and \x:M.N, the free occurrences of variable x in N

(but not those in M) are bound by the binding operators H, E and .A, respec-

tively. The usual conventions of parenthesis omitting are adopted; for example,

M1 M2 ... M stands for (... ((M1 M2)M3) ... M_ 1)M 1 and the scopes of the bind-

ing operators H, E and .A extend to the right as far as possible. For a term M,

FV(M) is the set of free variables occurring in M. When x V FV(N), Hx:M.N

and >x:M.N can be abbreviated as M - N and M x N, respectively.

a-convertible terms (i.e., terms which are the same up to changes of bound

variables) are identified. is used for the syntactical identity between expressions

such as terms, i.e., A B means that A and B are the same up to a-conversion.

Definition 2.1.2 (reduction and conversion) Reduction (t'.) and conversion

() are defined as usual with respect to the following contraction schemes:

(/3) 	 (Ax:A.M)N -'--* [N/x]M

(a) 	 7r.(pair A (M11 M2)) 	M (i 1,2)

where [N/x]M, the substitution of term N for the free occurrences of variable x in

M, is defined as usual with possible changes of bound variables. More precisely,

1. The terms of the forms ()x:A.M)N and 7r.(pairA (Ml , M2)) (i = 1,2) are

called /3-redexes and a-redexes, with [N/x]M and M 2 being their contrac-

turns, respectively, and)x:A.M and pairA (Ml , M2) are called major terms

of these redexes.

'We also sometimes write M1 M2 ... M as M 1 (M2 , ..., M) for readability consideration.

THE CALCULUS ECC
	

23

If a term P contains an occurrence of a redex R and we replace that occur-

rence by its contractum, and the resulting term is F', we say P one-step

reduces to P' (notation P t P').

We say P reduces to Q (notation P L> Q) if and only if Q is obtained from

P by a finite (possibly empty) series of contractions.

(. We say P is convertible to Q (notation P Q) if and only if Q is obtained

from P by a finite (possibly empty) series of contractions and reversed con-

tractions, i.e., there exist Ml , ..., Mn (n ~: 1) such that P M1 , Q Mn

and Mi 1>1 M1+1 or M1+1 1>1 M1 for i = 1,...,n - 1.

A term is in normal form if and only if it does not contain any redex. A term

M1 is strongly normalizable if and only if every reduction sequence of the form

M1 i>1 M2 t>1 M3 [> 1 ... is finite.

The kinds, also called type universes, and the type inclusions between them

induce the type cumulativity that is syntactically characterized by the following

relation.

Definition 2.1.3 (cumulativity relation) The cumulativity relation 	is de-

fined to be the smallest binary relation over terms such that

1. -< is a partial order with respect to conversion, that is,

ifAB, thenA -<B;

if A -<B and B -<A, then A B; and

if A -< B and B -< C, then AC.

2. Prop Type0 -< Type 1 ..

3. if A 	and A 2 B2 , then Hx:A 1 .A 2 Hx:B1.B2;

THE CALCULUS ECC 	 24

4. if A 1 B 1 and A 2 B21 then Ex:A 1 .A 2 Ex:B 1 .B2 .

Furthermore, A -<B if and only if A B and A B. 	 0

Remark The well- definedness (i.e., the existence) of the cumulativity relation

will be justified in section 3.1 by giving an alternative inductive definition. 	0

2.1.2 Judgements and inference rules

We now describe the judgement form and the inference rules of ECC.

Definition 2.1.4 (contexts) Contexts are finite sequences of expressions of the

form x:M, where x is a variable and M isa term. The empty context is denoted

byØ.

The set of free variables in a context F x 1 :A 1 , 	FV(F), is defined

as U1<1< ({x} U FV(A)). 	 0

Definition 2.1.5 (judgements) Judgements are of the form

FHM:A

where F is a context and M and A are terms. We shall write H M : A for

ØH M: A.

The inference rules of ECC are listed as follows, where j stands for an arbi-

trary natural number:

(Ax)
H Prop: Type0

F H A : Types 	
(x FV(F)) (C) 	

F, x:A H Prop: Type0

THE CALCULUS ECC
	

25

(T)

(var)

(Hi)

(H2)

• 	(A)

(app)

()

(pair)

• 	(iii)

(ir2)

()

F F- Prop: Type0

F F- Type, : Type, 1

F, x:A, F' I- Prop: Type0

F,x:A,F' F- X: A

F,x:A F- P : Prop

F F- Hx:A.P: Prop

FF-A:Type, F,x:AF-B:Type,

F F- Hx:A.B : Type,

F,x:A F- M: B

F F- Ax:A.M : Hx:A.B

FF-M:Hx:A.B F F- N:A

F H MN: [N/x]B

FF-A:Type, F,x:AF-B:Type,

F F- >2x:A.B : Type,

FF-M:A FF-N:[M/x]B F,x:AF-B:Type,

F F- pair X . A B(M,N) : Ex: A.B

FF-M:Ex:A.B

F F- 7r1 (M): A

FF-M:Ex:A.B

F F- ir2 (M): [7r1 (M)/x]B

F F- M:A FF-A':Type,
(A-<A')

F F- M: A'

THE CALCULUS ECC
	

26

Definition 2.1.6 (derivations) A derivation of a judgement J is a finite se-

quence of judgements J 1 , ..., J with J J such that, for all 1 < i < n, J

is the conclusion of some instance of an inference rule whose premises are in

{J I j<i}.

A judgement J is derivable if there is a derivation of J. We shall write

FF- M:Afor TF- M:A is derivable', and FVM:Afor 'FF- M : A is not

derivable'. FU

Definition 2.1.7 (valid contexts) A context F is valid if and only if

F I- Prop: Type0 . We also often abbreviate F F- Prop : Type0 as T is valid'. U

Definition 2.1.8 Let F be a context.

. A term M is called a IF-term (or well-typed term under F) if F F- M : A

for some A.

. A term A is called a 17-type (or well-typed type under F) if F H A: K for

some kind K.

. A F-type A is called a F-proposition if F F- A' : Prop for some A' A, and

called a non-propositional F-type (or proper F-type) otherwise.

. A term M is called a F-proof if F F- M: P for some 17-proposition P.

. A term A is inhabited (under F) if F F- M: A for some M. 	 0

This completes our formal presentation of the calculus.

2.2 Informal Explanations

The extended calculus of constructions ECC presented above may be seen as

a combination of Coquand-Huet's calculus of constructions [CH88] and Martin-

Löf's type theory with universes [ML73,84]. It extends the calculus of construc-

tions with s-types and fully cumulative type universes. One may also consider

THE CALCULUS ECC
	

27

it as an impredicative extension of Martin-Löf's type theory with universes by

adding a new (and the lowest) impredicative universe Prop of propositions. It

turns out that such an integration results in a stronger and more expressive

higher-order calculus for formalization of mathematics, abstract structured rea-

soning and program specification.

We now informally explain the primitive notions of the calculus and give some

remarks on design decisions.

2.2.1 Judgements and validity of contexts

A context F x 1 :A 1 , ..., 	 is informally viewed as a list of assumptions that

x i is an object of type A1 .

The intuitive meaning of a judgement F I- M : A is that M has type A in

context F, i.e., under the assumptions F, M is an object of type A.

The only axiom of the system is I- Prop: Type 0 . Besides asserting that Prop

has type Type 0 in F, the judgement F I- Prop : Type0 also plays the role in the

calculus of asserting that F is a valid context. The validity of contexts are proved

by the rules (Ax) and (C). We may replace the rules (Ax)(C)(T)(var) by the

following, with an additional judgement form 'F valid':

() valid

F F- A: Typed (x
V FV(F))

F,x:A valid

F valid

F I- Prop: Type 0

F valid

F H Type, : Type1

THE CALCULUS ECC
	

28

F,x:A,IF' valid

IF, x:A,I" F- x: A

Then we gain an equivalent system as presented in [Luo89a]. These rules may

give a clearer picture of context validity in the calculus.

As we shall show in section 3.2, for any derivable judgement F F- M: A, every

prefix subsequence of F is a valid context and A is a IF-type. If x 1 :A 1 ,

is a valid context, then x 1 , ..., x,, are distinct and A i is a type only dependent on

variables x 1 ,...,x 1 _ 1 .

2.2.2 Propositions and the impredicative universe Prop

Inheriting the impredicative type structure from the calculus of constructions,

ECC has an embedded intuitionistic higher-order logic. Provability of a formula

corresponds to the inhabitation of the corresponding proposition. The propo-

sitions (more precisely, F-propositions) play the role of logical formulas by the

Curry-Howard principle of propositions-as-types [CF58][How69]. For example,

logical implication between two propositions P1 and P2 is expressed by P1 -f P2

and, if P is a predicate over type A (i.e., P is a propositional function), then the

formula for universal quantification stating that 'for all x in A, P(x)' is expressed

by proposition llx:A.P(x) formed by product operator H. The other ordinary

logical connectives and existential quantifier can be defined by (impredicative)

coding of their elimination rules as in higher-order logic (c.f., [Pra65][CH85]).

(See section 6.1 for details.)

The universe Prop of propositions is impredicative. By rule (111), Prop is

closed under arbitrary dependent products. In other words, for arbitrary type

A and any propositional function P over A, Hx:A.P(x) is a proposition. For

example, we can derive

F- Hx:Prop.x : Prop

THE CALCULUS ECC 	 29

This proposition llx:Prop.x stands for logical constant false as it implies every

proposition (see section 6.1.1) and is not inhabited in the empty context (the-

orem 6.1.5). The circularity in such a type formation is clear: Hx:Prop.x is

formed by quantifying over the type Prop which has Hx:Prop.x as its object.

Because of such an impredicative polymorphism, as in polymorphic A-calculus

[0ir72][Rey741 and the calculus of constructions [CH88], propositions in the cal-

culus can not be understood as arbitrary sets (see section 7.5 for a discussion).

Note that, unlike Martin-Löf's type theory, we do not identify types with

propositions. Propositions are types, but not vice versa. There are non-

propositional types like Prop, Prop -* Prop and E-types which are not regarded

as representing logical formulas in the system. This provides a conceptual distinc-

tion between logical formulas (propositions) and data types (non-propositional

types). Philosophically, it does not seem to be natural to identify data types

with logical formulas, although it is possible.

2.2.3 Non-propositional types and predicative universes Type 3

Besides the impredicative universe Prop, there are infinite predicative universes

Type0 , Type 1 , Type2 , ..., where, roughly speaking, the non-propositional types

reside. The type universes in ECC provide us very rich type structures and make

the system become stronger and more expressive for formalization of mathematics

and structured abstract reasoning. Particularly, it makes it possible to formalize

abstract mathematics (e.g., abstract algebras and notions in category theory like

the category of all small categories) - one of the two bases (the other is >-types)

for structured abstract reasoning. The idea is that it is possible to represent

arbitrary sets by non-propositional types in predicative universes. Furthermore,

universes uniformly provide a strong form of polymorphism which enables us

to do structured reasoning or programming. For example, universes allow us

THE CALCULUS ECC 	 30

to express parameterized modules and hence parameterized structure sharing

following the idea of Burstall and Lampson in the programming language Pebble

[BLam84][Bur84}. All these will be further discussed in chapter 8.

Formally, the predicative universes in ECC is further developed from the

formulations of universes of Martin-Löf [ML73,84] and Coquand [Coq86a]. Prop

is an object of type Type 0 (by rule (Ax)) and Type 3 is an object of Type 1 (by

rule (T)). Viewing intuitively types as sets and ':' as the membership relation,

we have

Prop E Type 0 E Type 1 E Type 2 E

With infinite universes, every object in the calculus has a type (types have uni-

verses as their types), as in Martin-Löf's type theory. Note that a universe is not

an object of itself or any universe lower than it.

Furthermore, by rule (s), we can infer that every object of type Prop is an

object of type Type 0 and every object of type Type s is an object of type Type,,;

i.e., intuitively,

Prop ç Type0 ç Type' c Type 2 c

Type inclusions between universes are uniformly extended to other types (see

section 2.2.5 below) and the lifting of propositions to higher-level types (Prop

Type 0) is particularly important for s-types in the calculus to be used as an

abstraction mechanism (see section 2.2.4 below). In general, one only works

with finite many universes. With universe inclusions, one can work uniformly in

a universe big enough without worrying about indices of universes. 2

Remark There are basically two approaches to formulating type universes and

2 1n LEGO proof development system [Po189J[LPT89], such a 'typical ambiguity' is allowed

[HP89].

THE CALCULUS ECC 	 31

the associated reflection principle, called by Martin-Löf as 'formulation t la Rus-

sell' and 'formulation i. la Tarski' [ML84]. The former uses explicit universe

inclusions following the style of Russell's ramified type theory and is adopted

in our formulation of ECC. In the later approach, a new higher universe, say

Type 3 , is introduced as a type consisting of the names of the types residing in

the universe; each of these types is introduced by a type constructor T as T,(a)

which has a in Type, as its name. Following this view of distinction between

types and their names, in the former approach using universe inclusions, a type

symbol stands for both a type and the name of the type. 0

The universes Type, are predicatively closed under formation of dependent

products (11-types) and dependent strong sums (E-types). By rules (112) and

(E), for any F-type A and any (F,x:A)-type B in the same universe Type,, their

dependent product type 11x:A.B and dependent sum type x:A.B are of type

Type,. In fact, because of the type inclusions between universes ((2) above), rules

(112)(>I) are the more economic expressions of the following (derivable) rules: 3

FF-A:K F,x:AI-B:K'

F I- 11x:A.B : ' max

FI- A:K IF, x:AF-B:K'

F H x:A.B : 1(max

where K and K' are arbitrary kinds, and Kmax 	max < {Type o , K, K'} is the

maximum kind among Type 0 , K and K' subject to the cumulativity relation

. In other words, the dependent product/sum of any two types which are in

3 A rule R of the form '1 , " is called derivable if there is a finite sequence of judgements

J 1 , ..., J° ,, with Jn+m J such that, for all n+ 1 <i < n+m, Ji is either one ofJ1 ,...,J

or the conclusion of some instance of an inference rule whose premises are in { J1 1 1 <j < i }•

THE CALCULUS ECC 	 32

universes lower than or the same with Type 3 is an object of Type 3 . For example,

Hx:Prop.Type0 is of type Type 2 for i > 1 but not of type Prop or Type 0 .

Therefore, the universes Type 3 are predicative in the sense that there is no

circularity in formations of non-propositional types. This predicativity will be

made formally explicit in chapter 4 and is essential for ECC to be logically

consistent and not to suffer from logical paradox. For example, if Type 0 were

closed for arbitrary dependent product types as Prop does, Cirard's paradox

[Cir72][Coq86a] could be deduced.

The 11-type Hx:A.B is the type of functions which take an object N of type

A into an object of type [N/x]B. Functions are represented by)-expressions

(c.f., rule (\)) whose applications to objects are expressed by rule (app). When

B is not dependent on the objects of A, i.e., x does not occur free in B, llx:A.B

(abbreviation A - B) is the type of functions from A to B.

The E-type Ex:A.B is the type of pairs (a, b) where a is an object of type A

and b is of type [a/x]B. Intuitively, it represents the set of (dependent) pairs of

elements of A and B (B may be dependent on elements of A):

{(a,b) I a€A,bB(a)}

Elements of Ex:A.B can be analyzed by using the two projections:

7r1 (a,b)=a and 7r2 (a,b)=b

When B is not dependent on the objects of A, Ex:A.B (abbreviation A x B) is

the usual product type of pairs from of A and B.

Formal objects for pairs in our calculus are 'heavily typed'. We use

pairA (M, N) instead of the usual untyped term (M, N) as in Martin-Löf's type

theory. This avoids the undesirable type ambiguity which would make type

inference and type checking difficult (perhaps impossible) [Luo88a]. For exam-

ple, if untyped pairs were used, (Type o , Prop) would have both Ex:Type 1 .x and

Type 1 x Type 0 as its types which are incompatible.

THE CALCULUS ECC 	 33

2.2.4 Lifting of propositions and s-types as subsets

As explained by Martin-Löf, E-types in his type theory can be used to express

the intuitionistic notion of subsets; i.e., Ex:A.B(x) expresses the set of the ob-

jects a in A such that B(a) holds. From intuitionistic point of view, to give an

object of type A such that B(a) is to give a together with a proof of B(a) (c.f.,

[Bis67] [Kre68] [ML73,84]).

Different from Martin-Löf's type theory, ECC has propositions as logical

formulas and propositions are not identified with types. Therefore, such an ex-

pression of subsets is possible only if we can form s-type x:A.B when B is a

proposition in context F, x:A.

There is a known problem for extending impredicative type theories by strong

sum (E-types); that is, arbitrary strong sum is logically inconsistent with impred-

icativity [Coq86a][HH86][MH88}. Adding arbitrary type-indexed E-types to the

impredicative level of the calculus of constructions would produce an inconsistent

system in which Girard's paradox can be derived. In other words, the following

inference rule is problematic and, together with the rules for two projections,

inconsistent with the impredicativity of Prop:

(*)
	 F,x:A H B: Prop

F H x:A.B: Prop

where A is not restricted as a small type (proposition) .4 As propositions play a

necessary and significant role in expressing mathematical problems and specifi-

cations, the above difficulty appears serious and seems to have prevented people

4 A simple and intuitive argument to see this problem is that, if rule (*) were allowed, then

we would be able to derive I- Ex:Prop.{*} : Prop, where {*} stands for a non-empty type, say

unit type. Then, we have Ex:Prop.{*} is 'isomorphic' to Prop, which shows that we would

essentially have Prop : Prop. If we add a premise F F A Prop to rule (*), the rule would

become of no problem; it is the rule for small E-types. We do not have small E-types in ECC,

not because it can not be added, but because we do not see its necessity.

THE CALCULUS ECC 	 34

from directly extending a Constructions-like calculus by E-types in order to have

the power of expressing abstract structures.

However, the above result does not prevent us from adding s-types as large

types (non-propositional types) as we do for ECC. The only problem is how to

regard propositions also as large types to form E-types. In formulation of ECC,

we propose an idea of lifting propositions to higher-level types.*' Every object of

type Prop is also an object of type Type 0 , i.e., Prop 9 Type0 , as we described

in section 2.2.3. This can be understood as lifting a proposition as the type of

its proofs; or putting in another way, a logical formula is regarded as the name

of the type of its proofs. This lifting of propositions is essential for E-types to

express the intuitionistic notion of subset. Note that, in ECC, x:A.P is not

aproposition even when P is; in other words, rule (*) above is not included or

admissible. However, as propositions are lifted as types, we can derive (by rules

() and (r-))

FHA:Type 3 F,x:AHP:Prop

F 1- Ex:A.P Type 2

This non-propositional type x:A.P intuitively represents the intuitionistic sub-

set type. It is this that enables propositions to be used to express axioms of

a mathematical theory and program properties in a specification when we use

E-type to express abstract theories and specifications. (See chapter 8 and chap-

ter 9.)

One might wonder whether the lifting of propositions would propagate the

impredicativity at the level of propositions to the higher levels. For instance, we

can derive

I- llx:Type 3 HB:Type -* Prop.B(x) :Type 3

5This idea was considered in [Luo88c,a] in order to get a good formulation of an extension

of the calculus of constructions by E-types. In the original presentations of Constructions

[C1188][Coq85][Coq86a], propositions are not higher-level types.

THE CALCULUS ECC 	 35

However, the type hierarchy, except the lowest level Prop, is still stratified (pred-

icative) in the sense that the types can be ranked in such a way that the for-

mations of non-propositional types are only dependent on the types with lower

ranks (see chapter 4).

The intiiitionistic expression of 'such that' is based on the idea of treating

proofs as mathematical objects. Note that we can quantify over the proofs of a

proposition to form propositions or types. This makes it possible, for example,

to use propositions to express properties of proofs or programs (c.f., [ML73]). A

typical example is the Leibniz's equality definable in the calculus. (See defini-

tion 6.1.4 and section 9.1.)

Remark We can define (weak) existential types by dependent product types

at the predicative universes of ECC [Luo89a] as well as at the impredicative

universe [Rey83]. (See section 9.2.2.) They can be used to express abstract data

types as discussed by Mitchell and Plotkin in [MP85]. However, they can not be

used to express the intuitionistic notion of subset. 0

2.2.5 Conversion and full cumulativity

We now informally explain the term calculus, mainly to explain the conversion

relation and the cumulativity relation , both of which are defined for the

untyped terms. The conversion relation has the Church-Rosser property [ML72]

(see theorem 3.1.1) and the cumulativity relation is a partial order over terms

with respect to conversion. At the untyped term level, neither of them is decid-

able. However, essentially, they are only used for well-typed terms in the calculus

and in this case, they are decidable as we shall show (lemma 6.2.1).

Conversion between well-typed terms may be regarded as formally expressing

definitional equality which is purely for abbreviation of linguistic expressions

THE CALCULUS ECC
	

gill

[ML 73], and reduction may be regarded as evaluation of defined functions applied

to its arguments. /3-conversion corresponds to the following definitional schema

of functional abstraction: if a term M is of type B assuming variable x is an

arbitrary object of type A, we can define a function f of type Hx:A.B by

=df

f thus defined is formally expressed by)tx:A.M. Then a /3-reduction step con-

tracting f(N) to [N/x]M corresponds to an evaluation step of the function f

applied to an object N of type A.

cr-reduction corresponds to extracting the components from a pair by evaluat-

ing the projection functions. a-conversion can be explained by considering the fol-

lowing definitional schema: for a binary function M of type llx:AHy:B(x).C(x, y),

we can define a unary function f of type Hz:(x:A.B(x)).C(ir 1 (z), 7r2 (z)) by

AZ) =ç M(7r1 (z),7r2 (z))

Formally, f =df Az:(Ex:A.B(x)).M(7r 1 (z),w 2 (z)). Then, by a-conversion (to-

gether with /3-conversion), we have

f(pairES .AB (Ml ,M2)) M(M,M)

The cumulativity relation subsumes conversion and reflects the type inclusions

between universes. Splitting the cumulativity rule to and -<, the cumulativity

rule () in fact stands for the following two rules:

FHM:A FHA':Type 	
/ (cony) 	

FHM:A'

(cum)
FF- M:A FF- A':Type (AA')

FHM:A'

As conversion reflects definitional equality, the rule (cony) of type conversion,

as explained in [ML73], allows us to apply the principle of replacing a type

THE CALCULUS ECC 	 37

(proposition) by a definitionally equal type (proposition), i.e., if M is an object

(proof) of type (proposition) A and A is definitionally equal to type (proposition)

A M is an object (proof) of A.

Rule (cum) generalizes the universe inclusions coherently to the other types,

achieving a nice unicity of types. It results in a simple notion of principal type

(or the most general type, see definition 3.3.5 and theorem 3.3.6) and a simple

algorithm for type inference (definition 6.2.2 and theorem 6.2.3). For example,

the principal types of M Ax:Type 1 .x and N pairTypc , xTypeo (Type o ,Prop)

are Type1 - Type 1 and Type 1 x Type 0 , respectively. By the cumulativity rule,

we have F- M : Type 1 -* Type, (i -:~ 1) and I- N : Type 3 x Type (j > 1 and

k > 0).

This generalization clarifies the feature of type inclusions in a type system

with universes and leads to a simple implementation of the type hierarchy of

ECC. In the formulations of universes by Martin-Löf [ML84] and Coquand

[Coq86a], the following rules are used:

F I- A: Type 3

F H A : Type 1

Although in such a formulation every well-typed term has a minimum type with

respect to the cumulativity relation, as shown in [Luo86b], the minimum type

is sometimes not the most general one (principal type). For example, for the

system presented on page 235 in [Coq86a], it is easy to show by induction on

derivations that x:Type 0 - Type 0 1/ x : Type 0 -* Type 1 .

The cumulativity relation -< defined in definition 2.1.3 is not completely con-

travariant for H: for Hx:A 1 .A2 to be less than or equal to llx:B 1 .B2 , A 1 is required

to be convertible to B 1 instead of B1 3 A 1 . 6 One may take the latter decision and

the proof-theoretic properties will still hold. The only difference from the proof -

6 Here, one may compare with languages with subtyping. See [Card89], for example.

THE CALCULUS ECC 	 38

theoretic point of view is that some terms would get more types. For example,

Ax:Type 1 .x would not only have types Type 1 -p Type,, but have Prop - Type 3

and Type 0 - Type, (j ~! 1) as its types as well. The algorithm for type inference

remains the same except that the basic relation is changed. However, from

a set-theoretic semantic point of view, the type inclusions with a cumulativity

relation being completely contravariant would be reflected by coercions instead

of by set inclusions if we think of functions as relations.

A final remark is about rule (s). In the rule, A A' is a side condition. This

means that we do not take its justifications as part of a derivation in ECC. The

premise F I- A' : Type, is then important and necessary to guarantee that A'

is a well-typed type. One may consider equality judgements as in Martin-Löf's

type theory [ML73] 7 and take justifications of the cumulativity relation as parts

of derivations. This is possible because --< is decidable (and axiomatizable) for

well-typed terms.

.

1 Not in the sense of the judgemental equality in Martin-Löf's system with strong equality

[ML84].

Chapter 3

Basic Meta-theoretic Properties

We study in this chapter the basic meta-theoretic properties of the calculus. The

main properties of the underlying term calculus are concerned about conversion

and reduction (Church-Rosser theorem) and the cumulativity relation. Prop-

erties about derivable judgements and some important admissibility results for

derivability are proved in section 3.2. A notion of principal type which charac-

terizes the type cumulativity in the calculus is studied in section 3.3.

3.1 Properties of the Term Calculus

The most important property of the term calculus is the Church-Rosser theorem

about the relations of reduction and conversion.

Theorem 3.1.1 (Church-Rosser theorem) If M1 M2 , then there exists M

such that M1 t> M and M2 t' M.

Proof Sketch By definition of conversion, we only have to show that reduction

has the diamond property, i.e., if M t> M1 and M t> M2 , then M1 r> M' and

M2 t> M' for some M'. Following [ML72], we give a proof sketch of the diamond

39

BASIC META PROPERTIES 	 40

property as follows. 1

1. Definitions:

parallel one-step reduction: M E' N if and only if N is got by con-

tracting some (possibly all or none) of the redexes in M, starting from

within and proceeding outwards.

parallel n-step reduction: M t>0 N if and only if M N; M n+1 N

if and only if M 	M' [> 1 N for some M'.

Note that M E' N if and only if M i' N for some n E w.

2. Lemma: M [>1 M' implies [N/x]M t> 1 [N/x]M'. (Obvious by definition of

1)

3. Lemma: If M >1 M1 and M M 2 , then M1 t>1 M' and M2 i' M' for some

M'. (By induction on the structure of M and using the lemma above.)

4. Lemma: If M m M1 and M M 2 , then M1 	M' and M2 	M' for

some M'. (By m x n times applications of the above lemma.)

From the last lemma above, the diamond property for reduction holds, and hence

the theorem. 	 LN

Corollary 3.1.2 (uniqueness of normal forms) The normal form of a term

is unique (up to syntactical identity), if it exists. 	 0

Remark Note that ECC does not include the 77-contraction scheme

(ii) 	 .Ax:A.Mx -'-- M (x V FV(M))

'Martin-Löf in [ML72] refers to Tait for the basic ideas of the proof. Similar proofs for

simpler ..\-calculi can be found in other places, e.g., Appendix 1 of [11S87] among others.

BASIC META PROPERTIES 	 41

or the contraction scheme of surjective pairing

(ir) 	 pairA (7rl (M),7r2 (M))-s.* M

either of which would make Church-Rosser property fail to hold [vD80][K1o80]

for the term calculus. The examples to show this would be, with A B,

\x:A.(Ax:B.x)x

pairBXB(lrl(pairAXA(a, a)), 7r2(pairAXA(a, a)))

The first would reduce to .Ax:A.x by (3) and .\x:B.x by (ij); the second would

reduce to pairBXB(a,a) by (a) and pairAxA (a,a) by (7r). It is also worth re-

marking that, with either of them, Church-Rosser even fails for well-typed terms

of ECC because of the existence of type inclusions induced by universes. In fact,

whenever x:A I- x : B and F- a: A, the above two terms are well-typed. 0

In the rest of this section, we prove the existence of the cumulativity relation

as defined in definition .2.1.3 and some of its properties. We will show in sec-

tion 3.3 that the cumulativity relation does characterize the type cumulativity in

the calculus.

We first give an inductive definition of a binary relation over terms which will

be shown to be the cumulativity relation as defined in definition 2.1.3.

Definition 3.1.3 (cumulativity relation: inductive definition) 	Let

c T x Y (i E w) be the relations over terms inductively defined as follows:

1. AB if and only if one of the following holds:

A B; or

A Prop and B Type s for some j E w; or

A Type 3 and B TyPek for some j < Ic.

BASIC META PROPERTIES 	 42

. A j+1 B if and only if one of the following holds:

A B, or

A flx:A 1 .A 2 and B Hx:B 1 .B2 for some A 1 B 1 and A 2 -<i B2;

WA

A Ex:A 1 .A 2 and B 	x:B 1 .B2 for some A 1 - B 1 and A 2 -< B2 -

A -<j B if and only if A j B and A B.

Define -< as

drU
jEw

Furthermore, A -< B if and only if A B and A B.

We show below that 	defined above is the smallest binary relation over

terms such that the four conditions in definition 2.1.3 are satisfied; in other

words, the above is in fact an alternative definition of the cumulativity relation

(corollary 3.1.7).

Lemma 3.1.4 Let -< be the relation defined by definition 3.1.3. Then, A B if

and only if one of the following holds:

•

A Hx:A 1 .A 2 and B 11x:B 1 .B2 for some A 1 B and A 2 -< B2 ;

• A Ex:A 1 .A 2 and B 	x:B 1 .B2 for some A 1 -< B1 and A 2 -< B2 .

Proof Obvious from definition 3.1.3 of -<. 	 •i

Remark We may define a relation between terms: A B if and only if there

exists a sequence of terms M0 ,...,M such that A M 0 , B M, and M1 -< M2+1

or M +1 M1 for 0 < i <n. Then, the relationship between and is similar

to that between and 1'. The lemma 3.1.4 implies that, if A B, then A and

BASIC META PROPERTIES
	

43

B have the same sort of forms up to conversion.

The following lemma will be used to prove that the relation defined in defini-

tion 3.1.3 is a partial order (lemma 3.1.6) and that the cumulativity relation is

well-founded (corollary 3.1.8).

Lemma 3.1.5 Let A, B, C and D be terms, i E w, and be the relation defined

in definition 8.1.3. If A -< i B, then

B -< C implies B , C, and

D A implies D , A.

Proof By induction on i E w. We only give this proof for the first part, i.e.,

B -< C implies B -<j C, if A -< j B. The second part is symmetric and omitted.

For i = 0, A and B are convertible to some kinds. By Church-Rosser theorem,

B C must be because B and C are convertible to some kinds, and hence

B 0 C.

For i = k + 1, we have the following two cases to consider:

A -<k B.

A k B and A <k+1 B.

For the first case, B - C implies B k C by induction hypothesis and hence

B k+1 C.

For the second case, for some Q e {ll, E}, A Qx:A 1 .A 2 and B Qx:B 1 .B2

such that

• A l B l and A 2 -.<kB2 ,ifQEfl,

• A 1 -.<B1 and A 2 B2 , or A 1 B 1 and A 2 -< B2 , if 	.

BASIC META PROPERTIES
	

44

By Church-Rosser theorem and induction hypothesis, B -/<k C, and B 	C is

either because B C, which implies B k+1 C, or because B Qx:B.B and

IC1 ifQll
C Qx:C1 .C2 for some B1 	

C1 if 	E
and B 	C2 . By Church-Rosser

I
I—C1 ifQH

theorem, B1 	B' (j = 1, 2). So, B 1 	 and B2 	C2 . Hence,
IC1 ifQEE

IC1 ifQH
by induction hypothesis, B1 	 and B2 k C2 . Therefore,

(kCl ifQEE
B k1 •
	 FEW

Lemma 3.1.6 The relation -< defined in definition 3.1.3 is a partial order with

respect to conversion; that is,

ifAB, thenA -<B,

if A -< B and B -< A, then A B, and

ifA-<B and BC, then AC.

Proof We only have to show that every -<j is a partial order with respect to

conversion. By induction on i.

The base case for 	can readily be verified. Consider $k+1•

Reflexivity: Obvious by definition 3.1.3.

Anti-symmetry: Suppose A k+1 B and B k+1 A. As A k+1 B, we have

two cases to consider.

A - B;

A & B and A <k+1 B.

For the first case, either A B or A .<k B, and we have B <k A by defi-

nition of k and lemma 3.1.5. Then, A B, by induction hypothesis. For

the second case, for some Q e {H,}, A Qx:A 1 .A 2 and B Qx:B i .B 2

such that

BASIC META PROPERTIES
	

45

• A l Bl and A 2 -<k B2 ,ifQH,

• A 1 -< B1 and A 2 B21 or A 1 B 1 and A 2 -< B2 , if Q

By Church-Rosser theorem and lemma 3.1.5, B k+1 A is also due to the

same reason, i.e., B 	Qx:B.B and A 	Qx:A.A'2 for some

I_A ifQEH
B 	 and B k A. By Church-Rosser theorem, A

tkAi ifQE
1A 1 ifQEH

A'. and B3 B' (j = 1,2), and hence, B 1 ' 	 and B2 <k
:& A, ifQE

A 2 . By induction hypothesis, we have A 3 13 (j = 1,2) and hence A B.

3. Transitivity: Suppose A k+1 B and B k+1 C. As A k+1 B, we have

the same two cases as the above case. For the first case, we have B k C

by definition of k and lemma 3.1.5. By induction hypothesis, A 'k C

and hence A <k+1 C. For the second case, by Church-Rosser theorem

and lemma 3.1.5, B <k+1 C is also due to the same reason, i.e., B
1Ci 	ifQll

Qx:B.B and C Qx:C1 .C2 for some B 	 and B <k
-< k C1 ifQEE

C2 . By Church-Rosser theorem, B3 B (j = 1, 2), and hence, by induction

IC1 ifQH
hypothesis, A 1 	 and A2 k C2 , which implies A k+i C-

-<k 	if Q>I

As each -< is a partial order with respect to conversion, so is the relation

defined in definition 3.1.3. 	 0

Corollary 3.1.7 The relation -< defined in definition 3.1.3 is the smallest partial

order over terms with respect to conversion such that

Prop Type0 Type 1 	
...;

if A A' and B - B', then llx:A.B - Hx:A'.B';

if A A' and B - B', then x:A.B - 	x:A'.B'.

BASIC META PROPERTIES
	

46

Proof By lemma 3.1.6, 	is a partial order w.r.t. conversion and it obviously

satisfies the three conditions. For minimality, suppose R C T x T to be a partial

order w.r.t. conversion satisfying the conditions. We only have to show that

-<,ç R for every i e w, which can easily be done by induction on i. 	0

Remark Definition 3.1.3 and the above corollary show that the cumulativity

relation (definition 2.1.3) is well-defined; in other words, definition 3.1.3 gives an

alternative inductive definition of the cumulativity relation. 	 0

Using lemmas 3.1.5 and 3.1.4, we can also show that the cumulativity relation

is well-founded.

Corollary 3.1.8 (well-foundedness of -<) The cumulativity relation is well-

founded in the sense that there is no infinite decreasing sequence of the form

A 0 >- A 1 - A 2 >-

Proof If there exists an infinite sequence A 0 >- A >- A 2 >.- ..., we have by

lemma 3.1.5, A 0 >-i A 1 >-i A 2 >.- ... for some i E w. So, we only have to show

that -< j is well-founded for every i e w.

By induction on i. 	is obviously well-founded. Consider 	If A >- 	B,

then there are three possibilities:

A>- B,

A Hx:A 1 .A2 and B llx:B 1 .B2 for some A 1 B 1 and A 2 	B2 , or

A >x:A 1 .A 2 and B Ex:B 1 .B2 for some A 1 , A 2 , B1 and B2 such that,

A 1 >- i B 1 and A 2 >- B21 or A 1 	B 1 and A 2 >'-• B2 .

For the first case, there is no infinite decreasing sequence starting from A >- B by

induction hypothesis and lemma 3.1.5. For the second case, by lemma 3.1.4, every

BASIC META PROPERTIES
	

47

component of a decreasing >.- 1 -sequence starting from A >- B is convertible to

a term of 11-form. Hence, if such a sequence is infinite, there must be an infinite

decreasing sequence starting from A 2 >- B2 , which is impossible by induction

hypothesis and lemma 3.1.5. The third case for E can be similarly proved. Hence,

every is well-founded and so is by lemma 3.1.5. 0

3.2 Derivable Judgements and Derivability

Shown in this section and the next are the basic properties of ECC. We show in

this section that, if a judgement x 1 :A 1 , ..., 	F- M: A is derivable, then

• x 1 :A 1 , ..., x.:A (i = 1,..., n) are valid contexts (followed by lemma 3.2.3);

• A and A 2 are all types (followed by lemma 3.2.1 and theorem 3.2.7);

• the variables x 1 , ..., x are distinct, the free variables in M and A are among

x, and those in A 2 are among x 1 ,..., x1 _ 1 . (lemma 3.2.2).

These give us a better understanding of the forms of derivable judgements.

We also show that the following operations on derivable judgements are ad-

missible:

. Context replacement by B A (lemma 3.2.5);

. Type-preserving substitution or Cut (theorem 3.2.6);

• Subject reduction (theorem 3.2.8);

• Weakening and strengthening (lemmas 3.2.4 and 3.2.9).

These provide us important admissible rules which not only enable one to un-

derstand the calculus (derivability, in particular) better but also allow one to use

them in implementations of the calculus (c.f., [LPT89]).

A rule R of the form "_ is called admissible if J is derivable whenever J1 , J are

derivable.

BASIC META PROPERTIES 	 48

Lemma 3.2.1 Any derivation of F,x:A,F' I- M : B has a sub-derivation of

F F- A : Type, for some j.

Proof By induction on derivations. 3 	 0

Lemma 3.2.2 (free variables) Suppose F F- M: A. Then,

FV(M) U FV(A) ç FV(F).

F has the form x 1 :A 1 , ..., x:A such that x 1 , ..., x are distinct and FV(A) C

{x 1 ,...,x_ 1 } for = 1,...,n.

Proof By induction on derivations. When proving the first, use 3.2.1 for (ll1)(.)).

When proving the second, use the first for (C). 	 0

Lemma 3.2.3 (context validity) Any derivation of F, F' F- M : A has a sub-

derivation of F- Prop: Type0 .

Proof By induction on derivations.

Lemma 3.2.4 (weakening) If F- M: A and F' is a valid context which con-

tains every component of F, then F' F- M : A.

Proof By induction on derivations. For the rules other than (111)(X), apply

induction hypothesis and the same rule. For (H1)(A), use lemma 3.2.1 and then

similar. 	 0

Remark The weakening lemma expresses the monotonicity of the calculus, i.e.,

postulating more assumptions does not invalidate provable results. 	 U

Lemma 3.2.5 (context replacement) If F,x:A,F' I- M : C and B -< A is a

F-type ; then F,x:B,F' F- M : C.

3 W will say 'by induction on derivations (of ...)' to mean 'by induction on the lengthes of

derivations (of...)'.

BASIC META PROPERTIES 	 49

Proof By induction on derivations of F, x:A, F' F M : C. The only two non-

trivial cases are rule (C) and rule (var). For rule (C), we have two possibilities:

F' F, y:A 1 , M Prop and C Type 0 :

IF, x:A,F F A 1 : Type 3 	
(y V FV(F,x:A,F))

F,x:A,F,y:A 1 F Prop: Type0

By induction hypothesis, F,x:B,F F A 1 : Type 3 . By lemma 3.2.2, y

FV(17,x:B,F'1). So, applying (C) suffices.

F'

F F A: Type ., 	
(x V FV(F))

F,x:A F Prop: Type0

As B is a IF-type, F F B : Type 3 for some J. Applying (C) suffices.

For rule (var), with M x and C A,

F,x:A,IF' F Prop: Type0

F, x:A, F' F x: A

By induction hypothesis, IF, x:B,F' F Prop : Type0 . By rule (var), F,x:B,F' F

x : B. As A is a F-type by lemma 3.2.1, we have by lemma 3.2.4 that A is a

(F,x:B,I")-type. Hence, F,x:B,F' F x: A by rule (-<) as B A. 	 0

Remark As a special case of the above lemma, replacing a type in the context

of a judgement by a convertible type results in an 'equivalent' judgement subject

to derivability. The above lemma is another sort of 'weakening' lemma as one

gets a possibly stronger assumption when replacing A by B A. 0

Theorem 3.2.6 (Cut) If F,x:N,F' F P : A and F F M : N, then

F, [M/x}F' F [M/x]P: [M/x]A.

BASIC META PROPERTIES 	 50

Proof By induction on derivations of F, x:N, F' F- P : A. Here, we only check

the rules (var), (111) and (pair). The other cases are simpler or similar. For rule

(var), with F,x:N,F' Fl , y:B,F 2 ,

F1 ,y:B,F2 F- Prop: Type0

17 1 ,y:B,F 2 H y: B

there are two cases:

x:N y:B, F F1 and r=— 	By lemma 3.2.2, x V FV(N). So, we only

have to show F, [M/x]F' F- M : N. This is true by induction hypothesis

and lemma 3.2.4, as FHM: N.

x:N occurs in 17 1 or F2 . By induction hypothesis, F, [M/x]F' F- Prop

Type 0 . As x 	y by lemma 3.2.2, F, [M/x]F' contains the component

y:[M/x]B. So, an application of rule (var) yields the result.

For rule (Hi), with P llx:P1 .P2 and A Prop,

17,x:N,F',y:P1 F- P2 : Prop

F,x:N,F' F- Hx: Pi . P2 : Prop

As x y by lemma 3.2.2, F, [MIX]IF', y:[M/x]P1 F- [M/x]P2 : Prop by induction

hypothesis. By rule (Hi), F, [M/x]F' F- Hy:[M/x]P1 .[M/x]P2 : Prop. Since M is

a F-term, y V FV(M) by lemma 3.2.2. So, F, [M/x]F' F- [M/x]Hx:P1 .P2 : Prop

as required.

For rule (pair), (write F1 for F,x:N,F',)

17 1 F- M1 : A 1 F1 F- N1 : [M1 1y]B 1 F1 ,y:A 1 F- B,: Type 3

17 1 F- pairE Y .A,B 1 (Ml,Nl) :

Note that x 0 y and x V FV(M) by lemma 3.2.2. By induction hypothesis, we

have

F, [M/x]F' F- [M/x]M1 : [M/x]A1

BASIC META PROPERTIES 	 51

F, [M/x]F' F [M/x]N1 : [M/x][M1 /x]B 1

F,[M/x]F',y:[M/xJAi I- [M/x]B 1 : Type 3

Noticing that [M/x][M1 /y]B 1 [[M1x]M1 1y][M1x}B 1 , we have by rule (>1),

F, [M/x]F' I- pair.[M/]A1 .[M/x]Bi ([M/x]M1 , [M/x]N 1) : Ey:[M/x]A 1 .[M/x]B 1

As x # y, this judgement is

F,[M/x]F' I- [M/x]pairE .A1Bl (Ml ,Nl) : [M/x]>y:A1 .B 1

as required.

Remark The name of the above lemma (also used in [Pot87]) is due to the

analogy with the cut rule in sequent calculus of the form

F,NI-A FE-N

FE- A

0

Theorem 3.2.7 if I- M: A, then A is a F-type.

Proof By induction on derivations of F I- M: A. For the rules except (app) and

(7r2), it is easy. (We only remark that lemmas 3.2.1 and 3.2.4 are used for (var),

and lemma 3.2.1 for ()).) The cases for (app) and (7r2) are similar. We check

(ir2) here. With M 7r2 (M') and A

F I- M' :

F F 7r2 (M'): [7r1 (M')/x]A 2

By induction hypothesis, F I- >x:A1 .A 2 : K for some kind K. Any derivation D

of this judgement must have () or () as the last rule used. So, D must have a

BASIC META PROPERTIES
	

52

subderivation which is a derivation of F F- Ex:A 1 .A 2 : Type, with () as the last

rule; i.e., we have

F F- A 1 : Type d F, x:A 1 1- A 2 : Type,

F H Ex:A 1 .A 2 : Type,

As F F- 7i- 1 (M') : A 1 , we have F F- [7r1 (M')/x]A 2 : Type, by theorem 3.2.6. So, A

is a F-type. 	 EM

Remark This theorem says that every inhabited term is a type. However, the

converse is not true ingeneral; not every F-type is necessarily inhabited under F

(see theorem 6.1.5).

Theorem 3.2.8 (subject reduction) If F I- M : A and M N N, then

F F- N:A.

Proof We only need to show that, if F F- M : A and M N 1 N, then F F- N : A.

This is proved by induction on derivations of F H M : A.

(Ax)(C)(T)(var): Trivial.

(s): By induction hypothesis and applying (:3).

(111)(H2)(A)()(pair): These cases are similar in which lemma 3.2.5 and

(or) lemma 3.2.1 and (or) theorem 3.2.6 are used. We check (pair) here.

F H M1 : A 1 F F- N,: [M1 /x]B 1 F,x:A 1 F- B1 : Type .?.

F F- pairE.A,B 1 (Ml,Nl) :

So, M 	pair E . A , B1 (M1 ,N1) N1 pair E .A l flI(M,N') 	N. There are

four cases:

(a) M1 L> I M By induction hypothesis, F F- M : A 1 ; by theorem 3.2.6

and applying rule (-<), we have F F- N1 : [M/x]B1.

BASIC META PROPERTIES 	 53

N1 t' 1 N: By induction hypothesis, F F- N : [M1 1x]B 1 .

A 1 L>j A'1 : By lemma 3.2.1, induction hypothesis, lemma 3.2.5 and

rule (s), F I- M1 : A'1 and F, x:A F- B 1 : Type,.

B 1 r>1 B: By induction hypothesis, theorem 3.2.6 and rule (s),
F,x:A 1 F- B : Type, and F I- N1 : [M1 /x]B.

Then applying (pair) suffices in every case above.

4. (app): With M M1 N1 and A [N1 /x]B 1 ,

FF-M1 :Hx:A 1 .B 1 17F-N1 :A 1

F F- M1 N1 : [N1 /x]B 1

There are two cases:

N 	M'N and either M1 N M1' or Ni L>i N;. In this case, by

induction hypothesis, F F- M 	Hx:A 1 .B 1 and F F- N : A 1 . So,

applying (app) yields F F- N: [N/x]B 1 . Since [N/x]B 1 	[N1 /x]B 1 ,

we have F F- N: [N1 /x]B 1 by theorem 3.2.7 and rule (s).

M M 1 N1 (Ax:A.M)N 1 t [N/x]M N. The last rule used in

any derivation of F F- M1 : Hx:A 1 .B 1 must be (A) or (-<). If it is (A),

applying theorem 3.2.6 suffices. If it ends with (s), we have for some

X - Hx:A.B 1 ,

FF-Ax:A.M:X FF- X:Type,

F F- Ax:A.M : Hx:A 1 .B 1

We may assume that the last rule used to derive F F- Ax:A'1 .M : X is

not (s), then it must be (A), i.e.,

F,x:A'1 F- M; : B

F F- Ax:A.M : llx:A'1.B

BASIC META PROPERTIES
	

54

where X llx:A'1.Bc. By lemma 3.1.4, X 	Hx:A'1'.Bc' 	Hx:A.B

for some A' and B'1' such that A'1' A and B' B 1 . By Church-

Rosser theorem, X t> llx:A 0.B0 and Hx:A.Bc' L Hx:A 0 .B0 for some

A 0 and B0 such that A L> A0 , A' L' A 0 , B t' 130 and B' r> B0 . So,

we have

AA 0 AA 1 and BB0 BB 1

By theorem 3.2.7, lemma 3.2.5 and rule (s), we have F,x:A 1 I- M

B 1 . Then, by theorem 3.2.6, we have F F- [Ni /x]M1' : [N1 /x]B 1 , i.e.,

FF-N:[N1 /x]B 1 .

5. (7r1)(r2):

F F M1 :

F F- 7r1 (M1) : A 1

F F- M1 :

F F- 7r2 (M1) : [ir1 (M1)/x]B 1

M 	7r.(M1) ii N (i = 1,2) and A is A 1 and [7r1 (M1)1x]B 1 , respectively.

There are two cases:

N = ir.(M) and M1 N M. By induction hypothesis and applying

(in) and (7r2).

M ir.(M1) 7r(pair(M11,M12)) i M 12 	N. Then, any deriva-

tion D of F F- M1 : Ex:A 1 .B 1 must use (pair) or (-<) as the last rule.

If the last rule used in D is (pair), we have F F- M11 : A 1 , and, by the-

orem 3.2.7 and rule (-<), F F- M12 : [ir1 (M1)1x]B 1 . That is, F F- N : A.

If the last rule used in D is (-<), we have, for some X -<

FF- M1 :X FF-X:Type 3

F F- M1 :

BASIC META PROPERTIES
	

55

We may assume that the last rule used to derive F F- M1 : X is not

(s), then it must be (pair), i.e.,

F F- M11 : A' F H M12 : [M11/x]B F, x:A H B : Type s

F H M1 : Ex:A.B

where X >x:A.B. By lemma 3.1.4, X Ex:A'.B' Hx:A.B1

for some A'1' and B' such that A'1' A 1 and B' B1 . By Church-

Rosser theorem, X t> Ex:,AO .Bo and Ex:A'1'.B' L> Ex:A O .Bo for some

A0 and B0 such that A L> A0 , A'1' A0, B t> B0 and B' L> B0 . So,

we have

AA0 A'-<A 1 and BB0 B'-<B 1

and the later implies [M11 /x]B 	[7r1 (M1)1x]B1 . By theorem 3.2.7

and rule (-<), FH M11 : A 1 and FH M12: [7r1 (M1)1x}B 1 , i.e., 1'F- N:

A.

This completes the proof of the theorem. 	 LE

Remark The theorem of subject reduction is one of the most important prop-

erties of a type system like ECC. Besides its importance in meta theory, it also

saves much work in implementation, e.g., it saves type-checking when reductions

or normalizations are performed.

Although subject reduction holds, the following rule is not admissible in ECC:

FHM:A FHN:B
(**)
	

(M 1> N)
FHM:B

For example, we have H Prop: Type0 , but 1/ (Ax:Type 1 .x)Prop: Type 0 . In fact,

we only have H (Ax:Type 1 .x)Prop : Type 2 for i > 1, i.e., its principal type is

Type 1 (see section 3.3). 	 0

BASIC META PROPERTIES
	

we

Lemma 3.2.9 (strengthening) If F,y:Y,F' F- M: A and V FV(M)uFV(A)u

FV(F'), then F,F' F- M: A.

Proof Note that a straightforward induction on derivations does not work as

the (app) rule loses the information of variable occurrences (in A). To solve this

problem, we notice that we only have to prove the following statement:

(*) if F, y:Y, F' F- M : A and y V FV(M) U FV(F'), then there exists A' A

such that IF, IF' F- M : A.

for then, supposing F, y:Y, F' F- M : A and y V FV(M)uFV(A)uFV(F'), we have

by (*) that there exists A' A such that IF, IF' F- M: A'. We only have to show

r) IF' F- A : K for some kind K in order to apply rule () to show r, r , F- M : A.

By theorem 3.2.7, F,y:Y,F' F- A: K for some kind K. As y V FV(A) U FV(F'),

by (*), there exists B K such that F, F' F- A: B. Because kind K is a F, F'- type

(by rules (Ax), (C) and (T)), we can apply rule () to have F, F' F- A: K.

(*) is proved by induction on derivations of F, y:Y, F' F- M : A.

(Ax): Trivial.

(C): With F,y:Y,IF' 	F,x:A,

17 1 F- A 1 : Type s 	
(x V FV(F 1))

F 1 ,x:A 1 F- Prop: Type0

If y:Y does not occur in 17 1 (i.e., F' is empty and y:Y x: A 1), then we have

17 1 F- Prop: Type0 by lemma 3.2.3. Otherwise, F,y:Y,F' 	IF, y:1'F",x:A 1

and, by induction hypothesis, there exists C 	Type 3 such that F, F" F- -

A 1 : C. By Church-Rosser theorem, C K Type s for some kind K. So,

F, F" F- A 1 : Typek for some k by rule () and hence F, F", x:A 1 F- Prop:

Type 0 by rule (C), i.e., r, r , F- Prop: Type0.

BASIC META PROPERTIES
	

57

(T): With IF, y:Y,I" 	F 1 ,

F1 F- Prop: Type0

F 1 I- Type, : Type +1

By induction hypothesis, F, F' F- Prop: C for some C Type 0 . By Church-

Rosser theorem, C K -< Type 0 for some kind K. So, F, F' F- Prop : Type0

and hence r, r , I- Type, : Type 1 by rule (T).

(var): With IF, y:Y,F' 	17 1 ,x:A 1 ,F2 ,

17 1 ,x:A 1 ,F2 F- Prop: Type0

F1 ,x:A 1 ,F2 I- x : A 1

Note that y # x by assumption. By induction hypothesis, we have F, F' F-

Prop : C for some C - Type 0 which implies F, F' F- Prop : Type0 by

Church-Rosser theorem. So, F, IF' F- x: A 1 .

(111): With F,y:Y,IF' 	F 1 ,

F1 ,x:A 1 F- P: Prop

F 1 F- Hx:A 1 .P : Prop

We have y 0 x by lemma 3.2.2. By induction hypothesis, there exists

C -< Prop such that F, F', x:A F- P : C. By Church-Rosser theorem,

C Prop, so F,F',x:A F- P : Prop by rule (s). Then applying (Hi)

we have F,F' F- Hx:A 1 .P : Prop.

(H2): With F,y:Y,F' 	F1 ,

F 1 F- A 1 : Type, 17 1 ,x:A 1 F- B: Type,

F 1 F- Hx:A 1 .B : Type,

We have y 0 x by lemma 3.2.2. By induction hypothesis, there exist

C Type s and D Type, such that F, F' F- A 1 : C and F, F', x:A 1 F- B:

BASIC META PROPERTIES

D. By Church-Rosser theorem, C K Type, and D K' Type d

for some kinds K and K'. Then, by rule (s), F, F' F A 1 : Type, and

F,F',x:A1 I- B : Type,. So, r, r , F- 11x:A 1 .B : Type, by rule (112).

(\): With IF, y:Y,IF' 	F 1 ,

17 1 ,x:A 1 I- A4 1 : B

F 1 F)x:A 1 .M1 : Hx:A 1 .B

We have y V FV(M) by lemma 3.2.2. By induction hypothesis, F, F',x:A 1 F

M1 : B1 for some B 1 	B. Applying rule () gives us F, F' F)x:A 1 .M1

llx:A 1 .B 1 and Hx:A 1 .B 1 -< llx:A 1 .B.

(app): With IF, y:Y,IF' 17 1 , M M, M 2 and A [M 2 1x]B 1 ,

F 1 F M1 : Hx:A 1 .B 1 F1 F M2 : A 1

F 1 F M1 M2 : [M2 1x]B 1

By induction hypothesis, there exist C -< Hx:A 1 .B 1 and D -< A1 such that

F,F' FM1 : C and r, r' FM2 : D. By lemma 3.1.4, C Hx:A.B for

some A A 1 and B B 1 . By Church-Rosser theorem, C r> llx:A 0 .B0

and Hx:A'1 .B t' llx:A 0 .B0 for some A 0 and B0 such that A r> A 0 and

B [> B0 . So, A 0 A 1 , B0 - B 1 . By lemma 3.2.2, y V FV(C) U FV(D),

which implies that y V FV(Hx:A 0 .Bo). By theorem 3.2.7, theorem 3.2.8

and rule (-<), r, r , F M1 : Hx:A 0 .B0 and r, r , F M2 : A0 . Applying rule

(app), we have F, n- M1 M2 : [M2 1x]B0 and [M2 1x]B0 - [M2 1x]B 1 .

(E): Similar to the case for (112).

BASIC META PROPERTIES 	 59

(pair):4 	With F,y:YF' 	17 1 , M 	pairE.A,B,(M l , M2) and A

I'1 I- MI : A 1 171 F- M2 : [M1 /x]B 1 F1 ,x:A 1 I- BI : Type,

F 1 F- pair Ex : A1 B 1 (M1,M2) : Ex:A 1 .B 1

By induction hypothesis, there exist A'1 	A 1 , B 	[M1 /x]B 1 C

Type, and D Type, such that F, F' F- M1 : A, F, F' F- M2 : B and

F,F',x:A1 F- B 1 : C. Noticing that y V FV(Ex:A 1 .B 1), we have, by

lemma 3.2.1, induction hypothesis and rule (s), F, F' F- M1 : A 1 and

F,F',x:A1 F- B 1 : Type,. By theorem 3.2.6, 17,17' F- [M1 /x]B 1 : Type,.

So, by rule (s), 17,17' F- M2 : [M1 /x]B i . Hence, applying (pair) yields

F,F' F- M: A.

(irl)(ir2): With F,y:Y,F' 	F and M 	7r(M1) (i = 1,2) and

I
A 	

A' 	 for (in)

(. [7r1 (M)/x]B for (7r2)

F1 F- M1 : Ex:A'.B

F1 F- iri (M1) : A'

F1 F- M1 : Ex:A'.B

F1 F 7r2 (Mi) : [7r1 (M1)/x]B

By induction hypothesis, F, F' F- M1 : C for some C 	Ex:A'.B. By

lemma 3.1.4, C Ex:A 1 .B 1 for some A 1 A' and B 1 B. By Church-

Rosser theorem, C I> Ex:A 0 .B0 for some A0 A A' and B 1 -< B.

By lemma 3.2.2, y V FV(C) and hence y g FV(Ex:A 0 .B0). By theo-

rem 3.2.7, theorem 3.2.8 and rule (-<), F, F' F- M1 :Ex: A 0 .B0 . So, for (in),

r, r' F- ir1 (M1) : A 0 by rule (in) and A 0 A'; for (7r2), r, r' F- 72 (Ml

[7n 1 (M1)/x]Bo by rule (7r2) and [7r1 (M1)/x]B0 	[7r1 (M1)/x]B.

4Thanks to Moggi for pointing out a simpler way of proving this case, as presented here,

after reading the draft of this thesis.

BASIC META PROPERTIES 	 60

This completes the proof of the lemma. 	 U

Remark Strengthening is the dual of weakening (lemma 3.2.4). It shows that re-

moving redundant assumptions preserves derivability. That it holds for

Constructions-like calculi and the idea of proving a stronger statement as shown

in the above proof were recognized by the author and presented in [Luo88b]. It

is interesting to note that, in an implementation of a proof refinement system

based on Constructions (e.g., [CH85][LPT891), such a lemma is indeed (maybe

unconsciously) used (e.g., to implement the Discharge command). 0

3.3 Principal Types

Because we have type inclusions induced by type universes, type uniqueness up

to conversion fails for ECC. However, we show that ECC has a simple notion

of principal type which characterizes the set of types of a well-typed term.

First, we show that the cumulativity relation characterizes the type cumula-

tivity (or type inclusions) in the calculus.

Lemma 3.3.1 (type cumulativity) Let A and B be IF-types. Then, A B if

and only if F,x:A F- x : B, where x V FV(F).

Proof The sufficiency is by induction on derivations of F, x:A H x : B. The

necessity is by rules ()(C)(var) and lemma 3.2.5. 	 0

Corollary 3.3.2 Let A and B be 17-types. If A 	B, then, for any term M,

F H M : A implies FHM:B.

Proof By lemma 3.3.1, F,x:A H x : B, where x V FV(F). By theorem 3.2.6,

I' H M : [M/x]B; i.e., F F- M B, as x does not occur free in F-type B by

lemma 3.2.2. 	 1 0

BASIC META PROPERTIES 	 61

Remark The converse of this corollary is not true as A might be empty (not

inhabited by any term) under F. 	 0

Lemma 3.3.3 (diamond property of) if I- M: A and F F- M B, then

there exists a term C such that C A, C B and F F- M : C.

Proof By induction on the sum of the lengths of derivations of F F- M : A and

F F- M : B. Here, we only consider the case when both derivations use (app) as

the last rule. The other cases are easy. Suppose M M 1 M2 , A [M2 1x]B 1 ,

B [M2 1x]B2 and, for i = 1, 2,

FF-M1 :Hx:A 1 .B FF-M2 :A 1

F F- M1 M2 : [M2 1x]B 1

By induction hypothesis, there exists C such that F F- M1 C and C Hx:A.B 2

(i = 1, 2). By lemma 3.1.4 and Church-Rosser theorem, C t> llx:A 0 .B0 for some

A 0 A i and Bo < B. (i = 1,2). By theorems 3.2.7 and 3.2.8, Hx:A 0 .B0 and

A 0 are F-types. So by rule (s), we have F F- M1 : Hx:A 0 .B0 and F F- M2 : A 0 .

Hence, F F- M1 M2 [M2 1x]B0 . Noticing that [M2 1x]B0 -< [M2 1x]B 2 (i = 1,2),

we have the required result. 0

Remark This lemma implies that, if A and B are types of M (under F), then

A B (see the remark after corollary 3.1.7). It is a sort of 'Church-Rosser prop-

erty' for types concerned about . 	 0

An immediate consequence of the above diamond property (and the well-

foundedness (corollary 3.1.8)) of the cumulativity relation is that every F-term

has a minimum type (under F) with respect to the order .

Lemma 3.3.4 (existence of minimum type) Let M be a IF-term and T =

{A I FF- M :A}. Then, there exists AET such that AA' for all A'ET.

BASIC META PROPERTIES 	 62

Proof T is not empty as M is a F-term. Let A be a minimal element in T

(A exists by corollary 3.1.8). Then, by lemma 3.3.3, for any A' E T, there ex-

ists B e T such that B -< A and B A'. Since B A, we have A B A'. 0

The minimum type of a IF-term is obviously unique up to conversion. We now

show that the minimum type is indeed the most general one (principal type).

Definition 3.3.5 (principal type) A is called a principal type of M (under

F) if and only if

F F- M A, and

for any term A', F F- M: A' if and only if A -<A' and A' is a F-type. 0

Theorem 3.3.6 (existence of principal type) Every F-term M has a prin-

cipal type (under F); it is the minimum type of M (under F) with respect to

Proof Let A be the minimum type of M (under F) with respect to (A exists

by lemma 3.3.4). Then, F F- M : A. For any A' such that F F- M : A', we have

A A' and A' is a F-type by theorem 3.2.7. Suppose A' is a F-type such that

A A'. By corollary 3.3.2, F F- M : A'. 0

Notation We use Tr(M) to denote the principal type (being more precise, the

set of principal types) of F-term M under F. 	 0

Remark The above notion of principal type is a nice property of the calculus and

is indeed the 'best' one can have when one has type inclusions in a type theory.

It yields also a simple and straightforward type inference algorithm as we shall

show in section 6.2. Original formulations of universe inclusions by Martin-Löf

BASIC META PROPERTIES
	

63

[ML84] and Coquand [Coq86a] do not lead to such a simple notion of principal

type. 	 0

Chapter 4

Quasi Normalization

This chapter is devoted to a proof-theoretic understanding of the predicativity

of the type universes Type 3 in ECC. We prove a Quasi Normalization theorem

which shows that any well-typed term can be reduced to some quasi-normal

form which does not contain any a-redex or any /9-redex whose major term has

a non-propositional principal type. Besides gaining a better understanding of

the calculus, this result has a consequence that every well-typed type can be

reduced to some head normal form and allows us to assign a complexity measure

to the well-typed types which makes explicit the predicativity (non-circularity) of

formations of the non-propositional types. This complexity measure also provides

us an important basis to apply Girard-Tait's reducibility method to prove the

strong normalization theorem (see chapter 5).

The notion of predicativity dates back to Russell's opinion that logical para-

doxes in naive set theory originate from a vicious circle and paradoxes should be

eliminated by applying the so-called 'vicious-circle principle': 'Whatever involves

all of a collection must not be one of the collection'. This principle in particular

prevents from quantification over a collection to form an object of the collection.

In Martin-Löf's type theory, the predicativity seems to be apparent from the

very formulation of the type systems [ML73,84]. In particular, there is no way
64

QUASI NORMALIZATION 	 65

one can form an object of a type (say a universe) by quantifying over the type

itself. It is the predicativity of the type theories that enables Martin-Löf to claim

the consistency of his type theories in a 'simple-minded' way [ML84J.

The polymorphic A-calculus [Gir72][Rey74] is an impredicative system, in

which one is allowed to quantify over type variables to form a new type. It is

well-known that a consistency argument for such an impredicative system needs

stronger induction principles [Gir72]. The calculus of constructions [CH88] [Coq85]

extends the second --order A-calculus to incorporate non-propositional types as well

as dependent types. As remarked by Girard [Gir86], 'all attempts to strengthen

this system, in particular to temper with the fourth level, should be considered

very cautiously'. For example, adding another impredicative level to the calculus

of constructions would meet inconsistency [Coq86a].

This last remark implies that the non-propositional types in the calculus of

constructions are predicative. Yes, this is obvious. Any non-propositional type in

the calculus of constructions is of the form Hx 1 :A 1 ...x:A.Prop. In other words,

there are no non-propositional type-valued functions and any type of the form

MN is a proposition.' Therefore, similar to the simple type theory (c.f., [Chu40]),

there is a straightforward complexity measure /3 of types by assigning /3(P) = 0

for proposition P, /3(Prop) = 1 and /3(llx:A.B) = max{/3(A) + 1,/3(B)} for

non-propositional type llx:A.B. This ranking shows that the formation of non-

propositional types depends only on those types with lower ranks; that is, this

complexity measure makes explicit that there is no circularity in formations of

non-propositional types. As noted by Coquand [Coq86b], the existence of such

a complexity measure is essential for the logical consistency of the calculus of

constructions and it is impossible to have such a measure for the inconsistent

type theory of Martin-Löf with Type:Type (ML71). Indeed, it is this complexity

measure that enables Coquand to succeed in applying Girard-Tait's reducibil-

'Note that propositions are not lifted as higher-level types in the calculus of constructions.

QUASI NORMALIZATION

ity method [Gir72][Tai75] to prove the (strong) normalization property of the

calculus of constructions [Coq86bJ.

However, in ECC more than one universe exists and the richer type struc-

ture makes the predicativity of non-propositional types not so obvious as in

the calculus of constructions. That is because there are now functions which

have non-propositional types as values. For example, we have H Ax:Type.x

Type 3 -* Type 3 . As a consequence, terms of the form MN (or 7r.(M)) may

also be non-propositional types and we do not have the obvious complexity

measure shown above for the calculus of constructions. Furthermore, propo-

sitions in ECC are lifted to higher-level types which allows judgements like

I- Hx:Type 3 HB:Type 3 - Prop.Bx : Type 3 to be derivable, although this is only

because Hx:Type 3 HB:Type 3 - Prop.Bx is a proposition. One may naturally

doubt about the predicativity and ask the question: are we sure that there is no

circularity in formations of non-propositional types? This raises a problem: How

do we show the predicativity of the non-propositional type hierarchy?

Our aim of this chapter is to show that the universes Type, are still predicative

and the formations of non-propositional types are essentially non-circular. This

is done by proving a quasi normalization theorem (theorem 4.3.13) which implies

that every type can be reduced to some head-normal form (corollary 4.3.14) and

allows us to define a two-dimensional complexity measure (definition 4.4.2) to

make explicit the predicativity of the non-propositional types (lemma 4.4.4).

Section 4.1 introduces a notion of environment, which is a nice tool to deal

with type dependency developed by Pottinger [Pot87]. Section 4.2 defines levels of

types, which constitute the first dimension of the complexity measure, and stud-

ies their properties. The quasi normalization theorem is proved in Section 4.3.

Section 4.4 defines the complexity measure.

QUASI NORMALIZATION
	

67

4.1 Environment

Because of the nature of dependent types, one needs some tool to deal with the

variable bindings occurring in the system. In particular, in a proof of normal-

ization, an infinite 'universal' context is called for and proves to be very useful.

In their proofs of (strong) normalization of the calculus of constructions, Co-

quand [Coq86b] uses a notion of environment of constants and Pottinger [Pot87]

a notion of environment of infinite variable bindings.

We follow the idea of Pottinger to introduce below a notion of environment

for ECC and show that the notions and results relative to valid contexts like

those for principal types can all be extended to environments.

Definition 4.1.1 (Environment) An environment E is an infinite sequence

S

where e 2 is a variable and Ei is a term, such that, for any i E w,

' 	e 1 :E1 , ..., ei :Ei is a valid context, and

for any E'-type A, there are infinitely many k such that Ek A. 	0

Lemma 4.1.2 (existence of environment) There exists an environment.

Proof We construct an environment e as follows. Assume that we are given a

canonical enumeration of variables and a canonical enumeration of derivations in

ECC. Define eTh by induction on n e w and, define at the same time a diagonal

enumeration pfl = (p, p) with the property p + p n as follows:

E0 =df () (the empty context) and p ° = (0, 0).

Supposing that P for i <n haye been defined, define E" and p" as follows.

Let T' (i <n) be the sub-sequence of the canonical enumeration of deriva-

tions consisting of the derivations of the judgements of the form ES" F- A: K

QUASI NORMALIZATION

(where K is a kind). If the kth element of T' is H A: K, we write T 	A.
df

(Note that T is infinite.) Then, we define ti." = E l ,x:T 1 _i, where

x is the first variable in the canonical enumeration of variables such that

" 	 " x g FV(e andp = 	(p+1,O) n—i ifp 	O,pn 1
 —i

j (p 1
—i 1,p 2 	+1)

if p 	0. En thus defined is a valid context.

By lemma 3.2.4, it is easy to show that every E"-type occurs in E infinitely many

times. 	 E3

Remark In fact, as shown in [Pot87], one may similarly prove a stronger result

which says that every valid context can be extended to an environment. However,

the above lemma is enough for our purpose. 	 0

Notation From now on, if not explicitly stated otherwise, E will stand for a fixed

arbitrary environment e1 :E1 , e 2 :E2 ,
...;

that is, Si 	ej :Ej is the ith component of

£ and E' 	e 1 :E1 , ..., c:E1 is the valid context consisting of the first i components

of e. 	 .

Most of the notions relative to valid contexts defined before can be similarly

defined for environments. First of all, we will write ' i I- M : N for H M : N

for some i E w'. A term M is called an E-term, E-type, 9-proposition, non-

propositional (or proper) E-type and 9-proof if and only if M is an e'-term,

E'-type, e'-proposition, non-propositional e'-type and E'-proof for some i E w l

respectively. It is obvious from the definition of environments and lemma 3.2.4

that, if ' H M : A, then g/c H M : A for all k > i; if Qx:M.N is an 9-term,

where Q E {\,H,E}, then there exist S-terms x' and N' such that Qx:M.N

Qx':M.N'.

The notion of principal type (definition 3.3.5) and its existence (theorem 3.3.6)

can also be extended to environment. The notion of principal type under envi-

QUASI NORMALIZATION
	

AN

ronment S is defined as in definition 3.3.5 by replacing F by S. Corollary 3.3.2,

lemma 3.3.3 and lemma 3.3.4 can be proved for environment, and so is theo-

rem 3.3.6.2 The principal type of an S-term M (under 5) is denoted as T(M).

4.2 Levels of Types

Now, we define the notion of levels of S-types which will be the first dimension

of our complexity measure to be defined in section 4.4. Intuitively, that the level

of 9-type A is j means that Type 3 (Prop when j = —1) is the lowest universe in

which A resides up to conversion.

Definition 4.2.1 (levels of S-types) The level of an 9-type A, £(A), is de-

fined as follows:

• If A is an S-proposition, then £(A) =df —1.

• If A is not an S-proposition, then £(A) =df ,uj.(B. B 	A A S H B

Type 3), i.e., the minimum j E w such that S H B: Type 3 for some B A.

0

Remark We have, for every E- type A, £(A) = j for exactly one j e w U

£(A) > 0 (L(A) = —1) if and only if A is a non-propositional S-type (5-

proposition). 	 0

Some properties about levels of S-types are stated as the lemmas below.

Lemma 4.2.2 Let A and B be S-types.

21n fact, unlike the situation of finite contexts, the inverse of corollary 3.3.2 is also true

for environment, because every 9-type is inhabited under E and there are infinite variables

inhabiting it.

QUASI NORMALIZATION 	 70

If AB, then £(A)=L(B).

If A B, then £(A) 12(B).

Proof The first statement is obvious from the definition of levels. The second

is proved by induction on i for A , B, using the inductive definition 3.1.3 of

. If A o B, it is obvious from the definition of levels and the first statement.

Consider A -<, B. There are three cases.

A-< 1 B;

A Hx:A 1 .A 2 and B llx:B 1 .B2 for some A 1 B and A 2 - B2 ; or

A 3x:A 1 .A 2 and B Ex:B 1 .B2 for some A 1 -<, B and A 2 - B2.

For the first case, 12(A) < 12(B) by induction hypothesis. For the second, we

have by the first statement and induction hypothesis that 12(A 1) = 12(B1) and

12(A 2) :5 12(B2). Noticing that, for any S-type Hx:C.D,

—1 	 if D is an S-proposition

12(Hx:C.D) = (rnax{12(C), 12(D)} otherwise

we have 12(A) = 12(Hx:A 1 .A 2) < 12(Hx:B.B2) = 12(B). For the third case, it is

similar by noticing that 12(Ex:C.D) = max{12(C),12(D),0}. 	 0

Since convertible .6- types have the same level, we use 12(Te (M)) to denote the

level of the principal type of M under S.

Lemma 4.2.3 If 5k I- N : Ek+l and B is an S' -type, then 12([N/e k+l]B)

12(B).

Proof Suppose 12(B) < 12([N/ek+l]B) = j. Then, there is B' convertible to B

such that S I- B' : K for some kind K - Type s . By Church-Rosser theorem,

QUASI NORMALIZATION 	 71

theorem 3.2.8 and lemma 3.2.9, we may assume S k+1 I- B / : K. But then, by the-

orem 3.2.6, 5 F [N/ek+I]B' : K which implies £([N/ek+1]B) <j as [N/ek+l]B

[N/ek+l]B', contradicting the assumption. So, £([N/ek+l]B) :5 £(B). 	0

Remark The above lemma shows that type-preserving substitution does not

increase the level of an (-type. In particular, for an (-type Hx:A.B or x:A.B,

if S F N : A, then we can always choose x to be ek+1 for some k such that

Ek+l A,
5k I- N: A and B is an ('-type, and hence £([N/x]B) <L(B). 0

Lemma 4.2.4 If (-term R is of the form MN or 7r(M) (i = 1,2), then

£(Te (R)) <L(T(M)).

Proof We prove for the case R MN. The other two cases are similar. As

R MN is an (-term, one of the principal types of M has the form Hx:A.B.

Then, we have S F R: [N/x]B. By lemma 4.2.2(2) and lemma 4.2.3, £(Te (R))

£([N/x]B) <C(B) <C(Hx:A.B) = £(Te M). 	 El

Remark The above lemma implies that the level of the principal type of the

major term of a redex is not less than that of the principal type of the redex. 0

Lemma 4.2.5 Let A 	>2x:A 1 .A 2 (Hx:A 1 .A 2) be a non-propositional (-type.

Then, L(A) = j E w if and only if

£(A1) j and £(A 2) < j (for 11-case, also £(A 2) 0), and

either £(A1) = j or £(A2) = j;

Proof We prove for A Hx:A 1 .A 2 . The case for E is similar.

Sufficiency. By condition 1, £(A) j by applying rule (112). Suppose £(A) <

j. Then (F A': K for some A' A and kind K - Type s . By Church-Rosser

theorem and theorem 3.2.8, we may assume that A' 11x:A' 1 .A'2 . So, we have

QUASI NORMALIZATION 	 72

E H A : K, and hence, L(A 1) = £(A) <j (i = 1, 2), contradicting condition 2.

So, £(A) = j € W.

Necessity. Suppose £(A) = j e W. We have £(A 2) > 0 for otherwise, A

is an E-proposition. £(A 1) < j (i = 1,2) for otherwise, there would be no A'

convertible to A to be typed by Type,. If both £(A) <j, there would be an A'

convertible to A to be typed by some kind K -< Type,. 0

4.3 The Quasi Normalization Theorem

The ultimate goal of proving the quasi-normalization theorem is to make explicit

the predicativity of formations of the non-propositional types. The basic idea to

achieve this is to proceed as follows:

Quasi normalization: every E-term can be reduced to some term which

does not contain any a-redex or any 3-redex whose major term has a non-

propositional principal type; and this implies

every i-type can be reduced to some head-normal form; and this allows us

to define

the degrees of E-types which serves as the second dimension of the com-

plexity measure to be defined.

However, it turns out that the quasi-normalization result can not be directly be

proved without the help of the notion of degrees of types. This problem can be

solved by considering the subsystems ECC of ECC. Roughly speaking, ECC

is the type system got from ECC by 'cutting off' the infinite universes at the nth

level. It can be readily proved that the non-propositional types at the highest

level (i.e., nth level) of ECC have head-normal forms (lemma 4.3.2); and then

their degrees can be defined. Based on this, we can prove the quasi normalization

QUASI NORMALIZATION
	

73

result for ECC by induction from n to 0, as shown in subsection 4.3.2. Then,

the quasi-normalization theorem for ECC follows by a global induction on n E w.

Before proceeding to give the inductive proof, we first introduce a notion of

base term, which is one of the basic forms of the head normal forms mentioned

above and is also used in the definition of saturated sets and the proof of the

strong normalization in the next chapter.

Definition 4.3.1 (base terms) Base terms and the key variable of a base term

are inductively defined on the structure of terms as follows:

. A variable is a base term and is the key variable of itself;

• If M is a base term, so are MN, r 1 (M) and 7r2 (M), and their key variable

is that of M. 	 FE-

Examples of base terms are: x, xM 1 ... M, ir(xM 1 ... M), 7r(7rk(x)M)N, etc.. x

is the key variable of the base terms in these examples.

Remark Note that base terms have the following properties, which can be readily

proved by induction on the structure of base terms:

If M is a base term and M N M', then M' is a base term, too.

If variable y is different from the key variable of a base term M, then

[N/y]M is also a base term, where N is an arbitrary term. 	 0

4.3.1 ECC

ECC is defined as follows. The underlying term calculus of ECC is the same

as that of ECC except that the constants Typefl+k+l (k c w) are removed. The

inference rules of ECC are the same as those for ECC except that we add the

following side conditions:

QUASI NORMALIZATION
	

74

. 0 < j <n for rules (C)(H2)(E)(pair)(),

• 0 < j <n for rule (T), and

• B # Type s for rule (A).

and a new rule for lifting types at lower levels to the nth level:

F F M: K
(Type)
	

(K -< Type is a kind)
F H M : Type

In particular, ECC ° is the calculus of constructions extended by s-types and

the inclusion of propositions as types [Luo88a]. Informally, we can describe the

relationship of ECC with ECC as follows:

ECC = ECC'
nEw

As any derivation is finite, it can easily be proved by induction on derivations that

a sequence of judgements is a derivation in ECC if and only if it is a derivation

in EC Cn for some n E w. All of the notions we have defined for EGG before are

defined in the same way for EC C.

Remark It is easy to show that, in EC C, if F I- M : A, then Type does not

occur in M or F, and either A Type s or Type does not occur in A. (Note

that Type is not a F-type or E-type in ECC.) All of the theorems and lemmas

in chapter 3 can be similarly proved except that theorem 3.2.7 for EC Cn has an

assumption that A 0 Type. The notion of principal type for EC Cn is defined

by changing the second clause of definition 3.3.5 to the following clause:

• for any term A', F H M : A' if and only if A - A' and either A' is a F-type

or A' Type. 	 .

The following lemma shows that the top-level 9-types in ECC have head-

normal forms which will enable us to establish the basis of the induction proof

of quasi normalization.

QUASI NORMALIZATION
	

75

Lemma 4.3.2 Let A be an 9-type in EC Cn and £(A) = n. Then, either A

Type- 1 (Prop when n = 0) or A has the form of Hx:A 1 .A 2 or Ex:A 1 .A 2 .

Proof By induction on derivations of E' H A : Type,, in EC C. 	 0

4.3.2 An inductive proof of quasi normalization

Now, we are ready to prove the quasi-normalization by considering ECC for

an arbitrary n e w. In the rest of this section, n stands for a fixed (arbitrary)

natural number for which ECC is under consideration.

The quasi-normalization result for ECC is proved by induction from n and

downwards. In other words, the following definitions, lemmas and theorems in

the rest of this section are inductively defined and proved for j = n, n - 1, ...,0.

The general steps are summarized as follows:

1. j=n:

Define the n-degree V of e-types (definition 4.3.3 for j=n), which is

well-defined by lemma 4.3.2 and Church-Rosser theorem, and prove

properties about V (lemma 4.3.5 and lemma 4.3.6 for j=n);

Define measures b., ^/ n and the notion of n-quasi-normal term (defini-

tion 4.3.7 for j=n), and prove another two measure properties (lemma

4.3.8 and lemma 4.3.9 for j=n);

Prove the quasi-normalization result for the nth level (theorem 4.3.10

and corollary 4.3.11 for j = n).

2. j = k <n:

(a) Define the k-degree Vk of .6-types (definition 4.3.3 for j = k), which is

well-defined by theorem 4.3.10 and corollary 4.3.11 for j = k + 1 and

Church-Rosser theorem, and prove properties about Vk (lemma 4.3.5

and lemma 4.3.6 for j = k);

QUASI NORMALIZATION
	

76

Define measures 8k 'fk and the notion of k-quasi-normal term (defini-

tion 4.3.7 for j=k), and prove another two measure properties (lemma

4.3.8 and lemma 4.3.9 for j=k);

Prove the quasi-normalization result for the kth level (theorem 4.3.10

and corollary 4.3. 11 for = k).

Definition 4.3.3 (j-degree Di of e-types in ECC) The j-degree D(A) of

an &-type A in ECCn is defined as follows.

• Dj for the E-types A ° , which are i-quasi-normal for i > j , is defined as

follows:

If £(A °) j, then D(A °) =df 0;

If A ° Type- 1 (Prop when = 0), then V(A °) =df 1;

1. IfL(A °) = j and A ° is a base term, then D(A °) =df 1;

4. IfL(A°) = j, and A ° Qx:A.A 20 , where Q {H, E}, then D(A°) =df

max {D(A),V(A)} + 1.

• If 9-type A is not k-quasi-normal for some k > j, then, letting A ° be some

i-quasi-normal term for i > j such that A [> A ° , define D(A) =df V(A°).

Note that the definition above is a 'two-step' definition. As quasi-normal

forms are in general not unique, we must show that the definition is well-defined,

Z. C., the arbitrary choice of A° in the second part of the above definition gives

unique degree value. When j = n, it is well-defined by lemma 4.3.2 and Church-

Rosser theorem. For j < n, it is well-defined by theorem 4.3.10 (for j + 1),

corollary 4.3.11 (for i + 1) and Church-Rosser theorem.

QUASI NORMALIZATION
	

77

Lemma 4.3.4 (well-definedness of i-degree) V is a function from the E-

types of ECC to natural numbers and respects conversion, i.e., VA = VB if

A B are e-types.

Proof We consider two cases.

• = n. V is well-defined by lemma 4.3.2.

Suppose A 	B are 9-types. Then, £(A) = £(B) = k for some k, by

lemma 4.2.2. If k < n, then VA = VB = 0. If k = n, we show

VA = DB by induction on the structure of A and B. By lemma 4.3.2

and Church-Rosser theorem, either A B Type_ 1 (Prop when n = 0)

or A Qx:A 1 .A 2 and B Qx:B 1 .B2 for some A B (i = 1 1 2),

where Q E {ll, E}. The former case is obvious. For the latter case,

as £(A 2) = £(B1), V(A 2) = V(B 1) by induction hypothesis. Hence,

D(A) = rnax{V(A 1),V(A 2)} + 1 = max{V(B 1),V(B 2)} + 1 = VB.

• j < n. We consider the following two cases in the sequel.

1. First, we consider E-types A ° which are i-quasi-normal for i > j.

D(A °) is well-defined by theorem 4.3. 10 (for j+1) and corollary 4.3.11

(forj + 1).

Suppose A ° 	B ° are E-types which are i-quasi-normal for i > j.

Then, L(A °) = £(B°) = k for some k, by lemma 4.2.2. If k 	j,

then D(A °) = V(B °) = 0. If k = j, we show D(A °) = D(B°) by

induction on the structure of A ° and B ° . By theorem 4.3. 10 (forj -i - 1),

corollary 4.3.11 (for j + 1) and Church-Rosser theorem, either A °

B ° Typej_ 1 (Prop when j = 0), or both A ° and B° are base terms,

or A ° Qx:A.A and B ° Qx:B 10 .B2° for some A,° B,° (i = 1, 2),

where Q e {H, E }. The former two cases are obvious. For the latter

case, as £(A °) = £(B,°), V(A, °) = V(B') by induction hypothesis.

QUASI NORMALIZATION
	

78

Hence, V(A °) = max{D(A), V(A 20)} + 1 = max{V(B 10), V(B 20)} +

1 =Dj(B°).

2. Now, consider E-types A which are not k-quasi-normal for some k > j.

If A L> A ° and A r> A °', where A ° and A °' are i-quasi-normal for i > j,

then, by the result above, V(A°) = D(A0F) as A ° A °'. So, V(A)

is uniquely well-defined.

Suppose A 	B are e-types. Then, by theorem 4.3.10 (for j + 1),

A [> A ° and B B ° for some A ° and B° which are i-quasi-normal for

.i >j. Then, by the above result, V(A) = V(A °) = V(B °) = V(B).

This completes the proof of the lemma. 	 .

Remark Note that Church-Rosser theorem is used to show the well- definedness

of degrees. One may understand this in the following way: although there may

be different A and A which are i-quasi-normal for i > j such that A L A, there

is another A ° which is i-quasi-normal for i > j such that A°k L> A ° . El

Lemma 4.3.5 Let A and B be .6-types.

£(A)=j if and only if VA>1.

If A B, then either £(A) < £(B), or £(A) = £(B) and DA < DB.

Proof The first statement is obvious from the definition of degrees, lemma 4.2.2

and lemma 4.3.4. For the second, by lemma 4.2.2 and the definition of V, we

only have to show, VA < VB if A B and £(A) = £(B) = j

First consider the case when both A and B are i-quasi-normal for i > j. We

prove by induction on the structure of A and B. By corollary 4.3.11 (for j + 1),

lemma 3.1.4 and Church-Rosser theorem, there are the following possibilities:

1. Both A and B are Type,- 1 (Prop when j = 0), or both are base terms.

Then, V(A) = V(B) = 1.

QUASI NORMALIZATION
	

79

2. A Hx:A 1 .A2 and B Hx:B 1 .B 2 , where A 1 B 1 and A 2 - B 2 . Then,

= V(B 1) by lemma 4.3.4. As A 2 	B2 , £(A 2) < £(B 2) by

lemma 4.2.2. Noticing that £(B2) < j (because C(B) = j), we have

< V(B 2) by the definition of degrees and induction hypothesis.

Hence, V(A) = rnax{'D(A 1),D(A2)} + 1 < max{V(B i),V(B 2)} + 1 =

V(B).

3. A 	x:A 1 .A 2 and B Ex:B 1 .B2 , where A 1 13 and A 2 B2 . Similar

to the above case.

Now, for arbitrary e-types A 	B, by theorem 4.3.10 (for j + 1), there are

e-types A ° and B ° which are i-quasi-normal for i > j such that A 1' A ° and

B t> B ° . As A ° A -< B B ° , we have, by lemma 4.3.4 and the result above,

D(A) = V(A °) <V(B °) = D3 (B). 	 F.

Lemma 4.3.6 Suppose Ek I- N : Ek+l and B is an Em -type. If L(Ek+l) :~ j

and 12(B) j, then VJ([N/ek+l]B) < D(B).

Proof By theorem 4.3.10 (for j + 1), B 1'. B' for some B' which is i-quasi-normal

for i > j (B' B whenj = n). As VB = DB' and DJ[N/ek+l]B = VJ[N/ek+l]B'

by lemma 4.3.4, we only have to show VJ[N/ek+l]B' < DB'. We prove this by

induction on the structure of B'. By theorem 4.3.11 for j + 1 (lemma 4.3.2 when

j = n) and lemma 4.2.3, we only have to consider the following cases assuming

£([N/ek+l]B') = 12(B') = j:

B' Typej_ 1 . Obvious.

B' is a base term. Let y be the key variable of B'. If y 	ek+1, then

[N/e k+l]B' is also a base term and, by definition VJ[N/ek+l]B' = VB' =

1. But y can not be ek+l, for otherwise, by lemma 4.2.4, £(TE(ek +l)) >

£(TB') = j + 1, contradicting with the assumption that £(E k+l) :!~ i.

QUASI NORMALIZATION

3. B' has the form llx:B 1 .B 2 or Ex:B1 .B2 . Then, by induction hypothe-

sis, we have D[N/ek+l]B' = max{VJ[N1e k+1]B1 ,VJ[N1e k+1]B2 } + 1 5

max {VB i ,VB 2 } + 1 = VB'. Lim

Remark The above lemma shows that type-preserving substitution does not in-

crease the i-degree of an E-type B if the levels of B and the principal type of

the substituted variable are not bigger than j. (c.f., remark after lemma 4.2.3.)

Note that the condition £(Ek +l) < j is necessary and important (c.f., proof of

lemma 4.4.4).

As convertible e-types have the same i-degree, we use the notation Vj(Te(M))

to express the i-degree of the principal type of an E-term M. Let E-term R be a

redex. We define 8R to be the i-degree of the principal type of its major term;

that is, if M is the major term of redex R (i.e., E-term R is a redex of the form

MN or

8R =df Dj(TeM)

For any E-term M, we define -yM to be the largest 6j-value of the redexes oc-

curring in M; that is,

=df max{ 8(R) I R is a redex occurring in M }

These measures are extensions of the measures used by Pottinger and Seldin

[Pot87]. They are essentially in the same spirit as that used in [Pra65] for higher-

order logic, but more complex.

Definition 4.3.7 (j-quasi-normal E-terms) An S-term M is i-quasi-normal

if and only if 7M = 0, i.e., M does not contain any redex such that the level of

the principal type of its major term is j. 	 0

QUASI NORMALIZATION
	

81

The aim of quasi-normalization at the jth level is to show that every 9-term

can be reduced to a term which is i-quasi-normal for every i such that j < i < n.

We first prove two lemmas about the measures we have defined.

Lemma 4.3.8 Suppose gk F- N: Ek+l, £" F- M B and M is i-quasi-normal

fort' >j. Then,

-y([N/ek+lIM) max{'yM,yjN,Dj(TeN)}

Proof By induction on the structure of M.

M is a kind or variable. Obvious.

M has the form Hy:M1 .M2 ,)y:M 1 .M2 or y:M1 .M2 . Then, by induction

hypothesis,

7J({N/ek +1]M)

= max{ 8(R) I R is a redex in [N/ek+l]M) }

= max{ Sj (R) I R is a redex in [N/ek+l]Ml or [N1ek+1]M2 }

= rnax{'YJ([N1ek+l}M1),','J([N/ek+l]M2)}

< max{max{,ij(M i),'yj (N),Dj(TN)},max{yj(M 2),yj(N),Vj(TN)}}

= max { -y(M1), -,'J(M2),7(N),VJ(TN)}

max {yjM,7jN,Vj(TeN)}

M pair c (M1 ,M2). Then, by induction hypothesis,

'yj ([N/ek+l]M)

= max{ 8(R) I R is a redex in [N/ek+1JM) }

= max{ 5(R) I R is a redex in [N/ek+l]Ml , {N/e k+11M2 or [N/ek+l]C }

= max{-yJ([N/ek1]Ml),-yJ([N/el]M2), yJ([N/ek+l]C)}

< max{rnax{y(M 1), 7(N), D(T8 N)}, max{-y(M 2), -'y(N), Vj(TeN)},

QUASI NORMALIZATION 	 82

max{7j(C),yj(N),Dj(TeN)} }

= max{'yjM,yjN,Dj(T e N)}

4. M M 1 M2 . If [N/ek+l]M is not a /3-redex such that fi([N/e k+l]M) > 0,

then a similar argument as above cases suffices. Suppose [N/e k+l]M is a

0-redex such that 6j([N/ek+1]M) > 0. Then, by induction hypothesis, we

only have to show

= VJ (TE [N/ek+I]M1) < rnax{'yM, 	Dj(TeN)}

As [N/ek+l]M is a /9-redex, there are two cases to consider:

M1 ek+1 and N is of)-form. Then, Vj(Te [N/ek+l]Ml) = Vj(TeN).

M1 is of -form. We only have to show Vj (Te [N/ek+l]Ml)

as Dj(TeM 1) = 8M < -yM. By theorem 3.2.6, gk [N/ek+l]Ml

[N/ek+l]Te Ml . So, Te[N/ek+l]Ml -< [N/ek+l]TE M1 . Furthermore,

by the assumption that Vj(Te [N/ek+l]Ml) > 0, lemma 4.2.2, lemma

4.2.3 and the assumption that M is i-quasi-normal for i > j, j =

£(TE [N/ek+l]Ml) £([N1ek+1]TeM1) £(TM) j, which implies

that £(Te [N/ek+l]Ml) = £([N1ek+1}TeM1). Hence, by lemma 4.3.5

and induction hypothesis, Dj (Te [N/ek+l]Ml) 5 Vj[N/ek+l]TeM1 :5

V (Te M1).

5. M has the form ir.(M1) (i = 1, 2). Similar to the above case. 	 0

Lemma 4.3.9 Let E-term M be a redex and M' be its contractum. If M is

i-quasi-normal for i > j and M is the only redex in M whose 5value equals

yM > 0, then

7M' < 	and

Vj(TeM') 	if M' is of ,\-form or pair-form.

QUASI NORMALIZATION 	 83

Proof Proof of 1. If M is a cr-redex, it is obvious. If M 	(Ax:A.M 1)N N

[N/x]M1 M', we have by assumptions, -yM 1 <yM, yN <yM, and VA <

Vj(Te (Ax:A.M i)) = By lemma 4.2.2 and the assumption that M is i-quasi-

normal for i > j and yM> 0 £(TeN) <L(A) j. So, V(TN) < VA. So, by

lemma 4.3.8, ^jjM' <yjM.

Proof of 2. If M 	7r.(pairc(Mi,M2)) is a a-redex, Then, Vj(TeM') =

Vj(TeM1) <DC = -yM. If M (Ax:A.M 1)N is a /3-redex and M' is of)-form

(or pair-form), we have two possibilities:

M1 x. Then Dj(TeM') = Vj(TeN) < VjA < Vj(T e (\x:A.M i)) = 7M.

M1 is of .\-form (or pair-form). Then, by lemma 4.3.5, lemma 4.3.6 and the

assumption that 7M> 0, V(TM') = V(T[N1x]M 1) Vj([N1x]TeM1) 5

V(T8 M1) < V(Te (Ax:A.M i)) = 7jM.

Now, we prove the quasi normalization theorem at the jth level for ECC.

Theorem 4.3.10 Every 9-term in ECC can be reduced to some S-term which

is i-quasi-normal for every i such that j < i < n.

Proof By our global induction hypothesis (on j), we only have to show that if

S-term M is i-quasi-normal for all i such that j <i <n, then M t> N for some

N which is i-quasi-normal for all i such that j < i < n. So, it is enough to prove

the following two points:

Any S-term M can be reduced to a i-quasi-normal term by contracting

a-redexes and non-proof /3-redexes.

Reducing u-redexes and non-proof 0-redexes in an .6-term preserves i-quasi-

normalness for i > j.

The first can be proved by double induction on 7jM and the number of redexes

occurring in M whose 5j-values are equal to yM > 0. Given an S-term M, take

QUASI NORMALIZATION

any redex in the term whose Sj -value is 73M> 0 and whose proper subterms do

not contain any redex whose 6j-value is 7M. (Note that such a redex is not

an 9-proof if it is a /3-redex.) By lemma 4.3.9 above, reducing M by contracting

the redex thus selected decreases by one the number of redexes whose S j -values

are equal to -yAM > 0 and, if it is the only redex whose 6j-value is 7jM, yM is

decreased by one or rhore.

When j = n, the second point is trivial. We now prove it for j < n. By

our global induction on j, we only have to show that, if M is Z'-quasi-normal for

i > j and M t>1 N by contracting a a-redex or non-proof 9-redex, then N is

(j + 1)-quasi-normal. We prove this by induction on the structure of M.

M is not a variable or a kind.

M is of the form Hx:A.B,)x:A.B, >x:A.B or pairA (B, C). By induction

hypothesis.

M M 1 M2 . Consider the following three subcases:

M M, M 2 L> j MN N. By induction hypothesis.

M 	M1 M2 t>1 N1 M2 	N. By induction hypothesis, if N is not

(j + 1)-quasi-normal, N must be a fl-redex (N1 Ax:X.Y) such that

0. This is impossible as the following shows:

• M 1 ,\x:X 1 .Y1 ti)x:X.Y N. But then, as TeN 1 -< TeM 1 , by

lemma 4.3.5(2),eitherL(Te N1) <L(TM1) < j+1orVj i (TNi)

Dj+i(TeM 1) = 0.

• M1 (.Ax:X 1 .Y1)Z1 1> 1 [Z1 /x]Y1 N1 . Then, either Y1 	x and

N1 , or)y:Yj'.Y 1". 	In either case, by lemma 4.3.5,

SM1 > 0 for some i > j + 1, which is impossible.

• M 1 	7rI(pairA (X1 ,X2) r> 1 X 1 	N1 . Then, either £(Te N1) <

L(A) or Vj +i(TeN 1) < D 1 A = 0.

QUASI NORMALIZATION 	 85

M 	M1 M2 	\x:X.Y)M 2 N [M2 1x]Y 	N. By lemma 4.3.8,

-t+1N < max {yj+iY,y j+iM2 ,Dj+i(TeM2)}. By induction hypothesis,

if N is not (j + 1)-quasi-normal, M2 must be the major term of a new-

created redex in N such that Dj+i(TeM2) > 0. However, as TM2 X

and M is not an .6-proof , we would have 8M = V t (TeMi) > VX > 0

for some i > j + 1.

4. M 7r2 (M'). Consider the following two subcases:

M ir.(M') 7r.(pairA (X 1 ,X2)) N X 	N. Obvious.

M 	ir(M') N 7r1 (N') 	N. By induction hypothesis, if N is not

(j + 1)-quasi-normal, it must be the case that N' pairA (X, Y) and

5 1 N = 	0. There are only three possibilities:

• M' pairA,(Xl,Yl). Then, 8 1 N = 	= V 1 A 1 = 	=

[J

• M' 	M0 	(\x:X 0 .Y0)Z0 N [Z01x]Y0 	N. Then either (1)

Y0 x and Z0 	N0 , or (2) Y0 pairA1 (XI ,Yl). In either case,

we have &M0 > 0 for some i > j + 1, which is impossible.

• M' M0 7r(pairA1 (X1 , X2)) N X N'. Then, either £(A)

£(A 1) <i + 1 or 6 1 M' = V +1 (A) <V 1 (A 1) = 0.

This completes the proof of the theorem. 	 0

Remark In the above proof, the condition that a 3-redex to be reduced is not an

E-proof is important. Reducing a proof 0-redex may create a new redex distroying

the quasi-normalness of a term. For example, if E I- P : Prop, e 1- z : B -p P

and E I- y : A, we can have M0 (.Ax:A -p B.z(xy))X 0 '-'-- Ax:A -+ B.z(X 0y).

As M0 is a proof, its &-value is always 0. However, X 0 can be of A-form the level

of whose type A - B may be i > j. 	 U

QUASI NORMALIZATION

Corollary 4.3.11 Let A be an i-type which is i-quasi-normal for every i such

that < i :~ n and £(A)=j-1. Then, A has the form of

Type- 2 (Prop when = 1), a base term, Hx:A1 .A2 or Ex:A 1 .A 2

Proof By induction on the structure of A.

A is a kind. Then j? 1. We have A Type- 2 (Prop when j = 1) as it is

the only kind whose level is j - 1.

A is a variable or of H/E-form. It is as required.

A can not be of)-form or pair-form, as A is an E-type.

A 	A 1 A 2 or 7r.(A 1). We show that A is a base term, i.e., A 1 is a base

term. A 1 can not be a kind or of A-form or pair-form. (If it is of)-form

or pair-form, by lemma 4.2.4, r(TeA 1) ~: £(TA) > £(A) = j - 1, which

implies by lemma 4.3.5 that 5(A) > 0 for some i > j, contradicting with

the assumption.) So, A 1 can only be of the form x, A 11 A l2 or 7r2 (A 11). If it

is a variable, then A is a base term. If it is of one of the latter two forms, we

repeat this argument to prove A ll is a base term, This will obviously

end with a variable case from which we conclude that A is a base term.

RN

4.3.3 Quasi normalization: a summary

We summarize the result of quasi-normalization for ECC as follows.

Definition 4.3.12 (quasi-normal terms) An e-term is quasi-normal if and

only if it does not contain any o-redex or any fl-redex whose major term has a

non-propositional principal type. 	. 	 0

QUASI NORMALIZATION
	

E:Ij

Remark An E-term may have different quasi-normal forms. Arbitrary reduc-

tion does not in general preserve quasi-normalness (c.f., the remark after theo-

rem 4.3.10). 	 D

By the inductive proof in section 4.3.2, we have

Theorem 4.3.13 (quasi normalization of ECC) Every E-term can be reduced

to some quasi-normal form.

Corollary 4.3.14 (forms of quasi-normal E-types) Every E-type of ECC can

be reduced to some quasi-normal term of one of the following forms:

a kind K, a base term, Hx:A.B, or Ex:A.B.

Therefore, every 9-type can be reduced to a term of the form

(*) 	 Q 1 x 1 :A 1 ... Qx:A.B

where n e w, Q2 is either II or E, B is either a kind or a base term, and A 2 is of

the same form as (*) above. 	 0

4.4 A Complexity Measure of Types

The quasi-normalization theorem 4.3.13 and its corollary 4.3.14 allow us to define

a two-dimensional complexity measure of E-types. First, we define the j-degree

of S-types in ECC.

Definition 4.4.1 (1-degree D) Let A be an S-type and A ° be a quasi normal

term such that A I> A ° . Define the i-degree of A for E w, V3 A, as follows:

• If £(A °) j, then D2 A =ç 0;

QUASI NORMALIZATION 	 88

• If A ° Type,- 1 (Prop when j = 0), then D3 A =ç 1;

• If A ° is a base term and £(A°) = j, then. V,A =df 1;

• If A ° 	llx:A 1 .A 2 or A ° 	Ex:A 1 .A 2 , and £(A°) = j, then V 3 A =df

max{DA 1 ,V2 A 2 } + 1.

We also define V_ 1 A =df 0 for every 9-type A.

Remark The above definition of degrees is well-defined by theorem 4.3.13, corol-

lary 4.3.14 and Church-Rosser theorem. For j E w, it is the same as defined in def-

inition 4.3.3; the properties of degrees proved in section 4.3.2 (lemmas 4.3.4, 4.3.5

and 4.3.6 in particular) hold and the proofs are the same using theorem 4.3.13

and corollary 4.3.14.. 0

Definition 4.4.2 (complexity of e-types, 3) Let A be an E-type. Then de-

fine the complexity of A, /3A, as follows:

13A =df (r(A)+1, V(A)A)

where £(A) is the level of A and V 3 A is the]-degree of A. 0-values of .6-types

are ordered by the lexicographic ordering. 	 Ii

Lemma 4.4.3 Let A and B be E-types.

If AB, then /3(A)=fi(B).

If A -< B, then /3(A) </3(B).

Proof By lemma 4.2.2 and lemma 4.3.5. 	 U

Lemma 4.4.4 Let A be a non-propositional e-type. Then, if A reduces to a

quasi-normal E-type of the form llx:A 1 .A 2 or >x:A1 .A 2 , we have

QUASI NORMALIZATION 	 89

1. /3(A 1)<8(A), and

. 3([N/x]A 2) </3(A) for every N such that E F- N:A 1 .

Proof As 12(A 1) 12(A) and 12(A) > 0, either 12(A 1) < 12(A) or 12(A 1) = 12(A)

and DC(AI)AI <Vr(A)A. So, by definition, /3(A 1) <12(A).

Suppose .6 I- N:A 1 . If 12([N/x]A 2) = —1, then /3([N1x]A 2) = (0 1 0) < (1 1 0)

/3A. If 12([N/x]A2) = j ~! 0, then 12(A 2) -,,~ £([N/x]A 2) = j by lemma 4.2.4.

There are two cases to consider:

12(A 2) > 12([N/xJA2) = j. Then, /3([N1x]A2) = (j + 1,V3 ([N/x]A 2)) <

(12(A 2) + 1,Vc(A2) A 2) < (12(A) + l,Vc(A)A) = PA.

12(A 2) = 12([N/x]A2) = J. Then, by lemma 4.3.6, either 12(A 1) > j or

12(A 1) <j and V([N/xJA 2) < V,A. For the former case, 0([N/x]A 2) =

(j + 1,V([N1x]A 2)) </3A 1 </3A; for the latter case, by lemma 4.3.6 and

the fact 12(A) = 12(A2) = j ~! 12(A), 0([N/x]A2) = (j + 1,V3 ([N/x]A 2))

(12(A 2) + 1,V3 A 2) = /3A 2 </3A.

This completes the proof of the lemma. 	 U

Remark The existence of the complexity measure /3 with the above property

shows that the formations of the non-propositional types are essentially non-

circular and that the type universes Type 3 are predicative. In other words,

the types can be ranked in such a way (by 0) that the existence of any non-

propositional type depends essentially only on those types with lower ranks. This

is one of the key property used to prove strong normalization theorem for ECC

(see the next chapter). Note that only non-propositional types can be stratified

to have the above property. For propositions, there is no way one can define such

a measure to stratify them because formations of propositions are impredicative

(circular). 	 0

Chapter 5

Strong Normalization

In this chapter, we prove the strong normalization theorem for ECC:

• every well-typed term is strongly normalizable

i.e., every reduction sequence starting from a well-typed term is finite. (Compu-

tationally, every program is terminating.) This is the most important property,

which implies many important properties of the calculus, including the following:

Logical consistency (theorem 6.1.5),

Decidability of conversion and the cumulativity relation for well-typed terms

(lemma 6.2.1),

Decidability of type inference and type-checking (theorem 6.2.3 and corol-

lary 6.2.4), and

Equality reflection (theorem 9.1.1).

The strong normalization theorem will be proved by using Girard-Tait's reducibil-

ity method [Gir72,89][Tai75]. The proof is based on Coquand's method of proving

normalization of the calculus of constructions [Coq86b] and the quasi normaliza-

tion result proved in the previous chapter.
01

STRONG NORMALIZATION
	

91

Section 5.1 gives a general discussion of Girard-Tait's reducibility method.

The strong normalization theorem is proved in section 5.2.

In this chapter, E still stands for a fixed environment as in the previous chapter

and the notational conventions for E introduced in section 4.1 apply.

5.1 Girard-Tait's Reducibility Method'

We first discuss in general Girard-Tait's method for normalization proofs. We

explain why it is difficult to prove (strong) normalization for type theories with

more complicated type structures like the calculus of constructions. In particular,

we discuss why the predicativity of higher universes is essential to apply Girard-

Tait's method to prove strong normalization for Constructions with more than

one universe. Consideration of -types leads us to slightly generalize the key

notion of saturated sets into a more transparent definition which we feel would

give us a better understanding of the reducibility method.'

Girard-Tait's reducibility method [Gir72,89][Tai75] has been well-known and

widely used to prove (strong) normalization property of various type systems

including the polymorphic A-calculus [Gir72][Gir89] and the calculus of construc-

tions [Coq85][Coq86b][Pot87]. One can find a nice and rather detailed explication

of the method for proving strong normalization of the second-order A-calculus in

[Gal89].

The basic idea of the method came from the fact that a proof of normalization

by straightforward induction on term structure fails because /3-reduction may re-

suit in a term with larger size. A stronger induction method was invented by Tait

[Tai67] and generalized to higher-order systems by Girard [Gir7l,72][Tai75]; it is

very adaptable for different type systems. The general steps of the reducibility

'The discussion in this section was given in [Luo89c].

STRONG NORMALIZATION 	 92

method can be analyzed as follows: 2

Define a notion of saturated sets or candidates of reducibility.

Define an interpretation of types A, Eva lA, with respect to type variable

assignment p.

Prove that EvalA is a saturated set (or candidate of reducibility) for every

type A.

Prove the soundness of the interpretation Eval, i.e., if M is of type A, then

M is in EvalA.

As every term in a saturated set (or candidate of reducibility) is (strongly) nor-

malizable, by the very definition of saturated sets (or candidates of reducibility),

we conclude that every well-typed term is (strongly) normalizable.

The above outline of the reducibility method is rather informal but is enough

for understanding our following discussions and also gives a guideline to under-

stand our proof of strong normalization in section 5.2. We now discuss several

points we feel interesting when applying the method to richer type systems.

5.1.1 Saturated sets and candidates of reducibility

The core notion of Girard-Tait's reducibility method is that of saturated sets

[Tai75] (or candidates of reducibility [Cir7l,72]) which are assigned to types of

typed A-calculi in their term model constructions.

Instead of giving the ordinary definition of saturated sets (in which people

only consider A-terms), we give a slightly more general definition using the notions

2 W only consider the typed version of reducibility method here. We remark that the erasing

trick used in the untyped version of the reducibility method [Ta175][Mit86] does not seem to

apply to the calculus of constructions or richer calculi as it is based on separation of type

reduction and term reduction which may not be done when type-valued functions exist.

STRONG NORMALIZATION
	

93

of base term (definition 4.3.1) and key redex (definition 5.1.1 below) which easily

incorporates terms for E-types (and products as a special case). Our definition

makes more explicit the idea behind the notion of saturated sets.

Definition 5.1.1 (key redex) The notion of key redex of a term M is defined

as follows:

If M is a redex, then M has key redex and it is the key redex of itself.

If M has key redex, then so do MN, ir 1 (M) and 7r2 (M), and their key

red exes are that of M.

(Thus, a term has at most one key redex.) If M has key redex, we write redk (M)

for the term obtained from M by contracting the key redex of M. 	 0

For example, the redexes ()x:A.M)N and lrl(pairA(M,N)) are the key re-

dexes of (Ax:A.M)NN 1 ...Nm and lrl (pairA(M,N))Nl ... N m , respectively. The

intuitive idea behind the notion of key redex is that every reduction sequence,

starting from a term with key redex and ending with a normal form, will neces-

sarily contract the key redex of the term (possibly after contracting some redexes

in subterms of the key redex).

Notation Let A be an .6-type. Then, SN(A) is the set of strongly normalizable

terms M such that S I- M: A. 	 IN-1

Definition 5.1.2 (saturated sets) Let A be an S-type. S is an A-saturated

set if and only if

(Si) ScSN(A);

if M E SN(A) is a base term, then M E S;

if M E SN(A) has key redex and redk (M) e 5, then M e S.

STRONG NORMALIZATION
	

94

Sat(A) is defined to be the set of A-saturated sets. 	 V

Remark Sat(A) is not empty. In fact, SN(A) e Sat(A). To show the generality

of the above definition, we remark that (S2) has the following as special cases:

• If MxM 1 ... MESN(A), then MES.

• If M 7r.,(... 7r.(x)) E SN(A), then M E S, where ik e 11, 21.

and (S3) has the following as special cases:

• if M 	\x:B.M')NN i ...Nm E SN(A) and ([N/X]M')Ni ... Nm E S, then

MeS;

• if M 	7r 1 (...7r 3 (pairB(M1 ,M2))) E SN(A) and ir 1 (... ir1 _,(M13)) E 8,

then ME 8, where lk e {1,2}. 	 a

The above definition of saturated sets will be used in this chapter to prove

strong normalization of ECC. As a digression, before we proceed to discuss the

next steps of the, reducibility method, we would like to compare the notion of

saturated sets with the notion of candidates of reducibility of Girard [Gir72,89]

and show that the conditions for the latter are stronger.

Definition 5.1.3 (candidates of reducibility) ([Gir89]) Let A be an 9-type.

S is an A-candidate of reducibility if and only if

(cR1) S ç SN(A),•

if M E S and M L>j N, then N E S;

if S I- M: A, M is simple (i.e., M is of the form x, M 1 M2 or

and N E S for every N such that M t N, then M E S.

CR(A) is defined to be the set of A-candidates of reducibility. 	 0

STRONG NORMALIZATION
	

95

We have the following relationship between saturated sets and Girard's can-

didates of reducibility.

Proposition CR(A) c SAT(A), i.e., every A-candidate of reducibility is an

A-saturated set.

Proof Suppose that S is an A-candidate of reducibility. We show that S satisfies

(S1)(S2)(S3). Notice that, for every E-term M, M is simple if and only if M is

a base term or has key redex. We use this fact below tacitly.

(Si) By definition.

We show that every base term M in SN(A) is in S by induction on the

height h(M) of the reduction tree of M. If h(M) = 0, i.e., M is strongly

normalizable, then M E S by (CR3). If h(M) = n + 1, then, for every N

such that M >1 N, N € SN(A) is a base term and h(N) < h(M); and

hence N E S by induction hypothesis. Therefore, M e S by (CR3).

We show, by induction on the height h(M) of the reduction tree of M, that

M E S for every M in SN(A) which has key redex and whose key reduct

redk(M) is in S. If h(M) = 1, then if M t> 1 N, we have N redk (M) e S.

So, M e S by (CR3). If h(M) = n + 1, then if M r>1 N, we have either

N redk (M) E S or N has key redex and red k (M) L' redk(N). In the

former case, N e S by assumption. In the latter case, as redk (M) E S,

redk (N) E S by (CR2); and by induction hypothesis, we have N E S as

h(N) <h(M). Therefore, M E S by (CR3). .

Remark The condition (CR2) is necessary to prove the above proposition. The

converse of the proposition is not true; some saturated sets are not candidates of

STRONG NORMALIZATION 	 96

reducibility because they do not satisfy (CR2). The above relationship between

saturated sets and candidates of reducibility has also been noticed by Gallier

[Ga189]. 	 U

5.1.2 Separability of types v.s. type-valued functions

Now, we discuss how to define an interpretation EvalA such that every type is

interpreted as a saturated set. This can be done by induction on type structures

for simpler systems like the simply typed ,\-calculus [Tai67] and the second-order

)-calculus [Gir72][Mit86], because in these systems types are essentially separated

from the other objects and there are no type-valued function terms. However, for

richer systems like the calculus of constructions [CH88][Coq85], types are mixed

up with other terms and can not be simply separated. In particular, there are

type-valued J-terms or intuitively type-valued functions. For example, in the

calculus of constructions, one has I- Ax:Prop.x : Prop - Prop. Therefore, a

term of the form MN may be a type too. Therefore, a problem is: how to define

the interpretation of types of the form MN?

Coquand [Coq86b] [Coq85] gives a nice solution to this problem: not only

types are interpreted, but the other terms too. Then, in order to show that the

interpretation defined by induction on term structure is well-defined and does in-

terpret every type as a saturated set, he makes a substantial use of the fact that

there is a complexity measure of non-propositional types in the calculus of con-

structions (as we mentioned at the beginning of chapter 4). This straightforward

measure for non-propositional types exists simply because that there is only one

real universe in the calculus of constructions and there is no non-propositional

type-valued function.

Things become different when we have more than one universe like in ECC.

Now there are functions with non-propositional types as values, say)tx:Type0.x.

STRONG NORMALIZATION 	 97

Therefore, a term of the form MN (or ir.(M)) may be a non-propositional type.

We need to clarify the forms of the non-propositional types and have a complexity

measure to make explicit the predicativity of them. This is the main reason that

we spend a lot of energy to prove the quasi normalization theorem and find the

complexity measure in the last chapter. Coquand's solution is the clue that

motivates our work on quasi normalization. As we have succeeded in proving

the quasi-normalization theorem and finding the complexity measure 3 in the

previous chapter, we are now ready to apply Girard-Tait's method to prove strong

normalization.

5.2 The Strong Normalization Theorem

We now apply the reducibility method to prove strong normalization for ECC.

The central theme is to define a term model (interpretation) in which types

are interpreted as saturated sets (see definition 5.1.2 in the previous section),

and then prove the soundness of the interpretation, which implies the strong

normalization theorem.

5.2.1 Possible values of terms

We first define a notion of value-sets which indicates the possible values of a

term in the term model (subject to some variable assignment). In particular, the

possible values of an E-type A are the A-saturated sets.

Definition 5.2.1 (value-sets of E-terms) The set of (possible) values of an

(-term M, V(M), is defined by considering the form of its principal type Te(M),

which is assumed to be in quasi-normal form, and by induction on the complexity

measure

STRONG NORMALIZATION
	

0.

If T(M) is a kind, i.e., M is an E-type, then

V(M) =df Sat(M).

If Te(M) is an e-proposition, i.e., M is an 9-proof, then

V(M) =,If {O}.

where 0 is a fixed arbitrary symbol.

If T(M) is a base term, then

V(M) =df {0}.

ij. If Te(M) 	Hx:A 1 .A 2 is a non-propositional E-type, then define V(M) as

the set consisting of the functions f such that

. the domain off, dom(f) = {(N,v) I E H N: A 1 ,v E V(N)},

• f(N,v) e V(MN) for (N, v) e dorn(f), and

• f(N,v) = f(N',v) for (N,v),(N',v) E dom(f) such that N N'.

5. if Te(M) Ex:A 1 5A 2 , then

V(M) =jç {(v 1 ,v2) I v 1 E V(7r 1 (M)),v 2 e V(7r 2 (M))}.

Remark The above definition is well defined by theorem 4.3.13, corollary 4.3.14,

lemma 4.4.3, lemma 4.4.4, and Church-Rosser theorem. Note that the quasi-

normalization theorem and its corollary are essential for the definition to work

and the properties of the complexity measure 0 are also important. For ex-

ample, when non-propositional S-type Hx:A 1 .A 2 is the principal type of M,

STRONG NORMALIZATION

we know that, for S F- N : A 1 , V(N) and V(MN) are already defined be-

cause /3(Te (N)) < /3(A) < /3(Hx:A 1 .A 2) and 13(Te (MN)) < /3([N/x]A 2) <

/3(llx:A 1 A 2) by lemma 4.4.3 and lemma 4.4.4. 	 UI

Convertible terms have the same possible values, as the following lemma

shows.

Lemma 5.2.2 Let M and N be S-terms. If M N, then V(M) = V(N). 	-

Proof We prove the lemma by the same induction as used in definition 5.2.1.

Note that, as M N, Te(M) T(N) (see the remark after lemma 3.1.4 for

definition of) have the same sort of forms up to conversion.

If M is an S-type, so is N. So, by definition of saturated sets, V(M) =

Sat(M) = Sat(N) = V(N).

If Te(M) is an S-proposition, so is Te(N). So, V(M) = {O} = V(N).

If Te(M) reduces to a quasi-normal base term, so is T(N). So, V(M) =

{O} = V(N).

If Te(M) reduces to a quasi-normal non-propositional S-type Hx:A 1 .A 2 ,

then Te(N) reduces to some quasi-normal non-propositional S-type

llx:A.A and A'1 A 1 . By induction hypothesis, V(MN 0) = V(NN0) for

every No such that S I- No : A 1 . By definition of value-sets, V(M) = V(N).

If Te(M) reduces to a quasi-normal term Ex:A 1 .A 2 , then Te(N) reduces to

some quasi-normal term x:A.A. By induction hypothesis, V(ir(M)) =

V(ir 1 (N)) for i = 1,2. By definition of value-sets, V(M) = V(N). 	0

Every S-term has at least one possible value. In fact, the proof of the following

lemma defines a 'canonical value' for each S-term.

STRONG NORMALIZATION
	

100

Lemma 5.2.3 (canonical value of S-terms) For every S-term M, V(M) is

not empty.

Proof The following definition gives every S-term M a 'canonical' value VM E

V(M), by the same induction as used in definition 5.2.1.

If M is an S-type, then VM =df SN(M)

If M is an S-proof, then VM =df 0.

If Te(M) reduces to a quasi-normal base term, then VM =df 0.

If Te(M) reduces to a quasi-normal non-propositional .6-type llx:A 1 .A 2 ,

then VM is defined to be the function f C V(M) such that f(N,v) = VMN

for all (N, V) E dorn(f).

If Te(M) reduces to a quasi-normal term 	x:A 1 .A 2 , then

VM =df (V7,1(M))V72(M)). 	 0

5.2.2 Assignments and valuations

In this section, variable assignments and valuations are defined and studied. We

first introduce a notation for simultaneous substitution.

Notation (simultaneous substitution) We write [N,,..., N,,Ix l , ..., x]M for

(the resulting term by) the simultaneous substitution of terms N for the free

occurrences of variables x 1 (i = 1, ...,n) in M. 	 0

Lemma 5.2.4 (simultaneous substitution) If S" I- M : A and, for all i < k,

S I- Ni [Ni ,...,1V 2 _ i / ei ,...,e1 _ i]E, then

9 H [Nl ,...,Nk /e l ,...,ek }M : [ND ...,Nk/el,...,ek]A.

STRONG NORMALIZATION 	 101

Proof As (k F M : A, by repeated applications of rule (\),

(F)el :El ..)e k :Ek .M : He 1 :El ...11ek :Ek .A

Then, by repeated applications of rule (app) and assuming that the bound vari-

ables ej above are not in U1<1<k FV(N1), we have

(F ()e l :El ...Ae k :Ek .M)N l ... Nk : [Nl ,...,Nk/e l ,...,ek]A

The result then follows from theorem 3.2.8. 	 0

We now introduce the notion of assignment and valuation.

Definition 5.2.5 (9-assignment and (-valuation) An (-assignment is a

function 0 : FV((k) -p 7 for some k E w such that (F 0(e2) : q(E1) for each

1 < i < k, where (e2 :E1 . (We also write q for the simultaneous substitution

determined by 0, i.e., 10(e1), ..., O(P-k)/el, ...,

An (-valuation is a pair of functions p = (q, val) such that 0 is an

assignment and val is a function with dorn(çb) as its domain such that, for each

e2 E dom(q), val(e 2) e V(0(e 1)). The domain of p is the domain of q.

An (-valuation p with domain FV((k) covers an (-term M if and only if
gk F M: A for some A. 	 Li

Lemma 5.2.6 (extensibility of (-valuations) Let A a Em be an (ktype,

where rn > k. If (F Na : [N1 ,...,N_ 1 1e 1 ,...,e3 _ 1]E for 1 < j < k and

(F N: [N1 , ..., Nk/e l , ..., ek]A, then there exist variables Yk+1 , •• y- such that

(F Yk+i : [N1 , ..., Nk, Yk+1' 	yk+_11 e 1 , , ek+_l]Ek+I

E l- N: [Nl,...,Nk,yk+l,...,ym_l/el,...,em_l]A

Proof By lemma 3.2.9, for i = 1,...,m - k - 1, Ek+j are 	-types, and so

llel :El ... Hek+I_ l :Ek+ _l .Ek+I are (-types and there exist variables z, such that

STRONG NORMALIZATION
	

102

S H z, : Hel :El ...Hek+l_ l :Ek+I_ l .Ek+Z . Hence, by induction on i = 1, ...,m—k-1,

we have

S I- 	 N1, ..., Nk, Yk+1, ... Yk+_1/e1, ..., ek+_l]Ek+

So, by theorem 3.2.7, [N1 , ..., N, Yk+1, ••• yk+1_l/el, ..., ek+_lJEk+ is an S-type.

Hence, there exists Yk+t satisfying the requirement. As FV(A) c {e, ...,ek},

[Nl,...,Nk,yk+l,...,ym_l/ el, ..., em- l]A 	[Nl , Nk /e l ,...,ek]A; 	hence,

El- N: [Nl ,...,Nk ,y k+l ,...,y m _ l /el ,...,em _l]A. 	 .

Remark The above lemma shows that, if p = (, val) is an S-valuation which

covers N and A, and S H N : 4(A), then p can be extended to an E-valuation

P' = (qf/,val') such that q'(x) = N for some variable x V dom(p). 	 0

5.2.3 Interpretation of terms

Now, we define the interpretation of 9-terms. Every 9-term is given a unique

value in its value-set, subject to an 9-valuation.

Definition 5.2.7 (Evaluation Eval) Let p = (, val) be an S-valuation. The

evaluation function Eval of S-terms which are covered by p are defined as fol-

lows:

If M is an S-proof, then Eval(M) =ç 0.

If M is not an S-proof, Eval(M) is defined by induction on the structure

of M:

M is a kind. Then Eval(M) =df SN(M).

M is a variable. Then Eval(M) =df val(M).

M Hx:M 1 .M2 . We may assume that x V dorn(p). Then, Eval(M)

is defined to be the set of the terms F such that

STRONG NORMALIZATION
	

103

. S I- F: O(M), and

ii. FN E Evali(M2) for every 9-valuation p' 	val') which ex-

tends p such that çb'(x) = N e Eval(M1).

(d) M Ax:M 1 .M2 . We may assume that x V dorn(p). Then, Eval(M)

is defined to be the function f such that

dom(f) = { (N, v) I S F- N: cb(M 1),v E V(N)}, and

f(N,v) = Evali(M 2) for (N,v) E dom(f), where p' extends p

such that p(x) = (N,v).

(e) M M 1 M2 . Then Eval(M) =df Eval(M1)(q(M2),Eval(M2)).

(f) M Ex: M I . M2 . We may assume that x V dom(p). Then, Eval(M)

is defined to be the set of the terms P such that

S F- P: O(M), and

7r(P) E Eval(M1) and ir2 (P) E Eval,(M2) for everyS-valuation

P' = (q',val') which extends p such that q'(x) = ir1 (P).

(g) M pairA (M1 1M2). Then, Eval(M) = (Eva1(M 1),Eva1(M2)).

(h) M 7r3 (M'). Then, Eval(M) =df v1 , if Eval(M') = (v1 ,v2), where

i E {1,2}.

F.

The following lemma guarantees the well- definedness of the interpretation. In

particular, it implies that every S-type is interpreted as a saturated set.

Lemma 5.2.8 (well definedness of Eval) Let p = (0,val) be an .6-valuation

which covers S-term M.

1. If 9-valuation p' = (qY, val') covers M, and 4(x) 	cb'(x) and val(x) =

val'(x) for every x E FV(M), then EvalM = Eval1M.

STRONG NORMALIZATION 	 104

2. Eval(M) E V(q(M)).

Proof If M is an E-proof, then so are q(M) and q'(M), and we have

EvalM = Eval1M = 0 E {0} = V(q(M)) = V(çi(M))

If M is not an E-proof, we prove the two statements of the lemma by mutual

induction on the structure of M. 3

Proof of the first statement.

M is a kind. EvalM = SN(M) = Eval;M.

M is a variable. EvalM = val(M) =val'(M) = Eval1M.

M 1Ix:M 1 .M2 . We show EvalM C Eval1M and the other direction is

the same. Suppose F E EvalM. Then, e I- F: 41(M) as 	cb'(M).

For any extension 	,val) of p' such that q(x) = N E Eval1M1 ,

we can also find an extension Pi = (q, val1) of p such that q (x.) = N E

EvalM1 by lemma 5.2.6 as EvalM1 = Eval1M1 by induction hypothesis.

Hence, FN E Eval 1 M2 = EvaliM2 by induction hypothesis.

M .\x:M 1 .M2 . We have dom(EvalM) = dorn(EvaliM) as

0Y(M 1), and EvalM(N,v) = Eval,M 2 = EvaliM2 = Eval#M by in-

duction hypothesis, where Pi and 	extend p and p' respectively as in the

definition of Eval.

M M 1 M2 . As O(M2) 0'(M2) and Eval1M1 E V(41(M1)) by (mutual)

induction hypothesis, we have by induction hypothesis

EvalM = Eva1M1 (0(M2), EvalM2)

= Eval1M1 (çb(M2), EvaliM2)

3 B mutual induction, we mean to prove the two statements simultaneously but just write

the proofs separately.

STRONG NORMALIZATION
	

105

= Eva1Mi (0'(M2), EvalM2)

= EvalsM

6. M Ex:M 1 .M2 . Similar to the case of 11-form.

7 M pair A (Ml , M2). By induction hypothesis.

8. M 7r(M). By induction hypothesis.

Proof of the second statement.

M is a kind. EvalM = SN(M) e Sat(M) = V(M) = V((M)).

M is a variable. EvalM = val(M) e V(çi(M)).

M 11x:M 1 .M2 . We have to show that EvalM is a O(M)-saturated set.

(Si) Suppose F e EvalM. We only have to show that F is strongly nor-

malizable. Take a variable y such that E H y q(M 1). As EvalM 1 E

V((M 1)) = Sat(ct(M1)) is a saturated set by induction hypothesis,

y E EvalM1 . Let p' be an extension of p such that p'(x) = (y, v),

where v, is the canonical value of y. Then, by induction hypothe-

sis, EvaliJ'vI2 E V(0'(M 2)) = Sat(qi(M2)) is a saturated set. So,

Fy E Eva1#M2 is strongly normalizable, which implies that F is

strongly normalizable.

(S2) Suppose M0 e SN(4(M)) is a base term. We only have to show

M0 N E Eval;M2 for any extension p' = (', val') of p such that

0'(x) = N E EvalM1 . This follows from that EvaliM 2 is a

saturated set (by induction hypothesis), M0N is a base term and E H

M0 N: 0Y(M 2) (as 0'(M2) [N1x]0(M2)).

(S3) Suppose M 0 e SN(4(M)) has key redex and redk (Mo) Ez EvalM.

We only have to show M 0N e Eval1M2 for any extension p' =

STRONG NORMALIZATION
	

106

(çb',val') of p such that qf/(x) = N E EvalM1 . By induction hy-

pothesis, EvalM2 E Sat(çt/(M2)) is a saturated set. As redk(Mo) E

EvalM, redk (Mo)N E Eval1M2 is strongly normalizable which im-

plies that M0N is strongly normalizable as M0 is a strongly normaliz-

able. Noticing that S F- M0N: 0'(M2) (as '(M2) [N1x]0(M2)) and

M0 N has the same key redex as M0 , we have M0N E Eval1M2 .

M)x:M1 .M2 . For any extension p' = (q',val') of p such that p'(x) =

(N, v) € dom(EvalM), by induction hypothesis,

EvalM(N,v) = Evali(M 2) E V(0'(M 2)) = V([N1xJ0(M2)) = V(çi(M)N)

If S I- N': q(M 1) and N' N, we have, by (mutual) induction hypothesis,

Eval(M)(N,v) = Evali(M 2) = Evali (M2) = Eval(M)(N',v)

where p, extends p such that p, (x) 	(N, v).

M M 1 M2 . As Te(q5(M i)) has the form Hx:A 1 .A 2 , EvalM1 E

is a function f such that f(N,v) E V(0(M 1)N) for any N such that

S I- N: A 1 and any v E V(N). Noticing that S H q(M 2) : A 1 (as M1 M2 is

an S-term) and EvalM2 E V(q(M 2)), we have EvalM =

EvalM1 (çb(M2), EvalM2) e V(0(M 1)q(M2)) = V(q(M)).

M 	x:M1 .M2 . We have to show that EvalM is a O(M)-saturated set.

(Si) Suppose P E EvalM. We only have to show that P is strongly nor-

malizable. By induction hypothesis, 7r1 (P) E EvalM1 e V(0(M 1)) =

Sat(0(M1)). is strongly normalizable, so is P.

(S2) Suppose M0 e SN(q(M)) is abase term. Then, 7r1 (M0) e SN(q(M 1))

is also a base term, so 7r1 (Mo) is in q(M1)-saturated set EvalM1 . For

any S-valuation p' 	',val') which extends p such that '(x) =

STRONG NORMALIZATION
	

107

7r1 (P) (assuming x V dom(p)), 7r2 (M0) E SN([ir1 (M0)1x]0(M2)) =

SN(0'(M 2)) is also a base term, and so 7r2 (Mo) is in 0'(M2)-saturated

set EvaliM2 . Hence, M0 € EvalM.

(S3) Suppose M0 E SN(çb(M)) has key redex and redk(MO) E EvalM.

Then, 7r1 (M0) E SN(0(M 1)) has the same key redex and in (redk (Mo))

E EvalMi , so 7r1 (Mo) is in 4(M1)-saturated set EvalM1 . For any

E-valuation p' = (', val') which extends p such that qf'(x) = ir1 (P) (as-

suming x V dom(p)), r2 (MO) E SN([ir 1 (M0)1x]0(M2)) = SN(çb'(M2))

has the same key redex and 7r2 (redk(M0)) E EvalM2 , so 7r2 (Mo) is

in 4/(M2)-saturated set EvaliM2 . Hence, M0 E EvalM.

M pairA (Ml , M2). By induction hypothesis and lemma 5.2.2.

M ir.(M'). As Te(M') has E-form, EvalM' = (V1, V2) € V(q(M')) such

that vi E V(ir(q(M'))), where Z' = 1,2. So, EvalM = v1 E V(7r 1 (q(M'))) =

V((M)).

Corollary 5.2.9 If A is an S-type and p = (, val) is an S-valuation which

covers A, then EvalA is a O(A)-saturated set.

Proof By lemma 5.2.8 and the definition of value-sets. 	 0

5.2.4 Soundness of the interpretation

We prove the interpretation Eval is sound in the following sense:

It respects the conversion relation by equality and the cumulativity relation

by inclusion (lemma 5.2.11);

If M has type A, then, under a suitable variable assignment, M is an

element of the interpretation of A (theorem 5.2.12).

To prove these results, the following substitution property has to be proved first.

STRONG NORMALIZATION

Lemma 5.2.10 (substitution property) Suppose p = (q,val) is an

9-valuation which covers N and [N/x]M, where x g dom(p), and p' = (qf', va! 1)

is an extension of p which covers M such that p'(x) = (cb(N),Eval(N)). Then,

Eval([N/x]M) = Evali(M).

Proof If M is an E-proof, so is [N/x]M; then Eval([N/x]M) = Eval(M) = 0.

If none of M and [N/x]M is an E-proof, we prove the lemma by induction on the

structure of M.

M is a kind. Eval([N/x]M) = Eval(M) = SN(M) = Evali(M).

M is a variable. If M 0 x, then Eval([N/x]M) = Eval(M) = val(M) =

val'(M) = Evali(M). If M 	x, then Eval([N/x]M) = Eval(N) =

val'(M) = Evali(M).

M Hy:M 1 .M2 . We may assume y g dom(p'). We have

• 4([N/x]M) [q(N)/z]q([z/x]M) q'(M), by suitably choosing van-

able z;

• Eval([N/x]M 1) = Evali(M1), by induction hypothesis; and

• by lemma 5.2.6, for any .6-valuation Pi = (01 , val1) which extends p

such that ci(Y) = N1 E EvalM1 , we can find an E-valuation p =

(çb'1 ,val) which extends p' such that (y) = N1 E EvalM1 , (and

vice versa); furthermore, by lemma 5.2.8, Eval,M2 = EvalM2 .

From these, by definition of Eval, Eval([N/x]M) = Evali(M).

M \y:M 1 .M2 . We may assume y V dom(p'). We have

• dom(Eval[N/x]M) = dom(EvalsM), as 0([N/x]M 1)

0'(M1), by suitably choosing variable z;

STRONG NORMALIZATION
	

109

• for any (N1 ,v 1) e dom(Eval[N/x]M), by lemma 5.2.8,

Eval[N/x]M(N i ,v i) = Eval 1 M2 = EvalM2 = EvaliM(N 1 ,v 1),

where Pi and p extend p and p' such that Pi(Y) = p'1 (y) = (N1 , v 1).

Hence, by definition of Eval, Eval([N/x]M) = Evali(M).

M M 1 M2 . As 0([N1x]M2) [0(N)1z]0([z1xJM 2) 0'(M2) (by suitably

choosing variable z), we have by induction hypothesis

Eval([N/x]M) = Eval([N/x]Mi)(cb([N/x]M 2), Eva l([N/x]M 2))

= Evali(M1)(0i(It'I2), Evali(M2))

= Evali(M)

M Ey:M 1 .M2 . Similar to the fl-case.

M pairA(Ml, M2). By induction hypothesis.

M ir(M'), i = 1,2. By induction hypothesis, Eval[N/x]M' = Eval1M' =

(VI, V2)- So, Eval[N/x]M = Eval7r1 ([N/x]M') = vi = Eval1M.

70

Lemma 5.2.11 Let p = (, val) be an .6-valuation.

1. If M and N are convertible S-terms covered by p, then Eval(M) = Eval(N).

. If M and N are S-types covered by p and M 	N, then Eval(M) c
Eval(N).

Proof By induction on the structure of M.

Proof of the first statement. By Church-Rosser theorem, we only have to

prove the statement for M t> 1 N. Then, M can not be a kind or variable. For

the cases M is of 11-form, X-form, s-form or pair-form, it is true by induction

hypothesis. The cases that M ir(M') can also be readily verified by induction

STRONG NORMALIZATION
	

110

hypothesis and the definition of Eval. We consider the case when M M, M 2 .

There are two subcases.

M M 1 M2 1 1 N1 N2 N with M 1 r'1 N1 or M2 1 N2 . Then,Eval(M 1) =

Eval(Ni) e V(çb(N 1)), by induction hypothesis and lemma 5.2.8. As

O(M2) O(N2) and E I- q(N2) : Te(q(M 2)) by theorem 3.2.8, and noticing

that Te(q(N i)) is of H-form, we have by induction hypothesis and definition

of value-sets,

Eval(N) = Eval(N1)(q(N2), Eval(N2))

= Eval(M1)(çb(N2), Eval(M2))

= Eva1(Mi)(0(M2),Eva1(M2))

= Eval(M)

M M1 M2 	\x:X.Y)M 2 r>1 [M2 1x]Y N. By lemma 5.2.6, there exists

an 9-valuation p' which extends p such that p'(x) = (ct(M2), EvalM2). By

lemma 5.2.10,

EvalM = Eva1(\x:X.Y)(0(M 2), Eval;M2)

= Eval1Y

= Eval[M2 1x]Y

= EvalN

Proof of the second statement. By the first statement just proved and lemma

3.1.4, we only have to consider the following cases.

M -< N are kinds. Then, EvalM = SN(M) 9 SN(N) = EvalN.

M 	Qx:M1 .M2 -< Qx:N1 .N2 	N, where Q E {H,}, and,
(N1 ifQEH

M1 	 and M2 -< N2 . The result then follows from in-
IN 1 if QE

duction hypothesis.

STRONG NORMALIZATION
	

111

This completes the proof of the lemma. 	 0

Now, we prove the soundness theorem of the interpretation. As we are deal-

ing with a much richer system than the second-order \-calculus, the theorem

reads more complex than we stated in the outline of the reducibility method in

section 5.1.

Theorem 5.2.12 (soundness) Let p = (, val) be an 9-valuation with FV(E')

as domain such that 0(e2) E Eval(E) for e j E dom(p). lieJc H M : A, then

O(M) E EvalA.

Proof By induction on the structure of M.

M is a kind. Then, Te(M) A is convertible to a kind. By lemma 5.2.11,

O(M) = M E SN(Te (M)) = EvalpTe (M) ç Eval,,A.

M e j is a variable. Then, E2 is the principal type of M. By assumption

and lemma 5.2.11, q(M) E EvalE2 c EvalA.

M llx:M 1 .M2 . Then A K for some kind K and EvalA = EvalK =

SN(K) by lemma 5.2.11. We only have to show that S H q(M) : K and

O(M) is strongly normalizable. As S H M : K and 0 is an S-assignment,

S H q(M) : K by lemma 5.2.4. By lemma 3.2.9,
5k H M1 K1 for some

kind K 1 . So, by induction hypothesis, q(M1) E Eva1K 1 = SN(K 1)

is strongly normalizable. We may assume that x 	e, with E, 	M1

for some j > k such that S j H M2 K2 for some kind K 2 . Let p' =

val') be an extension of p such that q'(ek+) is an variable Yk+i such that

S H Yk+i : [(e 1), ..., q5(ek), Yk+1 ...' yk+_l/e1, ek+I_lIEk+1 and val'(ek+)

is any value in V(yj, where 1 < i < j - k. Then, p' is an .6-valuation

and, by induction hypothesis, 0'(M2) E EvaliK2 = SN(K2) is strongly

STRONG NORMALIZATION
	

112

normalizable, which implies that q(M2) is strongly normalizable. There-

fore, (M) Hx:0(M 1).0(M2) is strongly normalizable.

4. M Ax:M 1 .M2 . Then, by Church-Rosser theorem and lemma 3.3.3, A i'

Hx:M1 .A 2 for some (-type A 2 .

As (F- M: Hx:M1 .A 2 , (I- O(M): 0(Hx:M 1 .A 2).

We may assume that x e2 for some j> Ic such that E, x:M1 and

(' F M2 : A 2 . Suppose Pi = (01 ,val1) is an (-valuation which extends

p and covers x such that 0 1 (x) = N e EvalM1 . Then, we can find

another (-valuation p' with FV(() as domain which extends p in the

similar way as in the above case except that p'(x) = p1 (x). Then, p'

satisfies the condition required by the theorem. . By induction hy-

pothesis and lemma 5.2.8, 0 1 (M2) = 0'(M2) e EvalA 2 = Eval,A2 .

As, by lemma 5.2.8, Eval,A 2 E V(q 1 (T(A 2))) = Sat(cbi (Te (A 2))) is

a saturated set, q(M)N has key redex, and by contracting the key

redex, q(M)N t' [01 (x)1x]0(M 2) 	q(M) E Eval,A 21 we have

qf(M)N E Eval,A 2 .

So, we have q5(M) E Eval(Hx:M 1 .A 2); hence, q5(M) E EvalA, by lemma

5.2.11.

5. MEM1 M2 . Then, (F-M1 :Hx:B1 .B2 ,(FM2 :B1 and [M2 /x]B 2 A

for some B 1 and B2 . Let p' = (0
1, val') be an (-valuation extending p such

that p(x) = (0(M2),Eva1M2). By induction hypothesis, lemmas 5.2.10

and 5.2.11, O(M) 0(M 1)0i(x) E Eval:B2 = Eva1[M2 1xJB 2 c Eval,,A.

6. M >x:M1 .M2 . Similar to the H-case.

7. M pairB(Ml ,M2). Then, by Church-Rosser theorem and lemma 3.3.3,

A L' Ex:A 1 .A 2 for some A 1 and A2.

STRONG NORMALIZATION 	 113

As (F- M: >x:A 1 .A 2 , (F- O(M): 0(x:A 1 .A 2) by lemma 5.2.4.

Noticing that EvalA 1 is a saturated set, we have 7r1 (q(M)) E EvalA 1 ,

because it is a redex (and hence is the key redex of itself) and its con-

tractum is in EvalA 1 by induction hypothesis. We may assume that

X 	e, for some j > k. Suppose Pi = (01 ,val1) is an (-valuation

extending p such that 01 (x) = 7r1 (M). Similar to the A-case, we can

find a p' which satisfies the condition required in the theorem and

p'(x) = p1 (x). Noticing that EvaliA 2 is a saturated set, we have

r1 (q(M)) E Eval,,A and ir2 (q(M)) E EvaliA 2 , because its contrac-

turn is in EvalA i by induction hypothesis.

Hence, q(M) E Eval>x:A 1 .A 2 = EvalA.

8. M ir2 (0), i = 1,2. Then, (F- M': Ex:B1 .B 2 for some B 1 and B 2 . By

induction hypothesis, (M') e Eval>x:B1 .B2 .

i = 1. Then B1 -< A. We have q(M) 	7r1 (0(M')) E EvalB 1 C

EvalA, by definition of Eval and lemma 5.2.11.

i = 2. Then [7r1 (M')/x]B 2 	A. We may assume x 	e3 for some

I > k such that P23 B 1 and let p' be an (-valuation extending p such

that p'(x) = (7r1 (4(M')),Evalq(M')). Then, by definition of Eval,

lemma 5.2.10 and lemma 5.2.11, 4(M) 	ir2 (0(M')) E EvaliB 2 =

Eval[7r1 (M')1x]B 2 C Eval4,A.

This completes the proof of the theorem. 	 U

5.2.5 The strong normalization theorem

The strong normalization theorem is now a corollary of the above results.

Theorem 5.2.13 (strong normalization) If I' F- M : A, then M is strongly

normalizable.

STRONG NORMALIZATION 	 114

Proof We first show that F- M : A implies that M is strongly normalizable. Let

p = (4, val) be any e-valuation. If F- M : A, then

FV(M) = FV(A) = 0, by lemma 3.2.2;

q(M) E Eval(A), by theorem 5.2.12;

A is an E-type, by theorem 3.2.7; and

Eval,,(A) e V(O(A)), by lemma 5.2.8.

So, we have M O(M) e Eval(A) E V(O(A)) = V(A) = Sat(A). By definition

of saturated sets, M E Eval(A) c SN(A) is strongly normalizable.

For the arbitrary case, if F F- M : A, F x1:A1, ..., x m :A m by lemma 3.2.2.

By applying rule (.)), we have F- .Ax i :A i ... Ax m :A m .M : Hx i :A i ... llx m :A m .A. So,

)x i :A i ...Ax m :A m .M is strongly normalizable; and this implies that M is strongly

normalizable. 0

Corollary 5.2.14 If x 1 :A 1 ,...,x:A F- M : A, then A 1 ,...,A,A and M are all

strongly normalizable.

Proof By theorem 5.2.13, theorem 3.2.7 and lemma 3.2.1. 	 0

Chapter 6

Logical Consistency and

Decidability

The normalization property of the calculus proved in the previous chapter has

several important corollaries, two of which are studied in this chapter.

We first show that, by Curry-Howard correspondence of formulas-as-types,

there is a powerful higher-order logic embedded in ECC which is consistent by the

strong normalization theorem. This gives a sound logical basis of using the theory

in applications of, for example, theorem proving and program specification.

Then, we show that the calculus is decidable: (1) the conversion relation and

the cumulativity relation are decidable for well-typed terms; and (2) the problems

of type inference and type checking are decidable, and we describe algorithms for

them and prove their correctness. This provides a direct basis for computer

implementations of the theory for development of proofs or programs.

6.1 The Embedded Higher-order Logic

Just as in the correspondence between propositional logic and simply typed)-

calculus, there is an embedded logic in the calculus ECC by the Curry-Howard

115

LOGICAL CONSISTENCY AND DECIDABILITY 	 116

principle of formulas-as-types [CF58][How69}. As the theory provides rich type

structures, the embedded logic is a powerful higher-order logic in which one can

quantify over arbitrary predicates and functions.

In this section, we follow the idea of formulas as types to describe the embed-

ded logic in ECC and prove its consistency. We also briefly discuss an (open)

conservativity conjecture which concerns the relationship of the embedded logic

with other more standard logics, in particular, intuitionistic higher-order logic.

6.1.1 The embedded logic

A logic can generally be viewed as consisting of a language and a notion of

theoremhood. The former is usually given by a notion of (well-formed) formulas

and the latter by a notion of proof. These notions of the embedded logic of ECC

are all relativized to valid contexts. In fact, a valid context can be thought of

as a theory in the ordinary sense. Therefore, what we describe below is indeed

a 'raw' logical mechanism in which one can build up different theories or even

describe different logics.

Definition 6.1.1 (formulas and proofs) Let F be a valid context.

• A term P is called a IF-formula if P is a 17-proposition.

• A term M is called a proof of a 17- -formula P (in F) if F I- M : P.

A F-formula P is provable (in F) if there is a proof of P (in F). 	 0

Definition 6.1.2 (functions and predicates) Let F be a valid context. A

term F is called an (n-ary) F-function if for some A i and A,

F I- F: Hx1 :A 1 ... llx:A.A

Furthermore, if F(x1 ,...,x) is a (17 1 x 1 :A 1 ,...,x:A)-proposition, then F is also

called an (n-ary) F-predicate (over A 1 , ..., A n). 	 0

LOGICAL CONSISTENCY AND DECIDABILITY 	 117

Given the above definitions, we can now define the ordinary logical oper-

ators (and constants), following the well-known idea in higher-order logic (see

[Pra65][CH85] for example). Note that sets correspond to types and we are in

fact formulating a many-sorted logical mechanism.

Definition 6.1.3 (logical operators) Let F be a valid context, P1 and P2 F-

formulas, A a 17-type, and P a IF-predicate over A.

true =df llx:Prop.x - x

false =df Hx:Prop.x

P1 DP2 =df

P1 & 2 =df IIR:Prop.(P1 -* P2 - R) -+ R

P1 V '2 =df HR:Prop.(P1 -# R) - (P2 -+ R) - R

df P1 -p false

Vx E A.P(x) =df llx:A.P(x)

Rx E A.P(x) =df HR: Prop. (Hx:A.(P(x) - R)) - R

0

It can be verified that all of the ordinary logical inference rules are sound, as

the following shows.

D-introduction: If F-formula P2 is provable under the extra assumption

that F-formula P1 is provable (i.e., F,p1 :P1 H P2 : P2 for some P2), then

P1 D P2 is a provable F-formula. This is reflected by rule (\).

j-elimination (Modus Ponens): If P1 D P2 and P2 are provable F-formulas,

then so is P2 . By rule (app), p'p is a proof of P2 , if p and p' are proofs of

P1 and P1 D P2 , respectively.

LOGICAL CONSISTENCY AND DECIDABILITY 	 118

&-introduction: If F-formula P1 and P2 are provable, so is P1 & P2 . If p, is

a proof of P1 (i = 1,2), then .AR:Prop.Ah:P1 -4 P1 - R.hp 1 p2 is a proof of

P1 &P2 .

&-elimination: If F-formula P1 & P2 is provable, so are P1 and P2 . Suppose

h is a proof of P1 & P2 . Let P1' (i = 1,2) be the F-propositions such that

P1' 	P, and F I- P,' : Prop. Then, h(P,',)tp1 :P1 Ap 2 :P2 .p1) is a proof of F,

(i = 1, 2).

V-introduction: If IF-formula P1 (P2) is provable, so is F-formula P1 V P2 .

Suppose p1 is a proof of F1 , where i e {1,2}. Then, \R:Prop\h1 :P1 -

R.Ah 2 :P2 -4 R.h 2p1 is a proof of P1 V P2 .

V-elimination: If F-formula P1 VP2 is provable, and F-formula R0 is provable

under the extra assumption that P, is provable or P2 is provable, then R0

is provable in F. Suppose h is a proof of P1 V P2 and r1 is a proof of R0 in

IF, p1 :P1 (i = 1, 2). Then, h(R\p 1 :P1 .r1 ,\p2 :P2 .r2) is a proof of R0 in F.

V-introduction: If F(x) is provable in F,x:A, then Vx E A.P(x) is provable

in F. By rule (\).

V-elimination: If F-formula Vx e A.P(x) is provable and a is an element of

A (i.e., F I- a: A), then P(a) is provable in F. By rule (app).

3-introduction: If P(a) is provable for some element a of A, then 3x E

A.P(x) is provable. Suppose p is a proof of P(a) and a is an element of A.

Then AR:Prop\h:(Hx:A.P(x) - R).h(a,p) is a proof of 3x E A.P(x).

10.3-elimination: If 17-formula 3x E A.P(x) is provable and R 0 is provable in

F,x:P(a), where a is an element of A, then R 0 is provable in F. Suppose h

is a proof of 3x E A.P(x) in F and r0 is a proof of R0 in F,x:P(a). Then,

h(R, a, r0) is a proof of R0 in F, where R0 such that F F- : Prop.

LOGICAL CONSISTENCY AND DECIDABILITY 	 119

Truth: true is provable in every valid context.)x:Prop)y:x.y is a proof of

true.

Absurdity: false implies every formula. Suppose f is a proof of false in F.

Then, for any F-formula F, f(P') is a proof of F, where P' P such that

F I- P': Prop.

We can define a propositional equality following Leibniz's principle by im-

predicative higher-order definition [Rus03][CH85] as follows.

Definition 6.1.4 (Leibniz's equality) Let A be a F-type. The Leibniz's equal-

ity over A, notation =A is defined as follows:

A =df Ax:AAy:A HP:A -* Prop.(Px -* Py)

=A is of type A - A -f Prop (a binary predicate over A). We shall write a =A b

for =A (a, b).

It can be verified that =A satisfies the laws of identity:

Vx:A. (x = A x)

Vx:AVy:A.(x =A y) D (y =A x)

Vx:AVy:AVz:A. (x =A y) - (y =A z) -+ (x =A z)

For example, the second above (symmetry) is proved by

Ax:A\y:A)th:(x =A y).AP:A - Prop)p:P(y). h(.\z:A.P(z) -* P(x), Aq:P(x).q, p)

In section 9.1, we shall show that the Leibniz's equality reflects the definitional

equality (conversion) and so it provides us a fundamental basis for program spec-

ification as well as theorem proving.

LOGICAL CONSISTENCY AND DECIDABILITY 	 120

6.1.2 Logical consistency

By the strong normalization theorem, the embedded higher-order logic is consis-

tent - there exist unprovable formulas.

Theorem 6.1.5 (consistency) ECC is logically consistent in the sense that

there exist unprovable formulas; in particular, false is not provable in the empty

context, i.e., V M : Hx:Prop.x for any term M. -

Proof Suppose I- M : llx:Prop.x. By theorem 5.2.13 and theorem 3.2.8, we may

assume that M is in normal form. So, by an easy induction on derivations and

lemma 3.2.2, M must be of the form \x:Prop.M' and x:Prop F- M': x, where M'

is a base term whose key variable is x. We show that this is impossible by induc-

tion on the structure of base terms. If M' x, we would have x:Prop I- x x. By

lemma 3.3.3, lemma 3.1.4 and Church-Rosser theorem, we would have Prop x

which is impossible. If M'M1'M or ir.(M'), then it must be the case that

x:Prop I- x: Qy:A.B for some A and B, where Q e {H, Ej. This would imply,

by lemma 3.3.3, lemma 3.1.4 and Church-Rosser theorem, that Prop Qy:A.B

which is impossible, either. So, we conclude that 1/ M : Hx:Prop.x.

Note that the above theorem says that false is not provable in the empty

context, while it can be proved in certain (inconsistent) contexts, for example,

context x:false. This induces a notion of consistent context. Viewing valid

contexts as theories, a consistent context corresponds to a consistent theory in

the traditional sense.

Definition 6.1.6 (consistent contexts) A valid context F is consistent if and

only if not every F-formula is provable in F, or equivalently, if and only if false

is not provable in F. 	 I

We have the following corollary of the consistency theorem which gives us a

way to prove the consistency of certain contexts.

LOGICAL CONSISTENCY AND DECIDABILITY 	 121

Corollary 6.1.7 Let F 	x 1 :A 1 , ..., x:A, be a valid context. If there exist

M1 ,...,M such that, for = 1,...,n,

H .l%4 : [1Vf 1 ,...,1t4_ 1 /x 1 , ... , x 1 _ i]A 1 ,
then F is a consistent context.

Proof Suppose F is not consistent, i.e., F I- M : false for some M. Then, by

theorem 3.2.6, F- 	 : false, contradicting theorem 6.1.5.

So, F is consistent. 	 0

Example Consider the following context which assumes that there is an arbitrary

equivalence relation over a type A:

A,Q 	A:Type 3 , Q:A - A - Prop,

reflex:Vx:A. Q(x, x),

sym:Vx:AVy:A. Q(x,y) -* Q(y,x),

trans:Vx:AVy:AVz:A. Q(x) y) -+ Q(y,z) -+ Q(x,z)

FA,Q is consistent, since we can apply the above corollary by taking, for example,

A and Q to be Prop and =Prop respectively. 	 0

Remark Proving the consistency of a valid context is certainly non-trivial, except

for some simple classes of contexts, as the above corollary and example show.

Sometimes, one may use the normalization theorem to prove the consistency of

some more subtle contexts. There are also other interesting properties one may

like to associate with contexts which are very useful in applications. We do not

expand this discussion here. 0

LOGICAL CONSISTENCY AND DECIDABILITY 	 122

6.1.3 A conservativity conjecture

It is easy to see that the embedded logic described above is very powerful. It

is interesting to know its relationship with other more traditional logics, for ex-

ample, intuitionistic higher-order logic (c.f., [Chu40][Tak75][Sch77]). One of the

problems related to this is the conservative extension problem; for example, can

the embedded logic in ECC be seen as a conservative extension of the intuition-

istic higher-order logic? We conjecture that the answer is 'Yes, provided that we

choose an appropriate interpretation'.

Conjecture 6.1.8 The embedded logic in ECC is a conservative extension over

the (intensional intuitionistic) higher-order logic HOL under some appropriate

interpretation from HOL to ECC. U

Note that in the above conjecture, we emphasize that the interpretation of

HOL in ECC must be appropriate; more precisely, the object set OBJ of HOL

- should be interpreted as a non-propositional type instead of a proposition. As

we conjectured and discussed in the conclusions of [Luo89a,b],

if the object set is interpreted as a proposition Obj:Prop, the interpretation

will not give a conservative extension of HOL;

if the object set is interpreted as a non-propositional type and the others

interpreted in the obvious way, then we conjecture, the interpretation will

be conservative.

The intuition behind the first nonconservativity conjecture is that too much com-

putational power is embedded in the impredicative level of propositions. There

should be a clear distinction between logical formulas (propositions) and sets

(data types).' Interpreting object sets as non-propositional types (and formulas

'Set-theoretically, an (arbitrary) non-propositional type can be understood as an arbitrary

set, but an (arbitrary) proposition can not (and should not). Object sets are in general viewed

LOGICAL CONSISTENCY AND DECIDABILITY 	 123

as propositions) conforms with such a distinction; on the other hand, interpreting

object sets as propositions confuses such a difference and would cause problems.

Recently, Geuvers [Geu89] and Berardi [Ber89b] have independently proved

that the (pure) calculus of constructions [CH88] is not a conservative extension of

higher-order logic; this shows that the first non-conservativity conjecture is true.

Note that, in the (pure) calculus of constructions, it seems that the only possible

and reasonable way to interpret object sets is to interpret them as propositions

(types of type Prop), as there are no predicative type universes in the calculus.

In [Geu89] and [Ber89b], such an interpretation is adopted and the central parts

of their proofs are using the 'double identity' of the object set of being both a

logical formula and a set. Therefore, their results do show that the first part

(i.e., the nonconservativity part) of our conjecture is right.

As the proofs by Geuvers and Berardi have not been published, we give an

outline of the proof by Geuvers [Geu89]. Let *8 be the 'kind' of object sets and

* the 'kind' of logical formulas in higher-order logic HOL. 2 The conjunction

operator is defined, for formulas P1 and P2 (of type *), as

and the existential quantifier is defined, for object set A (of type *8) and formula

P (of type *) possibly with free variable x of type A, as

x E A.P =cff VR: *' .(Vx:A.(P - R)) - R

Now, consider in HOL the following context

F 	Obj:*8 , c:Obj, F:* -+ *, P:*, z:F(Rx E Obj.P)

as arbitrary sets, and so it does not seem to be adequate to formalize them as propositions.

See section 7.5 for a related discussion.

2 The higher-order logic Geuvers and Berardi considered was formulated as a generalized

type system [Bar89b] and called)PREDw in [Geu89] and NWJP in [Ber89b].

0

LOGICAL CONSISTENCY AND DECIDABILITY 	 124

and the formula

ZR:*'.F(R&P)

Using the normalization property of HOL, one can show that Z is not provable

in F in HOL. However, interpreting both object sets and logical formulas as

propositions in the calculus of constructions amounts to map both *8 and * to

Prop. By this interpretation, formula Z above is interpreted as the following

proposition:

R:Prop.F(R & F)

and context F above is interpreted as the following

F' 	Obj:Prop, c:Obj, F:Prop -* Prop, P:Prop, z:F(x:Obj.P)

It is easy to show that Z' is provable in F' in the calculus of constructions (and

ECC); In fact, the following gives such a proof:

\y:PropAh:(VR:Prop.F(R & P) -* y). h(Obj,z)

Therefore, the above interpretation is not conservative.

Remark Note that the confusion of formulas and object sets made by the inter-

pretation (about Obj in the above) is the essential point of the above argument.

The formula Z is not provable from F in HOL because object sets and formulas

are distinguished (by different kinds *8 and *1'), while the formula Z' is provable

in F' in the calculus of onstructions because Obj is forced (by the interpretation)

to be also a logical formula as well as an object set (and therefore h can be

applied to Obj in the proof of Z' as shown above). Distinguishing object sets

(data types) from logical formulas (propositions) in an interpretation will make

the above argument invalid. 11

LOGICAL CONSISTENCY AND DECIDABILITY 	 125

However, our conservativity conjecture is still an open problem which seems

to be rather difficult. Instead of considering ECC, one may consider a slightly ex-

tended system of CC, that is, the calculus of constructions with non-propositional

type constants. Then, object sets can be interpreted as non-propositional type

constants. If we can prove this simpler calculus is a conservative extension of

HOL under the interpretation hinted above, we may then extend the result to

ECC.

6.2 Decidability

By the strong normalization theorem, the calculus ECC is decidable. The con-

version relation and the cumulativity relation are both decidable for well-typed

terms and there is a simple algorithm for type inference and type checking.

6.2.1 Decidability of conversion and cumulativity

Lemma 6.2.1 (decidability of and) It is decidable whether M N or

M N for arbitrary well-typed terms M and N.

Proof By Church-Rosser theorem, the normal form of a term is unique (corol-

lary 3.1.2). Therefore, conversion 	is decidable for well-typed terms by the

strong normalization theorem. The decidability of the cumulativity relation

for well-typed terms follows from that of conversion. 	 0

6.2.2 Decidability of type inference and type checking

Now, we give an algorithm of type inference for ECC, i.e., if a term is well-typed

in a given context, the algorithm computes its principal type in the context, and

otherwise, it returns a symbol indicating that the term is not well-typed in the

	

LOGICAL CONSISTENCY AND DECIDABILITY
	

126

context. Then, we shall prove that the algorithm is correct, which establishes

the decidability of type inference.

Definition 6.2.2 (algorithm of type inference) The algorithm of type infer-

ence C(_; _): when given a context F x 1 :A 1 ,...,x:A and a term M, it checks

whether M is a 17-term, and if so, C(F; M) = Tr(M), the principal type of M

under F; otherwise, it returns I. (For the correctness of the algorithm, see the

theorem below.)

C(_; -) is defined as follows by induction on the sum of the lengths of the

terms A 2 's and M and by considering the structure of M. In the following, we

use '[>,,f ... ' to mean 'reduces to normal form ...', rnax..< to denote the maximum

of the terms subject to relation , and K the set of kinds.

Validity of contexts: To see whether F is valid (i.e., F F- Prop Type0),

check whether C(x 1 :A 1 ,...,x_ 1 :A_ 1 ; A) 	E K.

If F is not valid, C(F; M) =1 for every M. In the following, we assume

that the considered contexts are valid.

f Type 0 	if M Prop
Constants: M is a kind. Then, C(F; M) 	

Type 1 if M Type 3

f 3. Variables: M is a variable. Then, C(17;
A if 	x 1

	

; M) = 	
ifM

4. M llx:M 1 .M2 . Check whetherC(F; M 1) FK E C and C(F,x:MI ; It/I2)

K'eK, and if so,

Prop 	if K' Prop

C(F; M) = max4K,K'} if K'o Prop

otherwise, C(F; M) =1..

5. M Ax:M 1 .M2 . Check whetherC(F; M 1) IK e IC andC(F,x:M 1 ; M2) =

Bfor some B 01, and if so, C(F; M) = Hx:M1 .B; otherwise, C(F; M) =1.

LOGICAL CONSISTENCY AND DECIDABILITY 	 127

M M 1 M2 . Check whetherC(F; M 1) tHx:A.B for some A and B, and

C(F; M2) -< A, and if so, C(F; M) = [M2 1x]B; otherwise, C(F; M) =1.

M Ex:M 1 .M2 . Check whetherC(F; M1) t>aK E K: and C(F,x:Mi ; M2) Nj

K'E K:, and if so, C(F; M) = max..< {K,K',Type o }; otherwise, C(F; M) =1.

M 	pair(M i ,M2). Check whether C 	x:A.B for some A and B,

C(F; C) iK E K:, C(F; M1) A andC(F; M2) [M1 /x]B, and if so,

C(F; M) = C, otherwise, C(F; M) =1.

M ir.(M'). Check whether C(F; M') [> ,,f Ex:A.B for some A and B, and

IA 	 ifi=1
if so, C(F; M) = 	 , otherwise, C(F; M) =1.

1[ri(M')1x]B if i = 2

This completes the definition of the algorithm. 	 0

Remark The type inference algorithm is simple and easy to implement. This

simplicity is due to the full cumulativity of the type hierarchy of ECC. For the

systems with universes lacking full cumulativity like that in [Coq86a], although

strong normalization theorem holds [Luo86b], its notion of principal type becomes

more complex and the algorithm for type inference is quite complicated (c.f.,

[HPol89]). 0

Theorem 6.2.3 (correctness of type inference) The algorithm C(_; -) is cor-

rect, i.e., when given a context F x 1 :A 1 , ..., x,,: A n and a term M,

C(F; M) = J T(M) if M is a F-term

1 -L 	otherwise

Proof By the same induction used in the definition above. The only cases worth

mentioning about this proof are when M E M1 M2 or 7r2 (M'). We discuss the

former case and the latter is similar.

M M 1 M2 . If either the normal form of C(F; M1) is not of the form Hx:A.B

or it is but C(F; M2) A, then we certainly have by induction hypothesis that

LOGICAL CONSISTENCY AND DECIDABILITY 	 128

M is not a 17-term. Otherwise, we have F I- M : [M2 1x]B by rules (app) and

(-<). We only have to show that [M2 1x]B is the minimum type of M subject to

. Suppose F F M : B' for some B' -< [M2 1x]B. We may assume that the last

rule used to derive F F M : B' is not (s), and hence it is (app):

FFM1 :llx:A 1 .B1 FFM2 :A 1

F I- M: [M2 1x]B 1

where [M2 1x]B 1 B' -< [M2 1x]B. Note that, by induction hypothesis, Hx:A.B

C(F; M1) 	Hx:A 1 .B 1 . So, B 	B 1 which implies that [M2 1x]B -< [M2 1x]B 1 ,

contradiction. So, [M2 1x]B is the principal type of M under F. 	 0

The decidability of type inference and that of the cumulativity relation implies

that the problem of type checking - deciding whether an arbitrary judgement

is derivable - is decidable.

Corollary 6.2.4 (decidability of type-checking) ECC is decidable, i.e., it

is decidable whether F I- M : A for arbitrary F, M and A.

Proof By definition of principal type, to see whether F F M : A, just check

whether C(F; M) -< A. By theorem 6.2.3 and lemma 6.2.1, this is decidable. 0

Remark For a Constructions-like calculus, the problem of type checking is no

simpler than that of type inference, as the process of type checking essentially

requires type inference. 	 0

Chapter 7

A Set-theoretic Interpretation

We explain in this chapter how the intuitive meanings of the main constructs in

ECC may be understood set-theoretically. Intuitively, types in a type theory

correspond to sets and the colon relation (M : A) in a judgement corresponds

to the membership relation (E). Then, dependent H-types stand for dependent

products (function spaces) with functions expressed by A-expressions as their

elements; E-types stand for dependent sums with pairs as their elements. Such a

functional point of view gives us an intuitive understanding of the basic entities

in a type system.

However, ECC is a very rich type theory which combines the impredicative

calculus of constructions and Martin-Löf's predicative type theory. As well-

known by the work of Reynolds [Rey84] [RP88], the impredicative polymorphism

in the second-order A-calculus F [Gir72] [Rey74] does not have non-trivial classical

set-theoretic semantics.' Since F is a subsystem of ECC, we certainly can not

expect any non-trivial classical set-theoretic interpretation of ECC. This calls

for a more elaborate and more careful effort to understand such an impredicative

calculus set-theoretically. Furthermore, the question of how type universes can be

'To be more precise, the standard interpretation of the simply typed .A-calculus can not be

extended to a model of the second-order)-calculus.

129

SET- THEORETIC INTERPRETATION 	 130

understood set-theoretically must also be answered in order to model the whole

calculus.

As discussed and shown by many authors (e.g., [Gir72][Mog85][LM88][See86]

[Pit87][CGW87][Mes881), the impredicative polymorphism in F can be given con-

structive set-theoretic interpretations. In particular, the idea of interpreting types

as partial equivalence relations [Gir72][Tro73b][Mog85] provides us a nice frame-

work of w-sets and modest sets [Mog85][Hy187,82][LM88] in which impredicative

polymorphism can be modeled in a satisfactory way. In fact, this idea can also

be further developed and applied to understand set-theoretically more complex

type theories like the calculus of constructions [Hy187][Ehr88][Luo88a] and ECC

[Luo89a,b]. This would give us an intuitive understanding of the calculus in set

theory.

We show in this chapter how the intuitive meanings of the constructs in

the calculus can be captured mathematically in the constructive set-theoretic

framework of w-sets and modest sets [Mog85][Hy182,87][LM88]. In particular, we

explicate how non-propositional 11-types can be understood as set-theoretic prod-

ucts, propositions as 'small products' isomorphic to partial equivalence relations,

s-types as sets of dependent pairs, and the universes Type 3 as corresponding to

large set universes. Such a model-theoretic interpretation would give us a better

understanding of the calculus and is helpful both in pragmatic applications and

theoretical researches.

We shall not give a model semantics in full detail. There is a known problem

about defining a model semantics of rich type theories like the calculus of con-

structions; that is, since there may be more than one derivation of a derivable

judgement, a direct inductive definition by induction on derivations is question-

able. An attempt by the author [Luo89b] to give a full detailed semantics of

ECC by introducing a notion of canonical judgements seems to be ad hoc and

unsatisfactory. We also refer to Streicher's work [Str88] on a detailed definition

SET-THEORETIC INTERPRETATION 	 131

of such a semantic model for the (pure) calculus of constructions in Cartmell's

framework of contextual categires [Cart78,86]. Further research is needed to gain

a nice approach to this problem.

7.1 Understanding the Calculus in the -Set Frame-

work

The notions of u-sets and modest sets are developed by Moggi and Hyland based

on the idea of interpreting types as partial equivalence relations. Hyland [Hy182]

studied the general properties of u-sets (called separate objects) and modest

sets (called effective objects). Moggi [Mog85] showed that there is a small in-

ternal complete category in the category of u-sets. People have used these no-

tions to give set-theoretic (categorical) models for the second-order polymorphic

X-calculus [Pit87][LM88] [Mes88]. Later, Hyland [Hy187] defined a stronger no-

tion of completeness which can be used to model the calculus of constructions

[Ehr88} [Luo88a].

The following is the definition of u-sets.

Definition 7.1.1 (u-sets) An u-set is a pair

A = (IAI,II - A)

that consists of a set JAI and a relation If-A C w IAI which is surjective (i.e., Va E

Al. 3n E u. nhI-Aa) IAI is called the carrier set of A and IFA the realizability

relation of A.

A morphism f between two u-sets A and B is a function f : IAI - IBI realized

by some partial recursive function, i.e., there exist n E u such that

Va E IAI Vm E u. mlf-Aa = nrnlf - Bf(a)

where nm denotes the result of Kleene application of n to rrì.

SET-THEORETIC INTERPRETATION
	

132

The w-sets and the morphisms between them form the category of ce-sets,

denoted as u—Set. 	 0

Remark The morphisms between w-sets are 'computable', i.e., 'computed' (or

realized) by a partial recursive function. The category w—Set is a concrete locally

cartesian closed category [Hy182][Mog85]. Hence, it provides us structures richer

than those needed to interpret second-order)-calculus. 0

We now discuss how the main constructs in ECC can and should be under-

stood set-theoretically. The main question is how to interpret the type universes

and the type formation operators H and E so that, intuitively,

Prop e Type 0 e Type 1 E ...;

Prop 9 Type0 9 Type 1

Type s is closed under H and E (predicatively);

Prop is closed under II (impredicatively for arbitrary products).

Notice that the universe Prop is impredicative and required to be closed under

arbitrary (possibly circular) product formation. As we remarked above, this

prevents us from working in classical set theory to gain a non-trivial model of the

calculus. Furthermore, there is more than one universe which must be understood

set-theoretically to satisfy the above requirements.

We show in the following sections that, in the framework of w-sets and modest

sets, a model-theoretic understanding of the main constructs can be given to

satisfy these requirements. In particular,

• a valid context is interpreted as an w-set which consists of the 'tuples' of

its components;

SET-THEORETIC INTERPRETATION
	

133

• F-types are interpreted as families of w-sets indexed by the interpretation of

context F; in particular, F-propositions are interpreted as families of objects

of a full subcategory PROP of the category of u-sets which is isomorphic

to the category of partial equivalence relations;

• the lowest impredicative universe Prop corresponds to the category PROP;

and

• the predicative universes Type, correspond to the full subcategories w-Set(j)

of w-Set whose objects have carrier sets residing in the corresponding large

set universes.

In general, a well-typed term M of type A in context F is interpreted as a mor-

phism in w--Set corresponding to an element of the interpretation of A indexed

by the interpretation of F.

7.2 Interpretation of Valid Contexts

A valid context intuitively stands for a sequence of assumptions and assumed

constants. It is interpreted as an w-set which consists of the 'tuples' of the

components of the context. To specify the interpretation of contexts, we need an

w-set constructor, a, defined as follows.

Definition 7.2.1 (a) Suppose that I' is an w-set and A : irl -* w.-Set is a

Fl-indexed family of w-sets. Then, the w-set

a(F,A)

is defined as,

Ia(F,A)l =df { (7,a) I -ï e IFI,a E A(-y) }

if and only if mlf-ry and nlf-A(7)a

where (_, -) is the index for the pair function. 	 0

SET-THEORETIC INTERPRETATION 	 134

The empty context is interpreted as the terminal object of w—Set:

df (1,w x 1)

Suppose A is a F-type interpreted as a [11-indexed family of-sets Er H A : Type]1.

Then, the valid context F, x:A is interpreted as the w-set

EIF, x: Al =df a(I], ir H A : Type 2]J)

A 17-term M of type A is in general interpreted as a 1]-indexed element of

the interpretation of A, i.e., a morphism satisfying the following first projection

property.

Definition 7.2.2 (FPP property) Let F be an w-set and A : 1 171 —p -Set a

1171-indexed family of w-sets. A morphism f: F - a(F, A) in w—Set satisfies the

first projection (FPP) property, written as

f: F FPP (F, A)

if and only if p(F, A) o f = ide , where p(F, A) : a(F, A) —* F is the morphism

defined by p(F, A)(-y, a) =df '-y. Intuitively, f F _*FPP a(F, A) is a 'F-indexed

element of A'. 0

Notice that in a Constructions-like calculus, types and objects are mixed up

in the sense that types are also objects with kinds as their types. Therefore, a

type has a 'double identity' in a model-theoretic interpretation. This is reflected

by the correspondence between constant functions to w—Set and a special kind

of morphisms in w—Set.

Lemma 7.2.3 Suppose F e u—Set and K Fl —f c.'—Set is a constant function

such that, for some set X, K(-y) = (X,w x X) for all 'y e irl. Then, there is a

one-one correspondence between the morphisms from F to o(F, K) which satisfy

the first projection property and the functions from IFI to X.

SET-THEORETIC INTERPRETATION
	

135

Proof The correspondence is given as follows:

. Given f : F FPP a(F, K), the corresponding function f* : Irl - X is

defined by f* (-y) =df x, where E IFl and f(y) = (7,x);

. Given g : IFI - X, the corresponding morphism g ° : F _*FPP cr(F, K) is

defined by g'(-t) = (-y, x), where -y E Irl and g(7) = x.

We have, f *0 =f and g0* =g.

Remark By the above lemma, the interpretations of F-types (whose types are

kinds), which are FPP-morphisms, correspond to F]-indexed family of w-sets,

as kinds in F are interpreted as constant functions from ftF to u—Set of the form

required in the above lemma (see below).

7.3 Interpretation of Universes Type d and H/E-types

Non-propositional types in a context F can be interpreted as 1]-indexed families

of w-sets. The intuition is that s-types correspond to sets of dependent pairs

and 11-types to set-theoretic products, which are given by the following two w-set

constructors.

Definition 7.3.1 (o r-. and 7r) Suppose that F is an w-set, A : IFI - u.—Set is

a IFI-indexed family of w-sets, and B : a(F,A)l - w—Set is a Io(F,A)l-indexed

family of w-sets. Then define

(o r) the IF I-indexed family of w-sets

ar(A,B): IF I -

as, for -y E IFI,

lor(A,B)(')l =df{ (a, b) j a E IA('y)I,b E IB('y,a)l }

SET-THEORETIC INTERPRETATION
	

136

if and only if mIf-A()a and

(7T) the Fl-indexed family of w-sets

irr(A, B): lii -4 —Set

as, for 7 E IFI,

Iirr(A,.B)('y)I =df {f E 	II IB(7,a)l I 3n EW. 7'1firr(A,B)(y)f}
aEIA(y)I

if and only if Va E A(-y) I Vm E w. ml} -A()a 	flmI -B(,a)f(a)

where FIaEA(y)I B('y,a)l denotes the product of the IA(7)l-indexed family of

sets IB('y,a)I.

The interpretations of a s-type and a II-type whose principal type is Type 3

can then be given as:

I[F F- Ex:A.B:Type = cr 11 '1 (1F F- A:Type 3 F,x:A F- B:Type 3]])

F F- Hx:A.B:Type] =, ff 'r j (F F- A:Type,]j, jr, x:A H B:Type)

where IF F- A:TypeJ and F,x:A F- B:Type are the interpretations of A in F

and B in F,x:A, respectively.

We now explicate how the universes Type 3 should be interpreted so that the

requirements we gave in section 7.1 can be satisfied. In other words, we interpret

the predicative universes in such a way that they satisfy the membership relation

Type 3 E Type +1 , the inclusion relation Type 3 g Type 31 , and the closedness

requirement 3 for H and E.

First, large set universes are used to interpret the predicative universes so

that the closedness requirement is satisfied. 2 A basic insight here is that the

notions of w-sets and modest sets have nothing to do with sizes of the sets under

2 The idea of interpreting Type s as large set universes was suggested to the author by

Hayashi, Moggi and Coquand.

SET-THEORETIC INTERPRETATION 	 137

consideration. Consider ZFC set theory with infinite inaccessible cardinals

< 	< ... and let V be the cumulative hierarchy of sets. Then Type 3

corresponds to the following category w-Set(j).

Definition 7.3.2 (c-Set(j)) Let j be a natural number. u.)-Set(l) is the full

subcategory of ci-Set whose objects are those w-sets whose carrier sets are in the

set universe V,ç .. 	 701

The categories -Set(j) are locally cartesian closed. More importantly, they

are closed under the w-set constructors 0 1- and 7rF, because the set universes V,

are models of ZFC set theory.

Lemma 7.3.3 ar and lrr are closed for-Set(j), that is, if A: IF - w-Set(j)

and B: cr(F,A) —* -Set(j), then crr(A,B),7r r(A,B) : I Fl — w-Set(j). 	Cl

The lemma above meets the closedness requirement 3. Furthermore, as V, c

ii i , w-Set(j) is a full subcategory of wSet(]* + 1). This satisfies the inclusion

requirement 2 between the Type,. Note that u,--Set(j) are small categories.

Therefore, they can be naturally viewed as w-sets through the embedding functor

A from the category of sets Set to "et defined as L(X) =df (X,w x X) for

X E Obj(Set), and L(f) =df f for f : X 4 Y in Set. As V,, E V 1 , we

have L(Obj(w-Set(j))) E Obj(w-Set(j + 1)). This satisfies the membership

requirement 1 between the Type,.

Based on these, we interpret the universe Type, as the following I [F -indexed

family of w-sets, for y E I IF] I,

F F- Type, : Type +1]y) =df /.(Obj(w-Set(j)))

3 A cardinal #c is (strongly) inaccessible if it is uncountable and regular, and 2A < r. for all

A < K. See, e.g., [Lev79][Dev79].

SET-THEORETIC INTERPRETATION 	 138

7.4 Interpretation of Universe Prop and Proposi-

tions

Propositions are interpreted as a special class of w-sets which are isomorphic to

partial equivalence relations. Here, the notion of modest set [Hy182,87][Mog85] is

essential. The important point is that the category of modest sets M is closed for

arbitrary products and equivalent to the (small) category of partial equivalence

relations.

Definition 7.4.1 (modest sets) A modest set is an -set A whose realizability

relation is a function, i.e.,

Vn E w Va,b E JAI. nlf-Aa and nlf-Ab = a = b

The category of modest sets, denoted as M, is the full subcategory of w—Set with

the modest sets as its objects. 	 0

Remark The category of modest sets is a concrete locally cartesian closed cate-

gory [Hy182].

Lemma 7.4.2 lrr, is closed for the modest sets in the sense that, for any 1171-

indexed family of w-sets A : Irl - w—Set and any o(F, A)l-indexed family of

modest sets B : a(F, A)l -* M, irr(A, B) is a Ft-indexed family of modest sets,

i.e., ir(A,B) I fl - M.

Proof We follow [LM88][Hy187] to prove the lemma. We only have to show that,

for ' E Ill, llr(A,B)() is a function, i.e., lJr(AB)(y)f and nl_ (A,B)() g implies

f = g. Suppose a e A(7)I. Take in E w such that mlf-A(.)a (m exists as A(-t)

is an w-set). Then we have nmlI-B(.a)f(a) and rlrnIf- ()g(a). As B(y,a) is a

modest set, f(a) = g(a). So, f = g as a is arbitrary. 0

SET-THEORETIC INTERPRETATION 	 139

Although M is closed for arbitrary products as the above lemma shows,

it can not be directly used to interpret the impredicative universe Prop in

Constructions-like calculi. The reason is that M itself is not a small category. If

Prop were interpreted as M, there would be no way to justify Prop e Type 0 . 4

Fortunately, M is an essentially small complete category in the sense that it is

equivalent to the following small category PROP, which is isomorphic to the

category of partial equivalence relations. (Recall that R is a partial equivalence

relation if R is symmetric and transitive.)

Definition 7.4.3 (PROP) The category PROP is the full subcategory of M

(hence, of-Set) with the following object set:

Obj(PROP) =df { (Q(R), E) I R C w x w is a partial equivalence relation }

where Q(R) = { [n] I (n, ri) e R } is the quotient set with respect to R and

	

E ç w x Q(R) is the membership relation. 	 0

Lemma 7.4.4 There is an equivalence of categories back : M - PROP such

that back(A) A for A E Obj(M), and back(P) = P for P E Obj(PROP).

Proof Define back: M - PROP as follows: for A E Obj(M),

back(A) =df (Q(RA), e)

where RA = { (n, m) I 3a E A. nhJ-Aa and rnlf- Aa } is the partial equivalence

relation induced by A, and, for any morphism f: A -* B in M,

	

back(f)([p]R A) = [np] 	where n1FA,Bf

back is a category equivalence with the inclusion functor inc : PROP - M as

its inverse. In fact, we have the identity natural transformation id: idpRop

4This is a little different from the situation in the second-order)-calculus, where the only

universe Type itself does not have a type.

SET-THEORETIC INTERPRETATION 	 140

back o inc and a natural transformation

11: idM — inc o back

defined as follows: for A e Obj(M) and a E J AI, c7A(a) =a []RA, where nhI-Aa.

Hence, for all A E Obj(M), back(A) = inc o back(A) A. Furthermore, for

P = (Q(R), E) E Obj(PROP), we have

Rp = { (n, m) I 3[a1R-rnIFP[a1R and nhl-P[a]R }

= { (n, m) I 3a E w. (m, n e [a]R) }

and so back(P) = (Q(Rp), E) = (Q(R), e) = P. 	 U

A proposition Hx:A.P in context F is interpreted as a I [FJ I-indexed family

of objects of PROP. The basic idea is that, when flx:A.P is a proposition, we

first form the product by 7r1r] operator which results in a I JFJ I-indexed family

of modest sets and then use back to 'take it back' into a family of objects in

I U atuoya

F I- JlIx:A.P : Prop =df back o 7r(rJ(F F A: Tr(A)1, F,x:A F P: Prop)

The impredicative universe Prop corresponds to the category PROP. By

lemma 7.4.2 and lemma 7.4.4, the closedness requirement 4 in section 7.1 is

satisfied, i.e., Prop is closed under arbitrary products. The inclusion require-

ment Prop g Type0 is satisfied by the fact that PROP is a full subcate-

gory of w-.Set(0) and, the membership requirement Prop E Type 0 by the fact

L(Obj(PROP)) E 0bj(w-Set(0)), where L : Set —* -Set is the embedding

functor defined in the last subsection.

Based on these, we interpret the universe Prop as the following I I[FIJ I-indexed

family of w-sets, for y E I jq 1,

hF F Prop: Typeo]](y) =ç L(Obj(PROP))

SET-THEORETIC INTERPRETATION
	

141

7.5 Discussions

In the last section, we give a sketch of a model-theoretic semantics of the calcu-

lus, which explicates how the intuitive understanding of the main constructs in

ECC can be captured in the w—Set framework. From this, we can gain some

further understanding of the calculus. For example, in the interpretation in the

framework of w-sets and modest sets, empty types exist. We can see that the

proposition llx:Prop.x (the logical constant false) is interpreted as the empty w-

set (0, 0). This conforms with the theorem 6.1.5 of logical consistency that there

is no term which inhabits Hx:Prop.x, or putting in another way, Hx:Prop.x is

an empty type. This is an important feature of such a model-theoretic interpre-

tation and one of the reasons that we view such a model as appropriate. There

are other possible and reasonable models. For instance, we can give a truth-value

model of ECC where propositions are interpreted as 0 or 1 (c.f., [Coq89]). Some

other models (e.g., domain-theoretic ones) do not capture the essential proper-

ties of the calculus like logical consistency. Semantic models are often used to

justify the consistency of a logical calculus and to guide and justify new syntactic

extensions. Indeed, an w—Set model construction was used to justify the idea

of including propositions as types at an earlier stage of development of ECC

[Luo88c,a].

The set-theoretic flavor of such a semantics makes possible a deeper under-

standing of the calculus. It may be used as the basis of an informal but precise

explanation for users doing theorem proving and program specification (e.g.,

[LPT89]). For example, the intuitions behind the main constructs of the formal

calculus can be understood set-theoretically as reflected by the model.

Another insight one may gain from the above set-theoretic interpretation is

about how to formalize mathematical problems adequately. As we explained

in section 2.2.3, one of the basic motivations for introducing predicative type

SET-THEORETIC INTERPRETATION 	 142

universes is to allow formalization of the notion of an arbitrary set. Our inter-

pretation of predicative type universes by large set universes supports such an

idea from set-theoretic point of view. In an (intuitionistic) set-theoretic model,

propositions in an impredicative universe are interpreted as rather small sets in-

stead of arbitrary sets. Cirard's paradox gives us a hint that an arbitrary set

should not be formalized as a proposition which may be formed impredicatively.

For example, it seems to be not adequate to formalize an arbitrary group by

assuming its carrier by X:Prop, as we know that X, as a proposition, can not be

viewed as an arbitrary set. Assuming X:Type 0 is more adequate as we can view

Type 0 as containing almost all sets as shown by the above model.

Understanding this distinction between data types (sets) and logical formu-

las (propositions) is very important both in theoretical researches and practical

applications. In practice, based on the above view, an adequate formalization

should not take a proposition as a representation of an arbitrary set. In theoreti-

cal researches, such a view may lead to a better understanding of a formal system.

In fact, our conservativity conjecture discussed in gection 6.1.3 was originally pro-

posed partly based on the above set-theoretic understanding of the calculus. The

recent result of Geuvers and Berardi about non-conservativity discussed in sec-

tion 6.1.3 gives another support of such a view from another angle. It is obvious

that a formal treatment of these is called for and more researches are needed to

make it well-understood.

It should be possible to give a full and detailed interpretation of the calculus

based on the ideas sketched in this chapter. We remark here that defining such a

detailed semantics for a Constructions-like calculus is a very sophisticated work.

Because of the existence of the conversion rule, there may be more than one

derivation of a derivable judgement. The induction principle used to define the

semantics has to be carefully considered and examined. It seems possible to have

a unified way to solve these problems in general for rich theories of dependent

SET-THEORETIC INTERPRETATION
	

143

types, instead of using somehow ad hoc methods; but this needs further research

(c.f., [Str88] [Luo89b]).

Chapter 8

Theory Abstraction in Proof

Development

ECC is a formal calculus which embodies rich structural facilities as well as a

strong logical mechanism. One of the pragmatic applications of the theory is to

formalize mathematical problems and to be used as a basis for proof development

in (interactive) theorem proving.

ECC, like many type theories including the Automath type theory, Martin-

Löf's type theory and the calculus of constructions, is a basic calculus which can

be used to do (interactive) proof development based on a proof checker (for ex-

ample, the LEGO system [Po189][LPT89], which supports ECC as well as some

other related type systems). However, ECC has much stronger structural mech-

anisms which support more powerful reasoning facilities for proof development.

In particular, the s-types and type universes provide a nice abstraction mecha-

nism which can be used to do abstract structured reasoning in a desirable way,

as we shall discuss below.

In this chapter, we discuss using theory abstraction to develop large proofs

by structured abstract reasoning. We show how mathematical theories can be

formalized by the abstraction and modularization facilities which the calculus
144

THEORY ABSTRACTION 	 145

provides and how abstract reasoning and structured reasoning can be done in

our setting.'

8.1 A Notion of Theory

We need a notion of theory in proof development to do large proof development

in a structured and modular way, just as modular programming in large program

development. Obviously, some good form of theory mechanism is called for to

express this intuitive notion of theory in people's mind so that it can provide us

a nice approach to proof development.

What is a theory? Although people feel there is a rather clear intuition about

this, this question can not be answered precisely unless we set up a formal mecha-

nism of theory manipulation. In fact, different theory manipulation mechanisms

give rather different impressions of what a theory might be. Here, we take a

simple view that a theory in a proof development system basically consists of a

signature (a group of basic notions, say constants and function symbols), a group

of hypotheses (say axioms) and the proved theorems (possibly together with their

proofs).

We also conceptually distinguish between concrete theories and abstract the-

ones. A concrete theory in the calculus, as we have pointed out in section 6.1,

is presented as a valid context. Proved theorems of such a concrete theory are

then a set of provable formulas in the theory. For example, a concrete theory of

natural numbers would be expressed in ECC as a context rNat of the following

form

nat:Type0 , O:nat, .suc:nat --~ nat, +:nat -p nat -f nat,

'The idea of structuring theories in proof development was suggested to the author by

Burstall and the current presentation also benefits from discussions with Coquand, Taylor and

Pollack.

THEORY ABSTRACTION
	

146

where '...' contains the assumptions of the axioms for natural numbers. One

might formalize a theory of semigroups as a concrete theory as follows:

X:Type 0 , o:X - X -f X, P:PASS

where an arbitrary type X stands for the carrier, o for the binary operation over

X, and p is an assumed proof of the axiom of associativity PASS fix, y, z:X.(xo

(y o z) = (x o y) o z). When a large proof uses many theories, which may depend

on one and another in various ways, some notion of 'modularization' is needed to

control the complexity. This is analogous to the need for modules in programming

in the large.

It is interesting to see that we can express a notion of abstract theory as

well by using s-types and type universes, which provides a good modulization

mechanism for abstract and structured reasoning. We first explain the basic idea

of using strong sum to express abstract structures and mathematical theories

through an example. Instead of formalizing a theory of semigroups as a concrete

theory as above, we express an abstract theory of semigroups as consisting of two

parts:

an (abstract) signature presentation Sig-SG 	X:Type 0 .X -* X - X;

the (abstract) axiom which is a predicate Ax-SG over Sig-SG which, when

given any structure .s of type Sig-SG, returns the associativity axiom for s.

Furthermore, these two parts of the semigroup abstraction can be 'packaged'

together as

Mod-SG 	s:SigSG.AxSC(s)

Then, to postulate an arbitrary semigroup is just to assume a context sg:ModSC.

The projection operators can be used to extract the components of any semigroup

(i.e., an object of type Mod-SG). One can then prove (abstract) theorems about

arbitrary semigroups. Such abstract theorems constitute a predicate Thm_SG

THEORY ABSTRACTION
	

147

over Sig-SG, which can in general be expressed as the following form (say, n

theorems have been proved):

ThmSG \s:SigSG. P1 & ... & P,

Their (abstract) proofs are then a function Prf_SC of type

Hsg:Mod_SG. Thm_SG(7r 1 (sg)). That is, given any concrete semigroup structure

(i.e., a type and a binary operation over the type which satisfies the associativity

axiom), Prf_SG will result in the proofs of the concrete versions of the theorems

for the given semigroup structure.

We now generalize the above ideas to the following definition of (abstract)

theory.

Definition 8.1.1 (abstract theories) A presentation of an abstract mathe-

matical theory T in ECC consists of four components

T = (Sig-T, AxT, ThmT, PrLT)

where

• Sig_T is called the signature presentation of T, which is in general a >-type;

• Ax_T is called the abstract axioms of T, which is a predicate over Sig_T

(typically, of type Sig..T -* Prop);

• Thm_T is called the (proved) abstract theorems of T, which is a predicate

over Sig_T (typically of type Sig_T - Prop) and generally of the form

As:Sig_T. P1 & P2 & ... & P,, ;. and

• Prf_T is called the abstract proofs of the theorems of T, which is of type

Ht:Mod_T.ThrrLT(7r 1 (t)), where

Mod...T 	s:Sig..T.Ax_T(s)

is the type of the T-structures satisfying the T-axioms (the models of T).

THEORY ABSTRACTION
	

148

Somehow abusing the terminology, we often call Mod_T the abstract theory. E

Remark It is easy to see that, in this setting, any abstract universal algebra

with finitely many sorts, operators and axioms can be formalized as an abstract

theory. One can also formalize categorical notions (e.g., the category of all small

categories) in a similar way. Note that predicative universes are important in

formalizing abstract theories. I:

We shall show below that the notion of (abstract) theory presented above

nicely supports an approach to abstract reasoning and structured reasoning.

8.2 Abstract Reasoning

The idea of abstract reasoning is that, instead of re-proving a theorem for many

concrete theories, we can prove an (abstract) theorem in an (abstract) theory,

then simply instantiate the abstract proofs as concrete ones for free. The notion

of abstract theories for computer-assisted reasoning is analogous to the notion of

'parameterized modules' for modular programming. It becomes more useful as

the task of proof development becomes large.

How this idea of abstract reasoning by proof instantiation can he expressed in

the notion of theory we presented above is best explained by a simple example.

Consider the abstract theory SC of semigroups and suppose that we have proved

some (abstract) theorems about it:

ThmSG .As:SigSG. P1 & ... & P

2 W use the phrase 'abstract reasoning' here in the sense of Paulson [Pau87], where he

points out its desirability and the fact that the theory mechanism of Cambridge LCF, which is

based on ideas of [SB83], does not support it.

THEORY ABSTRACTION 	 149

Prf_SG Asg:Mod_SG. and_i ntro(p1
, ..., p)

We can then, for instance, instantiate these theorems and proofs to the concrete

ones about natural numbers and + (or other similar concrete theories) whenever

we have proved that the structure consisting of nat and + satisfies the associativ-

ity axiom (say, with proof ass_nat_plus). The instantiated proofs are then easily

constructed as

Prf_Nat_SC Prf_SG((nat, +), ass_nat_plus)

Remark The facility of abstract reasoning comes from the power of 11-abstraction.

However, the type universes make it possible to formalize abstract mathematics

(like the theory of semigroups) adequately and E-types are important for 'pack-

aging' the formalization in a well-structured way. Based on such a mechanism,

one may build up a theory base consisting of well-organized (abstract) theories

with proved theorems which can be used by users in many different ways. Such

a theory base would be very useful for large proof development tasks.

8.3 Structured Reasoning

In larger proof development activities, one hopes to conquer a big and complex

task by dividing it into smaller and simpler ones and then putting the results

together in a structured way. We discuss here two aspects of this idea.

8.3.1 Proof inheritance

Proof inheritance between theories through theory morphisms [TL88][Coq89] al-

lows the theorems and proofs of a smaller and weaker theory to be inherited as

those of a bigger and stronger theory.

3 From now on, we elide the explicit typing in the pair operator for notational convenience.

THEORY ABSTRACTION
	

150

A morphism from an (abstract) theory T to another T' is a pair of functions

(f,g) where

f: Sig_T -* Sig_T'

g : Hs:Sig_T. Ax-T(s) -p Ax_T'(f(s))

The existence of such a morphism means that T is stronger than V. A typical

example of such a morphism is when T (say, theory of rings) is a theory which

contains more sorts or operators and stronger axioms than a theory T' (say, SG);

there is a 'forgetful' morphism whose first component, f, forgets the extra sorts

and operators and whose second component gives proofs of the axioms of T'

under the translation of f.

Given such a morphism, we can inherit the proofs of theorems in the weaker

theory T' as the proofs of the corresponding theorems in T in the following way.

Suppose Prf_T' is the (abstract) proofs of the theorems proved for T' which is of

type Ht':T'. Thm_T'(ir 1 (t')). Then, the corresponding (abstract) theorems in T

Thm(T,T') .\s:Sig_T. Thm_T'(f(s))

are proved by the following proofs inherited from Prf_T':

Prf(T, T'))i:Mod_T. Prf_T'(f(ir1 (t)),g(ir1 (t), ir2 (0))

For example, the theorems about semigroups can be inherited as theorems about

rings through a forgetful morphism. (There are indeed two forgetful morphisms

which concern the operators plus and multiplication, respectively.) The idea of

divide-and-conquer (and separation of concerns) is embodied in proof inheritance.

Simpler and more general theorems are dealt with in simpler and weaker theories,

and then inherited (or lifted) to more complex and stronger theories.

8.3.2 Sharing by parameterization

Structure sharing is important for modular proof development just as it is for

THEORY ABSTRACTION
	

151

modular programming. The type hierarchy of ECC provides a strong form

of polymorphism and hence a facility of defining higher-order modules. With

this, one can define functions between abstracted modules and express shar-

ing by parameterization to structure proof development in the style of Pebble

[Bur84][LB881, where the type of all types exists. We explain this by an exam-

ple.

Example We define a function ringGen which results in a ring structure when

given as arguments a semigroup and an abelian group with the same carrier,

and a proof of the extra axiom (the distributive laws). Suppose the theories of

semigroups and ahelian groups are defined as follows:

Mod-SG >s:EX:Type0 .SGwrt(X). Ax-SG(s)

Mod-AG >g:EX:Type0 .AGwrt(X). Ax-AG(g)

where SGwrt, AGwrt : Type 0 - Type 0 and, when given X : Type 0 as carrier,

give as results the types of the operations for semigroups and abelian groups with

respect to X, respectively, and Ax-SG(s) and Ax-AG(g) are the propositions

expressing the axioms of theories for semigroups and abelian groups.

ringGen can then be defined as

ringGen E AX:Type 0

A * :SGwrt(X) Ap:Ax_SG(X, *)

A(+,O,'):AGwrt(X) Aq:Ax.AG(X,+,O,')

Ad:PDJSTR. ((X, +, 0,') *), and_i ntro(p, q, d))

which is of type

HX :Type 0

11* :SGwrt(X) Hp:AxSG(X, *)

THEORY ABSTRACTION 	 152

Hg:AGwrt(X) llq:AxAG(X,g)

Hd:PDISTR. Mod-Ring

where PDISTR is the proposition for the distributive laws and Mod-Ring is the E-

type for the abstract theory of rings defined similarly to Mod-SG and Mod-AG.

ringGen guarantees that its two arguments have the same carrier. 	 0

Note that SGwrt and AGwrt are what are often called 'parameterized mod-

ules'. Supported by such a facility, the idea of divide-and-conquer can be suc-

cessfully used for proof development. For example, ringGen is useful to organize

proof inheritance when a structure can be viewed as a ring in different ways.

When some proofs of justifying the construction of a required structure (ring in

this case) are more complicated, this is desirably useful to make proof develop-

ment structured. It is easy to see that such a facility is also useful for structured

programming.

Remark There are several different ways to control structure sharing which

appear in programming and specification languages ML [HMM86][Mac86], Pebble

[LB88] and Clear [BCog8O] (see [Bur84] for a simple explanation). Note that,

as Thierry Coquand pointed out to the author, propositional equalities (e.g.,

Leibniz's equality) can not be used to express sharing constraints in the style of

ML, since by structure sharing people mean that two substructures are the same

in a quite strong sense which can not be expressed adequately by propositional

equalities. For example, the following term

)X:Type0AY:Type0)tz:(X =Type. Y). Vx:Xy:Yx =x y

is not well-typed because the variable y is not of type X. The required proof z

Of X Type. Y does not play a role to indicate that X and Y are the same (i.e.,

convertible) as a sharing constraint does. 	 U

THEORY ABSTRACTION
	

153

8.4 Discussions

We have shown above that s-types and type universes provide expressive mech-

anisms to express a notion of (abstract) theory for structured abstract reasoning.

As well-known, existential types (or weak sums) [MP85][Rey83][Pra65] can be

defined in the calculus of constructions [C1185], as we defined it in section 6.1.1

the logical existential quantifier. It is interesting to note that similar construc-

tions can be given at the predicative levels of ECC [Luo89a], as we shall show

in section 9.2.2, which are useful to express abstract data types in programming

[MP85].

However, existential types are not useful to express mathematical theories

because they 'hide' the proofs: the elimination operator for the weak sum is too

weak and, in particular, there is no way to prove that the first component of a

'weak pair' of type ax:A.B satisfies the property B. To express mathematical

theories as we have shown above, strong sums (s-types) are needed. A compar-

ison of strong and weak sums in the context of modular programming can be

found in [Mac86].

The approach to theory abstraction discussed above adopts a view of 'theories

as types'. More precisely, abstract theories are expressed as E-types in our formal

calculus, which provides a solid basis to guarantee the correctness of using the

theory mechanism based on it. There is another approach to theory structuring

[SB83][BLuo88][HST89] borrowing ideas from research in algebraic specification

languages like Clear [BGog80]. The ideas in [S1383] are used in Cambridge LCF

theory mechanism [Pau87J. This latter approach may be called 'theories as meta-

values', as there are theory operations to 'put theories together', which are per-

formed at the meta-level of implementation. In the Automath project, ideas like

telescope of organizing mathematical texts through manipulating contexts were

considered [dB80][Zuc75]. Further research and experience are needed to show

THEORY ABSTRACTION 	 154

what is necessary and whether it is possible to combine these ideas together.

As a final remark on the theory mechanism we described above, we note that

the notion of abstract theories may even be internally formalized in ECC. 4 We

may describe it as an (abstract) theory, as the following example shows.

Example An internal description of the notion of abstract theory:

• The class of signature presentations SIC can be represented as Type 1 :

SIG =dI Type1

• The signature-parameterized classes of abstract axioms may be represented

as:

AX =df 	 S —* Prop

• The class of abstract theories can be represented by the following E-type:

ABS =df Es:SIG.AX(s)

Its constructor and destructors are:

Abs =df)s:SIGAax:AX(s).(s,ax)

Sig =df)1T:ABS.7r1(T)

Ax =11 .XT:ABS.7r2(T)

• Given an abstract theory T of type ABS, we can represent the set of T-

structures satisfying the T-axioms (the models of T) as:

Mod(T) =ç Es:Sig(T).Ax(T)(.$)

Mod is of type ABS - Type 1 .

4Thanks to Taylor and Pollack for discussions on this [TL88].

THEORY ABSTRACTION
	

155

• Let P2 : Sig(T) —+ Prop (i = 1, ...,n) be the proved abstract theorems of

an abstract theory T : ABS. They can be represented as:

Thm(T) =ç)s:Sig(T). P1 (s)&...&P(s)

Thin is of type 11T:ABS. Sig(T) —* Prop.

• Let p1 (s) be the proof of P1 (s) (i = 1, ...,n) above. The proofs of the

abstract theorems can be represented as:

Prf(T) =df .Xt:Mod(T). and_i ntro(p1 (ir1 (t)), ...,p(ir1 (t)))

where and-intro is the proof operator corresponding to the &-introduction

for n formulas. Prf is of type HT:ABSIIt:Mod(T). Thm(T)(7r 1 (t)).

The notion of theory morphisms can also be formalized to represent the idea of

proof inheritance.

• The set of morphisms between abstract theories T and T' of type ABS can

be represented as:

Mor(T,T') =df >f:Sig(T) —+ Sig(T'). lls:Sig(T).Ax(T)(s) —+ Ax(T')(f(s))

Mor is of type ABS 4 ABS — Type 1 .

• Given a morphism m = (f,g) of type Mor(T,T'), the proved abstract

theorems Thm(T') in T' are transformed by the morphism m into the cor-

responding abstract theorems ThmTrans(T, T')(m) in T:

ThmTrans(T, T')(rn) =df .\s:Sig(T). Thm(T')(7r 1 (rn)(s))

ThmTrans is of type IIT:ABSHT':ABSHm:Mor(T, T'). Sig(T) — Prop.

• The transformed theorems above are proved by the following (transformed)

proofs:

PrfTrans(T, T')(rn) =df At:Mod(T). Prf(T')(ir 1 (m)(ir1 (t)), 7r 2 (rn)(7r 1 (t) 1 7r2(0))

THEORY ABSTRACTION
	

156

PrfTrans is of type

HT:ABSHT':ABSHm:Mor(T, T') flt:Mod(T).Thm(T')(7r 1 (m)(7r 1 (t)))

U]

Remark The above example of internalization shows that the calculus ECC

is very expressive. Besides this, it is interesting to note that, in the internal

formalization above, types at the fourth level of the type hierarchy (of type

Type- 2) are necessarily used. From this, one may expect that, in some more

sophisticated applications, higher type universes are also useful. 0

Chapter 9

Some Issues in Program

Specification and Programming

In this chapter, we briefly discuss how to view the extended calculus of construc-

tions ECC as (a core of) a programming logic. By a programming logic, we mean

a formal system which integrates facilities of programming with a consistent logic

so that program specifications can be expressed and program development can be

discussed in the system. ECC may be viewed as a programming logic according

to the following:

. There is a powerful higher-order logic embedded in ECC (as shown in

chapter 6);

• The A-abstractions and the rich type structures provide core mechanisms

to support typeful functional programming;

• E-types in ECC provide a basic adequate mechanism for program specifi-

cation and program development.

A full investigation of using ECC as a programming logic is out of the range

of this thesis. There are many interesting problems in this aspect to be further

157

PROGRAM SPECIFICATION 	 158

studied. We shall concentrate on some specific aspects of using ECC to do

program specification and programming and try to show its potential power as a

programming logic.

Particularly, we show that Leibniz's equality (see definition 6.1.4) can be used

in program specifications to model computation as it reflects the definitional

equality (theorem 9.1.1). This shows that there is no need to add a new extra

propositional equality to the theory to reflect definitional equality. Comparisons

with Martin-Löf's type theory in this aspect are discussed.

We also discuss how the predicative levels of the calculus provide us with pro-

gramming facilities. We first show that Leivant's finitely stratified polymorphic

A-calculus can be embedded in the predicative levels of ECC, which indicates

that the predicative levels of ECC provide programming power. Then, we dis-

cuss how existential types may be defined at the predicative levels to express

abstract data types.

9.1 Program Specification and Equality Reflection

As we have discussed in the introduction, E-types provide a basic adequate mech-

anism for program specifications. Most of the previous research in this aspect

is mainly based on Martin-L&'s type theories. Since the calculus of construc-

tions does not have E-types, how to use it in program specifications has not been

investigated. ' Particularly, how to take advantage of the logical power provided

by impredicativity in applications like program specification has not been paid

enough attention to investigate. After showing how program specifications can

be expressed in ECC using E-types, we show that Leibniz's equality can be used

to reflect the definitional equality (conversion); this can be seen as an example

'The impression that strong sum is inconsistent with impredicativity and the difficulty of

adding E-types seems to have prevented people from considering this aspect.

PROGRAM SPECIFICATION 	 159

showing the advantage of having a powerful higher-order logic.

Following the idea that problems (specifications) correspond to types and

solutions (programs, implementations) to elements of specifications expressed as

types, a program specification in ECC can be expressed in the following basic

form as a E-type:

S Ef:A -* B. P(f)

where A and B are the types of inputs and outputs of the programs to be specified,

respectively, and P(f) is a proposition describing the properties that the correct

implementations are required to satisfy. An term I which provably inhabits this

specification (i.e., F- I: S) shall be a pair (F, p) constituting a function (program)

F and a correctness proof that F satisfies the required properties. It is obvious

that our idea of lifting propositions as types so that propositions can be used in

E-types is essential for such an idea of program specification to be expressed in

ECC.

However, such a basic structuring mechanism is in fact not quite enough for

specifications yet. Something more has to be considered. For example, based on

the above idea, a specification of the identity function of type A - A (supposing

A to be a ()-type) would be the following:

ID 	>f -* A. Hx:A.f(x) = x

Then, one must ask: what is the equality = in the above specification? In fact,

this is an important problem we must consider when claiming that program

specifications can be expressed in a type theory like ECC. When we write down

the equality above, we certainly mean that it is modeling the computational

equality in our mind (1(a) and a are computationally equal, i.e., they both

compute the same value as their results).

When type theories (A-calculi in general) are viewed as programming lan-

guages, computation is modeled by reduction (i) and the computational equal-

PROGRAM SPECIFICATION 	 160

ity by the definitional equality conversion
().2 However, we certainly can not

put to replace = in ID is not a formal entity directly expressible in the

calculus. In other words, we must have a propositional equality which can be

used to model the computational equality (i.e., conversion).

In Martin-Löf's type theories, an extra propositional equality (equality type)

is used, as we mentioned in the introduction. The weak intensional equality type

in [ML73] reflects the definitional equality; the strong extensional equality type

in [ML84] is equivalent to the judgemental equality.

In our theory ECC, thanks to its strong power, there is no need to add a new

propositional equality to model the definitional equality. We show that Leibniz's

equality, =A (see definition 6.1.4), does reflect the conversion relation.

Theorem 9.1.1 (equality reflection) Suppose F- a1 : A and F- a 2 : A. Then,

a1 a2 if and only if I- M : a1 =A a2 for some term M.

Proof Necessity. If a1 a2 , we have by the type conversion rule,

I- .AP:A -* Prop\x:Pa1 .x : (a1 =A a2)

Sufficiency. If I- M : (a1 =A a2), by strong normalization theorem, we may

assume M, A, a1 and a2 are all in normal form. So, M must be of the form

-4 Prop.Ax:Pa1 .M' such that P:A - Prop,x:Pa1 F- M' : Pa2 . Since

M' is in normal form, it must be a base term. Let y be the key variable of

M'. y can not be P. We have y x. Therefore, it must be the case that

M' x, for otherwise, Qz:A 1 .B 1 Pa2 for some A 1 and B 1 , where Q E {H, El,

which is impossible. Noticing that the only rule which can be used to derive

P:A -* Prop,x:Pa1 F- x : Pa2 is the conversion rule, we conclude a1 c a2 by

2 Here, we take a simple point of view. One may consider more sophisticated computational

equality like those subject to observational equivalence. But, reduction and conversion are the

more basic notions which are incorporated in other notions of computation and computational

equivalence.

PROGRAM SPECIFICATION
	

161

Church-Rosser theorem.
	 II

This result of equality reflection gives a justification of the adequacy of using

Leibniz's equality in program specifications to model definitional (computational)

equality. For example, the specification of identity function can now be given as

follows:

ID Ef:A - A. Vx:A.f(x) =A x

This specification is adequate. For any implementation (id, p) of ID (I— (id, p)

ID) and for any object a of type A (I— a: A), we have by the above theorem of

equality reflection,

id(a) 	a

Remark The above reflection result was realized and proved by the author when

considering the adequacy problem of using Leibniz's equality to reflect computa-

tional equality (c.f., [Bur89a]) . 3 A nice consequence is that, unlike Martin-Löf's

type theories, we no longer need to add a new equality to our calculus when we

use s-types to do specifications. This is one of the benefits we gain from com-

bining impredicativity with (predicative) E-types. Lim

To close this section, we conclude that s-types based on the idea of lifting

propositions as types and the result of equality reflection provide a basic adequate

mechanism for program specifications in ECC.

3 After we had formulated and proved the reflection result (and reported it in LICS'89), the

author was informed that Martin-Löf had a similar proof of this fact for the first version of his

type theory with a type of all types [ML71]. Although the system Martin-Löf considered is

inconsistent, his proof is essentially the same as what we give.

PROGRAM SPECIFICATION 	 162

9.2 Programming at Predicative Levels

As ECC is a very rich type system, there may be different ways to view it as

a programming logic and further research is needed to investigate these pos-

sibilities. For example, programming facilities are provided by its underlying

A-calculus, at both the impredicative level and the predicative levels. It is well-

known by results about the polymorphic A-calculus (c.f., [Gir72] (Rey 74][BB85])

that the impredicative level of ECC provides programming power. Theoretically

speaking, the class of representable functions in F are exactly those which are

provably total in the higher-order arithmetic [Gir73].

On the other hand, the predicative levels of ECC also provide programming

facilities. Recently, Leivant [Lei89] has studied a stratified variant of the second-

order polymorphic A-calculus (called S2A') and shown that the functions rep-

resentable in the finitely-stratified A-calculus are precisely the super-elementary

functions .4 We shall show below that Leivant's finitely-stratified polymorphic

A-calculus can be embedded in the predicative levels of ECC through an easy

interpretation. This shows that the predicative levels of ECC provide us pro-

gramming power as well.

It is then possible to view ECC as a programming logic in the following way:

. the embedded logic resides in the impredicative universe (Prop);

. the programming facilities are provided by the predicative universes; and

• the predicative levels also provide structural power for programming and

specification.

Such a view has an advantage that there can be a clear conceptual distinction

between data types and logical formulas. In our point of view, data types are

4 Leivant also shows that the functions representable by the stratified polymorphic A-calculus

up to w" are exactly the primitive resursive functions.

PROGRAM SPECIFICATION
	

163

represented by non-propositional types. Propositions are just used to stand for

logical formulas; they are not data types.

9.2.1 Embedding stratified polymorphism in ECC

Leivant's finitely stratified polymorphic)-calculus S2X" is similar to the second-

order \-calculus except that the types are classified into levels numbered by

natural numbers. We refer to [Lei89] for the original presentation of S2).

S2A' can be formulated by explicit typing terms as follows, from which it is

easy to see that it can be represented at the predicative levels of ECC.

• Type expressions and their levels:

Type variables at the jth level (i:Type3) are type expressions of level

.1;

Arrow types: If A and B are type expressions of levels i and j respec-

tively, A - B is a type expression of level max{i,j}, i.e., (assuming

that all of the free variables in A and B are in F, similar below)

FI- A:Typ; FI- B:Type,

F I- A -p B : TYPemaX{i,j}

This is a derivable rule in ECC.

Universal quantification: If B is a type expression of level i and t a

type variable of level j, then Vt:Type 3 .B is a type expression of level

max{i,j + 11, i.e.,

F,t:Type F B : Type 1

F F Vt:Type 3 .B : Type ax{j ,jl}

Mapping V as H, this is a derivable rule in ECC.

• (Object) expressions and their typings:

PROGRAM SPECIFICATION
	

164

Individual variables associated for each type expression A (x:A) are

object expressions whose types are A;

\-abstraction (of objects): If M is an expression of type B and x is an

individual variable of type A, then Ax:A.M is an expression of type

A - B, i.e.,

F,x:A FM: B

FFAX:A.M:A-3'B

Note that an individual variable does not occur in a type expression,

so the above rule is derivable in ECC.

Object application: If M is an expression of type A - B and N is an

expression of type A, then MN is an expression of type B, i.e.,

FFM:A-4B FFN:A

FF MN: B

This rule is a special case of the rule (app) in ECC.

A-abstraction (of types): If M is an expression of type B and t is

a type variable of level j, then At:Type 3 .M is an expression of type

Vt:Type 3 .B, i.e.,

F,t:Type FM: B

F F At:Type,.M : Vt:Type,.B

In ECC, we do not distinguish type abstraction with object abstrac-

tion. Just mapping At:Type 3 .M as)d:Type.M, the above rule is

derivable in ECC.

Type application: If M is an expression of type Vt:Type.B and A is

a type expression whose level is less than or equal to j, then MA is

an expression of type [Alt]B, i.e.,

FFM:Vt:Type.B FFA:Type 1
(i<j)

F F MA: [A/t]B

PROGRAM SPECIFICATION 	 165

By rules () and (app), the above rule is derivable in ECC.

For a type expression A, Nat(A) abbreviates the type expression A - (A

A) -* A. The nth numeral at the level j is represented by the expression

=& At:Type)tx:L\s:t -f t.s [n] x

where 0] 	 1 [i+] 	/ Eu
ere S X =df x a 	x = ss x). The type of 1' is Vt:Type.Nat(t).

Definition 9.2.1 (slant numerals) Let A i, be a type expression of level 2k (k =

1 1 ..., m) and A a type expression of level i. An expression M represents slantwise

(at levels (j i ,...,jm ,)) an m-ary recursive function f if, for any natural numbers

nl, ... ,nm ,n,

= n if and only if 	 'Wi 2

I.

The Grzegorczyk classes Sk (k > 0) classify the class of primitive recursive

functions [Grz53][Ros84]. Sk consists of the recursive functions generated by

function composition and bounded recursion from zero, successor, the projection

functions and the function Fk, where F0 =df .suc (the successor function) and

F +i(x) =df Fk
[x] (x) with F[x] being the xth interate of F. In particular, S3 is

the class of elementary functions and E4 is called the class of super-elementary

functions.

Theorem 9.2.2 (Leivant [Lei89]) The recursive functions representable slant-

wise in S2X" are exactly the super-elementary functions. 	 0

By Leivant's result, we have

Corollary 9.2.3 The super-elementary functions are representable at the pred-

icative levels ofECC. 	 0

PROGRAM SPECIFICATION 	 166

9.2.2 Existential types and discussion

Besides the basic programming power of expressing functions, the rich type struc-

tures at the predicative levels provide structural mechanisms for modular pro-

gramming. For example, E-types supports a form of module mechanism (c.f.,

[BLam84] [Mac861) and parameterized sharing [Bur84] [BLam84] can be expressed.

Furthermore, we would like to show below that existential types can also be de-

fined at the predicative levels of the theory [Luo89a] which can be used to express

abstract data types [MP85].

Following the idea of defining the (impredicative) existential quantifier (see

section 6.1.1), we can define the ith level existential-type constructor as follows:

—df AA:Type 2)B:A -p Type 1 .

HC:Type 2 (Hx:A.(B(x) - C)) - C

which is of type IIA:Type 1 ((A - Type 1) -* Type 21). The introduction and

elimination operators rep2ix :AB(x) and abstype t can be similarly defined as,

rep' =df AA:Type, .AB:A -+ Type 1

)x:A)y:B(x)

AC:Type 1)tp:Hz:A.B(z). p(a, b)

which is of type

IIA:Type 1 HB:A -4 Type 1 flx:Ally:B(x). '(A, B)

and

abstype1 =df \AType 1)B:A - Type 1

.AM:(A, B) \C:Type 1

)N:Hx:A.(B(x) - C).

M(C,N)

PROGRAM SPECIFICATION
	

167

which is of type

HA:Type 2 flB:A -4 Type1llM:'(A,B)llC:Type1HN:llx:A.(B(x) - C). C

According to the notation of [MP85], we may write rep'(A, B, a, b) as

rep3.AB(X)(a, b)

and abstype 2 (A, B, M, C, N) as

abstypet x with y:B(x) is M in N(x,y)

They satisfy the desired properties such as

abstype x with y:B(x) is rep. S.AB()(a, b) in N(x,y) tp [b/y] [a/x]N(x,y)

Note that, unlike the propositional existential quantifier 1, these 'weak sums'

are defined at the predicative levels. They can similarly used to play the role of

information hiding and thus of expressing abstract data types for programming.

This seems to show that, for expressing abstract data types, the impredicativity

is not important. Of course, we do not have these predicative types as values in

the strong sense of [MP85]; e.g., °x:A.B (i.e., ° (A, B)) is of type Type 1 but

not of type Type 0 . These existential types are useful for describing abstract data

types in programming.

ECC lacks recursive data types to support the ordinary recursive program-

ming style. Whether the data types like those of natural numbers, lists etc.

which are definable by coding techniques [BB85][CH85] are suitable for real pro-

gramming is still to be further investigated. One may extend the calculus with

inductive types. For example, it is possible to introduce the types of natural

numbers, lists etc. as in Martin-Löf's type theories. Another way may be to

introduce a general inductive-type constructor t, as considered by Coquand and

Mohring [CM89] and Ore [Ore89], with the following formation rule:

F,x:Type, H A: Type 3
(j (=- W)

IF H ,ax:Type3 .A: Type,

PROGRAM SPECIFICATION

where the free occurrence of x in A must be strictly positive, together with other

introduction and elimination rules. Then, one can define the usual concrete data

types like those of natural numbers, lists, trees, etc.. Coquand and Mohring

[CM891 studied how inductive types can be extended as predicative types and

give a nice account of the issue. Ore [0re89] studies how ECC may be extended

with inductive types based on Coquand's idea and how the set-theoretic model

for ECC may be extended to inductive types. We refer to [CM89] and [0re89]

for further details. This intereting direction of research is in progress.

Chapter 10

Conclusions and Further Research

In this thesis, the Extended Calculus of Constructions ECC has been presented

and studied as a promising calculus for formalization of mathematics, computer-

assisted reasoning and program specification. There are some open problems and

further research topics which we feel interesting and summarize as follows.

Concerning about the theory ECC itself, we have left some open problems

to be solved. The relationships of the embedded higher-order logic with other.

logical systems are to be investigated. The conservativity conjecture discussed in

section 6.1.3 is one of the interesting problems in this aspect. The proof-theoretic

power of the theory ECC is unknown; it seems to be much smaller than ZF set

theory. In the realizability model described in this thesis, large set universes are

used to interpret the predicative universes. It may be possible to give a small

model without using large set universes.

Some possible extensions to the calculus ECC may be considered interesting.

Inductive types have been mentioned in section 9.2.2 and are useful for appli-

cations in program development and theorem-proving. One might consider the

problem of including i7/lr-conversions into the theory, which are useful for some

technical reasons; whether they are important in practice is to be seen. For this,

we refer to a recent relevant work by Salvesen [5a189] which considers the Church-
169

CONCLUSIONS 	 170

Rosser property of LF with q- conversion. Another extension of purely theoretical

interest might be to extend the predicative levels to larger ordinals, say wW. This

might be interesting when considering the problem of proof-theoretic power of

the predicative levels (c.f., [Lei891).

Further research about semantical models of rich type theories with depen-

dent types needs to be carried out in order to have a disciplined way to define

semantics. One may also consider models in a more traditional sense by viewing

contexts as (logical) theories. It seems that to achieve this requires a deeper

understanding of existing approaches to semantics of type theories as well as the

proof-theoretical aspects of type systems.

In the aspect of applications, further practice in theorem-proving and pro-

gram specification is needed to examine whether the facilities provided by the

theory are adequate and strong enough in reality. A good direction would be

to use the basic theory mechanism described in chapter 8 to build up theory

bases for particular application areas and, based on them, to do practical ex-

amples of development of proofs and programs. Such a practice may be done

in a proof development system like LEGO [Po189][LPT89] together with some

supporting tools. An implementation of an environment supporting theory de-

velopment may directly based on the ideas described in chapter 8 and use ideas

from [SB83][BLuo88] to provide theory-building operations. How to combine

these nicely is to be further investigated.

Bibliography

[Bar84] 	H.P Barendregt, The Lambda Calculus: its Syntax and Semantics,

revised edition, North-Holland.

[Bar89a] H.P Barendregt, Typed Lambda Calculi, to appear in Handbook of

Logic in Computer Science (eds., S. Abramsky, D. Gabbay and T.S.E.

Maibaum), Oxford University Press.

[Bar89b] H.P Barendregt, 'Introduction to Generalized Type Systems', to ap-

pear in Proc. of the 3rd Italian Conf. on Theoretical Computer Sci-

ence, Mandera.

[BB85] 	C. Böhm and A. Beradurcci, 'Automatic Synthesis of Typed A-

programs on Term Algebras', Theoretical Computer Science 39.

[Bee85] 	M.J. Beeson, Foundations of Constructive Mathematics, Springer-

Verlag.

[Ber89a] S. Berardi, Type Dependence and Constructive Mathematics,

manuscript, June 1989.

[Ber89b] S. Berardi, Non-conservativity of Coquand's Calculus with respect to

Higher-order Intuitionistic Logic, Talk given in the 3rd Jumelage

meeting on Typed Lambda Calculi, Edinburgh.

171

BIBLIOGRAPHY
	 172

[BGeu89] E. Barendsen and H. Geuvers, 'Conservativity of)¼P over PRED

manuscript.

[BGog80] R. Burstall and J. Goguen, 'The Semantics of CLEAR, a Specification

Language', Lecture Notes in Computer Science 86.

[Bis67] 	E. Bishop, Foundations of Constructive Analysis, McGraw-Hill.

[BLam84] R. Burstall and B. Lampson, 'Pebble, a Kernel Language for Modules

and Abstract Data Types', Lecture Notes in Computer Science 173.

[BLuo88] R. Burstall and Zhaohui Luo, 'A Set-theoretic Setting for Structuring

Theories in Proof Development', Circulated notes. Apr. 1988.

[BMS81] R. Burstall, D. MacQueen and D. Sannella, 'HOPE: an Experimental

Applicative Language', Proc. 1980 LISP Conf., California.

[Bur84] 	R. Burstall, 'Programming with Modules as Typed Functional Pro-

gramming', Proc. Inter. Conf. on Fifth Generation Computer Systems,

Tokyo.

[Bur86] 	R. Burstall, Research in Interactive Theorem Proving at Edin-

burgh University, Proc. of 20th IBM Computer Science Symposium,

Shizuoka, Japan. Also, LFCS Report ECS-LFCS-86-12, Dept. of Com-

puter Science, Univ. of Edinburgh.

[Bur89a] R. Burstall, An Approach to Program Specification and Development

in Constructions, Talk given in Workshop on Programming Logic,

Bastad, Sweden, May 1989.

[Bur89b] R. Burstall, 'Computer-assisted Proof for Mathematics: an introduc-

tion, using the LEGO proof system', to appear in Proc. of the Institute

for Applied Math. conf., Brighton Polytechnic.

BIBLIOGRAPHY
	

173

[Card86] L. Cardelli, 'A Polymorphic)-calculus with Type:Type', manuscript.

[Card89] L. Cardelli, Typeful Programming, Lecture notes for the IFIP State

of the Art Seminar on Formal Description of Programming Concepts,

Rio de Janeiro, Brazil.

[Cart78] J. Cartmell, Generalized Algebraic Theories and Contextual Category,

Ph.D. Thesis, University of Oxford.

[Cart86] J. Cartmell, 'Generalized Algebraic Theories and Contextual Cate-

gory', Annals of Pure and Applied Logic 32.

[CF58] 	H. B. Curry and R. Feys, Combinatory Logic, Vol. 1, North Holland

Publishing Company.

[CGW87] Th. Coquand, C. Gunter and C. Winskel, Domain Theoretic Mod-

els of Polymorphism, Tech. Report No. 116, Computer Laboratory,

University of Cambridge.

[CH85] 	Th. Coquand and C. Huet, 'Constructions:a Higher Order Proof Sys-

tern for Mechanizing Mathematics', EUROCAL'85, Lecture Notes in

Computer Science 203.

[CH88] 	Th. Coquand and G. Huet, 'The Calculus of Constructions', Informa-

tion and Computation 76(2/3).

[Chu40] A. Church, 'A Formulation of the Simple Theory of Types', J. Sym-

bolic Logic 5(1).

[Con7l] R. L. Constable, 'Constructive Mathematics and Automatic Programs

Writers', Proc. IFIP'71.

[Con86] R. L. Constable et al., Implementing Mathematics with the NuPRL

Proof Development System, Pretice-Hall.

BIBLIOGRAPHY 	 174

[Coq85] Th. Coquand, 'Une Theorie des Constructions PhD thesis, Univer-

sity of Paris VII.

[Coq86a] Th. Coquand, 'An Analysis of Girard's Paradox', Proc. 1st Ann.

Symp. on Logic in Computer Science.

[Coq86b] Th. Coquand, 'A Calculus of Constructions' manuscript, Nov. 1986.

[Coq89] Th. Coquand, 'Metamathematical Investigations of a Calculus of Con-

structions', manuscript.

[CM89] 	Th. Coquand and Ch. Paulin-Mohring, 'Inductively Defined Types',

draft.

[CW85] L. Cardelli and P. Wegner, 'On Understanding Types, Data Abstrac-

tion and Polymorphism', Computing Surveys 17.

[dB72] 	N. G. de Bruijn, 'Lambda Calculus Notation with Nameless Dummies:

a Tool for Automatic Formula Manipulation with Application to the

Church-Rosser Theorem', Indag. Mathematics 34.

[dB78] 	N. C. de Bruijn, 'A Name-free Lambda Calculus with Facilities for

Internal Definition of Expressions and Segments', Technical Report

78-WSK-03, Eindhoven University of Technology.

[dB80] 	N. G. de Bruijn, 'A Survey of the Project AUTOMATH', In To H. B.

Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-

ism, (eds., J. Hindley and J. Seldin), Academic Press.

[Dev79] K. Devlin, Fundamentals of Contemporary Set Theory, Springer-

Verlag.

BIBLIOGRAPHY
	

175

[EFH83] H. Ehrig, W. Fey and H. Hansen, ACT ONE: an Algebraic Specifi-

cation Language with Two Levels of Semantics, Tech. Report 83-03,

Technical University of Berlin, Fachbereich Informatik.

[Ehr88] 	T. Ehrhard, 'A Categorical Semantics of Constructions Proc. 3rd

Ann. Symp. on Logic in Computer Science, Edinburgh.

[Fef79] 	S. Feferman, 'Constructive Theories of Functions and Classes', in

Logic Colloquium'78, (eds., M. Boffa, D. van Dalen and K. McAloon)

North Holland, Amsterdam.

[FCJM85] K. Futatsugi, J. Goguen, J.-P. Jouannaud and J. Meseguer, Principles

of OBJ2, Proc. POPL 85.

[Fri77] 	H. Friedman, 'Set-theoretic Foundations for Constructive Analysis

Annals of Mathematics 105.

[Ga189] 	J.H. Gallier, On Girard's 'Candidats de Reductibilite", To appear in

Logic and Computer Science (ed. P. Odifreddi), Academic Press.

[Geu89] H. Geuvers, A Modular Proof of Strong Normalization for the Calculus

of Constructions, Talk given in the 3rd Jumelage meeting on Typed

Lambda Calculi, Edinburgh, Sept. 1989.

[Gir7l] 	J.-Y. Girard, 'Une extension de l'interpretation fonctionelle de Gödel

a l'analyse et son application a l'élimination des coupures dans et la

thèorie des types', Proc. 2nd Scandinavian Logic Symposium.

[Gir72] 	J.-Y. Girard, Interpretation fonctionelle et elimination des coupures

de l'arithmétique d'ordre supérieur, These, Université Paris VII.

[Gir73] 	J.-Y. Girard, 'Quelques re'sultats sur les interpretations fonctionells',

Lecture Notes in Mathematics 337, Springer.

BIBLIOGRAPHY 	 176

[Gir86] 	J.-Y. Girard, 'The System F of Variable Types, Fifteen Years Later

Theoretical Computer Science 45.

[Gir89] 	J.-Y. Girard, Proofs and Types, Translated by Y. Lafont and P. Taylor,

Cambridge University Press.

[GMW79] M.J. Gordon, R. Milner and C.P. Wadsworth, Edinburgh LCF, Lecture

Notes in Computer Science 78, Springer.

[Gri87] 	T. Griffin, An Environment for Formal Systems, LFCS Report ECS-

LFCS-87-34, Dept. of Computer Science, Univ. of Edinburgh.

[Grz53] 	A. Grzegorczyk, 'Some Classes of Resursive Functions', Rozprawy

Mate. IV, Warsaw.

[Hay89] 	S. Hayashi, 'Constructive Mathematics and Computer-assisted Rea-

soning Systems', to appear in Proc. of Heyting'88, Prenum Press.

[Hey7l] 	A. Heyting, Intuitionism: an Introduction, North-Holland.

[HH86} 	J. Hook and D. Howe, Impredicative Strong Existential Equivalent to

Type:Type, Technical Report TR86-760, Cornell University.

[HHP87] R. Harper, F. Honsell and C. Plotkin, 'A Framework for Defining

Logics', Proc. 2nd Ann. Symp. on Logic in Computer Science.

[HMM86] R. Harper, D. MacQueen and R. Milner, Standard ML, LFCS Report

ECS-LFCS-86-2, Dept. of Computer Science, Univ. of Edinburgh.

[HN88] 	S. Hayashi and H. Nakano, PX: a Computational Logic, The MIT

Press, Cambridge, Massachusetts.

[How69] W. A. Howard, 'The Formulae-as-types Notion of Construction', In

To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and

Formalism (eds., J. Hindley and J. Seldin), Academic Press, 1980.

BIBLIOGRAPHY
	

177

[HPit87] M. Hyland and A. Pitts, 'The Theory of Constructions: Categori-

cal Semantics and Topos-theoretic Models', Categories in Computer

Science and Logic, Boulder.

[HPo189] R. Harper and R. Pollack, 'Type Checking, Universe Polymorphism,

and Typical Ambiguity in the Calculus of Constructions', To appear

in Theoretical Computer Science.

[11S87] 	J.R. Hindley and J.P. Seldin, Introduction to Combinators and \-

calculus, Cambridge University Press.

[Hue87] 	C. Huet, 'A Calculus with Type:Type unpublished manuscript.

[Hue89] 	G. Huet (ed.), The Calculus of Constructions: Documentation and

User's Guide, Technical Report INRIA 110.

[Hy182] 	M. Hyland, 'The Effective Topos', in The Brouwer Symposium, (eds.,

A.S.Troelstra and Van Dalen) North-Holland.

[Hy187] 	M. Hyland, 'A Small Complete Category', To appear in Ann. Pure

Appl. Logic.

[Jut77] 	B. Jutting, Checking Landau's 'Grundlagen' in the Automath System,

Ph.D. thesis, Eindhoven University of Technology, Mathematical Cen-

tre Tracts 83.

[K1o80] 	J. W. Klop, Combinatory Reduction Systems, Mathematical Center

Tracts 127.

[Kre68] 	C. Kreisel, 'Functions, Ordinals, Species', Logic, Methodology anfd

Philosophy of Science III (eds. B. van Rootselaar and J. Staal), North-

Holland, Amsterdam.

BIBLIOGRAPHY
	

178

[L1388] 	B. Lampson and R. Burstall, 'Pebble, a Kernel Language for Modules

and Abstract Data Types', Information and Computation 76(2/3).

[Lei89] 	D. Leivant, 'Stratified Polymorphism', Proc. of the Fourth Symp. on

Logic in Computer Science, Asilomar, California, U.S.A.

[Lev79] 	A. Levy, Basic Set Theory, Springer-Verlag.

[LM88] 	G. Longo and E. Mogg], Constructive Natural Deduction and Its 'Mod-

est'Interpretaiion, Report CMU-CS-88-131, Computer Science Dept.,

Carnegie Mellon Univ.

[LPT89] Z. Luo, R. Pollack and P. Taylor, How to Use LECO: a preliminary

user's manual, LFCS Technical Notes LFCS-TN-27, Dept. of Com-

puter Science, Edinburgh University.

[Luo88a] Zhaohui Luo, A Higher-order Calculus and Theory Abstraction, LFCS

report ECS-LFCS-88-57, Dept. of Computer Science, Univ. of Edin-

burgh.

[Luo88b] Zhaohui Luo, CC and Its Meta Theory, LFCS report ECS-LFCS-

88-58, Dept. of Computer Science, Univ. of Edinburgh.

[Luo88c] Zhaohui Luo, 'A Higher-order Calculus and Its —Set Model', circu-

lated notes. Jan. 1988.

[Luo89a] Zhaohui Luo, 'ECC, an Extended Calculus of Constructions', Proc.

of the Fourth Ann. Symp. on Logic in Computer Science, June 1989,

Asilomar, California, U.S.A.

[Luo89b] Zhaohui Luo, 'A Higher-order Calculus and Theory Abstraction', To

appear in Information and Computation.

BIBLIOGRAPHY
	

179

[Luo89c] Zhaohui Luo, On Girard- Tait 's Reducibility Method for Strong Nor-

malization Proofs of Type Theories, Talk given in the 3rd Jumelage

meeting on Typed Lambda Calculi, Edinburgh.

[Mac86] D. MacQueen, 'Using Dependent Types to Express Modular Structure',

Proc. 13th Principles of Programming Languages.

[McC62] J. McCarthy et al., Lisp 1.5 Programmer's Manual, MIT Press, Cam-

bridge, Mass..

[Mes88] J. Meseguer, Relating Models of Polymorphism, SRI-CSL-88-13, Com-

puter Science Lab, SRI International.

[MH88] 	J. Mitchell and R. Harper, 'The Essence of ML', Proc. 15th Principles

of Programming Languages.

[Mi184] 	R. Milner, 'A Proposal for Standard ML', Proc. Symp. on Lisp and

functional Programming, Austin, Texas.

[Mit86] 	J.C. Mitchell, 'A Type Inference Approach to Reduction Properties

and Semantics of Polymorphic Expressions', Proc. 1986 ACM Symp.

on Lisp and Functional Programming.

Per Martin-1,6f, A Theory of Types, manuscript.

Per Martin-Löf, An Intuitionistic Theory of Types, manuscript.

Per Martin-Löf, 'An Intuitionistic Theory of Types: Predicative Part',

in Logic Colloquium'73, (eds.) H.Rose and J.C.Shepherdson.

[ML82] 	Per Martin-Löf, 'Constructive Mathematics and Computer Program-

ming', Logic, Methodology and Philosophy of Science VI (eds., L.J.

Cohen et al.). North-Holland, Amsterdam.

BIBLIOGRAPHY 	 180

[ML84] 	Per Martin-Löf, Intuitionistic Type Theory, Bibliopolis.

[MN87] D. Miller and C. Nadathur, 'A Logic Programming Approach to Ma-

nipulating Formulas and Programs', Proc. IEEE Symp. on Logic Pro-

gramming, San Francisco.

[Mog85] E. Moggi, 'The PER-model as Internal Category with All Small Prod-

ucts', manuscript.

[Moh89] Ch. Paulin-Mohring, 'Extracting Ft" Programs from Proofs in the Cal-

culus of Constructions', Proc. POPL 89.

[MP85] 	J. Mitchell and G. Plotkin, 'Abstract Types Have Existential Type',

Proc. 12th Principles of Programming Languages.

[MW71] Z. Manna and R. Waldinger, 'Towards Automatic Program Synthesis',

Communications of ACM 14.

[Myh75] J. Myhill, 'Constructive Set Theory', J. Symbolic Logic 40.

[NP83] 	B. Nordstrom and K. Petersson, 'Types and Specifications', Proc.

IFIP'83, Elsevier.

[NPS89] B. NordstrOm, K. Petersson and J. Smith, Programming in Martin-

LSf's Type Theory: an introduction, book to appear.

[0re89] 	C-E. Ore, 'Notes about the Extensions of ECC for Including Inductive

(Recursive) Types', draft.

[Pau87] 	L. Paulson, Logic and Computation: Interactive Proof with Cambridge

LCF, Cambridge University Press.

[Pau88] 	L. Paulson, A Preliminary User's Manual for Isabelle, Technical Re-

port 133, Computer Laboratory, Cambridge University.

BIBLIOGRAPHY
	

181

[Pit87] 	A. Pitts, 'Polymorphism is Set Theoretic, Constructively', Summer

Conf. on Category Theory and Computer Science, Edinburgh.

[P1o87] 	G. Plotkin, 'A Search Space for LF', Workshop on General Logic,

Edinburgh, 1987. in LFCS Report Series, ECS-LFCS-88-52.

[Po189] 	R. Pollack, 'The Theory of LEGO', manuscript.

[Pot87] 	G. Pottinger, Strong Normalization for Terms of the Theory of Con-

structions, TR 11-7, Odyssey Research Associates.

[Pra65] 	D. Prawitz, Natural Deduction, 'a Proof-Theoretic Study, Almqvist &

Wiksell.

[Rey74] 	J. C. Reynolds, 'Towards a Theory of Type Structure', Lecture Notes

in Computer Science 19.

[Rey83] 	J. C. Reynolds, 'Types, Abstraction and Parameter Polymorphism',

Information Processing'83.

[Rey84] 	J. C. Reynolds, 'Polymorphism is Not Set-theoretic', Lecture Notes in

Computer Science 173.

[Ros84] 	H.E. Rose, Subrecursion, Oxford University Press.

[RP88] 	J. C. Reynolds and G. D. Plotkin, On Functors Expressible in the

Polymorphic Typed Lambda Calculus, LFCS report, ECS-LFCS-88-

53, Dept. of Computer Science, Univ. of Edinburgh.

[Rus03] 	B. Russell, The Principles of Mathematics, Vol. I, Cambridge Univer-

sity Press.

[Sa189] 	A. Salvesen, 'The Church-Rosser Theorem for LF with /i reduction',

manuscript.

BIBLIOGRAPHY 	 182

[S1383] 	D. Sannella and R. Burstall, 'Structured Theories in LCF, 8th Col-

loquium on Trees in Algebra and Programming.

[Sch77] 	K. Schütte, Proof Theory, Springer-Verlag.

[Sco70] 	D. Scott, 'Constructive Validity', Symp. on Automatic Demonstra-

tion, Lecture Notes in Mathematics 125.

[See84] 	R.A.G. Seely, 'Locally Cartesian Closed Categories and Type Theory,'

Math. Proc. Camb. Phil. Soc. 95.

[See86] 	R.A.C. Seely, 'Categorical Semantics for Higher-order Polymorphic

Lambda Calculus', J. of Symbolic Logic, vol. 52, no. 4. Springer-Verlag.

[SS88] 	A. Salvesen and J. Smith, 'The Strength of Subset Type in Martin-

Löfs Type Theory', Proc. 3rd Ann. Symp. on Logic in Computer

Science, Edinburgh.

[ST88] 	D. Sannella and A. Tarlecki, Building Specifications in an Arbitrary

Institution, Information and Computation 76(2/3).

[Str88] 	T. Streicher, Correctness and Completeness of a Categorical Seman-

tics of the Calculus of Constructions, PhD Dissertation, Passau.

[Tai67] 	W.W. Tait, 'Intensional Interpretation of Functionals of Finite Type

I', J. of Symbolic Logic 32.

[Tai75] 	W. W. Tait, 'A Realizability Interpretation of the Theory of Species',

Logic Colloquium (ed. R. Parikh), Lecture Notes in Computer Science

453.

[Tak75] 	G. Takeuti, Proof Theory, Stud. Logic 81.

[TL88] 	P. Taylor and Z. Luo, 'Theories, Mathematical Structures and Strong

Sums', manuscript, Dec. 1988.

BIBLIOGRAPHY
	

183

[Tro73a] A. S. Troelstra, Metamathematical Investigation of Intuitionistic

Arithmetic and Analysis, Lecture Notes in Mathematics 344.

[Tro73b] A. S. Troelstra, 'Notes on Intuitionistic Second-order Arithmetic

Lecture Notes in Mathematics 337.

[vD80] 	D. T. van Daalen, The Language Theory of Automath, PhD Thesis.

Technologicval Univ., Eindhoven.

[Zuc75] 	J. Zucker, 'Formalization of Classical Mathematics in AUTOMATH',

Colloque Internationaux du CNRS 249, Clermont-Ferrand.

Notation and Symbols

The ordinary notation and symbols for meta-level statements like (in)equalities

=, , <,... and meta-level logical operators V, 1, =, A, V,... are not included here.

We have also used , , V,... to express meta-level negation.

The numbers below refer to the pages on which the notation or symbol is

introduced or of its first major occurrence.

Miscellaneous

Kj the jth inaccessible cardinal 137

dom(f) domain of function f 98

A - B functions (morphisms, functors) from A to B 101, 134

A 	FPP B FPP-morphisms from A to B 134

Eval the evaluation function 102

VM the canonical value of E-term M 100

C(_; -) the algorithm of type inference 126

a, a, lrr w-set constructors 133, 135

1-1 the interpretation of judgement - 134

Terms and judgements

llx:A.B, A - B 	(dependent) product type 	 22

Ex:A.B, A x B 	(dependent) strong sum type 	 22

184

NOTATION AND SYMBOLS 185

Ax:A.M Lambda-abstraction 22

MN functional application 22

pairA(M, N) pair 22

7r1 (M),7r2 (M) projections of a pair 22

[N/x]M substitution of N for x in M 22

[N1 , ..., Nm /Xi, ..., X]M 	simultaneous substitution 100

T(M) the principal type of M under F 62

T,, (M) the principal type of M under E 69

redk (M) the key-reduct of M 93

predicative existential type 166

rep' ,abstype2 introduction and elimination operators for 	2 (A, B) 166

F I- M : A judgement form 24

E I- M: N 'judgement form' under environment 68

Sets

0 the empty set 114

w the set of natural numbers 21

AC the set of kinds 126

the set of terms 22

FV(_) the set of free variables in - 22, 24

V, the cumulative hierarchy of sets 137

CR(A) the set of A-candidates of reducibility 94

Sat(A) the set of A-saturated sets 94

SN(A) the set of strongly normalizable terms of type A 93

V(M) the value-set of E-termM 97

IAI the carrier set of w-set A 131

NOTATION AND SYMBOLS
	

HE

Relations

syntactical identity

=df definitional equality

(pa-)reduction

N one-step Pa-)reduction

Pa-) conversion

fl-contraction

77
77-contraction

o-contraction

contraction of surjective pairing

-< the cumulativity relation

the strict cumulativity relation

the 'level-z" cumulativity relation

the strict 'level-i' cumulativity relation

cumulativity equivalence

IIA the realizability relation of w-set A

22

35,42

22

23

22

22

40

22

41

23

24

41

42

42

131

Environment and measures

environment 67, 68

E 2 the first i components of environment S 68

the ith component of environment S 68

ei the ith variable of environment 1 68

level of type - 69, 70

j-degree of type - 76, 80, 87

OW the complexity measure of type - 88

a complexity measure 80

yM a complexity measure 80

NOTATION AND SYMBOLS
	

187

Embedded logic

true truth 117

false falsity 117

D implication 117

& conjunction 117

V disjunction 117

-' negation 117

Vx :A.P (x) universally quantified formula 117

3x :A. P(x) existentially quantified formula 117

=A
Leibniz's equality over type A 119

Categories and functors

-Set the category of w-sets 132

w-Set(j) the category of w-sets within V,, 137

M the category of modest sets 138

PROP the category of 'propositions' 139

Set the category of sets 137

back category equivalence from M to PROP 139

inc the inclusion functor from PROP to M 139

the embedding functor from Set to u.-Set 137

Obj(_) the object set of category - 137

Index

w-set 	131

	

carrier set of an - 	131

realizability relation of an - 131

category of _s 	132

abstract reasoning 	149

abstract theory 	146, 147

signature presentation of an 	147

abstract axiom of an - 	147

abstract theorem of an - 	147

abstract proof of - 	147

candidate of reducibility 	94

canonical value 	100

Church-Rosser theorem 39

complexity measure of types 	88

consistency

- theorem 	120

logical - 	3

context 	24

empty - 24

valid - 	26

consistent - 	120

contraction 	22

/3- 	22

40

a-... 	22

- of surjective pairing 	41

contractum 22

conversion 	22

9-... 	36

a-.. 	36

decidability of - 	125

covers 	101

cumulativity relation 	23

decidability of - 	125

inductive definition of - 	41

Curry-Howard correspondence 2

Cut 49

degree

j- 	76

j- 	87

derivation 	26

.6-assignment 	101

i-valuation 	101

embedded logic 	115

environment 	67

equality

INDEX
	

189

definitional - 	35, 42

Leibniz's - 	119

equality reflection 	158

theorem of - 	160

evaluation 	102

- function 	102

formula 	116

F-_ 	116

provable_ 	116

formulas-as-types 	2

principle of - 	2

FPP property 	134

function

F-_ 	116

elementary - 	165

super-elementary - 	165

Grzegorczyk class 	165

impredicativity 	3

inaccessible cardinal 	137

judgement 24

derivable - 	26

kind 	21

level 	69

- of an e-type 	69

- of principal type 	70

modest set 	138

category of _s 	138

normal form 23

uniqueness of - 	40

normalization

quasi - 	64

	

theorem of - 	72,87

strong - 	90

	

theorem of_ 	113

paradox

Girard's - 	3

partial equivalence relation
	

139

category of _s 	133

partial order w.r.t. conversion
	

23

predicate 	116

F-_ 	116

predicativity 	4

proof

1'-.. 	26

68

- of a formula 	116

proof inheritance 	149

proposition

26

E-_ 	68

propositions-as-types 	2

principle of - 	2

redex 	22

/3- 	22

a- 	22

major term of a - 22

INDEX
	

190

key - 	 93 syntactical identity 	22

reducibility method 	91 term 	21

reduction 	22 F-_ 	26

36 E-_ 	68

o-_ 	36 value-set of an - 	 97

one-step - 	 23 j-quasi-normal - 	 80

rule 	24 quasi-normal 	86

admissible - 	 47 base - 	 73

derivable - 	 31 key variable of - 	 73

inference - 	 24 inhabited - 	 26

- of type conversion 	36 major - 	 22

- of type cumulativity 	25,36 well-typed - 	 26

saturated set 	93 theory

A-.. 	93 abstract 	147

sharing concrete - 	 145

structure 	150 theory morphism 	150

- by parameterization 	150 type

slant numeral 	165 H-_ 	31

soundness of the interpretation 	111 -_ 	31

stratified polymorphism 	163 F-_ 	26

strengthening lemma 	56 non-propositional -

strong sum 	33 proper 	26

strongly normalizable 	23 E-_ 	68

structured reasoning 	149 non-propositional -

subject reduction theorem 	52 proper- 	68

substitution 	22 equality - 	 4

simultaneous - 	 100 weak - 	 4

substitution property 	108 strong - 	 4

26

INDEX
	

191

existential - 	153

predicative - 	166

inductive - 167

minimum - 61

principal - 62

- under F 62

- under E 69

well-typed - 	26

type checking 	128

decidability of - 	128

type inference

algorithm of - 	126

correctness of - 	127

decidability of - 	125, 127

universe 	23

set - 	136

type - 	23

value set 	97

weak sum 153

predicative - 	166

weakening lemma 48

well-founded 	46

-ness of -< 	46

