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Abstract 

This thesis presents and studies a unifying theory of dependent types ECC - 

Extended Calculus of Constructions. ECC integrates Coquand-Huet's (impred-

icative) calculus of constructions and Martin-Löf's (predicative) type theory with 

universes, and turns out to be a strong and expressive calculus for formalization 

of mathematics, structured proof development and program specification. 

The meta-theory of ECC is studied and we show that the calculus has good 

meta-theoretic properties. The main proof-theoretic result is the strong nor-

malization theorem, proved by using Girard-Tait's reducibility method based 

on a quasi normalization theorem which makes explicit the predicativity of the 

predicative universes. The strong normalization result shows the proof-theoretic 

consistency of the calculus; in particular, it implies the consistency of the em-

bedded intuitionistic higher-order logic and the decidability of the theory. The 

meta-theoretic results establish the theoretical foundations both for pragmatic 

applications in theorem-proving and program specification and for computer im-

plementations of the theory. ECC has been implemented in the proof develop-

ment system LECO developed by Pollack. 

In ECC, dependent E-types are non-propositional types residing in the pred-

icative universes and propositions are lifted as higher-level types as well. This 

solves the known difficulty that adding strong E -  types to an impredicative system 

results in logical paradox and enables s-types to be used to express the intuition-

istic notion of subsets. s-types together with type universes hence provide useful 
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abstraction and module mechanisms for abstract description of mathematical 

theories and basic mechanisms for program specification and adequate formal-

ization of abstract mathematics (e.g., abstract algebras and notions in category 

theory). A notion of (abstract) mathematical theory can be described and leads 

to a promising approach to abstract reasoning and structured reasoning. Program 

specifications can be expressed by E-types, using propositions in the embedded 

logic to describe program properties (for example, by an equality reflection result, 

computational equality can be modeled by the propositional Leibniz's equality 

definable in the theory). These developments allow comprehensive structuring of 

formal or rigorous development of proofs and programs. 

Also discussed is how the calculus can be understood set-theoretically. We ex-

plain an w-Set (realizability) model of the theory. In particular, propositions can 

be interpreted as partial equivalence relations and the predicative type universes 

as corresponding to large set universes. 
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Chapter 1 

Introduction 

Computer scientists and mathematicians consider various constructions: mathe-

matical objects like proofs and theorems and computational objects like programs 

and specifications. We consider every construction as an object of certain type; 

in other words, mathematical objects and computer programs are all associated 

with their types. Such a view forms a basic starting point of type theories and 

strongly typed programming languages. 

This thesis presents and studies a unifying theory of dependent types, ECC 

- Extended Calculus of Constructions. ECC integrates Coquand-Huet's calcu-

lus of constructions [CH88][Coq85] and Martin-Löf's type theory with universes 

[ML73,84], and turns out to be a strong expressive calculus for formalization of 

mathematics, structured proof development and program specification. 

In this introduction, we first give a general and brief discussion about type 

theories as logical systems and their applications in computer science, by which 

we hope to provide enough background knowledge and references. Then, we 

discuss our research motivations and give an overview of the thesis. Related 

work is also briefly discussed. 

1 



INTRODUCTION 	 2 

1.1 Type Theories and Computer Science 

1.1.1 Type theories as logical systems 

The principle of propositions-as-types (or formulas-as-types), also known as the 

Curry-Howard correspondence, is the key idea for viewing (intuitionistic) type 

theories as logical systems and to apply type theories (and constructive mathe-

matics in general ' ) to computer science. It was discovered by Curry [CF58] and 

Howard [How69], and further developed by many others (c.f., [Sco70][ML73,84] 

[dB801). This principle establishes the relationship between type systems and 

logical systems for natural deduction. 

According to the principle of propositions-as-types, a proposition (formula) 

A corresponds to the type of its proofs, A ° , and a construction of the truth of 

proposition A to an object in the corresponding type A ° . For example, according 

to Heyting's intuitionistic semantics [Hey7l], the proposition A D B (A implies 

B) is asserted to hold if, and only if, we have a construction which, whenever 

given a construction of proposition A, gives a construction of proposition B. In 

other words, a construction of A D B is a function that maps the proofs of A to 

proofs of B. The set of the constructions of proposition A D B corresponds to 

the function space A °  - B°  whose elements (functions) can be expressed by A-

notation. Based on such a correspondence, various typed A-calculi can be viewed 

as logical systems, where proof terms correspond to derivations. For instance, 

• Simply typed A-calculus (see [H587][Bar84]) corresponds to the intuition-

istic propositional logic. For this correspondence, see [How69]. 

The Edinburgh Logical Framework (LF) [HHP87] (or Automath type the- 

'We do not discuss the more general relationship between constructive mathematics and 

computer science but only discuss type theories. We then miss the other systems like type-free 

theories (c.f., [Myh75][Fri77][Fe179][Bee85][HN88]). See [Hay89] for a general survey. 
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ory [dB80][vD801) corresponds to the intuitionistic first-order logic. For 

this correspondence, see [Ber89a][BGeu89] where it is proved that LF is a 

conservative extension of intuitionistic first-order logic. 

Girard's higher-order polymorphic A-calculus Fw  [Gir72] corresponds to 

intuitionistic higher-order propositional logic. For this correspondence, see 

[Gir7l]. 

We shall not give a general overview of development of type theories as logical 

systems. For details and general comparisons of these systems, we refer to the 

references above, and particularly, the recent work by Barendregt who describes 

a cube of typed A-calculi which gives a clear picture of several related systems 

[Bar89a] and introduces generalized type systems (a notion due to Berardi and 

Terlouw) which may be viewed as logical systems [Bar89b]. 

Discussed below are several type theories which are well-known by now and 

based on which our extended calculus of constructions is developed. 

Martin-Löf's type theory 

In 1971, Martin-Löf formulated the first version of his type theory [ML71], aiming 

at a type system comparable with ZF set theory and formalizing category theory 

(e.g., the category of all categories). A basic axiom of this system is that there 

is a type of all types. 2  However, this axiom is too strongly impredicative to 

be logically consistent; this first version of Martin-Löf's type theory is logically 

inconsistent in the sense that every type is non-empty - shown by Girard and 

known by now as Girard's paradox. The introduction of a type of all types 

was based on the following ideas. First, according to Russell's doctrine of types 

2 Burstall and Lampson proposed such an idea of a type of all types in designing the pro-

gramming language Pebble [BLam84] with the motivation for modular typeful programming. 

Also see [Card86] for a further development of this idea. 
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[Rus03], the range of significance of a propositional function forms a type, i.e., 

the class of propositions forms a type; secondly, quantification over propositions 

and predicates is allowed; finally, propositions and types are identified, i.e., every 

proposition is a type and vice versa. 3  Suppose U is the type of all propositions, 

then U is also the type of all types by the identification. Therefore, type U of all 

types naturally occurs and, in particular, it is the type of itself. The discovery 

of the logical incoherence of the idea of a type of all types led Martin-Löf to 

completely dispense with the impredicativity occurring in simple type theory 

(c.f., [Chu40]) and turn to predicative type systems. 

In Martin-Löf's (predicative) type theory [ML73,84], propositions and types 

are still identified, but the type of all types is replaced by an infinite sequence of 

type universes U0  U1  : U2  ..... Hence, one can not quantify over all propositions 

or predicates, although quantification over each universe is allowed. Reflection 

principle is used to make sure that the introduction of universes leads to stronger 

power of the theory, for example, to define transfinite types. Besides dependent 

product types (11-types) and the basic types like finite types and the type of 

natural numbers, dependent strong sum (E-types) is introduced as a basic type 

constructor playing the roles of (strong) existential quantifier [How69] and ex-

pressing the intuitionistic notion of subsets [Bis67][Kre68]. A new equality type 

constructor is also introduced. There are basically two versions of Martin-Löf's 

predicative type theory, one with weak (intensional) equality types [ML73] and 

the other with strong (extensional) equality types [ML84]. The weak equality 

type reflects the definitional equality, while the strong equality is equivalent the 

judgemental equality. The system with weak equality types is decidable, but that 

3This identification of types with propositions is a distinguishing feature of Martin-Löf's 

type theories, in his predicative theories [ML73,84] as well as the first impredicative version. 

However, the author thinks that propositions can be viewed as types, but not necessarily vice 

versa. 
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with strong equality types is not. 

Martin-Löf's type theory is one of the main attempts to formulate correct 

formal systems for formalizing constructive mathematics as described by Bishop 

[Bis67]. Because of the close relationship between type theories and (typed func-

tional) programming languages, Martin-Löf's type theory can also be viewed as 

a programming language [ML82]. 

Girard-Reynolds' polymorphic ,\-calculus 

The higher-order polymorphic A-calculus Fw  was introduced by Girard [Gir7l,72, 

861, and independently by Reynolds [Rey74]. 4  The important idea is that of 

polymorphic types which allows quantification and abstraction over types. For 

example, for a type variable t ranging over all types, Vt.t -f t is also a type; 

it is the type of the polymorphic function At.Ax t .x. Such a type formation is 

impredicative or circular since V1.t -* t is formed by quantifying over all types 

including itself and a polymorphic function can be applied to any type which 

may be the type of the function as well. Girard showed that the (higher-order) 

polymorphic A-calculus is strongly normalizing (hence logically consistent) using 

the reducibility method and extended the Gödel interpretation to higher-order 

arithmetic [Gir72]. F' can be viewed as a logical system of natural deduction 

for intuitionistic higher-order propositional logic [Gir7l]. 

Impredicativity also allows one to represent many useful data types by a 

coding technique [BB85]. For example, the type of natural numbers can be rep-

resented as VU -* (t - t) -*t which has the Church numerals as its normal 

objects. Proof-theoretic results show that the number-theoretic functions repre-

sentable in F' are exactly those provably total in higher-order arithmetic [Gir73]. 

Furthermore, the existential quantifier can also be defined [GP85] [Rey83], which 

can be used to express abstract data types [GP85]. 

4 Reynolds formulated the second-order A-calculus as a programming language. 
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Semantically, types in polymorphic A-calculus can not be understood as arbi-

trary sets in the usual sense. As shown by Reynolds [Rey84J[RP88], the ordinary 

set-theoretic model for simply typed A-calculus can not be extended to the poly-

morphic A-calculus. However, it was shown by many people that polymorphism 

can be understood intuitionistically (e.g. , [Tro73b) [Gir72] [Mog85] [LM88] [Pi t87]). 

As shown by Girard [Gir72], an attempt to extend the impredicative polymor-

phism to the level of connectives would result in a logically inconsistent system. 

It was from this that Girard realized the inconsistency of the first version of 

Martin-Löf's type theory [ML71] in which the above extension can be translated. 

In the other direction, one may consider weakening the impredicative polymor-

phism into stratified polymorphism, as considered by Leivant [Lei89]. 

Co quand-Huet 's calculus of constructions 

The calculus of constructions (CC) was introduced by Coquand and Huet [CH88] 

[Coq85], based on ideas from Martin-Löf's type theory, Girard's higher-order 

polymorphic A-calculus and de Bruijn's Automath [dB80]. Like Martin-Löf's 

type theory, it uses judgements with contexts and has dependent product as the 

basic type constructor. Like Fw,  it is impredicative as one can quantify over 

all propositions (of type Prop, the type of the propositions which is the only 

constant type) to form propositions. (F" is a subsystem of CC.) The basic idea 

is to relax Martin-Löf's requirement of identification of propositions with types so 

that the type Prop of the propositions to be a large type instead of a proposition 

(propositions are considered as 'small types'). However, the product of a family 

of propositions indexed by any type is still a proposition (impredicativity). 

CC is a higher-order functional system proposed for intuitionistic higher-order 

logic. Coquand[Coq86b][Coq85] studied its meta-theory and proved that it is 

strongly normalizing (and hence logically consistent and decidable) by extend- 



INTRODUCTION 	 7 

ing Girard-Tait's reducibility method [Gir72][Tai75]. 5  Combining impredicativity 

with dependent product types provides a rather strong power for formalization 

of mathematics. For example, Leibniz's equality between two objects of the same 

type can be defined [CH85]. 

Semantically, as is the case with polymorphic A-calculus, propositions can not 

be understood as arbitrary sets. The intuitionistic set-theoretic model for poly-

morphic A-calculus can be extended to CC; this was considered by many people 

including [HPit87][Ehr88][Luo88a] who extended the model of partial equivalence 

relations for second-order A-calculus to CC, and [Str88] who considered model 

construction for CC in Cartmell's framework of contextual categories [Car78,86]. 

CC is a very strong functional system. As Girard pointed out, any further 

attempt to extend the calculus must be very cautious [Gir86]. Adding another 

impredicative level to the calculus would result in a logically inconsistent system 

in which Girard's paradox can be deduced [Coq86a]. Similarly, adding (type-

indexed) strong dependent sum as proposition constructor would also lead to 

logical inconsistency [Coq86a][HH86][MH88] (see section 2.2.4 for a further dis-

cussion). 

1.1.2 Applications in computer science 

Type theories have been related to many areas in computer science, especially 

in programming methodology and proof development systems. In researches in 

programming methodology, which is closely related to but has different emphasis 

from software engineering, computer scientists try to look for solid theoretical 

foundations on the basis of which they may develop a science of programming 

or program development. Proof development systems or proof engineering (c.f., 

[Bur861), besides being an important research area of its own interest, attracts 

5 Another attempt to prove the strong normalization of CC is by Pottinger [Pot87}. 
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more and more interest in computer science now that the need to verify various 

proof obligations in formal or rigorous program development has been recog-

nized. Research on type theories has interesting applications in these aspects 

and provide good theoretical foundations for proof development systems, formal 

specifications and correct development of programs. 

Proof development systems 

Curry-Howard correspondence is the basis for type theories to be used in proof 

development systems. Under this paradigm, a type theory is viewed as a logical 

system to formalize mathematical problems; to prove a theorem expressed as a 

type is to find an object of that type, and proof-checking is just type-checking. 

We discuss several systems below. 6  

Automath, which was led by de Bruijn, is the earliest project of using type 

systems as the basis to 'check mathematics' on computers (see [dB80] for a survey 

of the project). Various typed ,\-calculi have been proposed and used as basic 

languages of Automath to do proof checking, most of which correspond to first-

order languages (see [vD80] for a study of the language theory). In Automath 

project, de Bruijn developed a notational system to represent bound variables by 

their reference depths, known as de Bruijn notation [dB72,78], which has become 

a basic technique in implementations of proof checkers. A considerable amount 

of proof-checking has been done in Automath; for example, Jutting [Jut77] trans-

lated and checked Landau's book of analysis. 

Based on Constable's idea of constructive mathematics as a programming 

language [Con7l] and later on Martin-Löf's type theory, the Cornell group de-

veloped the proof development system NuPRL [Con86]. NuPRL's type theory is 

6  W only discuss some proof development systems closed related to type theories and miss 

many other systems like Edinburgh LCF [GMW79], Cambridge LCF [Pau87], Isabelle [Pau88] 

and AProlog [MN87]. 
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based on Martin-Löf's type theory with strong equality [ML84] and has quotient 

types, subset types, inductive types and partial function spaces. (For details, 

see [Con861.) The type system is not decidable; not every well-typed term has a 

normal form. NuPRL is a refinement proof development system with a sophisti-

cated environment including a window system; users develop proofs by backward 

reasoning and using tactics. 

An early proof checker for the calculus of constructions [CH88] was imple-

mented by Huet at INRIA [CH85] and a new implementation and further de-

velopment is now in progress [Hue89]. In [CH85], many examples are given to 

show how the calculus can he used to formalize mathematical problems in the 

early implementation. In Edinburgh, Pollack has developed a refinement proof 

development system LEGO [Po189][LPT89] based on Huet's early implementa-

tion. LEGO implements various related type systems, including Edinburgh LF 

[HHP87] (see below), the calculus of constructions [CH88] and the Extended Cal-

culus of Constructions [Luo89a,bJ we are about to describe. (See [Bur89b] for a 

simple introduction to proof checking in LEGO.) 

The Edinburgh Logical Framework (LF) [HHP87] was developed in Edinburgh 

as a system of dependent types for defining and implementing different logics. 

The general framework allows one to describe various logical systems so that 

their implementations can be done 'once for all' by the common proof checker 

• for LF and makes it possible to study problems like proof-searching in a general 

way (c.f., [Plo87]). Many logical systems have been described in LF [AHH87]. 

An early implementation was done by Griffin [Gri87] and the system LEGO 

implements a version of LF as well. LF type theory is predicative and corresponds 

to intuitionistic first-order logic [Ber89a][BGeu89]. As a formal system, it can be 

viewed as a subsystem of the calculus of constructions. 
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Programming methodology 

\-calculus has been used as a theoretical model of functional programming (c.f., 

functional programming languages Lisp [McC62], Hope [BMS81], ML [Mi184], 

Pebble [BLam84][LB88] and Quest [Card891). Playing a role of partial specifi-

cation, types have been recognized as an important organizing mechanism for 

reliable program development and ordered evolution of software systems. Taking 

advantage of typing facilities in programming languages and using sophisticated 

type systems, this has even led to a distinguishable programming style called 

typeful programming [Card89]. One can find more discussions on this aspect in 

[CW85] [Card89]. 

Besides this close relationship of type theories with programming languages, 

Curry-Howard correspondence also allows people to use type theories in program 

specification, program verification and program derivation. This is because the 

principle of propositions-as-types can also be explained as 'programs as objects' 

(or programs as proofs); in other words, a program which computes a value of a 

type corresponds to a construction of the type. For example, in Martin-Löf's type 

theory, a judgement of the form a:A can be read in the following ways [ML82,84]: 

• a is an object of type A; 

• a is a proof of proposition A; 

• a is a program (or implementation) satisfying specification A; 

• a is a solution to problem A. 

Therefore, based on Curry-Howard correspondence, suitable type theories may 

be viewed as programming logics in which one can describe and reason about 

program specification and program development. 

Program specifications have been studied quite extensively in computer sci- 

ence (for example, algebraic specification languages like Clear [BGog80], Acti 
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[EFH83], OBJ [FGJM85] and ASL [ST881). In type theory, a specification may 

be formulated as a type. In particular, s-types provide a nice mechanism for de-

scribing program specifications. For example, a specification of sorting programs 

for lists of natural numbers can be expressed as follows: 

Sorting =df Hl:List(N). El':List(N). sorted(l, 1') 

where sort ed(l, 1') is the proposition expressing that 1' is the sorted list of 1. An 

object of type Sorting is a function sorting which, when applied to a list 1 of 

natural numbers, returns a value which is a pair (l',p) such that 1' is the sorted 

list of 1 and 'p is a proof of this. 

Notice that, based on the above formulation of specifications, looking for a cor-

rect implementation of a specification like Sorting is just to find an object (proof) 

of the type (proposition) Sorting. Program development corresponds to proof de-

velopment in type theory. Such a programming methodology is seriously taken by 

the Cteberg group based Martin-Löf's type theory [NPS89]. Particularly, they 

investigated how to extract programs from proofs, called program extraction . 7  In 

order to delete redundant proof information from the extracted programs, they 

introduced subset types to Martin-Löf's type theory [NP83][SS88]. 

Programs in Martin-Löf's type theory are (primitive) recursive functions, 

which are just like ordinary functional programs. However, as mentioned above, 

in impredicative systems like FW  or CC, data types may be defined and func-

tions can be represented by coding. Based on this, an impredicative type system 

may provide a way of 'non-recursive programming'. Mohring [Moh89] studied 

how to extract Fw  programs from proofs in the calculus of constructions. How- 

7 Deductive approaches to program extraction or program synthesis have been considered 

by many others in different settings. Manna and Waldinger [MW71] considered an approach 

in classical logic. Some people use realizability method to consider program extraction in 

constructive settings; e.g., Hayashi's program extraction system PX [HN88] and Mohring's 

work [Moh89] in the calculus of constructions. 
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ever, it seems that the coding representation of data types and functions has not 

been well-understood yet and whether it supports a nice programming style is 

still a problem. How to do specifications in the calculus of constructions [CH88] 

does not seem to have been paid enough attention. This is partly because of 

the fact that (type indexed) s-types are inconsistent with impredicativity, which 

prevented people from using E-types to describe specifications. In the extended 

calculus of constructions we are going to describe, we show how s-types can be 

used to describe program specifications. 

One may rewrite the specification of sorting programs in another way: 

Sorting = cu >.1f:List(N) - List(N). Hl:List(N). sorted(l,f(l)) 

Then, an implementation of this specification is a pair consisting of a sorting 

program and a proof of the correctness of the program. This gives a view of 

program verification or correct program development. Burstall calls such a pair 

a 'deliverable' and develops an approach to program development based on this 

and using the extended calculus of constructions [Bur89a]. 

Abstraction and modularization 

The issue of abstraction and modularization has been one of the central concerns 

in the design of programming and specification languages. It is also important in 

proof engineering (proof development). Its importance becomes apparent when 

people start to do real program (software) development or to use computers to 

develop large proofs (say, program verifications); i.e., programming or proving 

in the large. To meet such a challenge, one needs to express abstract structures 

and modularize program/proof development so that large programming/theorem-

proving tasks can be conquered in a structured way. As in programming, types 

(and rich type structures) can also provide useful mechanisms for modular devel-

opment of proofs and specifications. (See chapter 8 for more discussions.) 
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Two important aspects of modular mechanisms are information hiding and 

sharing between module structures. Abstract data types are considered in a 

type-theoretic setting (second-order \-calculus) by Mitchell and Plotkin [MP85], 

where they explain how existential types can be used to express information 

hiding. Three existing ways to handle the problem of structure sharing are 

simply explained in [Bur84] which are: sharing by equation in Standard ML 

[HMM86][Mac86], sharing by parameterization in Pebble [BLam84][LB88] and 

sharing by history in Clear [BGog80]. In particular, rich type structures play an 

essential role in the second style as we shall explain in section 8.3. 

In interactive theorem-prdving systems, a notion of theory is needed to struc-

ture proof development. Burstall et al. considered how a notion of theory can 

be used to structure development of specifications in the design of specification 

language Clear [BGog80] and Sannella and Burstall considered how such an idea 

can be applied to theorem prover LCF [SB83]. Based on the extended calculus 

of constructions, we shall develop a notion of theory and an approach to abstract 

structured reasoning. 

1.2 Motivations and Overview of the Thesis 

Our basic motivations may be summarized as looking for a (logically) strong and 

(structurally) expressive formal system which provides 

• strong reasoning power as a logical system, 

• basic mechanisms for adequate formalization of mathematics and program 

specifications, and 

• structural mechanisms for modular development of proofs and programs. 

The basic approach we have taken is to develop such a formal system as a type 

theory which encorporates strong logical power (by the Curry-Howard correspon- 
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dence) and rich type structuresas structural mechanisms. 

We present and study a type theory ECC - Extended Calculus of Con-

structions. ECC is developed based on Coquand-Huet's calculus of construc-

tions [CH88][Coq851 and the ideas of type universes and E-typesin Martin-Löf's 

type theory [ML73,84]. It extends the calculus of constructions by E-types and 

fully cumulative (predicative) type universes and may also be considered as an 

impredicative extension of Martin-Löf's type theory with universes by adding a 

new (impredicative) universe Prop of propositions. 

We have thus integrated the (logical) power of impredicativity with the (struc-

tural) power of predicative universes and E-types into a unifying theory of de-

pendent types. The known difficulty that the introduction of E-types together 

with impredicativity leads to logical paradox [Coq86a][HH86][MH88] is solved 

by adding E-types as non-propositional types in the predicative universes of the 

calculus and lifting propositions as higher-level types. Type inclusions between 

universes are coherently generalized to the other types by introducing a syntactic 

cumulativity relation over terms so that a nice unicity of typing is obtained based 

on a simple notion of principal type. 

This development results in a stronger and more expressive higher-order cal-

culus which has an embedded intuitionistic higher-order logic and provides rich 

type structures for formalization of mathematics, abstract structured reasoning 

and program specification. Particularly, s-types in ECC, together with uni-

verses, provide a useful abstraction mechanism so that abstract structures can 

be naturally expressed and mathematical theories can be abstractly described and 

structured, leading to a comprehensive structuring of development of proofs and 

programs. In another aspect, formalization of mathematics can be done based on 

a strong higher-order logic and the type universes make it possible to formalize 

abstract mathematics (e.g., abstract algebras and notions in category theory). 

Furthermore, the strong and flexible polymorphism in the calculus provides a 
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higher-order module mechanism which can describe parameterized modules and 

support structure sharing by parameterization in the style of Pebble. 

ECC has good meta-theoretic properties. For example, we have 

• Church-Rosser property for the basic untyped term calculus; 

• Type-preserving substitution (or the Cut operation) is admissible; 

• Subject reduction theorem (closedness of typing over reduction); 

• Weakening and strengthening lemmas; 

• The existence of principal (or the most general) types. 

The main proof-theoretic result about the calculus is: 

• Strong Normalization: Every well-typed term is strongly normalizable. 

i.e., every reduction sequence starting from a well-typed term is terminating. 

This result shows the proof-theoretic consistency of the calculus. Its proof 

uses Girard-Tait's reducibility method [Gir72][Tai751 and is based on the proofs 

of strong normalization for the calculus of constructions [CH88] by Coquand 

[Coq86b] and Pottinger [Pot87}. One of the special key points of this proof is to 

find a suitable ranking of the types to make explicit the predicativity of the pred-

icative universes. We do this by proving a quasi-normalization theorem which 

enables us to define a two-dimensional ranking measure of types. 

Several important corollaries of the strong normalization theorem are: 

• Logical consistency of the embedded logic; 

• Decidability of conversion and the cumulativity relation for well-typed terms; 

• Decidability of type inference and type checking; 

• Equality reflection, i.e., the propositional Leibniz's equality definable in the 

calculus reflects the definitional (or computational) equality (conversion). 
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These results establish the theoretical foundations for both pragmatic applica-

tions and machine implementations. The logical consistency is the most basic 

requirement for the system to be used for formalization of mathematics, theorem-

proving and program specification. The decidability results and type-inference 

algorithm can be directly applied to a computer implementation of proof devel-

opment systems based on the calculus and the meta theorems are useful for a 

good implementation. 8  

Based on the rich type structures (E-types and universes, in particular) of 

ECC, we discuss a notion of (abstract) theory for abstract structured reasoning. 

Such a theory mechanism allows a good modularization of proof development 

and makes it possible to build up useful theory bases for large theorem-proving. 

Program specifications can be expressed by >1-types in a similar style to using 

Martin-Löf's type theory as we discussed in section 1.1.2, but propositions in the 

embedded higher-order logic are used to express program properties. In particu-

lar, Leibniz's equality can be used to model the definitional (or computational) 

equality (c.f., [13ur89a]); the theoretical soundness of this modeling is justified by 

the equality reflection result mentioned above. 

We also discuss the model-theoretic aspect of the calculus. We explain how 

the calculus can be understood set-theoretically in the w—Set framework devel-

oped by Moggi and Hyland [Mog85][Hyl82,87]. In particular, propositions in 

the impredicative universe are interpreted as partial equivalence relations and 

the predicative type universes can be interpreted as corresponding to large set 

universes. 

In chapter 2, the calculus ECC is formally presented and informal explana-

tions of the primitive notions in the theory are given together with some remarks 

on design decisions. 

8 ECC has been implemented in the proof development system LEGO developed by Pollack 

[Po189] [LPT89]. 



INTRODUCTION 
	

17 

Chapter 3 studies the basic meta-theoretic properties of the calculus, includ-

ing those about conversion and the cumulativity relation, properties of derivable 

judgements, admissibility results like subject reduction, weakening and strength-

ening, and the typing properties like those about principal types. 

Chapter 4 proves the quasi normalization theorem and defines a two-

dimensional ranking measure of types, which make explicit the predicativity of 

the non-proositiona1 types and establish a necessary result for us to prove strong 

normalization. 

Chapter 5 proves the strong normalization theorem, using Girard-Tait's re-

ducibility method based on a slightly more general definition of saturated sets 

and the quasi-normalization result. 

Chapter 6 considers two important corollaries of the normalization property 

- logical consistency and decidability. In section 6.1, the embedded higher-

order logic is described and proved to be consistent. We also conjecture that it 

is a conservative extension of the intensional intuitionistic higher-order logic and 

give a discussion. Decidability results are discussed in section 6.2; in particular, 

we describe an algorithm for type inference (and type checking) and prove its 

correctness. 

Chapter 7 discusses a set-theoretic interpretation of the calculus in the —Set 

framework. We explain how the main constructs can be understood set-

theoretically. 

Chapter 8 describes an approach to abstract structured reasoning, based on a 

notion of abstract theory. We show how abstract reasoning can be done by proof 

instantiation and structured reasoning by proof inheritance and parameterized 

sharing. 

Chapter 9 considers some issues in program specification and programming. 

We show that Leibniz's equality reflects the conversion relation and hence can be 

used to model definitional equality in specifications. We also briefly discuss how 
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the predicative part of ECC may provide programming facilities by stratified 

polymorphism and rich type structures (e.g., abstract data types). 

In chapter 10, we discuss further research topics and directions, including 

some open problems. 

1.3 Related Work 

We briefly discuss some related work below, some of which has been mentioned 

in section 1.1. 

The calculus of constructions (CC) was first studied by Coquand in his thesis 

[Coq85] and also in [CH88][CH85] etc.. Its meta theory, proof of normalization 

theorem in particular, can be found in [Coq85][Coq86b] and [Pot87]. Girard-

Tait's reducibility method [Gir72][Tai75] is the general method used to prove 

normalization of CC. Our proof of strong normalization for ECC is also based 

on the method. 

Type universes were first introduced in Martin-Löf's type theory [ML73,84] 

and also appeared in NuPRL's type theory [Con86]. The idea of extending CC by 

universes appeared in [Coq86a], where the Generalized Calculus of Constructions 

(CCC) was presented. 9  The strong normalization theorem for Constructions 

with infinite type universes was first proved in [Luo88b] (and this thesis, also 

see [Luo89a,b]). Based on the results in [Luo88b], the type-checking problem for 

CCC was considered by Harper and Pollack [HPo189]; because CCC does not 

have the property of type unicity (see section 2.2.5), the resulted algorithm is 

rather complicated compared with that for ECC (as sketched in [Luo89a] and 

described in this thesis). 

E- types were considered by Howard [How69] and become well-known by Martin- 

9 1n the presentation of GCC in [Coq86a] (page 235), the rules stating Type, : Type i  were 

inadvertently missing. 
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Löf's work [ML73,84]. A similar idea of using E-types to express modular 

structures occurs in researches of programming languages (e.g., [BLam84] and 

[Mac86]). The idea of lifting propositions (in the impredicative universes of 

Constructions) as higher-level types, in order to use E-types to express abstract 

structures and mathematical theories, was investigated in [Luo88a] [Luo89a,b]. 

Recently, Coquand [Coq89} and Streicher [Str88] considered using an explicit 

lifting operator to lift propositions, and view the calculus with type inclusions as 

an abbreviation [Coq89]. 

There are several existing works on the semantic aspects of Constructions 

including the following. Hyland and Pitts [HPit87] developed a general approach 

to categorical semantics of Constructions-like calculi, where an extension of CC 

with E-types and unit types is presented with the motivation of investigating 

semantics. Streicher [Str88] studied a semantics of CC based on the notion of 

contextual category [Cart78,86]. After Moggi [Mog85] found out that there is a 

small internal complete category in the category of w-sets [Hyl82], with a notion 

of completeness which is enough to interpret Girard- Reynolds' polymorphic .\-

calculus, Hyland [Hyl87] defined a stronger notion of completeness which can be 

used to model the calculus of constructions. Ehrhard [Ehr88] sketched an u-Set 

model of CC. An -Set model of CC (with E-types and lifting of propositions 

as types) was described in [Luo88a]. In [Luo89] (and this thesis), the model in 

[Luo88a] is also extended to the type universes (using an idea of Hayashi). 

Burstall [Bur89a] developed an approach to program development, using the 

extended calculus of constructions and the system LECO. He uses E-types to 

express specifications in a similar style as [NPS89], but uses Leibniz's equality 

to model computational equality and gives a categorical explanation of the ap-

proach. The formulation and proof of the equality reflection result in this thesis 

was motivated by Burstall's work on specifications. 

The proof development system LEGO is developed by Pollack in Edinburgh 
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[Po189][LPT89]. It implements several related type theories, including ECC 

presented in this thesis. One of the interesting features of the system is that it 

supports 'universe polymorphism' [Hue87][HPo189] so that indices of universes 

may be omitted in practice. 



Chapter 2 

ECC: an Extended Calculus of 

Constructions 

In this chapter, the calculus ECC is formally described, followed by some infor-

mal explanations and remarks on design decisions. 

2.1 A Formal Presentation of ECC 

ECC consists of an underlying term calculus and a set of rules for inferring 

judgements. 

2.1.1 The term calculus 

The basic expressions of the calculus are called terms, given by the following 

definition. 

Definition 2. 1.1 (terms) Terms are inductively defined by the following clauses: 

. The constants Prop and Type3  (j E w), called kinds, are terms; 

• Variables (x,y .... ) are terms; 

21 
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• If M, N and A are terms, so are the following: 

Hx:M.N, Ax:M.N, MN, Ex:M.N, pairA (M,N), 7r 1 (M), 7r2 (M). 

We use T to denote the set of terms. 	 U 

In Hx:M.N, Ex:M.N and \x:M.N, the free occurrences of variable x in N 

(but not those in M) are bound by the binding operators H, E and .A, respec-

tively. The usual conventions of parenthesis omitting are adopted; for example, 

M1 M2  ... M stands for ( ... (( M1 M2 )M3 ) ... M_ 1 )M 1  and the scopes of the bind-

ing operators H, E and .A extend to the right as far as possible. For a term M, 

FV(M) is the set of free variables occurring in M. When x V FV(N), Hx:M.N 

and >x:M.N can be abbreviated as M - N and M x N, respectively. 

a-convertible terms (i.e., terms which are the same up to changes of bound 

variables) are identified. is used for the syntactical identity between expressions 

such as terms, i.e., A B means that A and B are the same up to a-conversion. 

Definition 2.1.2 (reduction and conversion) Reduction (t'.) and conversion 

() are defined as usual with respect to the following contraction schemes: 

(/3) 	 (Ax:A.M)N -'--* [N/x]M 

(a) 	 7r.(pair A (M11 M2)) 	M (i 1,2) 

where [N/x]M, the substitution of term N for the free occurrences of variable x in 

M, is defined as usual with possible changes of bound variables. More precisely, 

1. The terms of the forms ()x:A.M)N and 7r.(pairA (Ml , M2)) (i = 1,2) are 

called /3-redexes and a-redexes, with [N/x]M and M 2  being their contrac-

turns, respectively, and )x:A.M and pairA (Ml , M2 ) are called major terms 

of these redexes. 

'We also sometimes write M1 M2  ... M as M 1 (M2 , ..., M) for readability consideration. 
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If a term P contains an occurrence of a redex R and we replace that occur-

rence by its contractum, and the resulting term is F', we say P one-step 

reduces to P' (notation P t P'). 

We say P reduces to Q (notation P L> Q) if and only if Q is obtained from 

P by a finite (possibly empty) series of contractions. 

(. We say P is convertible to Q (notation P Q) if and only if Q is obtained 

from P by a finite (possibly empty) series of contractions and reversed con-

tractions, i.e., there exist Ml , ..., Mn  (n ~: 1) such that P M1 , Q Mn  

and Mi  1>1 M1+1  or M1+1 1>1 M1  for i = 1,...,n - 1. 

A term is in normal form if and only if it does not contain any redex. A term 

M1  is strongly normalizable if and only if every reduction sequence of the form 

M1  i>1 M2  t>1  M3  [> 1  ... is finite. 

The kinds, also called type universes, and the type inclusions between them 

induce the type cumulativity that is syntactically characterized by the following 

relation. 

Definition 2.1.3 (cumulativity relation) The cumulativity relation 	is de- 

fined to be the smallest binary relation over terms such that 

1. -< is a partial order with respect to conversion, that is, 

ifAB, thenA -<B; 

if A -<B and B -<A, then A B; and 

if A -< B and B -< C, then AC. 

2. Prop Type0  -< Type 1  .. 

3. if A 	and A 2  B2 , then Hx:A 1 .A 2  Hx:B1.B2; 
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4. if A 1  B 1  and A 2  B21  then Ex:A 1 .A 2  Ex:B 1 .B2 . 

Furthermore, A -<B if and only if A B and A B. 	 0 

Remark The well- definedness (i.e., the existence) of the cumulativity relation 

will be justified in section 3.1 by giving an alternative inductive definition. 	0 

2.1.2 Judgements and inference rules 

We now describe the judgement form and the inference rules of ECC. 

Definition 2.1.4 (contexts) Contexts are finite sequences of expressions of the 

form x:M, where x is a variable and M isa term. The empty context is denoted 

byØ. 

The set of free variables in a context F x 1 :A 1 , 	FV(F), is defined 

as U1<1< ({x} U FV(A)). 	 0 

Definition 2.1.5 (judgements) Judgements are of the form 

FHM:A 

where F is a context and M and A are terms. We shall write H M : A for 

ØH M: A. 

The inference rules of ECC are listed as follows, where j stands for an arbi-

trary natural number: 

(Ax) 
H Prop: Type0  

F H A : Types 	
(x FV(F)) (C) 	

F, x:A H Prop: Type0 



THE CALCULUS ECC 
	

25 

(T) 

(var) 

(Hi) 

(H2) 

• 	(A) 

(app) 

() 

(pair) 

• 	(iii) 

(ir2) 

() 

F F- Prop: Type0  

F F- Type, : Type, 1  

F, x:A, F' I- Prop: Type0  

F,x:A,F' F- X: A 

F,x:A F- P : Prop 

F F- Hx:A.P: Prop 

FF-A:Type, F,x:AF-B:Type, 

F F- Hx:A.B : Type, 

F,x:A F- M: B 

F F- Ax:A.M : Hx:A.B 

FF-M:Hx:A.B F F- N:A 

F H MN: [N/x]B 

FF-A:Type, F,x:AF-B:Type, 

F F- >2x:A.B : Type, 

FF-M:A FF-N:[M/x]B F,x:AF-B:Type, 

F F- pair X . A B(M,N) : Ex: A.B 

FF-M:Ex:A.B 

F F- 7r1 (M): A 

FF-M:Ex:A.B 

F F- ir2 (M): [7r1 (M)/x]B 

F F- M:A FF-A':Type, 
(A-<A') 

F F- M: A' 
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Definition 2.1.6 (derivations) A derivation of a judgement J is a finite se-

quence of judgements J 1 , ..., J with J J such that, for all 1 < i < n, J 

is the conclusion of some instance of an inference rule whose premises are in 

{J I j<i}. 

A judgement J is derivable if there is a derivation of J. We shall write 

FF- M:Afor TF- M:A is derivable', and FVM:Afor 'FF- M : A is not 

derivable'. FU 

Definition 2.1.7 (valid contexts) A context F is valid if and only if 

F I- Prop: Type0 . We also often abbreviate F F- Prop : Type0  as T is valid'. U 

Definition 2.1.8 Let F be a context. 

. A term M is called a IF-term (or well-typed term under F) if F F- M : A 

for some A. 

. A term A is called a 17-type (or well-typed type under F) if F H A: K for 

some kind K. 

. A F-type A is called a F-proposition if F F- A' : Prop for some A' A, and 

called a non-propositional F-type (or proper F-type) otherwise. 

. A term M is called a F-proof if F F- M: P for some 17-proposition P. 

. A term A is inhabited (under F) if F F- M: A for some M. 	 0 

This completes our formal presentation of the calculus. 

2.2 Informal Explanations 

The extended calculus of constructions ECC presented above may be seen as 

a combination of Coquand-Huet's calculus of constructions [CH88] and Martin-

Löf's type theory with universes [ML73,84]. It extends the calculus of construc-

tions with s-types and fully cumulative type universes. One may also consider 
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it as an impredicative extension of Martin-Löf's type theory with universes by 

adding a new (and the lowest) impredicative universe Prop of propositions. It 

turns out that such an integration results in a stronger and more expressive 

higher-order calculus for formalization of mathematics, abstract structured rea-

soning and program specification. 

We now informally explain the primitive notions of the calculus and give some 

remarks on design decisions. 

2.2.1 Judgements and validity of contexts 

A context F x 1 :A 1 , ..., 	 is informally viewed as a list of assumptions that 

x i  is an object of type A1 . 

The intuitive meaning of a judgement F I-  M : A is that M has type A in 

context F, i.e., under the assumptions F, M is an object of type A. 

The only axiom of the system is I- Prop: Type 0 . Besides asserting that Prop 

has type Type 0  in F, the judgement F I- Prop : Type0  also plays the role in the 

calculus of asserting that F is a valid context. The validity of contexts are proved 

by the rules (Ax) and (C). We may replace the rules (Ax)(C)(T)(var) by the 

following, with an additional judgement form 'F valid': 

() valid 

F F- A: Typed (x 
V FV(F)) 

F,x:A valid 

F valid 

F I- Prop: Type 0  

F valid 

F H Type, : Type1 
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F,x:A,IF' valid 

IF, x:A,I" F- x: A 

Then we gain an equivalent system as presented in [Luo89a]. These rules may 

give a clearer picture of context validity in the calculus. 

As we shall show in section 3.2, for any derivable judgement F F- M: A, every 

prefix subsequence of F is a valid context and A is a IF-type. If x 1 :A 1 , 

is a valid context, then x 1 , ..., x,, are distinct and A i  is a type only dependent on 

variables x 1 ,...,x 1 _ 1 . 

2.2.2 Propositions and the impredicative universe Prop 

Inheriting the impredicative type structure from the calculus of constructions, 

ECC has an embedded intuitionistic higher-order logic. Provability of a formula 

corresponds to the inhabitation of the corresponding proposition. The propo-

sitions (more precisely, F-propositions) play the role of logical formulas by the 

Curry-Howard principle of propositions-as-types [CF58][How69]. For example, 

logical implication between two propositions P1  and P2  is expressed by P1  -f P2  

and, if P is a predicate over type A (i.e., P is a propositional function), then the 

formula for universal quantification stating that 'for all x in A, P(x)' is expressed 

by proposition llx:A.P(x) formed by product operator H. The other ordinary 

logical connectives and existential quantifier can be defined by (impredicative) 

coding of their elimination rules as in higher-order logic (c.f., [Pra65][CH85]). 

(See section 6.1 for details.) 

The universe Prop of propositions is impredicative. By rule (111), Prop is 

closed under arbitrary dependent products. In other words, for arbitrary type 

A and any propositional function P over A, Hx:A.P(x) is a proposition. For 

example, we can derive 

F- Hx:Prop.x : Prop 
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This proposition llx:Prop.x stands for logical constant false as it implies every 

proposition (see section 6.1.1) and is not inhabited in the empty context (the-

orem 6.1.5). The circularity in such a type formation is clear: Hx:Prop.x is 

formed by quantifying over the type Prop which has Hx:Prop.x as its object. 

Because of such an impredicative polymorphism, as in polymorphic A-calculus 

[0ir72][Rey741 and the calculus of constructions [CH88], propositions in the cal-

culus can not be understood as arbitrary sets (see section 7.5 for a discussion). 

Note that, unlike Martin-Löf's type theory, we do not identify types with 

propositions. Propositions are types, but not vice versa. There are non-

propositional types like Prop, Prop -* Prop and E-types which are not regarded 

as representing logical formulas in the system. This provides a conceptual distinc-

tion between logical formulas (propositions) and data types (non-propositional 

types). Philosophically, it does not seem to be natural to identify data types 

with logical formulas, although it is possible. 

2.2.3 Non-propositional types and predicative universes Type 3  

Besides the impredicative universe Prop, there are infinite predicative universes 

Type0 , Type 1 , Type2 , ..., where, roughly speaking, the non-propositional types 

reside. The type universes in ECC provide us very rich type structures and make 

the system become stronger and more expressive for formalization of mathematics 

and structured abstract reasoning. Particularly, it makes it possible to formalize 

abstract mathematics (e.g., abstract algebras and notions in category theory like 

the category of all small categories) - one of the two bases (the other is >-types) 

for structured abstract reasoning. The idea is that it is possible to represent 

arbitrary sets by non-propositional types in predicative universes. Furthermore, 

universes uniformly provide a strong form of polymorphism which enables us 

to do structured reasoning or programming. For example, universes allow us 
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to express parameterized modules and hence parameterized structure sharing 

following the idea of Burstall and Lampson in the programming language Pebble 

[BLam84][Bur84}. All these will be further discussed in chapter 8. 

Formally, the predicative universes in ECC is further developed from the 

formulations of universes of Martin-Löf [ML73,84] and Coquand [Coq86a]. Prop 

is an object of type Type 0  (by rule (Ax)) and Type 3  is an object of Type 1  (by 

rule (T)). Viewing intuitively types as sets and ':' as the membership relation, 

we have 

Prop E Type 0  E Type 1  E Type 2  E 

With infinite universes, every object in the calculus has a type (types have uni-

verses as their types), as in Martin-Löf's type theory. Note that a universe is not 

an object of itself or any universe lower than it. 

Furthermore, by rule (s), we can infer that every object of type Prop is an 

object of type Type 0  and every object of type Type s  is an object of type Type,,; 

i.e., intuitively, 

Prop ç Type0  ç Type' c Type 2  c 

Type inclusions between universes are uniformly extended to other types (see 

section 2.2.5 below) and the lifting of propositions to higher-level types (Prop 

Type 0 ) is particularly important for s-types in the calculus to be used as an 

abstraction mechanism (see section 2.2.4 below). In general, one only works 

with finite many universes. With universe inclusions, one can work uniformly in 

a universe big enough without worrying about indices of universes. 2  

Remark There are basically two approaches to formulating type universes and 

2 1n LEGO proof development system [Po189J[LPT89], such a 'typical ambiguity' is allowed 

[HP89]. 
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the associated reflection principle, called by Martin-Löf as 'formulation t la Rus-

sell' and 'formulation i. la Tarski' [ML84]. The former uses explicit universe 

inclusions following the style of Russell's ramified type theory and is adopted 

in our formulation of ECC. In the later approach, a new higher universe, say 

Type 3 , is introduced as a type consisting of the names of the types residing in 

the universe; each of these types is introduced by a type constructor T as T,(a) 

which has a in Type, as its name. Following this view of distinction between 

types and their names, in the former approach using universe inclusions, a type 

symbol stands for both a type and the name of the type. 0 

The universes Type, are predicatively closed under formation of dependent 

products (11-types) and dependent strong sums (E-types). By rules (112) and 

(E), for any F-type A and any (F,x:A)-type B in the same universe Type,, their 

dependent product type 11x:A.B and dependent sum type x:A.B are of type 

Type,. In fact, because of the type inclusions between universes ((2) above), rules 

(112)(>I) are the more economic expressions of the following (derivable) rules: 3  

FF-A:K F,x:AI-B:K' 

F I- 11x:A.B : ' max 

FI- A:K IF, x:AF-B:K' 

F H x:A.B : 1( max  

where K and K' are arbitrary kinds, and Kmax 	max <  {Type o , K, K'} is the 

maximum kind among Type 0 , K and K' subject to the cumulativity relation 

. In other words, the dependent product/sum of any two types which are in 

3 A rule R of the form '1 , " is called derivable if there is a finite sequence of judgements 

J 1 , ..., J° ,, with Jn+m J such that, for all n+ 1 <i < n+m, Ji  is either one ofJ1 ,...,J 

or the conclusion of some instance of an inference rule whose premises are in { J1 1 1 <j < i }• 
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universes lower than or the same with Type 3  is an object of Type 3 . For example, 

Hx:Prop.Type0  is of type Type 2  for i > 1 but not of type Prop or Type 0 . 

Therefore, the universes Type 3  are predicative in the sense that there is no 

circularity in formations of non-propositional types. This predicativity will be 

made formally explicit in chapter 4 and is essential for ECC to be logically 

consistent and not to suffer from logical paradox. For example, if Type 0  were 

closed for arbitrary dependent product types as Prop does, Cirard's paradox 

[Cir72][Coq86a] could be deduced. 

The 11-type Hx:A.B is the type of functions which take an object N of type 

A into an object of type [N/x]B. Functions are represented by )-expressions 

(c.f., rule (\)) whose applications to objects are expressed by rule (app). When 

B is not dependent on the objects of A, i.e., x does not occur free in B, llx:A.B 

(abbreviation A - B) is the type of functions from A to B. 

The E-type Ex:A.B is the type of pairs (a, b) where a is an object of type A 

and b is of type [a/x]B. Intuitively, it represents the set of (dependent) pairs of 

elements of A and B (B may be dependent on elements of A): 

{(a,b) I a€A,bB(a)} 

Elements of Ex:A.B can be analyzed by using the two projections: 

7r1 (a,b)=a and 7r2 (a,b)=b 

When B is not dependent on the objects of A, Ex:A.B (abbreviation A x B) is 

the usual product type of pairs from of A and B. 

Formal objects for pairs in our calculus are 'heavily typed'. We use 

pairA (M, N) instead of the usual untyped term (M, N) as in Martin-Löf's type 

theory. This avoids the undesirable type ambiguity which would make type 

inference and type checking difficult (perhaps impossible) [Luo88a]. For exam-

ple, if untyped pairs were used, (Type o , Prop) would have both Ex:Type 1 .x and 

Type 1  x Type 0  as its types which are incompatible. 
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2.2.4 Lifting of propositions and s-types as subsets 

As explained by Martin-Löf, E-types in his type theory can be used to express 

the intuitionistic notion of subsets; i.e., Ex:A.B(x) expresses the set of the ob-

jects a in A such that B(a) holds. From intuitionistic point of view, to give an 

object of type A such that B(a) is to give a together with a proof of B(a) (c.f., 

[Bis67] [Kre68] [ML73,84]). 

Different from Martin-Löf's type theory, ECC has propositions as logical 

formulas and propositions are not identified with types. Therefore, such an ex-

pression of subsets is possible only if we can form s-type x:A.B when B is a 

proposition in context F, x:A. 

There is a known problem for extending impredicative type theories by strong 

sum (E-types); that is, arbitrary strong sum is logically inconsistent with impred-

icativity [Coq86a][HH86][MH88}. Adding arbitrary type-indexed E-types to the 

impredicative level of the calculus of constructions would produce an inconsistent 

system in which Girard's paradox can be derived. In other words, the following 

inference rule is problematic and, together with the rules for two projections, 

inconsistent with the impredicativity of Prop: 

(*) 
	 F,x:A H B: Prop 

F H x:A.B: Prop 

where A is not restricted as a small type (proposition) .4  As propositions play a 

necessary and significant role in expressing mathematical problems and specifi- 

cations, the above difficulty appears serious and seems to have prevented people 

4 A simple and intuitive argument to see this problem is that, if rule (*) were allowed, then 

we would be able to derive I- Ex:Prop.{*} : Prop, where {*} stands for a non-empty type, say 

unit type. Then, we have Ex:Prop.{*} is 'isomorphic' to Prop, which shows that we would 

essentially have Prop : Prop. If we add a premise F F A Prop to rule (*), the rule would 

become of no problem; it is the rule for small E-types. We do not have small E-types in ECC, 

not because it can not be added, but because we do not see its necessity. 



THE CALCULUS ECC 	 34 

from directly extending a Constructions-like calculus by E-types in order to have 

the power of expressing abstract structures. 

However, the above result does not prevent us from adding s-types as large 

types (non-propositional types) as we do for ECC. The only problem is how to 

regard propositions also as large types to form E-types. In formulation of ECC, 

we propose an idea of lifting propositions to higher-level types.*' Every object of 

type Prop is also an object of type Type 0 , i.e., Prop 9 Type0 , as we described 

in section 2.2.3. This can be understood as lifting a proposition as the type of 

its proofs; or putting in another way, a logical formula is regarded as the name 

of the type of its proofs. This lifting of propositions is essential for E-types to 

express the intuitionistic notion of subset. Note that, in ECC, x:A.P is not 

aproposition even when P is; in other words, rule (*) above is not included or 

admissible. However, as propositions are lifted as types, we can derive (by rules 

() and (r-)) 

FHA:Type 3  F,x:AHP:Prop 

F 1- Ex:A.P Type 2  

This non-propositional type x:A.P intuitively represents the intuitionistic sub-

set type. It is this that enables propositions to be used to express axioms of 

a mathematical theory and program properties in a specification when we use 

E-type to express abstract theories and specifications. (See chapter 8 and chap-

ter 9.) 

One might wonder whether the lifting of propositions would propagate the 

impredicativity at the level of propositions to the higher levels. For instance, we 

can derive 

I- llx:Type 3 HB:Type -* Prop.B(x) :Type 3  

5This idea was considered in [Luo88c,a] in order to get a good formulation of an extension 

of the calculus of constructions by E-types. In the original presentations of Constructions 

[C1188][Coq85][Coq86a], propositions are not higher-level types. 
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However, the type hierarchy, except the lowest level Prop, is still stratified (pred-

icative) in the sense that the types can be ranked in such a way that the for-

mations of non-propositional types are only dependent on the types with lower 

ranks (see chapter 4). 

The intiiitionistic expression of 'such that' is based on the idea of treating 

proofs as mathematical objects. Note that we can quantify over the proofs of a 

proposition to form propositions or types. This makes it possible, for example, 

to use propositions to express properties of proofs or programs (c.f., [ML73]). A 

typical example is the Leibniz's equality definable in the calculus. (See defini-

tion 6.1.4 and section 9.1.) 

Remark We can define (weak) existential types by dependent product types 

at the predicative universes of ECC [Luo89a] as well as at the impredicative 

universe [Rey83]. (See section 9.2.2.) They can be used to express abstract data 

types as discussed by Mitchell and Plotkin in [MP85]. However, they can not be 

used to express the intuitionistic notion of subset. 0 

2.2.5 Conversion and full cumulativity 

We now informally explain the term calculus, mainly to explain the conversion 

relation and the cumulativity relation , both of which are defined for the 

untyped terms. The conversion relation has the Church-Rosser property [ML72] 

(see theorem 3.1.1) and the cumulativity relation is a partial order over terms 

with respect to conversion. At the untyped term level, neither of them is decid-

able. However, essentially, they are only used for well-typed terms in the calculus 

and in this case, they are decidable as we shall show (lemma 6.2.1). 

Conversion between well-typed terms may be regarded as formally expressing 

definitional equality which is purely for abbreviation of linguistic expressions 
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[ML 73], and reduction may be regarded as evaluation of defined functions applied 

to its arguments. /3-conversion corresponds to the following definitional schema 

of functional abstraction: if a term M is of type B assuming variable x is an 

arbitrary object of type A, we can define a function f of type Hx:A.B by 

=df 

f thus defined is formally expressed by )tx:A.M. Then a /3-reduction step con-

tracting f(N) to [N/x]M corresponds to an evaluation step of the function f 

applied to an object N of type A. 

cr-reduction corresponds to extracting the components from a pair by evaluat-

ing the projection functions. a-conversion can be explained by considering the fol-

lowing definitional schema: for a binary function M of type llx:AHy:B(x).C(x, y), 

we can define a unary function f of type Hz:(x:A.B(x)).C(ir 1 (z), 7r2 (z)) by 

AZ) =ç M(7r1 (z),7r2 (z)) 

Formally, f =df Az:(Ex:A.B(x)).M(7r 1 (z),w 2 (z)). Then, by a-conversion (to-

gether with /3-conversion), we have 

f(pairES .AB (Ml ,M2 )) M(M,M) 

The cumulativity relation subsumes conversion and reflects the type inclusions 

between universes. Splitting the cumulativity rule to and -<, the cumulativity 

rule () in fact stands for the following two rules: 

FHM:A FHA':Type 	
/ (cony) 	

FHM:A' 

(cum) 
FF- M:A FF- A':Type (AA') 

FHM:A' 

As conversion reflects definitional equality, the rule (cony) of type conversion, 

as explained in [ML73], allows us to apply the principle of replacing a type 
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(proposition) by a definitionally equal type (proposition), i.e., if M is an object 

(proof) of type (proposition) A and A is definitionally equal to type (proposition) 

A M is an object (proof) of A. 

Rule (cum) generalizes the universe inclusions coherently to the other types, 

achieving a nice unicity of types. It results in a simple notion of principal type 

(or the most general type, see definition 3.3.5 and theorem 3.3.6) and a simple 

algorithm for type inference (definition 6.2.2 and theorem 6.2.3). For example, 

the principal types of M Ax:Type 1 .x and N pairTypc , xTypeo (Type o ,Prop) 

are Type1 - Type 1  and Type 1  x Type 0 , respectively. By the cumulativity rule, 

we have F- M : Type 1  -* Type, (i -:~ 1) and I- N : Type 3  x Type (j > 1 and 

k > 0). 

This generalization clarifies the feature of type inclusions in a type system 

with universes and leads to a simple implementation of the type hierarchy of 

ECC. In the formulations of universes by Martin-Löf [ML84] and Coquand 

[Coq86a], the following rules are used: 

F I-  A: Type 3  

F H A : Type 1  

Although in such a formulation every well-typed term has a minimum type with 

respect to the cumulativity relation, as shown in [Luo86b], the minimum type 

is sometimes not the most general one (principal type). For example, for the 

system presented on page 235 in [Coq86a], it is easy to show by induction on 

derivations that x:Type 0  - Type 0  1/ x : Type 0  -* Type 1 . 

The cumulativity relation -< defined in definition 2.1.3 is not completely con-

travariant for H: for Hx:A 1 .A2  to be less than or equal to llx:B 1 .B2 , A 1  is required 

to be convertible to B 1  instead of B1 3  A 1 . 6  One may take the latter decision and 

the proof-theoretic properties will still hold. The only difference from the proof - 

6 Here, one may compare with languages with subtyping. See [Card89], for example. 
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theoretic point of view is that some terms would get more types. For example, 

Ax:Type 1 .x would not only have types Type 1  -p Type,, but have Prop - Type 3  

and Type 0  - Type, (j ~! 1) as its types as well. The algorithm for type inference 

remains the same except that the basic relation is changed. However, from 

a set-theoretic semantic point of view, the type inclusions with a cumulativity 

relation being completely contravariant would be reflected by coercions instead 

of by set inclusions if we think of functions as relations. 

A final remark is about rule (s). In the rule, A A' is a side condition. This 

means that we do not take its justifications as part of a derivation in ECC. The 

premise F I- A' : Type, is then important and necessary to guarantee that A' 

is a well-typed type. One may consider equality judgements as in Martin-Löf's 

type theory [ML73] 7  and take justifications of the cumulativity relation as parts 

of derivations. This is possible because --< is decidable (and axiomatizable) for 

well-typed terms. 

.

1 Not in the sense of the judgemental equality in Martin-Löf's system with strong equality 

[ML84]. 



Chapter 3 

Basic Meta-theoretic Properties 

We study in this chapter the basic meta-theoretic properties of the calculus. The 

main properties of the underlying term calculus are concerned about conversion 

and reduction (Church-Rosser theorem) and the cumulativity relation. Prop-

erties about derivable judgements and some important admissibility results for 

derivability are proved in section 3.2. A notion of principal type which charac-

terizes the type cumulativity in the calculus is studied in section 3.3. 

3.1 Properties of the Term Calculus 

The most important property of the term calculus is the Church-Rosser theorem 

about the relations of reduction and conversion. 

Theorem 3.1.1 (Church-Rosser theorem) If M1  M2 , then there exists M 

such that M1  t> M and M2  t' M. 

Proof Sketch By definition of conversion, we only have to show that reduction 

has the diamond property, i.e., if M t> M1  and M t> M2 , then M1  r> M' and 

M2  t> M' for some M'. Following [ML72], we give a proof sketch of the diamond 

39 
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property as follows. 1  

1. Definitions: 

parallel one-step reduction: M E' N if and only if N is got by con-

tracting some (possibly all or none) of the redexes in M, starting from 

within and proceeding outwards. 

parallel n-step reduction: M t>0  N if and only if M N; M n+1  N 

if and only if M 	M' [> 1  N for some M'. 

Note that M E' N if and only if M i' N for some n E w. 

2. Lemma: M [>1  M' implies [N/x]M t> 1  [N/x]M'. (Obvious by definition of 

1) 

3. Lemma: If M >1  M1  and M M 2 , then M1  t>1  M' and M2  i' M' for some 

M'. (By induction on the structure of M and using the lemma above.) 

4. Lemma: If M m  M1  and M M 2 , then M1 	M' and M2 	M' for 

some M'. (By m x n times applications of the above lemma.) 

From the last lemma above, the diamond property for reduction holds, and hence 

the theorem. 	 LN 

Corollary 3.1.2 (uniqueness of normal forms) The normal form of a term 

is unique (up to syntactical identity), if it exists. 	 0 

Remark Note that ECC does not include the 77-contraction scheme 

(ii) 	 .Ax:A.Mx -'-- M (x V FV(M)) 

'Martin-Löf in [ML72] refers to Tait for the basic ideas of the proof. Similar proofs for 

simpler ..\-calculi can be found in other places, e.g., Appendix 1 of [11S87] among others. 
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or the contraction scheme of surjective pairing 

(ir) 	 pairA (7rl (M),7r2 (M))-s.* M 

either of which would make Church-Rosser property fail to hold [vD80][K1o80] 

for the term calculus. The examples to show this would be, with A B, 

\x:A.(Ax:B.x)x 

pairBXB(lrl(pairAXA(a, a)),  7r2(pairAXA(a,  a))) 

The first would reduce to .Ax:A.x by (3) and .\x:B.x by (ij); the second would 

reduce to pairBXB(a,a)  by (a) and pairAxA (a,a) by (7r). It is also worth re-

marking that, with either of them, Church-Rosser even fails for well-typed terms 

of ECC because of the existence of type inclusions induced by universes. In fact, 

whenever x:A I- x : B and F- a: A, the above two terms are well-typed. 0 

In the rest of this section, we prove the existence of the cumulativity relation 

as defined in definition .2.1.3 and some of its properties. We will show in sec-

tion 3.3 that the cumulativity relation does characterize the type cumulativity in 

the calculus. 

We first give an inductive definition of a binary relation over terms which will 

be shown to be the cumulativity relation as defined in definition 2.1.3. 

Definition 3.1.3 (cumulativity relation: inductive definition) 	Let 

c T x Y (i E w) be the relations over terms inductively defined as follows: 

1. AB if and only if one of the following holds: 

A B; or 

A Prop and B Type s  for some j E w; or 

A Type 3  and B TyPek  for some j < Ic. 



BASIC META PROPERTIES 	 42 

. A j+1  B if and only if one of the following holds: 

A B, or 

A flx:A 1 .A 2  and B Hx:B 1 .B2  for some A 1  B 1  and A 2  -<i B2; 

WA 

A Ex:A 1 .A 2  and B 	x:B 1 .B2  for some A 1  - B 1  and A 2  -< B2 - 

A -<j B if and only if A j B and A B. 

Define -< as 

drU 
jEw 

Furthermore, A -< B if and only if A B and A B. 

We show below that 	defined above is the smallest binary relation over 

terms such that the four conditions in definition 2.1.3 are satisfied; in other 

words, the above is in fact an alternative definition of the cumulativity relation 

(corollary 3.1.7). 

Lemma 3.1.4 Let -< be the relation defined by definition 3.1.3. Then, A B if 

and only if one of the following holds: 

• 

A Hx:A 1 .A 2  and B 11x:B 1 .B2  for some A 1  B and A 2  -< B2 ; 

• A Ex:A 1 .A 2  and B 	x:B 1 .B2  for some A 1  -< B1  and A 2  -< B2 . 

Proof Obvious from definition 3.1.3 of -<. 	 •i 

Remark We may define a relation between terms: A B if and only if there 

exists a sequence of terms M0 ,...,M such that A M 0 , B M, and M1  -< M2+1 

or M +1  M1  for 0 < i <n. Then, the relationship between and is similar 

to that between and 1'. The lemma 3.1.4 implies that, if A B, then A and 
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B have the same sort of forms up to conversion. 

The following lemma will be used to prove that the relation defined in defini-

tion 3.1.3 is a partial order (lemma 3.1.6) and that the cumulativity relation is 

well-founded (corollary 3.1.8). 

Lemma 3.1.5 Let A, B, C and D be terms, i E w, and be the relation defined 

in definition 8.1.3. If A -< i  B, then 

B -< C implies B , C, and 

D A implies D , A. 

Proof By induction on i E w. We only give this proof for the first part, i.e., 

B -< C implies B -<j  C, if A -< j  B. The second part is symmetric and omitted. 

For i = 0, A and B are convertible to some kinds. By Church-Rosser theorem, 

B C must be because B and C are convertible to some kinds, and hence 

B 0 C. 

For i = k + 1, we have the following two cases to consider: 

A -<k B. 

A k  B and A <k+1  B. 

For the first case, B - C implies B k  C by induction hypothesis and hence 

B k+1  C. 

For the second case, for some Q e {ll, E}, A Qx:A 1 .A 2  and B Qx:B 1 .B2  

such that 

• A l B l  and A 2 -.<kB2 ,ifQEfl, 

• A 1  -.<B1  and A 2  B2 , or A 1  B 1  and A 2  -< B2 , if 	. 
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By Church-Rosser theorem and induction hypothesis, B -/<k C, and B 	C is 

either because B C, which implies B k+1  C, or because B Qx:B.B and 

IC1  ifQll 
C Qx:C1 .C2  for some B1 	

C1  if 	E 
and B 	C2 . By Church-Rosser 

I  
I—C1 ifQH 

theorem, B1 	B' (j = 1, 2). So, B 1 	 and B2 	C2 . Hence, 
IC1  ifQEE 

IC1  ifQH 
by induction hypothesis, B1 	 and B2 k C2 . Therefore, 

(kCl ifQEE 
B k1 • 
	 FEW 

Lemma 3.1.6 The relation -< defined in definition 3.1.3 is a partial order with 

respect to conversion; that is, 

ifAB, thenA -<B, 

if A -< B and B -< A, then A B, and 

ifA-<B and BC, then AC. 

Proof We only have to show that every -<j is a partial order with respect to 

conversion. By induction on i. 

The base case for 	can readily be verified. Consider $k+1• 

Reflexivity: Obvious by definition 3.1.3. 

Anti-symmetry: Suppose A k+1  B and B k+1  A. As A k+1  B, we have 

two cases to consider. 

A - B; 

A & B and A <k+1  B. 

For the first case, either A B or A .<k B, and we have B <k A by defi-

nition of k  and lemma 3.1.5. Then, A B, by induction hypothesis. For 

the second case, for some Q e {H,}, A Qx:A 1 .A 2  and B Qx:B i .B 2  

such that 
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• A l Bl  and A 2 -<k B2 ,ifQH, 

• A 1  -< B1  and A 2  B21  or A 1  B 1  and A 2  -< B2 , if Q 

By Church-Rosser theorem and lemma 3.1.5, B k+1  A is also due to the 

same reason, i.e., B 	Qx:B.B and A 	Qx:A.A'2  for some 

I_A ifQEH 
B 	 and B k A. By Church-Rosser theorem, A 

tkAi ifQE 
1A 1  ifQEH 

A'. and B3  B' (j = 1,2), and hence, B 1  ' 	 and B2 <k 
:& A, ifQE 

A 2 . By induction hypothesis, we have A 3  13 (j = 1,2) and hence A B. 

3. Transitivity: Suppose A k+1  B and B k+1  C. As A k+1  B, we have 

the same two cases as the above case. For the first case, we have B k  C 

by definition of k  and lemma 3.1.5. By induction hypothesis, A 'k  C 

and hence A <k+1 C. For the second case, by Church-Rosser theorem 

and lemma 3.1.5, B <k+1 C is also due to the same reason, i.e., B 
1Ci 	ifQll 

Qx:B.B and C Qx:C1 .C2  for some B 	 and B <k 
-< k  C1 ifQEE 

C2 . By Church-Rosser theorem, B3  B (j = 1, 2), and hence, by induction 

IC1  ifQH 
hypothesis, A 1 	 and A2 k  C2 , which implies A k+i C-  

-<k 	if Q>I 

As each -< is a partial order with respect to conversion, so is the relation 

defined in definition 3.1.3. 	 0 

Corollary 3.1.7 The relation -< defined in definition 3.1.3 is the smallest partial 

order over terms with respect to conversion such that 

Prop Type0  Type 1 	
...; 

if A A' and B - B', then llx:A.B - Hx:A'.B'; 

if A A' and B - B', then x:A.B - 	x:A'.B'. 
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Proof By lemma 3.1.6, 	is a partial order w.r.t. conversion and it obviously 

satisfies the three conditions. For minimality, suppose R C T x T to be a partial 

order w.r.t. conversion satisfying the conditions. We only have to show that 

-<,ç R for every i e w, which can easily be done by induction on i. 	0 

Remark Definition 3.1.3 and the above corollary show that the cumulativity 

relation (definition 2.1.3) is well-defined; in other words, definition 3.1.3 gives an 

alternative inductive definition of the cumulativity relation. 	 0 

Using lemmas 3.1.5 and 3.1.4, we can also show that the cumulativity relation 

is well-founded. 

Corollary 3.1.8 (well-foundedness of -<) The cumulativity relation is well-

founded in the sense that there is no infinite decreasing sequence of the form 

A 0  >- A 1  - A 2  >- 

Proof If there exists an infinite sequence A 0  >- A >- A 2  >.- ..., we have by 

lemma 3.1.5, A 0  >-i A 1  >-i A 2  >.- ... for some i E w. So, we only have to show 

that -< j  is well-founded for every i e w. 

By induction on i. 	is obviously well-founded. Consider 	If A >- 	B, 

then there are three possibilities: 

A>- B, 

A Hx:A 1 .A2  and B llx:B 1 .B2  for some A 1  B 1  and A 2 	B2 , or 

A >x:A 1 .A 2  and B Ex:B 1 .B2  for some A 1 , A 2 , B1  and B2  such that, 

A 1  >- i  B 1  and A 2  >- B21  or A 1 	B 1  and A 2  >'-• B2 . 

For the first case, there is no infinite decreasing sequence starting from A >- B by 

induction hypothesis and lemma 3.1.5. For the second case, by lemma 3.1.4, every 
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component of a decreasing >.- 1 -sequence starting from A >- B is convertible to 

a term of 11-form. Hence, if such a sequence is infinite, there must be an infinite 

decreasing sequence starting from A 2  >- B2 , which is impossible by induction 

hypothesis and lemma 3.1.5. The third case for E can be similarly proved. Hence, 

every is well-founded and so is by lemma 3.1.5. 0 

3.2 Derivable Judgements and Derivability 

Shown in this section and the next are the basic properties of ECC. We show in 

this section that, if a judgement x 1 :A 1 , ..., 	F- M: A is derivable, then 

• x 1 :A 1 , ..., x.:A (i = 1,..., n) are valid contexts (followed by lemma 3.2.3); 

• A and A 2  are all types (followed by lemma 3.2.1 and theorem 3.2.7); 

• the variables x 1 , ..., x are distinct, the free variables in M and A are among 

x, and those in A 2  are among x 1 ,..., x1 _ 1 . ( lemma 3.2.2). 

These give us a better understanding of the forms of derivable judgements. 

We also show that the following operations on derivable judgements are ad-

missible: 

. Context replacement by B A (lemma 3.2.5); 

. Type-preserving substitution or Cut (theorem 3.2.6); 

• Subject reduction (theorem 3.2.8); 

• Weakening and strengthening (lemmas 3.2.4 and 3.2.9). 

These provide us important admissible rules  which not only enable one to un-

derstand the calculus (derivability, in particular) better but also allow one to use 

them in implementations of the calculus (c.f., [LPT89]). 

A rule R of the form "_ is called admissible if J is derivable whenever J1 , J are 

derivable. 



BASIC META PROPERTIES 	 48 

Lemma 3.2.1 Any derivation of F,x:A,F' I- M : B has a sub-derivation of 

F F- A : Type, for some j. 

Proof By induction on derivations. 3 	 0 

Lemma 3.2.2 (free variables) Suppose F F- M: A. Then, 

FV(M) U FV(A) ç FV(F). 

F has the form x 1  :A 1 , ..., x:A such that x 1 , ..., x are distinct and FV(A) C 

{x 1 ,...,x_ 1 } for  = 1,...,n. 

Proof By induction on derivations. When proving the first, use 3.2.1 for (ll1)(.)). 

When proving the second, use the first for (C). 	 0 

Lemma 3.2.3 (context validity) Any derivation of F, F' F- M : A has a sub-

derivation of  F- Prop: Type0 . 

Proof By induction on derivations. 

Lemma 3.2.4 (weakening) If  F- M: A and F' is a valid context which con-

tains every component of F, then F' F- M : A. 

Proof By induction on derivations. For the rules other than (111)(X), apply 

induction hypothesis and the same rule. For (H1)(A), use lemma 3.2.1 and then 

similar. 	 0 

Remark The weakening lemma expresses the monotonicity of the calculus, i.e., 

postulating more assumptions does not invalidate provable results. 	 U 

Lemma 3.2.5 (context replacement) If F,x:A,F' I- M : C and B -< A is a 

F-type ;  then F,x:B,F' F-  M : C. 

3  W will say 'by induction on derivations (of ...)' to mean 'by induction on the lengthes of 

derivations (of...)'. 
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Proof By induction on derivations of F, x:A, F' F M : C. The only two non- 

trivial cases are rule (C) and rule (var). For rule (C), we have two possibilities: 

F' F, y:A 1 , M Prop and C Type 0 : 

IF, x:A,F F A 1  : Type 3 	
(y V FV(F,x:A,F)) 

F,x:A,F,y:A 1  F Prop: Type0  

By induction hypothesis, F,x:B,F F A 1  : Type 3 . By lemma 3.2.2, y 

FV(17,x:B,F'1 ). So, applying (C) suffices. 

F' 

F F A: Type ., 	
(x V FV(F)) 

F,x:A F Prop: Type0  

As B is a IF-type, F F B : Type 3  for some J. Applying (C) suffices. 

For rule (var), with M x and C A, 

F,x:A,IF' F Prop: Type0  

F, x:A, F' F x: A 

By induction hypothesis, IF, x:B,F' F Prop : Type0 . By rule (var), F,x:B,F' F 

x : B. As A is a F-type by lemma 3.2.1, we have by lemma 3.2.4 that A is a 

(F,x:B,I")-type. Hence, F,x:B,F' F x: A by rule (-<) as B A. 	 0 

Remark As a special case of the above lemma, replacing a type in the context 

of a judgement by a convertible type results in an 'equivalent' judgement subject 

to derivability. The above lemma is another sort of 'weakening' lemma as one 

gets a possibly stronger assumption when replacing A by B A. 0 

Theorem 3.2.6 (Cut) If F,x:N,F' F P : A and F F M : N, then 

F, [M/x}F' F [M/x]P: [M/x]A. 
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Proof By induction on derivations of F, x:N, F' F-  P : A. Here, we only check 

the rules (var), (111) and (pair). The other cases are simpler or similar. For rule 

(var), with F,x:N,F' Fl , y:B,F 2 , 

F1 ,y:B,F2  F-  Prop: Type0  

17 1 ,y:B,F 2  H y: B 

there are two cases: 

x:N y:B, F F1  and r=— 	By lemma 3.2.2, x V FV(N). So, we only 

have to show F, [M/x]F' F- M : N. This is true by induction hypothesis 

and lemma 3.2.4, as FHM: N. 

x:N occurs in 17 1  or F2 . By induction hypothesis, F, [M/x]F' F- Prop 

Type 0 . As x 	y by lemma 3.2.2, F, [M/x]F' contains the component 

y:[M/x]B. So, an application of rule (var) yields the result. 

For rule (Hi), with P llx:P1 .P2  and A Prop, 

17,x:N,F',y:P1  F- P2  : Prop 

F,x:N,F' F- Hx: Pi . P2  : Prop 

As x y by lemma 3.2.2, F, [MIX]IF', y:[M/x]P1  F- [M/x]P2  : Prop by induction 

hypothesis. By rule (Hi), F, [M/x]F' F- Hy:[M/x]P1 .[M/x]P2  : Prop. Since M is 

a F-term, y V FV(M) by lemma 3.2.2. So, F, [M/x]F' F- [M/x]Hx:P1 .P2  : Prop 

as required. 

For rule (pair), (write F1  for F,x:N,F',) 

17 1  F- M1  : A 1  F1  F-  N1  : [M1 1y]B 1  F1 ,y:A 1  F- B,: Type 3  

17 1  F- pairE Y .A,B 1 (Ml,Nl) : 

Note that x 0 y and x V FV(M) by lemma 3.2.2. By induction hypothesis, we 

have 

F, [M/x]F' F- [M/x]M1  : [M/x]A1 
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F, [M/x]F' F [M/x]N1  : [M/x][M1 /x]B 1  

F,[M/x]F',y:[M/xJAi  I- [M/x]B 1  : Type 3  

Noticing that [M/x][M1 /y]B 1  [[M1x]M1 1y][M1x}B 1 , we have by rule (>1), 

F, [M/x]F' I- pair.[M/]A1 .[M/x]Bi  ([M/x]M1 , [M/x]N 1 ) : Ey:[M/x]A 1  .[M/x]B 1  

As x # y, this judgement is 

F,[M/x]F' I- [M/x]pairE .A1Bl (Ml ,Nl ) : [M/x]>y:A1 .B 1  

as required. 

Remark The name of the above lemma (also used in [Pot87]) is due to the 

analogy with the cut rule in sequent calculus of the form 

F,NI-A FE-N 

FE- A 

0 

Theorem 3.2.7 if  I- M: A, then A is a F-type. 

Proof By induction on derivations of F I- M: A. For the rules except (app) and 

(7r2), it is easy. (We only remark that lemmas 3.2.1 and 3.2.4 are used for (var), 

and lemma 3.2.1 for ()).) The cases for (app) and (7r2) are similar. We check 

(ir2) here. With M 7r2 (M') and A 

F I- M' : 

F F 7r2 (M'): [7r1 (M')/x]A 2  

By induction hypothesis, F I- >x:A1 .A 2  : K for some kind K. Any derivation D 

of this judgement must have () or  () as the last rule used. So, D must have a 
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subderivation which is a derivation of F F- Ex:A 1 .A 2  : Type, with () as the last 

rule; i.e., we have 

F F- A 1  : Type d  F, x:A 1  1- A 2  : Type, 

F H Ex:A 1 .A 2  : Type, 

As F F- 7i- 1 (M') : A 1 , we have F F- [7r1 (M')/x]A 2  : Type, by theorem 3.2.6. So, A 

is a F-type. 	 EM 

Remark This theorem says that every inhabited term is a type. However, the 

converse is not true ingeneral; not every F-type is necessarily inhabited under F 

(see theorem 6.1.5). 

Theorem 3.2.8 (subject reduction) If F I- M : A and M N N, then 

F F- N:A. 

Proof We only need to show that, if F F- M : A and M N 1  N, then F F- N : A. 

This is proved by induction on derivations of F H M : A. 

(Ax)(C)(T)(var): Trivial. 

(s): By induction hypothesis and applying (:3). 

(111)(H2)(A)()(pair): These cases are similar in which lemma 3.2.5 and 

(or) lemma 3.2.1 and (or) theorem 3.2.6 are used. We check (pair) here. 

F H M1  : A 1  F F- N,: [M1 /x]B 1  F,x:A 1  F- B1  : Type .?. 

F F- pairE.A,B 1 (Ml,Nl) : 

So, M 	pair E . A , B1 (M1 ,N1 ) N1 pair E .A l flI(M,N') 	N. There are 

four cases: 

(a) M1  L> I M  By induction hypothesis, F F- M : A 1 ; by theorem 3.2.6 

and applying rule (-<), we have F F- N1  : [M/x]B1. 
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N1  t' 1  N: By induction hypothesis, F F- N : [M1 1x]B 1 . 

A 1  L>j  A'1 : By lemma 3.2.1, induction hypothesis, lemma 3.2.5 and 

rule (s), F I- M1  : A'1  and F, x:A F- B 1  : Type,. 

B 1  r>1  B: By induction hypothesis, theorem 3.2.6 and rule (s), 
F,x:A 1  F- B : Type, and F I- N1  : [M1 /x]B. 

Then applying (pair) suffices in every case above. 

4. (app): With M M1 N1  and A [N1 /x]B 1 , 

FF-M1 :Hx:A 1 .B 1  17F-N1 :A 1  

F F- M1 N1  : [N1 /x]B 1  

There are two cases: 

N 	M'N and either M1 N  M1' or Ni  L>i  N;. In this case, by 

induction hypothesis, F F- M 	Hx:A 1 .B 1  and F F- N : A 1 . So, 

applying (app) yields F F- N: [N/x]B 1 . Since [N/x]B 1 	[N1 /x]B 1 , 

we have F F- N: [N1 /x]B 1  by theorem 3.2.7 and rule (s). 

M M 1 N1  (Ax:A.M)N 1  t [N/x]M N. The last rule used in 

any derivation of F F- M1  : Hx:A 1 .B 1  must be (A) or (-<). If it is (A), 

applying theorem 3.2.6 suffices. If it ends with (s), we have for some 

X - Hx:A.B 1 , 

FF-Ax:A.M:X FF- X:Type, 

F F- Ax:A.M : Hx:A 1 .B 1  

We may assume that the last rule used to derive F F- Ax:A'1 .M : X is 

not (s), then it must be (A), i.e., 

F,x:A'1  F- M; : B 

F F- Ax:A.M : llx:A'1.B 
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where X llx:A'1.Bc.  By lemma 3.1.4, X 	Hx:A'1'.Bc' 	Hx:A.B 

for some A' and B'1' such that A'1' A and B' B 1 . By Church-

Rosser theorem, X t> llx:A 0.B0  and Hx:A.Bc'  L Hx:A 0 .B0  for some 

A 0  and B0  such that A L> A0 , A' L' A 0 , B t' 130  and B' r> B0 . So, 

we have 

AA 0 AA 1  and BB0 BB 1  

By theorem 3.2.7, lemma 3.2.5 and rule (s), we have F,x:A 1  I- M 

B 1 . Then, by theorem 3.2.6, we have F F- [Ni /x]M1' : [N1 /x]B 1 , i.e., 

FF-N:[N1 /x]B 1 . 

5. (7r1)(r2): 

F F M1  : 

F F- 7r1 (M1 ) : A 1  

F F- M1  : 

F F- 7r2 (M1 ) : [ir1 (M1 )/x]B 1  

M 	7r.(M1) ii  N (i = 1,2) and A is A 1  and [7r1 (M1 )1x]B 1 , respectively. 

There are two cases: 

N = ir.(M) and M1  N  M. By induction hypothesis and applying 

(in) and (7r2). 

M ir.(M1 ) 7r(pair(M11,M12)) i M 12 	N. Then, any deriva- 

tion D of F F- M1  : Ex:A 1 .B 1  must use (pair) or (-<) as the last rule. 

If the last rule used in D is (pair), we have F F- M11  : A 1 , and, by the-

orem 3.2.7 and rule (-<), F F- M12  : [ir1 (M1 )1x]B 1 . That is, F F- N : A. 

If the last rule used in D is (-<), we have, for some X -< 

FF- M1  :X FF-X:Type 3  

F F- M1  : 
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We may assume that the last rule used to derive F F- M1  : X is not 

(s), then it must be (pair), i.e., 

F F- M11  : A' F H M12  : [M11/x]B F, x:A H B : Type s  

F H M1  : Ex:A.B 

where X >x:A.B. By lemma 3.1.4, X Ex:A'.B' Hx:A.B1  

for some A'1' and B' such that A'1' A 1  and B' B1 . By Church-

Rosser theorem, X t> Ex:,AO .Bo  and Ex:A'1'.B' L> Ex:A O .Bo  for some 

A0  and B0  such that A L> A0 , A'1' A0, B t> B0  and B' L> B0 . So, 

we have 

AA0 A'-<A 1  and BB0 B'-<B 1  

and the later implies [M11 /x]B 	[7r1 (M1 )1x]B1 . By theorem 3.2.7 

and rule (-<), FH M11 : A 1  and FH M12:  [7r1 (M1 )1x}B 1 , i.e., 1'F- N: 

A. 

This completes the proof of the theorem. 	 LE 

Remark The theorem of subject reduction is one of the most important prop-

erties of a type system like ECC. Besides its importance in meta theory, it also 

saves much work in implementation, e.g., it saves type-checking when reductions 

or normalizations are performed. 

Although subject reduction holds, the following rule is not admissible in ECC: 

FHM:A FHN:B 
(**) 
	

(M 1> N) 
FHM:B 

For example, we have H Prop: Type0 , but 1/ (Ax:Type 1 .x)Prop: Type 0 . In fact, 

we only have H (Ax:Type 1 .x)Prop : Type 2  for i > 1, i.e., its principal type is 

Type 1  (see section 3.3). 	 0 
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Lemma 3.2.9 (strengthening) If F,y:Y,F' F- M: A and  V FV(M)uFV(A)u 

FV(F'), then F,F' F- M: A. 

Proof Note that a straightforward induction on derivations does not work as 

the (app) rule loses the information of variable occurrences (in A). To solve this 

problem, we notice that we only have to prove the following statement: 

(*) if F, y:Y, F' F- M : A and y V FV(M) U FV(F'), then there exists A' A 

such that IF, IF' F- M : A. 

for then, supposing F, y:Y, F' F- M : A and y V FV(M)uFV(A)uFV(F'), we have 

by (*) that there exists A' A such that IF, IF' F- M: A'. We only have to show 

r )  IF' F- A : K for some kind K in order to apply rule () to show r, r ,  F- M : A. 

By theorem 3.2.7, F,y:Y,F' F- A: K for some kind K. As y V FV(A) U FV(F'), 

by (*), there exists B K such that F, F' F- A: B. Because kind K is a F, F'- type 

(by rules (Ax), (C) and (T)), we can apply rule () to have F, F' F- A: K. 

(*) is proved by induction on derivations of F, y:Y, F' F- M : A. 

(Ax): Trivial. 

(C): With F,y:Y,IF' 	F,x:A, 

17 1  F- A 1  : Type s 	
(x V FV(F 1 )) 

F 1 ,x:A 1  F- Prop: Type0  

If y:Y does not occur in 17 1  (i.e., F' is empty and y:Y x: A 1 ), then we have 

17 1  F- Prop: Type0  by lemma 3.2.3. Otherwise, F,y:Y,F' 	IF, y:1'F",x:A 1  

and, by induction hypothesis, there exists C 	Type 3  such that F, F" F- - 

A 1  : C. By Church-Rosser theorem, C K Type s  for some kind K. So, 

F, F" F- A 1  : Typek for some k by rule () and hence F, F", x:A 1  F- Prop: 

Type 0  by rule (C), i.e., r, r ,  F- Prop: Type0. 
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(T): With IF, y:Y,I" 	F 1 , 

F1  F- Prop: Type0  

F 1  I- Type, : Type +1  

By induction hypothesis, F, F' F- Prop: C for some C Type 0 . By Church-

Rosser theorem, C K -< Type 0  for some kind K. So, F, F' F- Prop : Type0  

and hence r, r ,  I- Type, : Type 1  by rule (T). 

(var): With IF, y:Y,F' 	17 1 ,x:A 1 ,F2 , 

17 1 ,x:A 1 ,F2  F- Prop: Type0  

F1 ,x:A 1 ,F2  I- x : A 1  

Note that y # x by assumption. By induction hypothesis, we have F, F' F-

Prop : C for some C - Type 0  which implies F, F' F- Prop : Type0  by 

Church-Rosser theorem. So, F, IF' F- x: A 1 . 

(111): With F,y:Y,IF' 	F 1 , 

F1 ,x:A 1  F- P: Prop 

F 1  F- Hx:A 1 .P : Prop 

We have y 0 x by lemma 3.2.2. By induction hypothesis, there exists 

C -< Prop such that F, F', x:A F- P : C. By Church-Rosser theorem, 

C Prop, so F,F',x:A F- P : Prop by rule (s). Then applying (Hi) 

we have F,F' F- Hx:A 1 .P : Prop. 

(H2): With F,y:Y,F' 	F1 , 

F 1  F- A 1  : Type, 17 1 ,x:A 1  F- B: Type, 

F 1  F- Hx:A 1 .B : Type, 

We have y 0 x by lemma 3.2.2. By induction hypothesis, there exist 

C Type s  and D Type, such that F, F' F- A 1  : C and F, F', x:A 1  F- B: 
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D. By Church-Rosser theorem, C K Type, and D K' Type d  

for some kinds K and K'. Then, by rule (s), F, F' F A 1  : Type, and 

F,F',x:A1  I- B : Type,. So, r, r ,  F- 11x:A 1 .B : Type, by rule (112). 

(\): With IF, y:Y,IF' 	F 1 , 

17 1 ,x:A 1  I- A4 1  : B 

F 1  F )x:A 1 .M1  : Hx:A 1 .B 

We have y V FV(M) by lemma 3.2.2. By induction hypothesis, F, F',x:A 1  F 

M1  : B1  for some B 1 	B. Applying rule () gives us F, F' F )x:A 1 .M1  

llx:A 1 .B 1  and Hx:A 1 .B 1  -< llx:A 1 .B. 

(app): With IF, y:Y,IF' 17 1 , M M, M 2 and A [M 2 1x]B 1 , 

F 1  F M1  : Hx:A 1 .B 1  F1  F M2  : A 1  

F 1  F M1 M2  : [M2 1x]B 1  

By induction hypothesis, there exist C -< Hx:A 1 .B 1  and D -< A1  such that 

F,F' FM1 : C and r, r' FM2 : D. By lemma 3.1.4, C Hx:A.B for 

some A A 1  and B B 1 . By Church-Rosser theorem, C r> llx:A 0 .B0  

and Hx:A'1 .B t' llx:A 0 .B0  for some A 0  and B0  such that A r> A 0  and 

B [> B0 . So, A 0  A 1 , B0  - B 1 . By lemma 3.2.2, y V FV(C) U FV(D), 

which implies that y V FV(Hx:A 0 .Bo ). By theorem 3.2.7, theorem 3.2.8 

and rule (-<), r, r ,  F M1  : Hx:A 0 .B0  and r, r ,  F M2  : A0 . Applying rule 

(app), we have F, n- M1 M2 : [M2 1x]B0  and [M2 1x]B0  - [M2 1x]B 1 . 

(E): Similar to the case for (112). 
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(pair):4 	With F,y:YF' 	17 1 , M 	pairE.A,B,(M l , M2) and A 

I'1 I- MI : A 1  171  F- M2 : [M1 /x]B 1  F1 ,x:A 1  I- BI : Type, 

F 1  F- pair Ex : A1 B 1 (M1,M2) : Ex:A 1 .B 1  

By induction hypothesis, there exist A'1 	A 1 , B 	[M1 /x]B 1  C 

Type, and D Type, such that F, F' F- M1  : A, F, F' F- M2  : B and 

F,F',x:A1  F- B 1  : C. Noticing that y V FV(Ex:A 1 .B 1 ), we have, by 

lemma 3.2.1, induction hypothesis and rule (s), F, F' F- M1  : A 1  and 

F,F',x:A1  F- B 1  : Type,. By theorem 3.2.6, 17,17' F- [M1 /x]B 1  : Type,. 

So, by rule (s), 17,17' F-  M2  : [M1 /x]B i . Hence, applying (pair) yields 

F,F' F- M: A. 

(irl)(ir2): With F,y:Y,F' 	F and M 	7r(M1 ) ( i = 1,2) and 

I  
A 	

A' 	 for (in) 

(. [7r1 (M)/x]B for (7r2) 

F1  F- M1  : Ex:A'.B 

F1  F- iri (M1 ) : A' 

F1  F- M1  : Ex:A'.B 

F1  F 7r2 (Mi ) : [7r1 (M1 )/x]B 

By induction hypothesis, F, F' F- M1  : C for some C 	Ex:A'.B. By 

lemma 3.1.4, C Ex:A 1 .B 1  for some A 1  A' and B 1  B. By Church-

Rosser theorem, C I> Ex:A 0 .B0  for some A0  A A' and B 1  -< B. 

By lemma 3.2.2, y V FV(C) and hence y g FV(Ex:A 0 .B0 ). By theo-

rem 3.2.7, theorem 3.2.8 and rule (-<), F, F' F- M1  :Ex: A 0 .B0 . So, for (in), 

r, r' F- ir1 (M1 ) : A 0  by rule (in) and A 0  A'; for (7r2), r, r' F- 72  (Ml 

[7n 1 (M1 )/x]Bo  by rule (7r2) and [7r1 (M1 )/x]B0 	[7r1 (M1 )/x]B. 

4Thanks to Moggi for pointing out a simpler way of proving this case, as presented here, 

after reading the draft of this thesis. 
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This completes the proof of the lemma. 	 U 

Remark Strengthening is the dual of weakening (lemma 3.2.4). It shows that re-

moving redundant assumptions preserves derivability. That it holds for 

Constructions-like calculi and the idea of proving a stronger statement as shown 

in the above proof were recognized by the author and presented in [Luo88b]. It 

is interesting to note that, in an implementation of a proof refinement system 

based on Constructions (e.g., [CH85][LPT891), such a lemma is indeed (maybe 

unconsciously) used (e.g., to implement the Discharge command). 0 

3.3 Principal Types 

Because we have type inclusions induced by type universes, type uniqueness up 

to conversion fails for ECC. However, we show that ECC has a simple notion 

of principal type which characterizes the set of types of a well-typed term. 

First, we show that the cumulativity relation characterizes the type cumula-

tivity (or type inclusions) in the calculus. 

Lemma 3.3.1 (type cumulativity) Let A and B be IF-types. Then, A B if 

and only if F,x:A F- x : B, where x V FV(F). 

Proof The sufficiency is by induction on derivations of F, x:A H x : B. The 

necessity is by rules ()(C)(var) and lemma 3.2.5. 	 0 

Corollary 3.3.2 Let A and B be 17-types. If A 	B, then, for any term M, 

F H M : A implies FHM:B. 

Proof By lemma 3.3.1, F,x:A H x : B, where x V FV(F). By theorem 3.2.6, 

I' H M : [M/x]B; i.e., F F- M B, as x does not occur free in F-type B by 

lemma 3.2.2. 	 1 0 
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Remark The converse of this corollary is not true as A might be empty (not 

inhabited by any term) under F. 	 0 

Lemma 3.3.3 (diamond property of ) if  I- M: A and F F- M B, then 

there exists a term C such that C A, C B and F F- M : C. 

Proof By induction on the sum of the lengths of derivations of F F- M : A and 

F F- M : B. Here, we only consider the case when both derivations use (app) as 

the last rule. The other cases are easy. Suppose M M 1 M2 , A [M2 1x]B 1 , 

B [M2 1x]B2  and, for i = 1, 2, 

FF-M1 :Hx:A 1 .B FF-M2 :A 1  

F F- M1 M2 : [M2 1x]B 1  

By induction hypothesis, there exists C such that F F- M1  C and C Hx:A.B 2  

(i = 1, 2). By lemma 3.1.4 and Church-Rosser theorem, C t> llx:A 0 .B0  for some 

A 0  A i  and Bo  < B. (i = 1,2). By theorems 3.2.7 and 3.2.8, Hx:A 0 .B0  and 

A 0  are F-types. So by rule (s), we have F F- M1  : Hx:A 0 .B0  and F F- M2  : A 0 . 

Hence, F F- M1 M2  [M2 1x]B0 . Noticing that [M2 1x]B0  -< [M2 1x]B 2  (i = 1,2), 

we have the required result. 0 

Remark This lemma implies that, if A and B are types of M (under F), then 

A B (see the remark after corollary 3.1.7). It is a sort of 'Church-Rosser prop- 

erty' for types concerned about . 	 0 

An immediate consequence of the above diamond property (and the well-

foundedness (corollary 3.1.8)) of the cumulativity relation is that every F-term 

has a minimum type (under F) with respect to the order . 

Lemma 3.3.4 (existence of minimum type) Let M be a IF-term and T = 

{A I FF- M :A}. Then, there exists AET such that AA' for all A'ET. 
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Proof T is not empty as M is a F-term. Let A be a minimal element in T 

(A exists by corollary 3.1.8). Then, by lemma 3.3.3, for any A' E T, there ex- 

ists B e T such that B -< A and B A'. Since B A, we have A B A'. 0 

The minimum type of a IF-term is obviously unique up to conversion. We now 

show that the minimum type is indeed the most general one (principal type). 

Definition 3.3.5 (principal type) A is called a principal type of M (under 

F) if and only if 

F F- M A, and 

for any term A', F F- M: A' if and only if A -<A' and A' is a F-type. 0 

Theorem 3.3.6 (existence of principal type) Every F-term M has a prin- 

cipal type (under F); it is the minimum type of M (under F) with respect to 

Proof Let A be the minimum type of M (under F) with respect to (A exists 

by lemma 3.3.4). Then, F F- M : A. For any A' such that F F- M : A', we have 

A A' and A' is a F-type by theorem 3.2.7. Suppose A' is a F-type such that 

A A'. By corollary 3.3.2, F F- M : A'. 0 

Notation We use Tr(M) to denote the principal type (being more precise, the 

set of principal types) of F-term M under F. 	 0 

Remark The above notion of principal type is a nice property of the calculus and 

is indeed the 'best' one can have when one has type inclusions in a type theory. 

It yields also a simple and straightforward type inference algorithm as we shall 

show in section 6.2. Original formulations of universe inclusions by Martin-Löf 
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[ML84] and Coquand [Coq86a] do not lead to such a simple notion of principal 

type. 	 0 



Chapter 4 

Quasi Normalization 

This chapter is devoted to a proof-theoretic understanding of the predicativity 

of the type universes Type 3  in ECC. We prove a Quasi Normalization theorem 

which shows that any well-typed term can be reduced to some quasi-normal 

form which does not contain any a-redex or any /9-redex whose major term has 

a non-propositional principal type. Besides gaining a better understanding of 

the calculus, this result has a consequence that every well-typed type can be 

reduced to some head normal form and allows us to assign a complexity measure 

to the well-typed types which makes explicit the predicativity (non-circularity) of 

formations of the non-propositional types. This complexity measure also provides 

us an important basis to apply Girard-Tait's reducibility method to prove the 

strong normalization theorem (see chapter 5). 

The notion of predicativity dates back to Russell's opinion that logical para- 

doxes in naive set theory originate from a vicious circle and paradoxes should be 

eliminated by applying the so-called 'vicious-circle principle': 'Whatever involves 

all of a collection must not be one of the collection'. This principle in particular 

prevents from quantification over a collection to form an object of the collection. 

In Martin-Löf's type theory, the predicativity seems to be apparent from the 

very formulation of the type systems [ML73,84]. In particular, there is no way 
64 
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one can form an object of a type (say a universe) by quantifying over the type 

itself. It is the predicativity of the type theories that enables Martin-Löf to claim 

the consistency of his type theories in a 'simple-minded' way [ML84J. 

The polymorphic A-calculus [Gir72][Rey74] is an impredicative system, in 

which one is allowed to quantify over type variables to form a new type. It is 

well-known that a consistency argument for such an impredicative system needs 

stronger induction principles [Gir72]. The calculus of constructions [CH88] [Coq85] 

extends the second --order A-calculus to incorporate non-propositional types as well 

as dependent types. As remarked by Girard [Gir86], 'all attempts to strengthen 

this system, in particular to temper with the fourth level, should be considered 

very cautiously'. For example, adding another impredicative level to the calculus 

of constructions would meet inconsistency [Coq86a]. 

This last remark implies that the non-propositional types in the calculus of 

constructions are predicative. Yes, this is obvious. Any non-propositional type in 

the calculus of constructions is of the form Hx 1 :A 1 ...x:A.Prop. In other words, 

there are no non-propositional type-valued functions and any type of the form 

MN is a proposition.' Therefore, similar to the simple type theory (c.f., [Chu40]), 

there is a straightforward complexity measure /3 of types by assigning /3(P) = 0 

for proposition P, /3(Prop) = 1 and /3(llx:A.B) = max{/3(A) + 1,/3(B)} for 

non-propositional type llx:A.B. This ranking shows that the formation of non-

propositional types depends only on those types with lower ranks; that is, this 

complexity measure makes explicit that there is no circularity in formations of 

non-propositional types. As noted by Coquand [Coq86b], the existence of such 

a complexity measure is essential for the logical consistency of the calculus of 

constructions and it is impossible to have such a measure for the inconsistent 

type theory of Martin-Löf with Type:Type (ML71). Indeed, it is this complexity 

measure that enables Coquand to succeed in applying Girard-Tait's reducibil- 

'Note that propositions are not lifted as higher-level types in the calculus of constructions. 
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ity method [Gir72][Tai75] to prove the (strong) normalization property of the 

calculus of constructions [Coq86bJ. 

However, in ECC more than one universe exists and the richer type struc-

ture makes the predicativity of non-propositional types not so obvious as in 

the calculus of constructions. That is because there are now functions which 

have non-propositional types as values. For example, we have H Ax:Type.x 

Type 3  -* Type 3 . As a consequence, terms of the form MN (or 7r.(M)) may 

also be non-propositional types and we do not have the obvious complexity 

measure shown above for the calculus of constructions. Furthermore, propo-

sitions in ECC are lifted to higher-level types which allows judgements like 

I- Hx:Type 3 HB:Type 3  - Prop.Bx : Type 3  to be derivable, although this is only 

because Hx:Type 3 HB:Type 3  - Prop.Bx is a proposition. One may naturally 

doubt about the predicativity and ask the question: are we sure that there is no 

circularity in formations of non-propositional types? This raises a problem: How 

do we show the predicativity of the non-propositional type hierarchy? 

Our aim of this chapter is to show that the universes Type, are still predicative 

and the formations of non-propositional types are essentially non-circular. This 

is done by proving a quasi normalization theorem (theorem 4.3.13) which implies 

that every type can be reduced to some head-normal form (corollary 4.3.14) and 

allows us to define a two-dimensional complexity measure (definition 4.4.2) to 

make explicit the predicativity of the non-propositional types (lemma 4.4.4). 

Section 4.1 introduces a notion of environment, which is a nice tool to deal 

with type dependency developed by Pottinger [Pot87]. Section 4.2 defines levels of 

types, which constitute the first dimension of the complexity measure, and stud-

ies their properties. The quasi normalization theorem is proved in Section 4.3. 

Section 4.4 defines the complexity measure. 
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4.1 Environment 

Because of the nature of dependent types, one needs some tool to deal with the 

variable bindings occurring in the system. In particular, in a proof of normal-

ization, an infinite 'universal' context is called for and proves to be very useful. 

In their proofs of (strong) normalization of the calculus of constructions, Co-

quand [Coq86b] uses a notion of environment of constants and Pottinger [Pot87] 

a notion of environment of infinite variable bindings. 

We follow the idea of Pottinger to introduce below a notion of environment 

for ECC and show that the notions and results relative to valid contexts like 

those for principal types can all be extended to environments. 

Definition 4.1.1 (Environment) An environment E is an infinite sequence 

S 

where e 2  is a variable and Ei  is a term, such that, for any i E w, 

' 	e 1 :E1 , ..., ei :Ei  is a valid context, and 

for any E'-type A, there are infinitely many k such that Ek A. 	0 

Lemma 4.1.2 (existence of environment) There exists an environment. 

Proof We construct an environment e as follows. Assume that we are given a 

canonical enumeration of variables and a canonical enumeration of derivations in 

ECC. Define eTh by induction on n e w and, define at the same time a diagonal 

enumeration pfl = (p, p) with the property p + p n as follows: 

E0 =df () (the empty context) and p °  = (0, 0). 

Supposing that P for i <n haye been defined, define E" and p"  as follows. 

Let T' (i <n) be the sub-sequence of the canonical enumeration of deriva- 

tions consisting of the derivations of the judgements of the form ES"  F- A: K 
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(where K is a kind). If the kth element of T' is H A: K, we write T 	A. 
df  

(Note that T is infinite.) Then, we define ti." = E l ,x:T 1 _i,  where 

x is the first variable in the canonical enumeration of variables such that 

" 	 "  x g FV(e andp = 	(p+1,O)  n—i  ifp 	O,pn  1   
 —i 

j (p  1  
—i 1,p  2  	+1) 

if p 	0. En thus defined is a valid context. 

By lemma 3.2.4, it is easy to show that every E"-type occurs in E infinitely many 

times. 	 E3 

Remark In fact, as shown in [Pot87], one may similarly prove a stronger result 

which says that every valid context can be extended to an environment. However, 

the above lemma is enough for our purpose. 	 0 

Notation From now on, if not explicitly stated otherwise, E will stand for a fixed 

arbitrary environment e1 :E1 , e 2 :E2 , 
...; 

that is, Si 	ej :Ej  is the ith component of 

£ and E' 	e 1 :E1 , ..., c:E1  is the valid context consisting of the first i components 

of e. 	 . 

Most of the notions relative to valid contexts defined before can be similarly 

defined for environments. First of all, we will write ' i I- M : N for H M : N 

for some i E w'. A term M is called an E-term, E-type, 9-proposition, non-

propositional (or proper) E-type and 9-proof if and only if M is an e'-term, 

E'-type, e'-proposition, non-propositional e'-type and E'-proof for some i E w l  

respectively. It is obvious from the definition of environments and lemma 3.2.4 

that, if ' H M : A, then g/c  H M : A for all k > i; if Qx:M.N is an 9-term, 

where Q E {\,H,E}, then there exist S-terms x' and N' such that Qx:M.N 

Qx':M.N'. 

The notion of principal type (definition 3.3.5) and its existence (theorem 3.3.6) 

can also be extended to environment. The notion of principal type under envi- 
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ronment S is defined as in definition 3.3.5 by replacing F by S. Corollary 3.3.2, 

lemma 3.3.3 and lemma 3.3.4 can be proved for environment, and so is theo-

rem 3.3.6.2  The principal type of an S-term M (under 5) is denoted as T(M). 

4.2 Levels of Types 

Now, we define the notion of levels of S-types which will be the first dimension 

of our complexity measure to be defined in section 4.4. Intuitively, that the level 

of 9-type A is j means that Type 3  (Prop when j = —1) is the lowest universe in 

which A resides up to conversion. 

Definition 4.2.1 (levels of S-types) The level of an 9-type A, £(A), is de-

fined as follows: 

• If A is an S-proposition, then £(A) =df  —1. 

• If A is not an S-proposition, then £(A) =df  ,uj.(B. B 	A A S H B 

Type 3 ), i.e., the minimum j E w such that S H B: Type 3  for some B A. 

0 

Remark We have, for every E- type A, £(A) = j for exactly one j e w U 

£(A) > 0 (L(A) = —1) if and only if A is a non-propositional S-type (5- 

proposition). 	 0 

Some properties about levels of S-types are stated as the lemmas below. 

Lemma 4.2.2 Let A and B be S-types. 

21n fact, unlike the situation of finite contexts, the inverse of corollary 3.3.2 is also true 

for environment, because every 9-type is inhabited under E and there are infinite variables 

inhabiting it. 
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If AB, then £(A)=L(B). 

If A B, then £(A) 12(B). 

Proof The first statement is obvious from the definition of levels. The second 

is proved by induction on i for A , B, using the inductive definition 3.1.3 of 

. If A o  B, it is obvious from the definition of levels and the first statement. 

Consider A -<, B. There are three cases. 

A-< 1 B; 

A Hx:A 1 .A 2  and B llx:B 1 .B2  for some A 1  B and A 2  - B2 ; or 

A 3x:A 1 .A 2  and B Ex:B 1 .B2  for some A 1  -<, B and A 2  - B2. 

For the first case, 12(A) < 12(B) by induction hypothesis. For the second, we 

have by the first statement and induction hypothesis that 12(A 1 ) = 12(B1 ) and 

12(A 2 ) :5 12(B2 ). Noticing that, for any S-type Hx:C.D, 

—1 	 if D is an S-proposition 

12(Hx:C.D) = (rnax{12(C), 12(D)} otherwise 

we have 12(A) = 12(Hx:A 1 .A 2 ) < 12(Hx:B.B2 ) = 12(B). For the third case, it is 

similar by noticing that 12(Ex:C.D) = max{12(C),12(D),0}. 	 0 

Since convertible .6- types have the same level, we use 12(Te (M)) to denote the 

level of the principal type of M under S. 

Lemma 4.2.3 If 5k  I- N : Ek+l and B is an S' -type, then 12([N/e k+l]B) 

12(B). 

Proof Suppose 12(B) < 12([N/ek+l]B) = j. Then, there is B' convertible to B 

such that S I- B' : K for some kind K - Type s . By Church-Rosser theorem, 



QUASI NORMALIZATION 	 71 

theorem 3.2.8 and lemma 3.2.9, we may assume S k+1  I- B /  : K. But then, by the-

orem 3.2.6, 5 F [N/ek+I]B' : K which implies £([N/ek+1]B)  <j as [N/ek+l]B 

[N/ek+l]B', contradicting the assumption. So, £([N/ek+l]B)  :5 £(B). 	0 

Remark The above lemma shows that type-preserving substitution does not 

increase the level of an (-type. In particular, for an (-type Hx:A.B or x:A.B, 

if S F N : A, then we can always choose x to be ek+1  for some k such that 

Ek+l A, 
5k  I- N: A and B is an ('-type, and hence £([N/x]B) <L(B). 0 

Lemma 4.2.4 If (-term R is of the form MN or 7r(M) (i = 1,2), then 

£(Te (R)) <L(T(M)). 

Proof We prove for the case R MN. The other two cases are similar. As 

R MN is an (-term, one of the principal types of M has the form Hx:A.B. 

Then, we have S F R: [N/x]B. By lemma 4.2.2(2) and lemma 4.2.3, £(Te (R)) 

£([N/x]B) <C(B) <C(Hx:A.B) = £( Te M). 	 El 

Remark The above lemma implies that the level of the principal type of the 

major term of a redex is not less than that of the principal type of the redex. 0 

Lemma 4.2.5 Let A 	>2x:A 1 .A 2  (Hx:A 1 .A 2) be a non-propositional (-type. 

Then, L(A) = j E w if and only if 

£(A1) j and £(A 2 ) < j (for 11-case, also £(A 2 ) 0), and 

either £(A1) = j or £(A2) = j; 

Proof We prove for A Hx:A 1 .A 2 . The case for E is similar. 

Sufficiency. By condition 1, £(A) j by applying rule (112). Suppose £(A) < 

j. Then (F A': K for some A' A and kind K - Type s . By Church-Rosser 

theorem and theorem 3.2.8, we may assume that A' 11x:A' 1 .A'2 . So, we have 
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E H A : K, and hence, L(A 1 ) = £(A) <j (i = 1, 2), contradicting condition 2. 

So, £(A) = j € W. 

Necessity. Suppose £(A) = j e W. We have £(A 2 ) > 0 for otherwise, A 

is an E-proposition. £(A 1 ) < j (i = 1,2) for otherwise, there would be no A' 

convertible to A to be typed by Type,. If both £(A) <j, there would be an A' 

convertible to A to be typed by some kind K -< Type,. 0 

4.3 The Quasi Normalization Theorem 

The ultimate goal of proving the quasi-normalization theorem is to make explicit 

the predicativity of formations of the non-propositional types. The basic idea to 

achieve this is to proceed as follows: 

Quasi normalization: every E-term can be reduced to some term which 

does not contain any a-redex or any 3-redex whose major term has a non-

propositional principal type; and this implies 

every i-type can be reduced to some head-normal form; and this allows us 

to define 

the degrees of E-types which serves as the second dimension of the com-

plexity measure to be defined. 

However, it turns out that the quasi-normalization result can not be directly be 

proved without the help of the notion of degrees of types. This problem can be 

solved by considering the subsystems ECC of ECC. Roughly speaking, ECC 

is the type system got from ECC by 'cutting off' the infinite universes at the nth 

level. It can be readily proved that the non-propositional types at the highest 

level (i.e., nth level) of ECC have head-normal forms (lemma 4.3.2); and then 

their degrees can be defined. Based on this, we can prove the quasi normalization 
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result for ECC by induction from n to 0, as shown in subsection 4.3.2. Then, 

the quasi-normalization theorem for ECC follows by a global induction on n E w. 

Before proceeding to give the inductive proof, we first introduce a notion of 

base term, which is one of the basic forms of the head normal forms mentioned 

above and is also used in the definition of saturated sets and the proof of the 

strong normalization in the next chapter. 

Definition 4.3.1 (base terms) Base terms and the key variable of a base term 

are inductively defined on the structure of terms as follows: 

. A variable is a base term and is the key variable of itself; 

• If M is a base term, so are MN, r 1 (M) and 7r2 (M), and their key variable 

is that of M. 	 FE- 

Examples  of base terms are: x, xM 1  ... M, ir(xM 1  ... M), 7r(7rk(x)M)N, etc.. x 

is the key variable of the base terms in these examples. 

Remark Note that base terms have the following properties, which can be readily 

proved by induction on the structure of base terms: 

If M is a base term and M N M', then M' is a base term, too. 

If variable y is different from the key variable of a base term M, then 

[N/y]M is also a base term, where N is an arbitrary term. 	 0 

4.3.1 ECC 

ECC is defined as follows. The underlying term calculus of ECC is the same 

as that of ECC except that the constants Typefl+k+l  (k c w) are removed. The 

inference rules of ECC are the same as those for ECC except that we add the 

following side conditions: 
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. 0 < j <n for rules (C)(H2)(E)(pair)(), 

• 0 < j <n for rule (T), and 

• B # Type s  for rule (A). 

and a new rule for lifting types at lower levels to the nth level: 

F F M: K 
(Type) 
	

(K -< Type is a kind) 
F H M : Type 

In particular, ECC °  is the calculus of constructions extended by s-types and 

the inclusion of propositions as types [Luo88a]. Informally, we can describe the 

relationship of ECC with ECC as follows: 

ECC = ECC' 
nEw 

As any derivation is finite, it can easily be proved by induction on derivations that 

a sequence of judgements is a derivation in ECC if and only if it is a derivation 

in EC Cn  for some n E w. All of the notions we have defined for EGG before are 

defined in the same way for EC C. 

Remark It is easy to show that, in EC C, if F I- M : A, then Type does not 

occur in M or F, and either A Type s  or Type does not occur in A. (Note 

that Type is not a F-type or E-type in ECC.) All of the theorems and lemmas 

in chapter 3 can be similarly proved except that theorem 3.2.7 for EC Cn  has an 

assumption that A 0 Type. The notion of principal type for EC Cn  is defined 

by changing the second clause of definition 3.3.5 to the following clause: 

• for any term A', F H M : A' if and only if A - A' and either A' is a F-type 

or A' Type. 	 . 

The following lemma shows that the top-level 9-types in ECC have head-

normal forms which will enable us to establish the basis of the induction proof 

of quasi normalization. 
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Lemma 4.3.2 Let A be an 9-type in EC Cn  and £(A) = n. Then, either A 

Type- 1  (Prop when n = 0) or A has the form of Hx:A 1 .A 2  or Ex:A 1 .A 2 . 

Proof By induction on derivations of E' H A : Type,, in EC C. 	 0 

4.3.2 An inductive proof of quasi normalization 

Now, we are ready to prove the quasi-normalization by considering ECC for 

an arbitrary n e w. In the rest of this section, n stands for a fixed (arbitrary) 

natural number for which ECC is under consideration. 

The quasi-normalization result for ECC is proved by induction from n and 

downwards. In other words, the following definitions, lemmas and theorems in 

the rest of this section are inductively defined and proved for j = n, n - 1, ...,0. 

The general steps are summarized as follows: 

1. j=n: 

Define the n-degree V of e-types (definition 4.3.3 for j=n), which is 

well-defined by lemma 4.3.2 and Church-Rosser theorem, and prove 

properties about V (lemma 4.3.5 and lemma 4.3.6 for j=n); 

Define measures b., ^/ n  and the notion of n-quasi-normal term (defini-

tion 4.3.7 for j=n), and prove another two measure properties (lemma 

4.3.8 and lemma 4.3.9 for j=n); 

Prove the quasi-normalization result for the nth level (theorem 4.3.10 

and corollary 4.3.11 for j = n). 

2. j = k <n: 

(a) Define the k-degree Vk  of .6-types (definition 4.3.3 for j = k), which is 

well-defined by theorem 4.3.10 and corollary 4.3.11 for j = k + 1 and 

Church-Rosser theorem, and prove properties about Vk (lemma 4.3.5 

and lemma 4.3.6 for j = k); 



QUASI NORMALIZATION 
	

76 

Define measures 8k 'fk and the notion of k-quasi-normal term (defini-

tion 4.3.7 for j=k), and prove another two measure properties (lemma 

4.3.8 and lemma 4.3.9 for j=k); 

Prove the quasi-normalization result for the kth level (theorem 4.3.10 

and corollary 4.3. 11 for  = k). 

Definition 4.3.3 (j-degree Di of e-types in ECC) The j-degree D(A) of 

an &-type A in ECCn  is defined as follows. 

• Dj for the E-types A ° , which are i-quasi-normal for i > j , is defined as 

follows: 

If £(A ° ) j, then D(A ° ) =df 0; 

If A °  Type- 1  (Prop when  = 0), then V(A ° ) =df 1; 

1. IfL(A ° ) = j and A °  is a base term, then D(A ° ) =df 1; 

4. IfL(A°) = j, and A °  Qx:A.A 20 , where Q {H, E}, then D(A°) =df 

max {D(A),V(A)} + 1. 

• If 9-type A is not k-quasi-normal for some k > j, then, letting A °  be some 

i-quasi-normal term for i > j such that A [> A ° , define D(A) =df  V(A°). 

Note that the definition above is a 'two-step' definition. As quasi-normal 

forms are in general not unique, we must show that the definition is well-defined, 

Z. C., the arbitrary choice of A°  in the second part of the above definition gives 

unique degree value. When j = n, it is well-defined by lemma 4.3.2 and Church-

Rosser theorem. For j < n, it is well-defined by theorem 4.3.10 (for j + 1), 

corollary 4.3.11 (for i + 1) and Church-Rosser theorem. 
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Lemma 4.3.4 (well-definedness of i-degree) V is a function from the E-

types of ECC to natural numbers and respects conversion, i.e., VA = VB if 

A B are e-types. 

Proof We consider two cases. 

• = n. V is well-defined by lemma 4.3.2. 

Suppose A 	B are 9-types. Then, £(A) = £(B) = k for some k, by 

lemma 4.2.2. If k < n, then VA = VB = 0. If k = n, we show 

VA = DB by induction on the structure of A and B. By lemma 4.3.2 

and Church-Rosser theorem, either A B Type_ 1  (Prop when n = 0) 

or A Qx:A 1 .A 2  and B Qx:B 1 .B2  for some A B (i = 1 1  2), 

where Q E {ll, E}. The former case is obvious. For the latter case, 

as £(A 2 ) = £(B1 ), V(A 2 ) = V(B 1 ) by induction hypothesis. Hence, 

D(A) = rnax{V(A 1 ),V(A 2 )} + 1 = max{V(B 1 ),V(B 2 )} + 1 = VB. 

• j < n. We consider the following two cases in the sequel. 

1. First, we consider E-types A °  which are i-quasi-normal for i > j. 

D(A ° ) is well-defined by theorem 4.3. 10 (for j+1) and corollary 4.3.11 

(forj + 1). 

Suppose A ° 	B °  are E-types which are i-quasi-normal for i > j. 

Then, L(A ° ) = £(B° ) = k for some k, by lemma 4.2.2. If k 	j, 

then D(A ° ) = V(B ° ) = 0. If k = j, we show D(A ° ) = D(B° ) by 

induction on the structure of A °  and B ° . By theorem 4.3. 10 (forj -i - 1), 

corollary 4.3.11 (for j + 1) and Church-Rosser theorem, either A °  

B °  Typej_ 1  (Prop when j = 0), or both A °  and B°  are base terms, 

or A °  Qx:A.A and B °  Qx:B 10 .B2°  for some A,°  B,°  (i = 1, 2), 

where Q e {H, E }. The former two cases are obvious. For the latter 

case, as £(A ° ) = £(B,° ), V(A, ° ) = V(B') by induction hypothesis. 
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Hence, V(A ° ) = max{D(A), V(A 20 )} + 1 = max{V(B 10 ), V(B 20 )} + 

1 =Dj(B° ). 

2. Now, consider E-types A which are not k-quasi-normal for some k > j. 

If A L> A °  and A r> A °', where A °  and A °' are i-quasi-normal for i > j, 

then, by the result above, V(A°) = D(A0F) as A °  A °'. So, V(A) 

is uniquely well-defined. 

Suppose A 	B are e-types. Then, by theorem 4.3.10 (for j + 1), 

A [> A °  and B B °  for some A °  and B°  which are i-quasi-normal for 

.i >j. Then, by the above result, V(A) = V(A ° ) = V(B ° ) = V(B). 

This completes the proof of the lemma. 	 . 

Remark Note that Church-Rosser theorem is used to show the well- definedness 

of degrees. One may understand this in the following way: although there may 

be different A and A which are i-quasi-normal for i > j such that A L A, there 

is another A °  which is i-quasi-normal for i > j such that A°k  L> A ° . El 

Lemma 4.3.5 Let A and B be .6-types. 

£(A)=j if and only if VA>1. 

If A B, then either £(A) < £(B), or £(A) = £(B) and DA < DB. 

Proof The first statement is obvious from the definition of degrees, lemma 4.2.2 

and lemma 4.3.4. For the second, by lemma 4.2.2 and the definition of V, we 

only have to show, VA < VB if A B and £(A) = £(B) = j 

First consider the case when both A and B are i-quasi-normal for i > j. We 

prove by induction on the structure of A and B. By corollary 4.3.11 (for j + 1), 

lemma 3.1.4 and Church-Rosser theorem, there are the following possibilities: 

1. Both A and B are Type,- 1  (Prop when j = 0), or both are base terms. 

Then, V(A) = V(B) = 1. 
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2. A Hx:A 1 .A2  and B Hx:B 1 .B 2 , where A 1  B 1  and A 2  - B 2 . Then, 

= V(B 1 ) by lemma 4.3.4. As A 2 	B2 , £(A 2 ) < £(B 2 ) by 

lemma 4.2.2. Noticing that £(B2 ) < j (because C(B) = j), we have 

< V(B 2 ) by the definition of degrees and induction hypothesis. 

Hence, V(A) = rnax{'D(A 1 ),D(A2 )} + 1 < max{V(B i ),V(B 2 )} + 1 = 

V(B). 

3. A 	x:A 1 .A 2  and B Ex:B 1 .B2 , where A 1  13 and A 2  B2 . Similar 

to the above case. 

Now, for arbitrary e-types A 	B, by theorem 4.3.10 (for j + 1), there are 

e-types A °  and B °  which are i-quasi-normal for i > j such that A 1' A °  and 

B t> B ° . As A °  A -< B B ° , we have, by lemma 4.3.4 and the result above, 

D(A) = V(A ° ) <V(B ° ) = D3 (B). 	 F. 

Lemma 4.3.6 Suppose Ek  I-  N : Ek+l and B is an Em -type. If L(Ek+l ) :~ j 

and 12(B) j, then VJ([N/ek+l]B) < D(B). 

Proof By theorem 4.3.10 (for j + 1), B 1'. B' for some B' which is i-quasi-normal 

for i > j (B' B whenj = n). As VB = DB' and DJ[N/ek+l]B = VJ[N/ek+l]B' 

by lemma 4.3.4, we only have to show VJ[N/ek+l]B' < DB'. We prove this by 

induction on the structure of B'. By theorem 4.3.11 for j + 1 (lemma 4.3.2 when 

j = n) and lemma 4.2.3, we only have to consider the following cases assuming 

£([N/ek+l]B') = 12(B') = j: 

B' Typej_ 1 . Obvious. 

B' is a base term. Let y be the key variable of B'. If y 	ek+1, then 

[N/e k+l ]B' is also a base term and, by definition VJ[N/ek+l]B' = VB' = 

1. But y can not be ek+l,  for otherwise, by lemma 4.2.4, £(TE(ek +l)) > 

£(TB') = j + 1, contradicting with the assumption that £(E k+l ) :!~ i. 
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3. B' has the form llx:B 1 .B 2  or Ex:B1 .B2 . Then, by induction hypothe-

sis, we have D[N/ek+l]B' = max{VJ[N1e k+1 ]B1 ,VJ[N1e k+1]B2 } + 1 5 

max {VB i ,VB 2 } + 1 = VB'. Lim 

Remark The above lemma shows that type-preserving substitution does not in-

crease the i-degree of an E-type B if the levels of B and the principal type of 

the substituted variable are not bigger than j. (c.f., remark after lemma 4.2.3.) 

Note that the condition £(Ek +l) < j is necessary and important (c.f., proof of 

lemma 4.4.4). 

As convertible e-types have the same i-degree, we use the notation Vj(Te(M)) 

to express the i-degree of the principal type of an E-term M. Let E-term R be a 

redex. We define 8R to be the i-degree of the principal type of its major term; 

that is, if M is the major term of redex R (i.e., E-term R is a redex of the form 

MN or 

8R =df Dj(TeM) 

For any E-term M, we define -yM to be the largest 6j-value of the redexes oc-

curring in M; that is, 

=df max{ 8(R) I R is a redex occurring in M } 

These measures are extensions of the measures used by Pottinger and Seldin 

[Pot87]. They are essentially in the same spirit as that used in [Pra65] for higher-

order logic, but more complex. 

Definition 4.3.7 (j-quasi-normal E-terms) An S-term M is i-quasi-normal 

if and only if 7M = 0, i.e., M does not contain any redex such that the level of 

the principal type of its major term is j. 	 0 
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The aim of quasi-normalization at the jth level is to show that every 9-term 

can be reduced to a term which is i-quasi-normal for every i such that j < i < n. 

We first prove two lemmas about the measures we have defined. 

Lemma 4.3.8 Suppose gk  F- N: Ek+l, £" F- M B and M is i-quasi-normal 

fort' >j. Then, 

-y([N/ek+lIM) max{'yM,yjN,Dj(TeN)} 

Proof By induction on the structure of M. 

M is a kind or variable. Obvious. 

M has the form Hy:M1 .M2 , )y:M 1 .M2  or y:M1 .M2 . Then, by induction 

hypothesis, 

7J({N/ek +1]M) 

= max{ 8(R) I R is a redex in [N/ek+l]M) } 

= max{ Sj (R) I R is a redex in [N/ek+l]Ml  or [N1ek+1]M2  } 

= rnax{'YJ([N1ek+l}M1),','J([N/ek+l]M2)} 

< max{max{,ij(M i ),'yj (N),Dj(TN)},max{yj(M 2 ),yj(N),Vj(TN)}} 

= max { -y(M1), -,'J(M2),7(N),VJ(TN)} 

max {yjM,7jN,Vj(TeN)} 

M pair c (M1 ,M2 ). Then, by induction hypothesis, 

'yj ( [N/ek+l]M) 

= max{ 8(R) I R is a redex in [N/ek+1JM) } 

= max{ 5(R) I R is a redex in [N/ek+l]Ml , {N/e k+11M2  or [N/ek+l]C } 

= max{-yJ([N/ek1]Ml),-yJ([N/el]M2), yJ([N/ek+l]C)} 

< max{rnax{y(M 1 ), 7(N), D(T8 N)}, max{-y(M 2 ), -'y(N), Vj(TeN)}, 
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max{7j(C),yj(N),Dj(TeN)} } 

= max{'yjM,yjN,Dj(T e N)} 

4. M M 1 M2 . If [N/ek+l]M is not a /3-redex such that fi([N/e k+l]M) > 0, 

then a similar argument as above cases suffices. Suppose [N/e k+l]M is a 

0-redex such that 6j([N/ek+1]M) > 0. Then, by induction hypothesis, we 

only have to show 

= VJ (TE [N/ek+I]M1 ) < rnax{'yM, 	Dj(TeN)} 

As [N/ek+l]M is a /9-redex, there are two cases to consider: 

M1  ek+1 and N is of )-form. Then, Vj(Te [N/ek+l]Ml ) = Vj(TeN). 

M1  is of -form. We only have to show Vj (Te [N/ek+l]Ml ) 

as Dj(TeM 1 ) = 8M < -yM. By theorem 3.2.6, gk [N/ek+l]Ml 

[N/ek+l]Te Ml . So, Te[N/ek+l]Ml -< [N/ek+l]TE M1 . Furthermore, 

by the assumption that Vj(Te [N/ek+l]Ml ) > 0, lemma 4.2.2, lemma 

4.2.3 and the assumption that M is i-quasi-normal for i > j, j = 

£(TE [N/ek+l]Ml ) £([N1ek+1]TeM1)  £(TM) j, which implies 

that £(Te [N/ek+l]Ml ) = £([N1ek+1}TeM1). Hence, by lemma 4.3.5 

and induction hypothesis, Dj (Te [N/ek+l]Ml ) 5 Vj[N/ek+l]TeM1 :5 

V (Te  M1 ). 

5. M has the form ir.(M1 ) ( i = 1, 2). Similar to the above case. 	 0 

Lemma 4.3.9 Let E-term M be a redex and M' be its contractum. If M is 

i-quasi-normal for i > j and M is the only redex in M whose 5value equals 

yM > 0, then 

7M' < 	and 

Vj(TeM') 	if M' is of ,\-form or pair-form. 
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Proof Proof of 1. If M is a cr-redex, it is obvious. If M 	(Ax:A.M 1 )N N 

[N/x]M1  M', we have by assumptions, -yM 1  <yM, yN <yM, and VA < 

Vj(Te (Ax:A.M i )) = By lemma 4.2.2 and the assumption that M is i-quasi-

normal for i > j and yM> 0 £(TeN) <L(A) j. So, V(TN) < VA. So, by 

lemma 4.3.8, ^jjM' <yjM. 

Proof of 2. If M 	7r.(pairc(Mi,M2)) is a a-redex, Then, Vj(TeM') = 

Vj(TeM1) <DC = -yM. If M (Ax:A.M 1 )N is a /3-redex and M' is of )-form 

(or pair-form), we have two possibilities: 

M1  x. Then Dj(TeM') = Vj(TeN) < VjA < Vj(T e (\x:A.M i )) = 7M. 

M1  is of .\-form (or pair-form). Then, by lemma 4.3.5, lemma 4.3.6 and the 

assumption that 7M> 0, V(TM') = V(T[N1x]M 1 ) Vj([N1x]TeM1)  5 

V(T8 M1 ) < V(Te (Ax:A.M i )) = 7jM. 

Now, we prove the quasi normalization theorem at the jth level for ECC. 

Theorem 4.3.10 Every 9-term in ECC can be reduced to some S-term which 

is i-quasi-normal for every i such that j < i < n. 

Proof By our global induction hypothesis (on j), we only have to show that if 

S-term M is i-quasi-normal for all i such that j <i <n, then M t> N for some 

N which is i-quasi-normal for all i such that j < i < n. So, it is enough to prove 

the following two points: 

Any S-term M can be reduced to a i-quasi-normal term by contracting 

a-redexes and non-proof /3-redexes. 

Reducing u-redexes and non-proof 0-redexes in an .6-term preserves i-quasi-

normalness for i > j. 

The first can be proved by double induction on 7jM and the number of redexes 

occurring in M whose 5j-values are equal to yM > 0. Given an S-term M, take 
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any redex in the term whose Sj -value is 73M> 0 and whose proper subterms do 

not contain any redex whose 6j-value is 7M. (Note that such a redex is not 

an 9-proof if it is a /3-redex.) By lemma 4.3.9 above, reducing M by contracting 

the redex thus selected decreases by one the number of redexes whose S j -values 

are equal to -yAM > 0 and, if it is the only redex whose 6j-value is 7jM, yM is 

decreased by one or rhore. 

When j = n, the second point is trivial. We now prove it for j < n. By 

our global induction on j, we only have to show that, if M is Z'-quasi-normal for 

i > j and M t>1  N by contracting a a-redex or non-proof 9-redex, then N is 

(j + 1)-quasi-normal. We prove this by induction on the structure of M. 

M is not a variable or a kind. 

M is of the form Hx:A.B, )x:A.B, >x:A.B or pairA (B, C). By induction 

hypothesis. 

M M 1 M2 . Consider the following three subcases: 

M M, M 2  L> j  MN N. By induction hypothesis. 

M 	M1 M2  t>1  N1 M2 	N. By induction hypothesis, if N is not 

(j + 1)-quasi-normal, N must be a fl-redex (N1  Ax:X.Y) such that 

0. This is impossible as the following shows: 

• M 1  ,\x:X 1 .Y1  ti  )x:X.Y N. But then, as TeN 1  -< TeM 1 , by 

lemma 4.3.5(2),eitherL(Te N1 ) <L(TM1 ) < j+1orVj i ( TNi ) 

Dj+i(TeM 1 ) = 0. 

• M1  (.Ax:X 1 .Y1 )Z1  1> 1 [Z1 /x]Y1  N1 . Then, either Y1 	x and 

N1 , or )y:Yj'.Y 1". 	In either case, by lemma 4.3.5, 

SM1  > 0 for some i > j + 1, which is impossible. 

• M 1 	7rI(pairA (X1 ,X2 ) r> 1  X 1 	N1 . Then, either £(Te N1 ) < 

L(A) or Vj +i(TeN 1 ) < D 1 A = 0. 
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M 	M1 M2 	\x:X.Y)M 2 N  [M2 1x]Y 	N. By lemma 4.3.8, 

-t+1N < max {yj+iY,y j+iM2 ,Dj+i(TeM2 )}. By induction hypothesis, 

if N is not (j + 1)-quasi-normal, M2  must be the major term of a new-

created redex in N such that Dj+i(TeM2) > 0. However, as TM2  X 

and M is not an .6-proof , we would have 8M = V t (TeMi ) > VX > 0 

for some i > j + 1. 

4. M 7r2 (M'). Consider the following two subcases: 

M ir.(M') 7r.(pairA (X 1 ,X2 )) N X 	N. Obvious. 

M 	ir(M') N  7r1 (N') 	N. By induction hypothesis, if N is not 

(j + 1)-quasi-normal, it must be the case that N' pairA (X, Y) and 

5 1 N = 	0. There are only three possibilities: 

• M' pairA,(Xl,Yl). Then, 8 1 N = 	= V 1  A 1  = 	= 

[J 

• M' 	M0 	(\x:X 0 .Y0 )Z0 N  [Z01x]Y0 	N. Then either (1) 

Y0  x and Z0 	N0 , or (2) Y0  pairA1 (XI  ,Yl ). In either case, 

we have &M0  > 0 for some i > j + 1, which is impossible. 

• M' M0  7r(pairA1  (X1 , X2 )) N  X N'. Then, either £(A) 

£(A 1 ) <i + 1 or 6 1 M' = V +1  (A) <V 1 (A 1 ) = 0. 

This completes the proof of the theorem. 	 0 

Remark In the above proof, the condition that a 3-redex to be reduced is not an 

E-proof is important. Reducing a proof 0-redex may create a new redex distroying 

the quasi-normalness of a term. For example, if E I- P : Prop, e 1- z : B -p P 

and E I- y : A, we can have M0  (.Ax:A -p B.z(xy))X 0  '-'-- Ax:A -+ B.z(X 0y). 

As M0  is a proof, its &-value is always 0. However, X 0  can be of A-form the level 

of whose type A - B may be i > j. 	 U 
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Corollary 4.3.11 Let A be an i-type which is i-quasi-normal for every i such 

that  < i :~ n and £(A)=j-1. Then, A has the form of 

Type- 2  (Prop when  = 1), a base term, Hx:A1 .A2  or Ex:A 1 .A 2  

Proof By induction on the structure of A. 

A is a kind. Then j? 1. We have A Type- 2  (Prop when j = 1) as it is 

the only kind whose level is j - 1. 

A is a variable or of H/E-form. It is as required. 

A can not be of )-form or pair-form, as A is an E-type. 

A 	A 1 A 2  or 7r.(A 1 ). We show that A is a base term, i.e., A 1  is a base 

term. A 1  can not be a kind or of A-form or pair-form. (If it is of )-form 

or pair-form, by lemma 4.2.4, r(TeA 1 ) ~: £(TA) > £(A) = j - 1, which 

implies by lemma 4.3.5 that 5(A) > 0 for some i > j, contradicting with 

the assumption.) So, A 1  can only be of the form x, A 11 A l2  or 7r2 (A 11 ). If it 

is a variable, then A is a base term. If it is of one of the latter two forms, we 

repeat this argument to prove A ll  is a base term, ... ... This will obviously 

end with a variable case from which we conclude that A is a base term. 

RN 

4.3.3 Quasi normalization: a summary 

We summarize the result of quasi-normalization for ECC as follows. 

Definition 4.3.12 (quasi-normal terms) An e-term is quasi-normal if and 

only if it does not contain any o-redex or any fl-redex whose major term has a 

non-propositional principal type. 	. 	 0 
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Remark An E-term may have different quasi-normal forms. Arbitrary reduc- 

tion does not in general preserve quasi-normalness (c.f., the remark after theo- 

rem 4.3.10). 	 D 

By the inductive proof in section 4.3.2, we have 

Theorem 4.3.13 (quasi normalization of ECC) Every E-term can be reduced 

to some quasi-normal form. 

Corollary 4.3.14 (forms of quasi-normal E-types) Every E-type of ECC can 

be reduced to some quasi-normal term of one of the following forms: 

a kind K, a base term, Hx:A.B, or Ex:A.B. 

Therefore, every 9-type can be reduced to a term of the form 

(*) 	 Q 1 x 1 :A 1  ... Qx:A.B 

where n e w, Q2 is either II or E, B is either a kind or a base term, and A 2  is of 

the same form as (*) above. 	 0 

4.4 A Complexity Measure of Types 

The quasi-normalization theorem 4.3.13 and its corollary 4.3.14 allow us to define 

a two-dimensional complexity measure of E-types. First, we define the j-degree 

of S-types in ECC. 

Definition 4.4.1 (1-degree D) Let A be an S-type and A °  be a quasi normal 

term such that A I> A ° . Define the i-degree of A for  E w, V3 A, as follows: 

• If £(A ° ) j, then D2 A =ç 0; 
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• If A °  Type,- 1  (Prop when j = 0), then D3 A =ç 1; 

• If A °  is a base term and £(A°) = j, then. V,A =df 1; 

• If A ° 	llx:A 1 .A 2  or A ° 	Ex:A 1 .A 2 , and £(A°) = j, then V 3 A =df  

max{DA 1 ,V2 A 2 } + 1. 

We also define V_ 1 A =df 0 for every 9-type A. 

Remark The above definition of degrees is well-defined by theorem 4.3.13, corol-

lary 4.3.14 and Church-Rosser theorem. For j E w, it is the same as defined in def-

inition 4.3.3; the properties of degrees proved in section 4.3.2 (lemmas 4.3.4, 4.3.5 

and 4.3.6 in particular) hold and the proofs are the same using theorem 4.3.13 

and corollary 4.3.14.. 0 

Definition 4.4.2 (complexity of e-types, 3) Let A be an E-type. Then de-

fine the complexity of A, /3A, as follows: 

13A =df (r(A)+1, V(A)A) 

where £(A) is the level of A and V 3 A is the ]-degree of A. 0-values of .6-types 

are ordered by the lexicographic ordering. 	 Ii 

Lemma 4.4.3 Let A and B be E-types. 

If AB, then /3(A)=fi(B). 

If A -< B, then /3(A) </3(B). 

Proof By lemma 4.2.2 and lemma 4.3.5. 	 U 

Lemma 4.4.4 Let A be a non-propositional e-type. Then, if A reduces to a 

quasi-normal E-type of the form llx:A 1 .A 2  or >x:A1 .A 2 , we have 
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1. /3(A 1 )<8(A), and 

. 3([N/x]A 2 ) </3(A) for every N such that E F- N:A 1 . 

Proof As 12(A 1 ) 12(A) and 12(A) > 0, either 12(A 1 ) < 12(A) or 12(A 1 ) = 12(A) 

and DC(AI)AI  <Vr(A)A. So, by definition, /3(A 1 ) <12(A). 

Suppose .6 I- N:A 1 . If 12([N/x]A 2 ) = —1, then /3([N1x]A 2 ) = (0 1 0) < (1 1 0) 

/3A. If 12([N/x]A2) = j ~! 0, then 12(A 2 ) -,,~ £([N/x]A 2 ) = j by lemma 4.2.4. 

There are two cases to consider: 

12(A 2 ) > 12([N/xJA2) = j. Then, /3([N1x]A2) = (j + 1,V3 ([N/x]A 2 )) < 

(12(A 2 ) + 1,Vc(A2) A 2 ) < (12(A) + l,Vc( A )A) = PA. 

12(A 2 ) = 12([N/x]A2) = J. Then, by lemma 4.3.6, either 12(A 1 ) > j or 

12(A 1 ) <j and V([N/xJA 2 ) < V,A. For the former case, 0([N/x]A 2 ) = 

(j + 1,V([N1x]A 2 )) </3A 1  </3A; for the latter case, by lemma 4.3.6 and 

the fact 12(A) = 12(A2) = j ~! 12(A), 0([N/x]A2) = (j + 1,V3 ([N/x]A 2 )) 

(12(A 2 ) + 1,V3 A 2 ) = /3A 2  </3A. 

This completes the proof of the lemma. 	 U 

Remark The existence of the complexity measure /3 with the above property 

shows that the formations of the non-propositional types are essentially non-

circular and that the type universes Type 3  are predicative. In other words, 

the types can be ranked in such a way (by 0) that the existence of any non-

propositional type depends essentially only on those types with lower ranks. This 

is one of the key property used to prove strong normalization theorem for ECC 

(see the next chapter). Note that only non-propositional types can be stratified 

to have the above property. For propositions, there is no way one can define such 

a measure to stratify them because formations of propositions are impredicative 

(circular). 	 0 



Chapter 5 

Strong Normalization 

In this chapter, we prove the strong normalization theorem for ECC: 

• every well-typed term is strongly normalizable 

i.e., every reduction sequence starting from a well-typed term is finite. (Compu- 

tationally, every program is terminating.) This is the most important property, 

which implies many important properties of the calculus, including the following: 

Logical consistency (theorem 6.1.5), 

Decidability of conversion and the cumulativity relation for well-typed terms 

(lemma 6.2.1), 

Decidability of type inference and type-checking (theorem 6.2.3 and corol-

lary 6.2.4), and 

Equality reflection (theorem 9.1.1). 

The strong normalization theorem will be proved by using Girard-Tait's reducibil-

ity method [Gir72,89][Tai75]. The proof is based on Coquand's method of proving 

normalization of the calculus of constructions [Coq86b] and the quasi normaliza-

tion result proved in the previous chapter. 
01 
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Section 5.1 gives a general discussion of Girard-Tait's reducibility method. 

The strong normalization theorem is proved in section 5.2. 

In this chapter, E still stands for a fixed environment as in the previous chapter 

and the notational conventions for E introduced in section 4.1 apply. 

5.1 Girard-Tait's Reducibility Method' 

We first discuss in general Girard-Tait's method for normalization proofs. We 

explain why it is difficult to prove (strong) normalization for type theories with 

more complicated type structures like the calculus of constructions. In particular, 

we discuss why the predicativity of higher universes is essential to apply Girard-

Tait's method to prove strong normalization for Constructions with more than 

one universe. Consideration of -types leads us to slightly generalize the key 

notion of saturated sets into a more transparent definition which we feel would 

give us a better understanding of the reducibility method.' 

Girard-Tait's reducibility method [Gir72,89][Tai75] has been well-known and 

widely used to prove (strong) normalization property of various type systems 

including the polymorphic A-calculus [Gir72][Gir89] and the calculus of construc-

tions [Coq85][Coq86b][Pot87]. One can find a nice and rather detailed explication 

of the method for proving strong normalization of the second-order A-calculus in 

[Gal89]. 

The basic idea of the method came from the fact that a proof of normalization 

by straightforward induction on term structure fails because /3-reduction may re-

suit in a term with larger size. A stronger induction method was invented by Tait 

[Tai67] and generalized to higher-order systems by Girard [Gir7l,72][Tai75]; it is 

very adaptable for different type systems. The general steps of the reducibility 

'The discussion in this section was given in [Luo89c]. 
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method can be analyzed as follows: 2  

Define a notion of saturated sets or candidates of reducibility. 

Define an interpretation of types A, Eva lA, with respect to type variable 

assignment p. 

Prove that EvalA is a saturated set (or candidate of reducibility) for every 

type A. 

Prove the soundness of the interpretation Eval, i.e., if M is of type A, then 

M is in EvalA. 

As every term in a saturated set (or candidate of reducibility) is (strongly) nor-

malizable, by the very definition of saturated sets (or candidates of reducibility), 

we conclude that every well-typed term is (strongly) normalizable. 

The above outline of the reducibility method is rather informal but is enough 

for understanding our following discussions and also gives a guideline to under-

stand our proof of strong normalization in section 5.2. We now discuss several 

points we feel interesting when applying the method to richer type systems. 

5.1.1 Saturated sets and candidates of reducibility 

The core notion of Girard-Tait's reducibility method is that of saturated sets 

[Tai75] (or candidates of reducibility [Cir7l,72]) which are assigned to types of 

typed A-calculi in their term model constructions. 

Instead of giving the ordinary definition of saturated sets (in which people 

only consider A-terms), we give a slightly more general definition using the notions 

2  W only consider the typed version of reducibility method here. We remark that the erasing 

trick used in the untyped version of the reducibility method [Ta175][Mit86] does not seem to 

apply to the calculus of constructions or richer calculi as it is based on separation of type 

reduction and term reduction which may not be done when type-valued functions exist. 
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of base term (definition 4.3.1) and key redex (definition 5.1.1 below) which easily 

incorporates terms for E-types (and products as a special case). Our definition 

makes more explicit the idea behind the notion of saturated sets. 

Definition 5.1.1 (key redex) The notion of key redex of a term M is defined 

as follows: 

If M is a redex, then M has key redex and it is the key redex of itself. 

If M has key redex, then so do MN, ir 1 (M) and 7r2 (M), and their key 

red exes are that of M. 

(Thus, a term has at most one key redex.) If M has key redex, we write redk (M) 

for the term obtained from M by contracting the key redex of M. 	 0 

For example, the redexes ()x:A.M)N and lrl(pairA(M,N))  are the key re-

dexes of (Ax:A.M)NN 1 ...Nm  and lrl (pairA(M,N))Nl ... N m , respectively. The 

intuitive idea behind the notion of key redex is that every reduction sequence, 

starting from a term with key redex and ending with a normal form, will neces-

sarily contract the key redex of the term (possibly after contracting some redexes 

in subterms of the key redex). 

Notation Let A be an .6-type. Then, SN(A) is the set of strongly normalizable 

terms M such that S I- M: A. 	 IN-1 

Definition 5.1.2 (saturated sets) Let A be an S-type. S is an A-saturated 

set if and only if 

(Si) ScSN(A); 

if M E SN(A) is a base term, then M E S; 

if M E SN(A) has key redex and redk (M) e 5, then M e S. 
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Sat(A) is defined to be the set of A-saturated sets. 	 V 

Remark Sat(A) is not empty. In fact, SN(A) e Sat(A). To show the generality 

of the above definition, we remark that (S2) has the following as special cases: 

• If MxM 1  ... MESN(A), then MES. 

• If M 7r.,( ... 7r.(x)) E SN(A), then M E S, where ik e 11, 21. 

and (S3) has the following as special cases: 

• if M 	\x:B.M')NN i ...Nm  E SN(A) and ([N/X]M')Ni  ... Nm E S, then 

MeS; 

• if M 	7r 1 (...7r 3 (pairB(M1 ,M2))) E SN(A) and ir 1 ( ... ir1 _,(M13 )) E 8, 

then ME 8, where lk e {1,2}. 	 a 

The above definition of saturated sets will be used in this chapter to prove 

strong normalization of ECC. As a digression, before we proceed to discuss the 

next steps of the, reducibility method, we would like to compare the notion of 

saturated sets with the notion of candidates of reducibility of Girard [Gir72,89] 

and show that the conditions for the latter are stronger. 

Definition 5.1.3 (candidates of reducibility) ([Gir89]) Let A be an 9-type. 

S is an A-candidate of reducibility if and only if 

(cR1) S ç  SN(A),• 

if M E S and M L>j  N, then N E S; 

if S I- M: A, M is simple (i.e., M is of the form x, M 1 M2  or 

and N E S for every N such that M t N, then M E S. 

CR(A) is defined to be the set of A-candidates of reducibility. 	 0 
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We have the following relationship between saturated sets and Girard's can-

didates of reducibility. 

Proposition CR(A) c SAT(A), i.e., every A-candidate of reducibility is an 

A-saturated set. 

Proof Suppose that S is an A-candidate of reducibility. We show that S satisfies 

(S1)(S2)(S3). Notice that, for every E-term M, M is simple if and only if M is 

a base term or has key redex. We use this fact below tacitly. 

(Si) By definition. 

We show that every base term M in SN(A) is in S by induction on the 

height h(M) of the reduction tree of M. If h(M) = 0, i.e., M is strongly 

normalizable, then M E S by (CR3). If h(M) = n + 1, then, for every N 

such that M >1  N, N € SN(A) is a base term and h(N) < h(M); and 

hence N E S by induction hypothesis. Therefore, M e S by (CR3). 

We show, by induction on the height h(M) of the reduction tree of M, that 

M E S for every M in SN(A) which has key redex and whose key reduct 

redk(M) is in S. If h(M) = 1, then if M t> 1  N, we have N redk (M) e S. 

So, M e S by (CR3). If h(M) = n + 1, then if M r>1  N, we have either 

N redk (M) E S or N has key redex and red k (M) L' redk(N). In the 

former case, N e S by assumption. In the latter case, as redk (M) E S, 

redk (N) E S by (CR2); and by induction hypothesis, we have N E S as 

h(N) <h(M). Therefore, M E S by (CR3). . 

Remark The condition (CR2) is necessary to prove the above proposition. The 

converse of the proposition is not true; some saturated sets are not candidates of 
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reducibility because they do not satisfy (CR2). The above relationship between 

saturated sets and candidates of reducibility has also been noticed by Gallier 

[Ga189]. 	 U 

5.1.2 Separability of types v.s. type-valued functions 

Now, we discuss how to define an interpretation EvalA such that every type is 

interpreted as a saturated set. This can be done by induction on type structures 

for simpler systems like the simply typed ,\-calculus [Tai67] and the second-order 

)-calculus [Gir72][Mit86], because in these systems types are essentially separated 

from the other objects and there are no type-valued function terms. However, for 

richer systems like the calculus of constructions [CH88][Coq85], types are mixed 

up with other terms and can not be simply separated. In particular, there are 

type-valued J-terms or intuitively type-valued functions. For example, in the 

calculus of constructions, one has I- Ax:Prop.x : Prop - Prop. Therefore, a 

term of the form MN may be a type too. Therefore, a problem is: how to define 

the interpretation of types of the form MN? 

Coquand [Coq86b] [Coq85] gives a nice solution to this problem: not only 

types are interpreted, but the other terms too. Then, in order to show that the 

interpretation defined by induction on term structure is well-defined and does in-

terpret every type as a saturated set, he makes a substantial use of the fact that 

there is a complexity measure of non-propositional types in the calculus of con-

structions (as we mentioned at the beginning of chapter 4). This straightforward 

measure for non-propositional types exists simply because that there is only one 

real universe in the calculus of constructions and there is no non-propositional 

type-valued function. 

Things become different when we have more than one universe like in ECC. 

Now there are functions with non-propositional types as values, say )tx:Type0.x. 
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Therefore, a term of the form MN (or ir.(M)) may be a non-propositional type. 

We need to clarify the forms of the non-propositional types and have a complexity 

measure to make explicit the predicativity of them. This is the main reason that 

we spend a lot of energy to prove the quasi normalization theorem and find the 

complexity measure in the last chapter. Coquand's solution is the clue that 

motivates our work on quasi normalization. As we have succeeded in proving 

the quasi-normalization theorem and finding the complexity measure 3 in the 

previous chapter, we are now ready to apply Girard-Tait's method to prove strong 

normalization. 

5.2 The Strong Normalization Theorem 

We now apply the reducibility method to prove strong normalization for ECC. 

The central theme is to define a term model (interpretation) in which types 

are interpreted as saturated sets (see definition 5.1.2 in the previous section), 

and then prove the soundness of the interpretation, which implies the strong 

normalization theorem. 

5.2.1 Possible values of terms 

We first define a notion of value-sets which indicates the possible values of a 

term in the term model (subject to some variable assignment). In particular, the 

possible values of an E-type A are the A-saturated sets. 

Definition 5.2.1 (value-sets of E-terms) The set of (possible) values of an 

(-term M, V(M), is defined by considering the form of its principal type Te(M), 

which is assumed to be in quasi-normal form, and by induction on the complexity 

measure 
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If T(M) is a kind, i.e., M is an E-type, then 

V(M) =df Sat(M). 

If Te(M) is an e-proposition, i.e., M is an 9-proof, then 

V(M) =,If  {O}. 

where 0 is a fixed arbitrary symbol. 

If T(M) is a base term, then 

V(M) =df  {0}. 

ij. If Te(M) 	Hx:A 1 .A 2  is a non-propositional E-type, then define V(M) as 

the set consisting of the functions f such that 

. the domain off, dom(f) = {(N,v) I E H N: A 1 ,v E V(N)}, 

• f(N,v) e V(MN) for (N, v) e dorn(f), and 

• f(N,v) = f(N',v) for (N,v),(N',v) E dom(f) such that N N'. 

5. if Te(M) Ex:A 1 5A 2 , then 

V(M) =jç {(v 1 ,v2 ) I  v 1  E V(7r 1 (M)),v 2  e V(7r 2 (M))}. 

Remark The above definition is well defined by theorem 4.3.13, corollary 4.3.14, 

lemma 4.4.3, lemma 4.4.4, and Church-Rosser theorem. Note that the quasi-

normalization theorem and its corollary are essential for the definition to work 

and the properties of the complexity measure 0 are also important. For ex-

ample, when non-propositional S-type Hx:A 1 .A 2  is the principal type of M, 
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we know that, for S F- N : A 1 , V(N) and V(MN) are already defined be- 

cause /3(Te (N)) < /3(A) < /3(Hx:A 1 .A 2 ) and 13(Te (MN)) < /3([N/x]A 2 ) < 

/3(llx:A 1 A 2 ) by lemma 4.4.3 and lemma 4.4.4. 	 UI 

Convertible terms have the same possible values, as the following lemma 

shows. 

Lemma 5.2.2 Let M and N be S-terms. If M N, then V(M) = V(N). 	- 

Proof We prove the lemma by the same induction as used in definition 5.2.1. 

Note that, as M N, Te(M) T(N) (see the remark after lemma 3.1.4 for 

definition of ) have the same sort of forms up to conversion. 

If M is an S-type, so is N. So, by definition of saturated sets, V(M) = 

Sat(M) = Sat(N) = V(N). 

If Te(M) is an S-proposition, so is Te(N). So, V(M) = {O} = V(N). 

If Te(M) reduces to a quasi-normal base term, so is T(N). So, V(M) = 

{O} = V(N). 

If Te(M) reduces to a quasi-normal non-propositional S-type Hx:A 1 .A 2 , 

then Te(N) reduces to some quasi-normal non-propositional S-type 

llx:A.A and A'1  A 1 . By induction hypothesis, V(MN 0 ) = V(NN0 ) for 

every No  such that S I- No  : A 1 . By definition of value-sets, V(M) = V(N). 

If Te(M) reduces to a quasi-normal term Ex:A 1 .A 2 , then Te(N) reduces to 

some quasi-normal term x:A.A. By induction hypothesis, V(ir(M)) = 

V(ir 1 (N)) for i = 1,2. By definition of value-sets, V(M) = V(N). 	0 

Every S-term has at least one possible value. In fact, the proof of the following 

lemma defines a 'canonical value' for each S-term. 
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Lemma 5.2.3 (canonical value of S-terms) For every S-term M, V(M) is 

not empty. 

Proof The following definition gives every S-term M a 'canonical' value VM E 

V(M), by the same induction as used in definition 5.2.1. 

If M is an S-type, then VM =df SN(M) 

If M is an S-proof, then VM =df 0. 

If Te(M) reduces to a quasi-normal base term, then VM =df 0. 

If Te(M) reduces to a quasi-normal non-propositional .6-type llx:A 1 .A 2 , 

then VM is defined to be the function f C V(M) such that f(N,v) = VMN 

for all (N, V) E dorn(f). 

If Te(M) reduces to a quasi-normal term 	x:A 1 .A 2 , then 

VM =df (V7,1(M))V72(M)). 	 0 

5.2.2 Assignments and valuations 

In this section, variable assignments and valuations are defined and studied. We 

first introduce a notation for simultaneous substitution. 

Notation (simultaneous substitution) We write [N,,..., N,,Ix l , ..., x]M for 

(the resulting term by) the simultaneous substitution of terms N for the free 

occurrences of variables x 1  (i = 1, ...,n) in M. 	 0 

Lemma 5.2.4 (simultaneous substitution) If S" I- M : A and, for all i < k, 

S I- Ni  [Ni ,...,1V 2 _ i / ei ,...,e1 _ i ]E, then 

9  H [Nl ,...,Nk /e l ,...,ek }M : [ND ...,Nk/el,...,ek]A. 
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Proof As (k  F M : A, by repeated applications of rule (\), 

( F )el :El ..)e k :Ek .M : He 1  :El ...11ek :Ek .A 

Then, by repeated applications of rule (app) and assuming that the bound vari-

ables ej  above are not in U1<1<k  FV(N1 ), we have 

(F ()e l :El ...Ae k :Ek .M)N l  ... Nk  : [Nl ,...,Nk/e l ,...,ek]A 

The result then follows from theorem 3.2.8. 	 0 

We now introduce the notion of assignment and valuation. 

Definition 5.2.5 (9-assignment and (-valuation) An (-assignment is a 

function 0 : FV((k) -p 7 for some k E w such that ( F 0(e2 ) : q(E1 ) for each 

1 < i < k, where ( e2 :E1 . (We also write q for the simultaneous substitution 

determined by 0, i.e., 10(e1 ), ..., O( P-k)/el, ..., 

An (-valuation is a pair of functions p = (q, val) such that 0 is an 

assignment and val is a function with dorn(çb) as its domain such that, for each 

e2  E dom(q), val(e 2 ) e V(0(e 1 )). The domain of p is the domain of q. 

An (-valuation p with domain FV((k)  covers an (-term M if and only if 
gk  F M: A for some A. 	 Li 

Lemma 5.2.6 (extensibility of (-valuations) Let A a Em  be an (ktype, 

where rn > k. If ( F Na : [N1 ,...,N_ 1 1e 1 ,...,e3 _ 1 ]E for 1 < j < k and 

( F N: [N1 , ..., Nk/e l , ..., ek]A, then there exist variables Yk+1 ,  •• y- such that 

( F Yk+i : [N1 , ..., Nk, Yk+1' 	yk+_11 e 1 ,  , ek+_l]Ek+I  

E l-  N: [Nl,...,Nk,yk+l,...,ym_l/el,...,em_l]A 

Proof By lemma 3.2.9, for i = 1,...,m - k - 1, Ek+j are 	-types, and so 

llel :El  ... Hek+I_ l :Ek+ _l .Ek+I  are (-types and there exist variables z, such that 
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S H z, : Hel :El ...Hek+l_ l :Ek+I_ l .Ek+Z . Hence, by induction on i = 1, ...,m—k-1, 

we have 

S I- 	 N1, ..., Nk, Yk+1, ... Yk+_1/e1, ..., ek+_l]Ek+ 

So, by theorem 3.2.7, [N1 , ..., N, Yk+1, ••• yk+1_l/el, ..., ek+_lJEk+ is an S-type. 

Hence, there exists Yk+t  satisfying the requirement. As FV(A) c {e, ...,ek}, 

[Nl,...,Nk,yk+l,...,ym_l/ el,  ..., em-  l]A 	[Nl , .... Nk /e l ,...,ek ]A; 	hence, 

El- N: [Nl ,...,Nk ,y k+l ,...,y m _ l /el ,...,em _l ]A. 	 . 

Remark The above lemma shows that, if p = (, val) is an S-valuation which 

covers N and A, and S H N : 4(A), then p can be extended to an E-valuation 

P' = (qf/,val') such that q'(x) = N for some variable x V dom(p). 	 0 

5.2.3 Interpretation of terms 

Now, we define the interpretation of 9-terms. Every 9-term is given a unique 

value in its value-set, subject to an 9-valuation. 

Definition 5.2.7 (Evaluation Eval) Let p = (, val) be an S-valuation. The 

evaluation function Eval of S-terms which are covered by p are defined as fol-

lows: 

If M is an S-proof, then Eval(M) =ç 0. 

If M is not an S-proof, Eval(M) is defined by induction on the structure 

of M: 

M is a kind. Then Eval(M) =df  SN(M). 

M is a variable. Then Eval(M) =df  val(M). 

M Hx:M 1 .M2 . We may assume that x V dorn(p). Then, Eval(M) 

is defined to be the set of the terms F such that 



STRONG NORMALIZATION 
	

103 

. S I- F: O(M), and 

ii. FN E Evali(M2 ) for every 9-valuation p' 	val') which ex- 

tends p such that çb'(x) = N e Eval(M1 ). 

(d) M Ax:M 1 .M2 . We may assume that x V dorn(p). Then, Eval(M) 

is defined to be the function f such that 

dom(f) = { (N, v) I S F- N: cb(M 1 ),v E V(N)}, and 

f(N,v) = Evali(M 2 ) for (N,v) E dom(f), where p' extends p 

such that p(x) = (N,v). 

(e) M M 1 M2 . Then Eval(M) =df Eval(M1)(q(M2),Eval(M2)). 

(f) M Ex: M I . M2 . We may assume that x V dom(p). Then, Eval(M) 

is defined to be the set of the terms P such that 

S F- P: O(M), and 

7r(P) E Eval(M1 ) and ir2 (P) E Eval,(M2 ) for everyS-valuation 

P' = ( q',val') which extends p such that q'(x) = ir1 (P). 

(g) M pairA (M1 1M2 ). Then, Eval(M) = (Eva1(M 1 ),Eva1(M2 )). 

(h) M 7r3 (M'). Then, Eval(M) =df v1 , if Eval(M') = (v1 ,v2 ), where 

i E {1,2}. 

F. 

The following lemma guarantees the well- definedness of the interpretation. In 

particular, it implies that every S-type is interpreted as a saturated set. 

Lemma 5.2.8 (well definedness of Eval) Let p = (0,val) be an .6-valuation 

which covers S-term M. 

1. If 9-valuation p' = (qY, val') covers M, and 4(x) 	cb'(x) and val(x) = 

val'(x) for every x E FV(M), then EvalM = Eval1M. 
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2. Eval(M) E V(q(M)). 

Proof If M is an E-proof, then so are q(M) and q'(M), and we have 

EvalM = Eval1M = 0 E {0} = V(q(M)) = V(çi(M)) 

If M is not an E-proof, we prove the two statements of the lemma by mutual 

induction on the structure of M. 3  

Proof of the first statement. 

M is a kind. EvalM = SN(M) = Eval;M. 

M is a variable. EvalM = val(M) =val'(M) = Eval1M. 

M 1Ix:M 1 .M2 . We show EvalM C Eval1M and the other direction is 

the same. Suppose F E EvalM. Then, e I- F: 41(M) as 	cb'(M). 

For any extension 	,val) of p' such that q(x) = N E Eval1M1 , 

we can also find an extension Pi = (q, val1 ) of p such that q  (x.) = N E 

EvalM1  by lemma 5.2.6 as EvalM1  = Eval1M1  by induction hypothesis. 

Hence, FN E Eval 1 M2  = EvaliM2  by induction hypothesis. 

M .\x:M 1 .M2 . We have dom(EvalM) = dorn(EvaliM) as 

0Y(M 1 ), and EvalM(N,v) = Eval,M 2  = EvaliM2  = Eval#M by in-

duction hypothesis, where Pi  and 	extend p and p' respectively as in the 

definition of Eval. 

M M 1 M2 . As O(M2 ) 0'(M2 ) and Eval1M1  E V(41(M1)) by (mutual) 

induction hypothesis, we have by induction hypothesis 

EvalM = Eva1M1 (0(M2 ), EvalM2 ) 

= Eval1M1 (çb(M2 ), EvaliM2 ) 

3  B mutual induction, we mean to prove the two statements simultaneously but just write 

the proofs separately. 
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= Eva1Mi (0'(M2 ), EvalM2 ) 

= EvalsM 

6. M Ex:M 1 .M2 . Similar to the case of 11-form. 

7 M pair A (Ml , M2 ). By induction hypothesis. 

8. M 7r(M). By induction hypothesis. 

Proof of the second statement. 

M is a kind. EvalM = SN(M) e Sat(M) = V(M) = V((M)). 

M is a variable. EvalM = val(M) e V(çi(M)). 

M 11x:M 1 .M2 . We have to show that EvalM is a O(M)-saturated set. 

(Si) Suppose F e EvalM. We only have to show that F is strongly nor-

malizable. Take a variable y such that E H y q(M 1 ). As EvalM 1  E 

V((M 1 )) = Sat(ct(M1 )) is a saturated set by induction hypothesis, 

y E EvalM1 . Let p' be an extension of p such that p'(x) = (y, v), 

where v, is the canonical value of y. Then, by induction hypothe-

sis, EvaliJ'vI2  E V(0'(M 2 )) = Sat(qi(M2 )) is a saturated set. So, 

Fy E Eva1#M2  is strongly normalizable, which implies that F is 

strongly normalizable. 

(S2) Suppose M0  e SN(4(M)) is a base term. We only have to show 

M0 N E Eval;M2  for any extension p' = (', val') of p such that 

0'(x) = N E EvalM1 . This follows from that EvaliM 2  is a 

saturated set (by induction hypothesis), M0N is a base term and E H 

M0 N: 0Y(M 2 ) (as 0'(M2) [N1x]0(M2 )). 

(S3) Suppose M 0  e SN(4(M)) has key redex and redk (Mo ) Ez EvalM. 

We only have to show M 0N e Eval1M2  for any extension p' = 
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(çb',val') of p such that qf/(x) = N E EvalM1 . By induction hy-

pothesis, EvalM2  E Sat(çt/(M2 )) is a saturated set. As redk(Mo ) E 

EvalM, redk (Mo )N E Eval1M2  is strongly normalizable which im-

plies that M0N is strongly normalizable as M0  is a strongly normaliz-

able. Noticing that S F- M0N: 0'(M2 ) (as '(M2) [N1x]0(M2 )) and 

M0 N has the same key redex as M0 , we have M0N E Eval1M2 . 

M 	)x:M1 .M2 . For any extension p' = (q',val') of p such that p'(x) = 

(N, v) € dom(EvalM), by induction hypothesis, 

EvalM(N,v) = Evali(M 2 ) E V(0'(M 2 )) = V([N1xJ0(M2 )) = V(çi(M)N) 

If S I- N': q(M 1 ) and N' N, we have, by (mutual) induction hypothesis, 

Eval(M)(N,v) = Evali(M 2 ) = Evali (M2 ) = Eval(M)(N',v) 

where p, extends p such that p, (x) 	(N, v). 

M M 1 M2 . As Te(q5(M i )) has the form Hx:A 1 .A 2 , EvalM1  E 

is a function f such that f(N,v) E V(0(M 1 )N) for any N such that 

S I- N: A 1  and any v E V(N). Noticing that S H q(M 2 ) : A 1  (as M1 M2  is 

an S-term) and EvalM2  E V(q(M 2)), we have EvalM = 

EvalM1 (çb(M2 ), EvalM2 ) e V(0(M 1  )q(M2 )) = V(q(M)). 

M 	x:M1 .M2 . We have to show that EvalM is a O(M)-saturated set. 

(Si) Suppose P E EvalM. We only have to show that P is strongly nor-

malizable. By induction hypothesis, 7r1 (P) E EvalM1  e V(0(M 1 )) = 

Sat(0(M1 )). is strongly normalizable, so is P. 

(S2) Suppose M0  e SN(q(M)) is abase term. Then, 7r1 (M0 ) e SN(q(M 1 )) 

is also a base term, so 7r1 (Mo ) is in q(M1 )-saturated set EvalM1 . For 

any S-valuation p' 	',val') which extends p such that '(x) = 
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7r1 (P) (assuming x V dom(p)), 7r2 (M0 ) E SN([ir1 (M0 )1x]0(M2 )) = 

SN(0'(M 2 )) is also a base term, and so 7r2 (Mo) is in 0'(M2 )-saturated 

set EvaliM2 . Hence, M0  € EvalM. 

(S3) Suppose M0  E SN(çb(M)) has key redex and redk(MO ) E EvalM. 

Then, 7r1 (M0 ) E SN(0(M 1 )) has the same key redex and in (redk (Mo )) 

E EvalMi , so 7r1 (Mo ) is in 4(M1 )-saturated set EvalM1 . For any 

E-valuation p' = (', val') which extends p such that qf'(x) = ir1 (P) (as-

suming x V dom(p)), r2 (MO ) E SN([ir 1 (M0)1x]0(M2 )) = SN(çb'(M2 )) 

has the same key redex and 7r2 (redk(M0)) E EvalM2 , so 7r2 (Mo ) is 

in 4/(M2 )-saturated set EvaliM2 . Hence, M0  E EvalM. 

M pairA (Ml , M2 ). By induction hypothesis and lemma 5.2.2. 

M ir.(M'). As Te(M') has E-form, EvalM' = (V1, V2) € V(q(M')) such 

that vi  E V(ir(q(M'))), where Z' =  1,2. So, EvalM = v1  E V(7r 1 (q(M'))) = 

V((M)). 

Corollary 5.2.9 If A is an S-type and p = (, val) is an S-valuation which 

covers A, then EvalA is a O(A)-saturated set. 

Proof By lemma 5.2.8 and the definition of value-sets. 	 0 

5.2.4 Soundness of the interpretation 

We prove the interpretation Eval is sound in the following sense: 

It respects the conversion relation by equality and the cumulativity relation 

by inclusion (lemma 5.2.11); 

If M has type A, then, under a suitable variable assignment, M is an 

element of the interpretation of A (theorem 5.2.12). 

To prove these results, the following substitution property has to be proved first. 
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Lemma 5.2.10 (substitution property) Suppose p = (q,val) is an 

9-valuation which covers N and [N/x]M, where x g dom(p), and p' = (qf', va! 1 ) 

is an extension of p which covers M such that p'(x) = (cb(N),Eval(N)). Then, 

Eval([N/x]M) = Evali(M). 

Proof If M is an E-proof, so is [N/x]M; then Eval([N/x]M) = Eval(M) = 0. 

If none of M and [N/x]M is an E-proof, we prove the lemma by induction on the 

structure of M. 

M is a kind. Eval([N/x]M) = Eval(M) = SN(M) = Evali(M). 

M is a variable. If M 0 x, then Eval([N/x]M) = Eval(M) = val(M) = 

val'(M) = Evali(M). If M 	x, then Eval([N/x]M) = Eval(N) = 

val'(M) = Evali(M). 

M Hy:M 1 .M2 . We may assume y g dom(p'). We have 

• 4([N/x]M) [q(N)/z]q([z/x]M) q'(M), by suitably choosing van-

able z; 

• Eval([N/x]M 1 ) = Evali(M1 ), by induction hypothesis; and 

• by lemma 5.2.6, for any .6-valuation Pi = ( 01 , val1 ) which extends p 

such that ci(Y) = N1  E EvalM1 , we can find an E-valuation p = 

(çb'1 ,val) which extends p' such that (y) = N1  E EvalM1 , (and 

vice versa); furthermore, by lemma 5.2.8, Eval,M2  = EvalM2 . 

From these, by definition of Eval, Eval([N/x]M) = Evali(M). 

M \y:M 1 .M2 . We may assume y V dom(p'). We have 

• dom(Eval[N/x]M) = dom(EvalsM), as 0([N/x]M 1 ) 

0'(M1 ), by suitably choosing variable z; 
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• for any (N1 ,v 1 ) e dom(Eval[N/x]M), by lemma 5.2.8, 

Eval[N/x]M(N i ,v i ) = Eval 1 M2  = EvalM2  = EvaliM(N 1 ,v 1 ), 

where Pi and p extend p and p' such that Pi(Y) = p'1 (y) = ( N1 , v 1 ). 

Hence, by definition of Eval, Eval([N/x]M) = Evali(M). 

M M 1 M2 . As 0([N1x]M2) [0(N)1z]0([z1xJM 2 ) 0'(M2 ) ( by suitably 

choosing variable z), we have by induction hypothesis 

Eval([N/x]M) = Eval([N/x]Mi )(cb([N/x]M 2 ), Eva l([N/x]M 2 )) 

= Evali(M1 )(0i(It'I2 ), Evali(M2 )) 

= Evali(M) 

M Ey:M 1 .M2 . Similar to the fl-case. 

M pairA(Ml, M2 ). By induction hypothesis. 

M ir(M'), i = 1,2. By induction hypothesis, Eval[N/x]M' = Eval1M' = 

(VI, V2)- So, Eval[N/x]M = Eval7r1 ([N/x]M') = vi  = Eval1M. 

70 

Lemma 5.2.11 Let p = (, val) be an .6-valuation. 

1. If M and N are convertible S-terms covered by p, then Eval(M) = Eval(N). 

. If M and N are S-types covered by p and M 	N, then Eval(M) c 
Eval(N). 

Proof By induction on the structure of M. 

Proof of the first statement. By Church-Rosser theorem, we only have to 

prove the statement for M t> 1  N. Then, M can not be a kind or variable. For 

the cases M is of 11-form, X-form, s-form or pair-form, it is true by induction 

hypothesis. The cases that M ir(M') can also be readily verified by induction 
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hypothesis and the definition of Eval. We consider the case when M M, M 2 . 

There are two subcases. 

M M 1 M2  1 1 N1 N2  N with M 1  r'1 N1  or M2  1 N2 . Then,Eval(M 1 ) = 

Eval(Ni ) e V(çb(N 1 )), by induction hypothesis and lemma 5.2.8. As 

O(M2 ) O(N2 ) and E I- q(N2 ) : Te(q(M 2 )) by theorem 3.2.8, and noticing 

that Te(q(N i )) is of H-form, we have by induction hypothesis and definition 

of value-sets, 

Eval(N) = Eval(N1 )(q(N2 ), Eval(N2 )) 

= Eval(M1 )(çb(N2 ), Eval(M2 )) 

= Eva1(Mi )(0(M2 ),Eva1(M2 )) 

= Eval(M) 

M M1 M2 	\x:X.Y)M 2  r>1  [M2 1x]Y N. By lemma 5.2.6, there exists 

an 9-valuation p' which extends p such that p'(x) = (ct(M2 ), EvalM2 ). By 

lemma 5.2.10, 

EvalM = Eva1(\x:X.Y)(0(M 2 ), Eval;M2 ) 

= Eval1Y 

= Eval[M2 1x]Y 

= EvalN 

Proof of the second statement. By the first statement just proved and lemma 

3.1.4, we only have to consider the following cases. 

M -< N are kinds. Then, EvalM = SN(M) 9 SN(N) = EvalN. 

M 	Qx:M1 .M2  -< Qx:N1 .N2 	N, where Q E {H,}, and, 
(N1  ifQEH 

M1 	 and M2  -< N2 . The result then follows from in- 
IN 1  if QE 

duction hypothesis. 
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This completes the proof of the lemma. 	 0 

Now, we prove the soundness theorem of the interpretation. As we are deal-

ing with a much richer system than the second-order \-calculus, the theorem 

reads more complex than we stated in the outline of the reducibility method in 

section 5.1. 

Theorem 5.2.12 (soundness) Let p = (, val) be an 9-valuation with FV(E') 

as domain such that 0(e2 ) E Eval(E) for e j  E dom(p). lieJc  H M : A, then 

O(M) E EvalA. 

Proof By induction on the structure of M. 

M is a kind. Then, Te(M) A is convertible to a kind. By lemma 5.2.11, 

O(M) = M E SN(Te (M)) = EvalpTe (M) ç  Eval,,A. 

M e j  is a variable. Then, E2  is the principal type of M. By assumption 

and lemma 5.2.11, q(M) E EvalE2  c EvalA. 

M llx:M 1 .M2 . Then A K for some kind K and EvalA = EvalK = 

SN(K) by lemma 5.2.11. We only have to show that S H q(M) : K and 

O(M) is strongly normalizable. As S H M : K and 0 is an S-assignment, 

S H q(M) : K by lemma 5.2.4. By lemma 3.2.9, 
5k  H M1  K1  for some 

kind K 1 . So, by induction hypothesis, q(M1 ) E Eva1K 1  = SN(K 1 ) 

is strongly normalizable. We may assume that x 	e, with E, 	M1  

for some j > k such that S j  H M2  K2  for some kind K 2 . Let p' = 

val') be an extension of p such that q'(ek+)  is an variable Yk+i  such that 

S H Yk+i : [(e 1 ), ..., q5(ek), Yk+1 ...' yk+_l/e1, ek+I_lIEk+1 and val'(ek+ ) 

is any value in V(yj, where 1 < i < j - k. Then, p' is an .6-valuation 

and, by induction hypothesis, 0'(M2 ) E EvaliK2  = SN(K2 ) is strongly 
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normalizable, which implies that q(M2 ) is strongly normalizable. There-

fore, (M) Hx:0(M 1 ).0(M2 ) is strongly normalizable. 

4. M Ax:M 1 .M2 . Then, by Church-Rosser theorem and lemma 3.3.3, A i' 

Hx:M1 .A 2  for some (-type A 2 . 

As (F- M: Hx:M1 .A 2 , (I- O(M): 0(Hx:M 1 .A 2 ). 

We may assume that x e2  for some j> Ic such that E, x:M1  and 

(' F M2  : A 2 . Suppose Pi = (01 ,val1 ) is an (-valuation which extends 

p and covers x such that 0 1 (x) = N e EvalM1 . Then, we can find 

another (-valuation p' with FV(() as domain which extends p in the 

similar way as in the above case except that p'(x) = p1 (x). Then, p' 

satisfies the condition required by the theorem. . By induction hy-

pothesis and lemma 5.2.8, 0 1 (M2 ) = 0'(M2 ) e EvalA 2  = Eval,A2 . 

As, by lemma 5.2.8, Eval,A 2  E V(q 1 (T(A 2 ))) = Sat(cbi (Te (A 2 ))) is 

a saturated set, q(M)N has key redex, and by contracting the key 

redex, q(M)N t' [01 (x)1x]0(M 2 ) 	q(M) E Eval,A 21  we have 

qf(M)N E Eval,A 2 . 

So, we have q5(M) E Eval(Hx:M 1 .A 2 ); hence, q5(M) E EvalA, by lemma 

5.2.11. 

5. MEM1 M2 . Then, (F-M1 :Hx:B1 .B2 ,(FM2 :B1  and [M2 /x]B 2 A 

for some B 1  and B2 . Let p' = (0 
1, val') be an (-valuation extending p such 

that p(x) = (0(M2 ),Eva1M2 ). By induction hypothesis, lemmas 5.2.10 

and 5.2.11, O(M) 0(M 1 )0i(x) E Eval:B2  = Eva1[M2 1xJB 2  c Eval,,A. 

6. M >x:M1 .M2 . Similar to the H-case. 

7. M pairB(Ml ,M2 ). Then, by Church-Rosser theorem and lemma 3.3.3, 

A L' Ex:A 1 .A 2  for some A 1  and A2. 
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As (F- M: >x:A 1 .A 2 , ( F- O(M): 0(x:A 1 .A 2 ) by lemma 5.2.4. 

Noticing that EvalA 1  is a saturated set, we have 7r1 (q(M)) E EvalA 1 , 

because it is a redex (and hence is the key redex of itself) and its con-

tractum is in EvalA 1  by induction hypothesis. We may assume that 

X 	e, for some j > k. Suppose Pi = ( 01 ,val1 ) is an (-valuation 

extending p such that 01 (x) = 7r1 (M). Similar to the A-case, we can 

find a p' which satisfies the condition required in the theorem and 

p'(x) = p1 (x). Noticing that EvaliA 2  is a saturated set, we have 

r1 (q(M)) E Eval,,A and ir2 (q(M)) E EvaliA 2 , because its contrac-

turn is in EvalA i  by induction hypothesis. 

Hence, q(M) E Eval>x:A 1 .A 2  = EvalA. 

8. M ir2 (0), i = 1,2. Then, ( F- M': Ex:B1 .B 2  for some B 1  and B 2 . By 

induction hypothesis, (M') e Eval>x:B1 .B2 . 

i = 1. Then B1  -< A. We have q(M) 	7r1 (0(M')) E EvalB 1  C 

EvalA, by definition of Eval and lemma 5.2.11. 

i = 2. Then [7r1 (M')/x]B 2 	A. We may assume x 	e3  for some 

I > k such that P23  B 1  and let p' be an (-valuation extending p such 

that p'(x) = (7r1 (4(M')),Evalq(M')). Then, by definition of Eval, 

lemma 5.2.10 and lemma 5.2.11, 4(M) 	ir2 (0(M')) E EvaliB 2  = 

Eval[7r1 (M')1x]B 2  C Eval4,A. 

This completes the proof of the theorem. 	 U 

5.2.5 The strong normalization theorem 

The strong normalization theorem is now a corollary of the above results. 

Theorem 5.2.13 (strong normalization) If I' F- M : A, then M is strongly 

normalizable. 
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Proof We first show that F- M : A implies that M is strongly normalizable. Let 

p = (4, val) be any e-valuation. If F- M : A, then 

FV(M) = FV(A) = 0, by lemma 3.2.2; 

q(M) E Eval(A), by theorem 5.2.12; 

A is an E-type, by theorem 3.2.7; and 

Eval,,(A) e V(O(A)), by lemma 5.2.8. 

So, we have M O(M) e Eval(A) E V(O(A)) = V(A) = Sat(A). By definition 

of saturated sets, M E Eval(A) c SN(A) is strongly normalizable. 

For the arbitrary case, if F F- M : A, F x1:A1, ..., x m :A m  by lemma 3.2.2. 

By applying rule (.)), we have F- .Ax i :A i  ... Ax m :A m .M : Hx i :A i  ... llx m :A m .A. So, 

)x i :A i ...Ax m :A m .M is strongly normalizable; and this implies that M is strongly 

normalizable. 0 

Corollary 5.2.14 If x 1 :A 1 ,...,x:A F- M : A, then A 1 ,...,A,A and M are all 

strongly normalizable. 

Proof By theorem 5.2.13, theorem 3.2.7 and lemma 3.2.1. 	 0 



Chapter 6 

Logical Consistency and 

Decidability 

The normalization property of the calculus proved in the previous chapter has 

several important corollaries, two of which are studied in this chapter. 

We first show that, by Curry-Howard correspondence of formulas-as-types, 

there is a powerful higher-order logic embedded in ECC which is consistent by the 

strong normalization theorem. This gives a sound logical basis of using the theory 

in applications of, for example, theorem proving and program specification. 

Then, we show that the calculus is decidable: (1) the conversion relation and 

the cumulativity relation are decidable for well-typed terms; and (2) the problems 

of type inference and type checking are decidable, and we describe algorithms for 

them and prove their correctness. This provides a direct basis for computer 

implementations of the theory for development of proofs or programs. 

6.1 The Embedded Higher-order Logic 

Just as in the correspondence between propositional logic and simply typed )- 

calculus, there is an embedded logic in the calculus ECC by the Curry-Howard 

115 
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principle of formulas-as-types [CF58][How69}. As the theory provides rich type 

structures, the embedded logic is a powerful higher-order logic in which one can 

quantify over arbitrary predicates and functions. 

In this section, we follow the idea of formulas as types to describe the embed-

ded logic in ECC and prove its consistency. We also briefly discuss an (open) 

conservativity conjecture which concerns the relationship of the embedded logic 

with other more standard logics, in particular, intuitionistic higher-order logic. 

6.1.1 The embedded logic 

A logic can generally be viewed as consisting of a language and a notion of 

theoremhood. The former is usually given by a notion of (well-formed) formulas 

and the latter by a notion of proof. These notions of the embedded logic of ECC 

are all relativized to valid contexts. In fact, a valid context can be thought of 

as a theory in the ordinary sense. Therefore, what we describe below is indeed 

a 'raw' logical mechanism in which one can build up different theories or even 

describe different logics. 

Definition 6.1.1 (formulas and proofs) Let F be a valid context. 

• A term P is called a IF-formula if P is a 17-proposition. 

• A term M is called a proof of a 17- -formula P (in F) if F I- M : P. 

A F-formula P is provable (in F) if there is a proof of P (in F). 	 0 

Definition 6.1.2 (functions and predicates) Let F be a valid context. A 

term F is called an (n-ary) F-function if for some A i  and A, 

F I- F: Hx1 :A 1  ... llx:A.A 

Furthermore, if F(x1 ,...,x) is a (17 1 x 1 :A 1 ,...,x:A)-proposition, then F is also 

called an (n-ary) F-predicate (over A 1 , ..., A n ). 	 0 
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Given the above definitions, we can now define the ordinary logical oper-

ators (and constants), following the well-known idea in higher-order logic (see 

[Pra65][CH85] for example). Note that sets correspond to types and we are in 

fact formulating a many-sorted logical mechanism. 

Definition 6.1.3 (logical operators) Let F be a valid context, P1  and P2  F-

formulas, A a 17-type, and P a IF-predicate over A. 

true =df  llx:Prop.x - x 

false =df  Hx:Prop.x 

P1 DP2  =df 

P1  & 2 =df  IIR:Prop.(P1  -* P2  - R) -+ R 

P1  V '2 =df HR:Prop.(P1  -# R) - (P2  -+ R) - R 

df P1  -p false 

Vx E A.P(x) =df  llx:A.P(x) 

Rx E A.P(x) =df HR: Prop. (Hx:A.(P(x) - R)) - R 

0 

It can be verified that all of the ordinary logical inference rules are sound, as 

the following shows. 

D-introduction: If F-formula P2  is provable under the extra assumption 

that F-formula P1  is provable (i.e., F,p1 :P1  H P2 : P2  for some P2),  then 

P1  D P2  is a provable F-formula. This is reflected by rule (\). 

j-elimination (Modus Ponens): If P1  D P2  and P2  are provable F-formulas, 

then so is P2 . By rule (app), p'p is a proof of P2 , if p and p' are proofs of 

P1  and P1  D P2 , respectively. 
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&-introduction: If F-formula P1  and P2  are provable, so is P1  & P2 . If p, is 

a proof of P1  (i = 1,2), then .AR:Prop.Ah:P1  -4 P1 - R.hp 1 p2  is a proof of 

P1 &P2 . 

&-elimination: If F-formula P1  & P2  is provable, so are P1  and P2 . Suppose 

h is a proof of P1  & P2 . Let P1' (i = 1,2) be the F-propositions such that 

P1' 	P, and F I- P,' : Prop. Then, h(P,', )tp1 :P1 Ap 2 :P2 .p1 ) is a proof of F, 

(i = 1, 2). 

V-introduction: If IF-formula P1  (P2 ) is provable, so is F-formula P1  V P2 . 

Suppose p1  is a proof of F1 , where i e {1,2}. Then, \R:Prop\h1 :P1  - 

R.Ah 2 :P2  -4 R.h 2p1  is a proof of P1  V P2 . 

V-elimination: If F-formula P1  VP2  is provable, and F-formula R0  is provable 

under the extra assumption that P, is provable or P2  is provable, then R0  

is provable in F. Suppose h is a proof of P1  V P2  and r1  is a proof of R0  in 

IF, p1 :P1 (i = 1, 2). Then, h(R\p 1 :P1 .r1 ,\p2 :P2 .r2 ) is a proof of R0  in F. 

V-introduction: If F(x) is provable in F,x:A, then Vx E A.P(x) is provable 

in F. By rule (\). 

V-elimination: If F-formula Vx e A.P(x) is provable and a is an element of 

A (i.e., F I- a: A), then P(a) is provable in F. By rule (app). 

3-introduction: If P(a) is provable for some element a of A, then 3x E 

A.P(x) is provable. Suppose p is a proof of P(a) and a is an element of A. 

Then AR:Prop\h:(Hx:A.P(x) - R).h(a,p) is a proof of 3x E A.P(x). 

10.3-elimination: If 17-formula 3x E A.P(x) is provable and R 0  is provable in 

F,x:P(a), where a is an element of A, then R 0  is provable in F. Suppose h 

is a proof of 3x E A.P(x) in F and r0  is a proof of R0  in F,x:P(a). Then, 

h(R, a, r0 ) is a proof of R0  in F, where R0  such that F F- : Prop. 
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Truth: true is provable in every valid context. )x:Prop)y:x.y is a proof of 

true. 

Absurdity: false implies every formula. Suppose f is a proof of false in F. 

Then, for any F-formula F, f(P') is a proof of F, where P' P such that 

F I- P': Prop. 

We can define a propositional equality following Leibniz's principle by im-

predicative higher-order definition [Rus03][CH85] as follows. 

Definition 6.1.4 (Leibniz's equality) Let A be a F-type. The Leibniz's equal-

ity over A, notation =A  is defined as follows: 

A =df Ax:AAy:A HP:A -* Prop.(Px -* Py) 

=A is of type A - A -f Prop (a binary predicate over A). We shall write a =A  b 

for =A (a, b). 

It can be verified that =A  satisfies the laws of identity: 

Vx:A. (x = A  x) 

Vx:AVy:A.(x =A  y) D (y =A x) 

Vx:AVy:AVz:A. (x =A  y) - (y =A z) -+ (x =A  z) 

For example, the second above (symmetry) is proved by 

Ax:A\y:A)th:(x =A  y).AP:A - Prop)p:P(y). h(.\z:A.P(z) -* P(x), Aq:P(x).q, p) 

In section 9.1, we shall show that the Leibniz's equality reflects the definitional 

equality (conversion) and so it provides us a fundamental basis for program spec-

ification as well as theorem proving. 
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6.1.2 Logical consistency 

By the strong normalization theorem, the embedded higher-order logic is consis-

tent - there exist unprovable formulas. 

Theorem 6.1.5 (consistency) ECC is logically consistent in the sense that 

there exist unprovable formulas; in particular, false is not provable in the empty 

context, i.e., V M : Hx:Prop.x for any term M. - 

Proof Suppose I- M : llx:Prop.x. By theorem 5.2.13 and theorem 3.2.8, we may 

assume that M is in normal form. So, by an easy induction on derivations and 

lemma 3.2.2, M must be of the form \x:Prop.M' and x:Prop F- M': x, where M' 

is a base term whose key variable is x. We show that this is impossible by induc-

tion on the structure of base terms. If M' x, we would have x:Prop I- x x. By 

lemma 3.3.3, lemma 3.1.4 and Church-Rosser theorem, we would have Prop x 

which is impossible. If M'M1'M or ir.(M'), then it must be the case that 

x:Prop I- x: Qy:A.B for some A and B, where Q e {H, Ej. This would imply, 

by lemma 3.3.3, lemma 3.1.4 and Church-Rosser theorem, that Prop Qy:A.B 

which is impossible, either. So, we conclude that 1/ M : Hx:Prop.x. 

Note that the above theorem says that false is not provable in the empty 

context, while it can be proved in certain (inconsistent) contexts, for example, 

context x:false. This induces a notion of consistent context. Viewing valid 

contexts as theories, a consistent context corresponds to a consistent theory in 

the traditional sense. 

Definition 6.1.6 (consistent contexts) A valid context F is consistent if and 

only if not every F-formula is provable in F, or equivalently, if and only if false 

is not provable in F. 	 I 

We have the following corollary of the consistency theorem which gives us a 

way to prove the consistency of certain contexts. 
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Corollary 6.1.7 Let F 	x 1 :A 1 , ..., x:A, be a valid context. If there exist 

M1 ,...,M such that, for  = 1,...,n, 

H .l%4 : [1Vf 1 ,...,1t4_ 1 /x 1 , ... , x 1 _ i ]A 1 , 
then F is a consistent context. 

Proof Suppose F is not consistent, i.e., F I- M : false for some M. Then, by 

theorem 3.2.6, F- 	 : false, contradicting theorem 6.1.5. 

So, F is consistent. 	 0 

Example Consider the following context which assumes that there is an arbitrary 

equivalence relation over a type A: 

A,Q 	A:Type 3 , Q:A - A - Prop, 

reflex:Vx:A. Q(x, x), 

sym:Vx:AVy:A. Q(x,y) -* Q(y,x), 

trans:Vx:AVy:AVz:A. Q(x ) y) -+ Q(y,z) -+ Q(x,z) 

FA,Q is consistent, since we can apply the above corollary by taking, for example, 

A and Q to be Prop and =Prop  respectively. 	 0 

Remark Proving the consistency of a valid context is certainly non-trivial, except 

for some simple classes of contexts, as the above corollary and example show. 

Sometimes, one may use the normalization theorem to prove the consistency of 

some more subtle contexts. There are also other interesting properties one may 

like to associate with contexts which are very useful in applications. We do not 

expand this discussion here. 0 
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6.1.3 A conservativity conjecture 

It is easy to see that the embedded logic described above is very powerful. It 

is interesting to know its relationship with other more traditional logics, for ex-

ample, intuitionistic higher-order logic (c.f., [Chu40][Tak75][Sch77]). One of the 

problems related to this is the conservative extension problem; for example, can 

the embedded logic in ECC be seen as a conservative extension of the intuition-

istic higher-order logic? We conjecture that the answer is 'Yes, provided that we 

choose an appropriate interpretation'. 

Conjecture 6.1.8 The embedded logic in ECC is a conservative extension over 

the (intensional intuitionistic) higher-order logic HOL under some appropriate 

interpretation from HOL to ECC. U 

Note that in the above conjecture, we emphasize that the interpretation of 

HOL in ECC must be appropriate; more precisely, the object set OBJ of HOL 

-  should be interpreted as a non-propositional type instead of a proposition. As 

we conjectured and discussed in the conclusions of [Luo89a,b], 

if the object set is interpreted as a proposition Obj:Prop, the interpretation 

will not give a conservative extension of HOL; 

if the object set is interpreted as a non-propositional type and the others 

interpreted in the obvious way, then we conjecture, the interpretation will 

be conservative. 

The intuition behind the first nonconservativity conjecture is that too much com-

putational power is embedded in the impredicative level of propositions. There 

should be a clear distinction between logical formulas (propositions) and sets 

(data types).' Interpreting object sets as non-propositional types (and formulas 

'Set-theoretically, an (arbitrary) non-propositional type can be understood as an arbitrary 

set, but an (arbitrary) proposition can not (and should not). Object sets are in general viewed 
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as propositions) conforms with such a distinction; on the other hand, interpreting 

object sets as propositions confuses such a difference and would cause problems. 

Recently, Geuvers [Geu89] and Berardi [Ber89b] have independently proved 

that the (pure) calculus of constructions [CH88] is not a conservative extension of 

higher-order logic; this shows that the first non-conservativity conjecture is true. 

Note that, in the (pure) calculus of constructions, it seems that the only possible 

and reasonable way to interpret object sets is to interpret them as propositions 

(types of type Prop), as there are no predicative type universes in the calculus. 

In [Geu89] and [Ber89b], such an interpretation is adopted and the central parts 

of their proofs are using the 'double identity' of the object set of being both a 

logical formula and a set. Therefore, their results do show that the first part 

(i.e., the nonconservativity part) of our conjecture is right. 

As the proofs by Geuvers and Berardi have not been published, we give an 

outline of the proof by Geuvers [Geu89]. Let *8  be the 'kind' of object sets and 

* the 'kind' of logical formulas in higher-order logic HOL. 2  The conjunction 

operator is defined, for formulas P1  and P2  (of type *), as 

and the existential quantifier is defined, for object set A (of type *8)  and formula 

P (of type *) possibly with free variable x of type A, as 

x E A.P =cff  VR: *' .(Vx:A.(P - R)) - R 

Now, consider in HOL the following context 

F 	Obj:*8 , c:Obj, F:* -+ *, P:*, z:F(Rx E Obj.P) 

as arbitrary sets, and so it does not seem to be adequate to formalize them as propositions. 

See section 7.5 for a related discussion. 

2 The higher-order logic Geuvers and Berardi considered was formulated as a generalized 

type system [Bar89b] and called )PREDw in [Geu89] and NWJP  in [Ber89b]. 

0 
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and the formula 

ZR:*'.F(R&P) 

Using the normalization property of HOL, one can show that Z is not provable 

in F in HOL. However, interpreting both object sets and logical formulas as 

propositions in the calculus of constructions amounts to map both *8  and * to 

Prop. By this interpretation, formula Z above is interpreted as the following 

proposition: 

R:Prop.F(R & F) 

and context F above is interpreted as the following 

F' 	Obj:Prop, c:Obj, F:Prop -* Prop, P:Prop, z:F(x:Obj.P) 

It is easy to show that Z' is provable in F' in the calculus of constructions (and 

ECC); In fact, the following gives such a proof: 

\y:PropAh:(VR:Prop.F(R & P) -* y). h(Obj,z) 

Therefore, the above interpretation is not conservative. 

Remark Note that the confusion of formulas and object sets made by the inter-

pretation (about Obj in the above) is the essential point of the above argument. 

The formula Z is not provable from F in HOL because object sets and formulas 

are distinguished (by different kinds *8  and *1'),  while the formula Z' is provable 

in F' in the calculus of onstructions because Obj is forced (by the interpretation) 

to be also a logical formula as well as an object set (and therefore h can be 

applied to Obj in the proof of Z' as shown above). Distinguishing object sets 

(data types) from logical formulas (propositions) in an interpretation will make 

the above argument invalid. 11 
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However, our conservativity conjecture is still an open problem which seems 

to be rather difficult. Instead of considering ECC, one may consider a slightly ex-

tended system of CC, that is, the calculus of constructions with non-propositional 

type constants. Then, object sets can be interpreted as non-propositional type 

constants. If we can prove this simpler calculus is a conservative extension of 

HOL under the interpretation hinted above, we may then extend the result to 

ECC. 

6.2 Decidability 

By the strong normalization theorem, the calculus ECC is decidable. The con-

version relation and the cumulativity relation are both decidable for well-typed 

terms and there is a simple algorithm for type inference and type checking. 

6.2.1 Decidability of conversion and cumulativity 

Lemma 6.2.1 (decidability of and ) It is decidable whether M N or 

M N for arbitrary well-typed terms M and N. 

Proof By Church-Rosser theorem, the normal form of a term is unique (corol-

lary 3.1.2). Therefore, conversion 	is decidable for well-typed terms by the 

strong normalization theorem. The decidability of the cumulativity relation 

for well-typed terms follows from that of conversion. 	 0 

6.2.2 Decidability of type inference and type checking 

Now, we give an algorithm of type inference for ECC, i.e., if a term is well-typed 

in a given context, the algorithm computes its principal type in the context, and 

otherwise, it returns a symbol indicating that the term is not well-typed in the 
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context. Then, we shall prove that the algorithm is correct, which establishes 

the decidability of type inference. 

Definition 6.2.2 (algorithm of type inference) The algorithm of type infer-

ence C(_; _): when given a context F x 1 :A 1 ,...,x:A and a term M, it checks 

whether M is a 17-term, and if so, C(F; M) = Tr(M), the principal type of M 

under F; otherwise, it returns I. (For the correctness of the algorithm, see the 

theorem below.) 

C(_; -) is defined as follows by induction on the sum of the lengths of the 

terms A 2  's and M and by considering the structure of M. In the following, we 

use '[>,,f ... ' to mean 'reduces to normal form ...', rnax..< to denote the maximum 

of the terms subject to relation , and K the set of kinds. 

Validity of contexts: To see whether F is valid (i.e., F F- Prop Type0), 

check whether C(x 1 :A 1 ,...,x_ 1 :A_ 1 ; A) 	E K. 

If F is not valid, C(F; M) =1 for every M. In the following, we assume 

that the considered contexts are valid. 

f Type 0 	if M Prop 
Constants: M is a kind. Then, C(F; M) 	

Type 1  if M Type 3  

f 3. Variables: M is a variable. Then, C(17;
A if 	x 1  

	

; M) = 	
ifM 

4. M llx:M 1 .M2 . Check whetherC(F; M 1 ) FK E C and C(F,x:MI ; It/I2 ) 

K'eK, and if so, 

Prop 	if K' Prop 

C(F; M) = max4K,K'} if K'o Prop 

otherwise, C(F; M) =1.. 

5. M Ax:M 1 .M2 . Check whetherC(F; M 1 ) IK e IC andC(F,x:M 1 ; M2 ) = 

Bfor some B 01, and if so, C(F; M) = Hx:M1 .B; otherwise, C(F; M) =1. 
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M M 1 M2 . Check whetherC(F; M 1 ) tHx:A.B for some A and B, and 

C(F; M2 ) -< A, and if so, C(F; M) = [M2 1x]B; otherwise, C(F; M) =1. 

M Ex:M 1 .M2 . Check whetherC(F; M1 ) t>aK E K: and C(F,x:Mi ; M2 ) Nj 

K'E K:, and if so, C(F; M) = max..< {K,K',Type o }; otherwise, C(F; M) =1. 

M 	pair(M i ,M2 ). Check whether C 	x:A.B for some A and B, 

C(F; C) iK E K:, C(F; M1 ) A andC(F; M2) [M1 /x]B, and if so, 

C(F; M) = C, otherwise, C(F; M) =1. 

M ir.(M'). Check whether C(F; M') [> ,,f  Ex:A.B for some A and B, and 

IA 	 ifi=1 
if so, C(F; M) = 	 , otherwise, C(F; M) =1. 

1[ri(M')1x]B if i = 2 

This completes the definition of the algorithm. 	 0 

Remark The type inference algorithm is simple and easy to implement. This 

simplicity is due to the full cumulativity of the type hierarchy of ECC. For the 

systems with universes lacking full cumulativity like that in [Coq86a], although 

strong normalization theorem holds [Luo86b], its notion of principal type becomes 

more complex and the algorithm for type inference is quite complicated (c.f., 

[HPol89]). 0 

Theorem 6.2.3 (correctness of type inference) The algorithm C(_; -) is cor-

rect, i.e., when given a context F x 1 :A 1 , ..., x,,: A n  and a term M, 

C(F; M) = J T(M) if M is a F-term 

1 -L 	otherwise 

Proof By the same induction used in the definition above. The only cases worth 

mentioning about this proof are when M E M1 M2  or 7r2 (M'). We discuss the 

former case and the latter is similar. 

M M 1 M2 . If either the normal form of C(F; M1 ) is not of the form Hx:A.B 

or it is but C(F; M2 ) A, then we certainly have by induction hypothesis that 
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M is not a 17-term. Otherwise, we have F I- M : [M2 1x]B by rules (app) and 

(-<). We only have to show that [M2 1x]B is the minimum type of M subject to 

. Suppose F F M : B' for some B' -< [M2 1x]B. We may assume that the last 

rule used to derive F F M : B' is not (s), and hence it is (app): 

FFM1 :llx:A 1 .B1  FFM2 :A 1  

F I- M: [M2 1x]B 1  

where [M2 1x]B 1  B' -< [M2 1x]B. Note that, by induction hypothesis, Hx:A.B 

C(F; M1 ) 	Hx:A 1 .B 1 . So, B 	B 1  which implies that [M2 1x]B -< [M2 1x]B 1 , 

contradiction. So, [M2 1x]B is the principal type of M under F. 	 0 

The decidability of type inference and that of the cumulativity relation implies 

that the problem of type checking - deciding whether an arbitrary judgement 

is derivable - is decidable. 

Corollary 6.2.4 (decidability of type-checking) ECC is decidable, i.e., it 

is decidable whether F I- M : A for arbitrary F, M and A. 

Proof By definition of principal type, to see whether F F M : A, just check 

whether C(F; M) -< A. By theorem 6.2.3 and lemma 6.2.1, this is decidable. 0 

Remark For a Constructions-like calculus, the problem of type checking is no 

simpler than that of type inference, as the process of type checking essentially 

requires type inference. 	 0 



Chapter 7 

A Set-theoretic Interpretation 

We explain in this chapter how the intuitive meanings of the main constructs in 

ECC may be understood set-theoretically. Intuitively, types in a type theory 

correspond to sets and the colon relation (M : A) in a judgement corresponds 

to the membership relation (E). Then, dependent H-types stand for dependent 

products (function spaces) with functions expressed by A-expressions as their 

elements; E-types stand for dependent sums with pairs as their elements. Such a 

functional point of view gives us an intuitive understanding of the basic entities 

in a type system. 

However, ECC is a very rich type theory which combines the impredicative 

calculus of constructions and Martin-Löf's predicative type theory. As well-

known by the work of Reynolds [Rey84] [RP88], the impredicative polymorphism 

in the second-order A-calculus F [Gir72] [Rey74] does not have non-trivial classical 

set-theoretic semantics.' Since F is a subsystem of ECC, we certainly can not 

expect any non-trivial classical set-theoretic interpretation of ECC. This calls 

for a more elaborate and more careful effort to understand such an impredicative 

calculus set-theoretically. Furthermore, the question of how type universes can be 

'To be more precise, the standard interpretation of the simply typed .A-calculus can not be 

extended to a model of the second-order )-calculus. 

129 
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understood set-theoretically must also be answered in order to model the whole 

calculus. 

As discussed and shown by many authors (e.g., [Gir72][Mog85][LM88][See86] 

[Pit87][CGW87][Mes881), the impredicative polymorphism in F can be given con-

structive set-theoretic interpretations. In particular, the idea of interpreting types 

as partial equivalence relations [Gir72][Tro73b][Mog85] provides us a nice frame-

work of w-sets and modest sets [Mog85][Hy187,82][LM88] in which impredicative 

polymorphism can be modeled in a satisfactory way. In fact, this idea can also 

be further developed and applied to understand set-theoretically more complex 

type theories like the calculus of constructions [Hy187][Ehr88][Luo88a] and ECC 

[Luo89a,b]. This would give us an intuitive understanding of the calculus in set 

theory. 

We show in this chapter how the intuitive meanings of the constructs in 

the calculus can be captured mathematically in the constructive set-theoretic 

framework of w-sets and modest sets [Mog85][Hy182,87][LM88]. In particular, we 

explicate how non-propositional 11-types can be understood as set-theoretic prod-

ucts, propositions as 'small products' isomorphic to partial equivalence relations, 

s-types as sets of dependent pairs, and the universes Type 3  as corresponding to 

large set universes. Such a model-theoretic interpretation would give us a better 

understanding of the calculus and is helpful both in pragmatic applications and 

theoretical researches. 

We shall not give a model semantics in full detail. There is a known problem 

about defining a model semantics of rich type theories like the calculus of con-

structions; that is, since there may be more than one derivation of a derivable 

judgement, a direct inductive definition by induction on derivations is question-

able. An attempt by the author [Luo89b] to give a full detailed semantics of 

ECC by introducing a notion of canonical judgements seems to be ad hoc and 

unsatisfactory. We also refer to Streicher's work [Str88] on a detailed definition 
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of such a semantic model for the (pure) calculus of constructions in Cartmell's 

framework of contextual categires [Cart78,86]. Further research is needed to gain 

a nice approach to this problem. 

7.1 Understanding the Calculus in the -Set Frame-

work 

The notions of u-sets and modest sets are developed by Moggi and Hyland based 

on the idea of interpreting types as partial equivalence relations. Hyland [Hy182] 

studied the general properties of u-sets (called separate objects) and modest 

sets (called effective objects). Moggi [Mog85] showed that there is a small in-

ternal complete category in the category of u-sets. People have used these no-

tions to give set-theoretic (categorical) models for the second-order polymorphic 

X-calculus [Pit87][LM88] [Mes88]. Later, Hyland [Hy187] defined a stronger no-

tion of completeness which can be used to model the calculus of constructions 

[Ehr88} [Luo88a]. 

The following is the definition of u-sets. 

Definition 7.1.1 (u-sets) An u-set is a pair 

A = (IAI,II - A) 

that consists of a set JAI and a relation If-A C w  IAI which is surjective (i.e., Va E 

Al. 3n E u. nhI-Aa)  IAI is called the carrier set of A and IFA  the realizability 

relation of A. 

A morphism f between two u-sets A and B is a function f : IAI - IBI realized 

by some partial recursive function, i.e., there exist n E u such that 

Va E IAI Vm E u. mlf-Aa = nrnlf - Bf(a) 

where nm denotes the result of Kleene application of n to rrì. 
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The w-sets and the morphisms between them form the category of ce-sets, 

denoted as u—Set. 	 0 

Remark The morphisms between w-sets are 'computable', i.e., 'computed' (or 

realized) by a partial recursive function. The category w—Set is a concrete locally 

cartesian closed category [Hy182][Mog85]. Hence, it provides us structures richer 

than those needed to interpret second-order )-calculus. 0 

We now discuss how the main constructs in ECC can and should be under-

stood set-theoretically. The main question is how to interpret the type universes 

and the type formation operators H and E so that, intuitively, 

Prop e Type 0  e Type 1  E ...; 

Prop 9 Type0  9 Type 1  

Type s  is closed under H and E (predicatively); 

Prop is closed under II (impredicatively for arbitrary products). 

Notice that the universe Prop is impredicative and required to be closed under 

arbitrary (possibly circular) product formation. As we remarked above, this 

prevents us from working in classical set theory to gain a non-trivial model of the 

calculus. Furthermore, there is more than one universe which must be understood 

set-theoretically to satisfy the above requirements. 

We show in the following sections that, in the framework of w-sets and modest 

sets, a model-theoretic understanding of the main constructs can be given to 

satisfy these requirements. In particular, 

• a valid context is interpreted as an w-set which consists of the 'tuples' of 

its components; 
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• F-types are interpreted as families of w-sets indexed by the interpretation of 

context F; in particular, F-propositions are interpreted as families of objects 

of a full subcategory PROP of the category of u-sets which is isomorphic 

to the category of partial equivalence relations; 

• the lowest impredicative universe Prop corresponds to the category PROP; 

and 

• the predicative universes Type, correspond to the full subcategories w-Set(j) 

of w-Set whose objects have carrier sets residing in the corresponding large 

set universes. 

In general, a well-typed term M of type A in context F is interpreted as a mor-

phism in w--Set corresponding to an element of the interpretation of A indexed 

by the interpretation of F. 

7.2 Interpretation of Valid Contexts 

A valid context intuitively stands for a sequence of assumptions and assumed 

constants. It is interpreted as an w-set which consists of the 'tuples' of the 

components of the context. To specify the interpretation of contexts, we need an 

w-set constructor, a, defined as follows. 

Definition 7.2.1 (a) Suppose that I' is an w-set and A : irl -* w.-Set is a 

Fl-indexed family of w-sets. Then, the w-set 

a(F,A) 

is defined as, 

Ia(F,A)l =df { (7,a) I -ï e IFI,a E A(-y) } 

if and only if mlf-ry and  nlf-A(7)a 

where (_, -) is the index for the pair function. 	 0 
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The empty context is interpreted as the terminal object of w—Set: 

df (1,w x 1) 

Suppose A is a F-type interpreted as a [11-indexed family of-sets Er H A : Type]1. 

Then, the valid context F, x:A is interpreted as the w-set 

EIF, x: Al =df  a(I], ir  H A : Type 2 ]J) 

A 17-term M of type A is in general interpreted as a 1]-indexed element of 

the interpretation of A, i.e., a morphism satisfying the following first projection 

property. 

Definition 7.2.2 (FPP property) Let F be an w-set and A : 1 171 —p -Set a 

1171-indexed family of w-sets. A morphism f: F - a(F, A) in w—Set satisfies the 

first projection (FPP) property, written as 

f: F FPP  (F, A) 

if and only if p(F, A) o f = ide , where p(F, A) : a(F, A) —* F is the morphism 

defined by p(F, A)(-y, a) =df '-y. Intuitively, f F _*FPP a(F, A) is a 'F-indexed 

element of A'. 0 

Notice that in a Constructions-like calculus, types and objects are mixed up 

in the sense that types are also objects with kinds as their types. Therefore, a 

type has a 'double identity' in a model-theoretic interpretation. This is reflected 

by the correspondence between constant functions to w—Set and a special kind 

of morphisms in w—Set. 

Lemma 7.2.3 Suppose F e u—Set and K Fl —f c.'—Set is a constant function 

such that, for some set X, K(-y) = (X,w x X) for all 'y e irl. Then, there is a 

one-one correspondence between the morphisms from F to o(F, K) which satisfy 

the first projection property and the functions from IFI to X. 
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Proof The correspondence is given as follows: 

. Given f : F FPP a(F, K), the corresponding function f* : Irl - X is 

defined by f* (-y) =df x, where E IFl and f(y) = (7,x); 

. Given g : IFI - X, the corresponding morphism g °  : F _*FPP cr(F, K) is 

defined by g'(-t) = (-y, x), where -y E Irl and g(7) = x. 

We have, f *0  =f and g0*  =g. 

Remark By the above lemma, the interpretations of F-types (whose types are 

kinds), which are FPP-morphisms, correspond to F]-indexed family of w-sets, 

as kinds in F are interpreted as constant functions from ftF to u—Set of the form 

required in the above lemma (see below). 

7.3 Interpretation of Universes Type d  and H/E-types 

Non-propositional types in a context F can be interpreted as 1]-indexed families 

of w-sets. The intuition is that s-types correspond to sets of dependent pairs 

and 11-types to set-theoretic products, which are given by the following two w-set 

constructors. 

Definition 7.3.1 (o r-. and 7r) Suppose that F is an w-set, A : IFI - u.—Set is 

a IFI-indexed family of w-sets, and B : a(F,A)l - w—Set is a Io(F,A)l-indexed 

family of w-sets. Then define 

(o r) the IF I-indexed family of w-sets 

ar(A,B): IF I - 

as, for -y E IFI, 

lor(A,B)(')l =df{ ( a, b) j a E IA('y)I,b E IB('y,a)l } 
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if and only if mIf-A()a and 

(7T) the Fl-indexed  family of w-sets 

irr(A, B): lii -4 —Set 

as, for 7  E IFI, 

Iirr(A,.B)('y)I =df {f E 	II IB(7,a)l I 3n EW. 7'1firr(A,B)(y)f} 
aEIA(y)I 

if and only if Va E A(-y) I Vm E w. ml} -A()a 	flmI -B(,a)f(a) 

where FIaEA(y)I B('y,a)l denotes the product of the IA(7)l-indexed family of 

sets IB('y,a)I. 

The interpretations of a s-type and a II-type whose principal type is Type 3  

can then be given as: 

I[F F- Ex:A.B:Type = cr 11 '1 (1F F- A:Type 3 F,x:A F- B:Type 3 ]]) 

F F- Hx:A.B:Type] =, ff  'r j (F F- A:Type,]j, jr, x:A H B:Type) 

where IF F- A:TypeJ and F,x:A F- B:Type are the interpretations of A in F 

and B in F,x:A, respectively. 

We now explicate how the universes Type 3  should be interpreted so that the 

requirements we gave in section 7.1 can be satisfied. In other words, we interpret 

the predicative universes in such a way that they satisfy the membership relation 

Type 3  E Type +1 , the inclusion relation Type 3  g Type 31 , and the closedness 

requirement 3 for H and E. 

First, large set universes are used to interpret the predicative universes so 

that the closedness requirement is satisfied. 2  A basic insight here is that the 

notions of w-sets and modest sets have nothing to do with sizes of the sets under 

2 The idea of interpreting Type s  as large set universes was suggested to the author by 

Hayashi, Moggi and Coquand. 
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consideration. Consider ZFC set theory with infinite inaccessible cardinals  

< 	< ... and let V be the cumulative hierarchy of sets. Then Type 3  

corresponds to the following category w-Set(j). 

Definition 7.3.2 (c-Set(j)) Let j be a natural number. u.)-Set(l) is the full 

subcategory of ci-Set whose objects are those w-sets whose carrier sets are in the 

set universe V,ç .. 	 701 

The categories -Set(j) are locally cartesian closed. More importantly, they 

are closed under the w-set constructors 0 1- and 7rF, because the set universes V, 

are models of ZFC set theory. 

Lemma 7.3.3 ar and lrr are closed for-Set(j), that is, if A: IF  - w-Set(j) 

and B: cr(F,A) —* -Set(j), then crr(A,B),7r r(A,B) : I Fl — w-Set(j). 	Cl 

The lemma above meets the closedness requirement 3. Furthermore, as V, c 

ii i , w-Set(j) is a full subcategory of wSet(]* + 1). This satisfies the inclusion 

requirement 2 between the Type,. Note that u,--Set(j) are small categories. 

Therefore, they can be naturally viewed as w-sets through the embedding functor 

A from the category of sets Set to "et defined as L(X) =df  (X,w x X) for 

X E Obj(Set), and L(f) =df f for  f : X 4  Y in Set. As V,, E V 1 , we 

have L(Obj(w-Set(j))) E Obj(w-Set(j + 1)). This satisfies the membership 

requirement 1 between the Type,. 

Based on these, we interpret the universe Type, as the following I [F -indexed 

family of w-sets, for y E  I IF] I, 

F F- Type, : Type +1]y) =df /.(Obj(w-Set(j))) 

3 A cardinal #c is (strongly) inaccessible if it is uncountable and regular, and 2A < r. for all 

A < K. See, e.g., [Lev79][Dev79]. 



SET-THEORETIC INTERPRETATION 	 138 

7.4 Interpretation of Universe Prop and Proposi-

tions 

Propositions are interpreted as a special class of w-sets which are isomorphic to 

partial equivalence relations. Here, the notion of modest set [Hy182,87][Mog85] is 

essential. The important point is that the category of modest sets M is closed for 

arbitrary products and equivalent to the (small) category of partial equivalence 

relations. 

Definition 7.4.1 (modest sets) A modest set is an -set A whose realizability 

relation is a function, i.e., 

Vn E w Va,b E JAI. nlf-Aa and  nlf-Ab = a = b 

The category of modest sets, denoted as M, is the full subcategory of w—Set with 

the modest sets as its objects. 	 0 

Remark The category of modest sets is a concrete locally cartesian closed cate-

gory [Hy182]. 

Lemma 7.4.2 lrr,  is closed for the modest sets in the sense that, for any 1171- 

indexed family of w-sets A : Irl - w—Set and any o(F, A)l-indexed family of 

modest sets B : a(F, A)l -* M, irr(A, B) is a Ft-indexed  family of modest sets, 

i.e., ir(A,B) I fl - M. 

Proof We follow [LM88][Hy187] to prove the lemma. We only have to show that, 

for ' E Ill, llr(A,B)()  is a function, i.e., lJr(AB)(y)f and nl_ (A,B)() g implies 

f = g. Suppose a e A(7)I.  Take in E w such that mlf-A(.)a (m exists as A(-t) 

is an w-set). Then we have nmlI-B(.a)f(a)  and rlrnIf- ()g(a). As B(y,a) is a 

modest set, f(a) = g(a). So, f = g as a is arbitrary. 0 
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Although M is closed for arbitrary products as the above lemma shows, 

it can not be directly used to interpret the impredicative universe Prop in 

Constructions-like calculi. The reason is that M itself is not a small category. If 

Prop were interpreted as M, there would be no way to justify Prop e Type 0 . 4  

Fortunately, M is an essentially small complete category in the sense that it is 

equivalent to the following small category PROP, which is isomorphic to the 

category of partial equivalence relations. (Recall that R is a partial equivalence 

relation if R is symmetric and transitive.) 

Definition 7.4.3 (PROP) The category PROP is the full subcategory of M 

(hence, of-Set) with the following object set: 

Obj(PROP) =df { ( Q(R), E) I R C w x w is a partial equivalence relation } 

where Q(R) = { [n] I (n, ri) e R } is the quotient set with respect to R and 

	

E ç w x Q(R) is the membership relation. 	 0 

Lemma 7.4.4 There is an equivalence of categories back : M - PROP such 

that back(A) A for A E Obj(M), and back(P) = P for P E Obj(PROP). 

Proof Define back: M - PROP as follows: for A E Obj(M), 

back(A) =df (Q(RA), e) 

where RA = { (n, m) I 3a E A. nhJ-Aa  and rnlf- Aa } is the partial equivalence 

relation induced by A, and, for any morphism f: A -* B in M, 

	

back(f)([p]R A ) = [np] 	where n1FA,Bf 

back is a category equivalence with the inclusion functor inc : PROP - M as 

its inverse. In fact, we have the identity natural transformation id: idpRop 

4This is a little different from the situation in the second-order )-calculus, where the only 

universe Type itself does not have a type. 
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back o inc and a natural transformation 

11: idM — inc o back 

defined as follows: for A e Obj(M) and a E J AI, c7A(a) =a []RA, where nhI-Aa. 

Hence, for all A E Obj(M), back(A) = inc o back(A) A. Furthermore, for 

P = (Q(R), E) E Obj(PROP), we have 

Rp = { (n, m) I 3[a1R-rnIFP[a1R  and  nhl-P[a]R } 

= { (n, m) I 3a E w. (m, n e [a]R) } 

and so back(P) = (Q(Rp), E) = (Q(R), e) = P. 	 U 

A proposition Hx:A.P in context F is interpreted as a I [FJ I-indexed family 

of objects of PROP. The basic idea is that, when flx:A.P is a proposition, we 

first form the product by 7r1r] operator which results in a I JFJ I-indexed family 

of modest sets and then use back to 'take it back' into a family of objects in 

I U atuoya 

F I- JlIx:A.P : Prop =df back o 7r(rJ(F  F A: Tr(A)1, F,x:A F P: Prop) 

The impredicative universe Prop corresponds to the category PROP. By 

lemma 7.4.2 and lemma 7.4.4, the closedness requirement 4 in section 7.1 is 

satisfied, i.e., Prop is closed under arbitrary products. The inclusion require-

ment Prop g Type0  is satisfied by the fact that PROP is a full subcate-

gory of w-.Set(0) and, the membership requirement Prop E Type 0  by the fact 

L(Obj(PROP)) E 0bj(w-Set(0)), where L : Set —* -Set is the embedding 

functor defined in the last subsection. 

Based on these, we interpret the universe Prop as the following I I[FIJ I-indexed 

family of w-sets, for y E I jq 1, 

hF F Prop: Typeo ]](y) =ç L(Obj(PROP)) 
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7.5 Discussions 

In the last section, we give a sketch of a model-theoretic semantics of the calcu-

lus, which explicates how the intuitive understanding of the main constructs in 

ECC can be captured in the w—Set framework. From this, we can gain some 

further understanding of the calculus. For example, in the interpretation in the 

framework of w-sets and modest sets, empty types exist. We can see that the 

proposition llx:Prop.x (the logical constant false) is interpreted as the empty w-

set (0, 0). This conforms with the theorem 6.1.5 of logical consistency that there 

is no term which inhabits Hx:Prop.x, or putting in another way, Hx:Prop.x is 

an empty type. This is an important feature of such a model-theoretic interpre-

tation and one of the reasons that we view such a model as appropriate. There 

are other possible and reasonable models. For instance, we can give a truth-value 

model of ECC where propositions are interpreted as 0 or 1 (c.f., [Coq89]). Some 

other models (e.g., domain-theoretic ones) do not capture the essential proper-

ties of the calculus like logical consistency. Semantic models are often used to 

justify the consistency of a logical calculus and to guide and justify new syntactic 

extensions. Indeed, an w—Set model construction was used to justify the idea 

of including propositions as types at an earlier stage of development of ECC 

[Luo88c,a]. 

The set-theoretic flavor of such a semantics makes possible a deeper under-

standing of the calculus. It may be used as the basis of an informal but precise 

explanation for users doing theorem proving and program specification (e.g., 

[LPT89]). For example, the intuitions behind the main constructs of the formal 

calculus can be understood set-theoretically as reflected by the model. 

Another insight one may gain from the above set-theoretic interpretation is 

about how to formalize mathematical problems adequately. As we explained 

in section 2.2.3, one of the basic motivations for introducing predicative type 
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universes is to allow formalization of the notion of an arbitrary set. Our inter-

pretation of predicative type universes by large set universes supports such an 

idea from set-theoretic point of view. In an (intuitionistic) set-theoretic model, 

propositions in an impredicative universe are interpreted as rather small sets in-

stead of arbitrary sets. Cirard's paradox gives us a hint that an arbitrary set 

should not be formalized as a proposition which may be formed impredicatively. 

For example, it seems to be not adequate to formalize an arbitrary group by 

assuming its carrier by X:Prop, as we know that X, as a proposition, can not be 

viewed as an arbitrary set. Assuming X:Type 0  is more adequate as we can view 

Type 0  as containing almost all sets as shown by the above model. 

Understanding this distinction between data types (sets) and logical formu-

las (propositions) is very important both in theoretical researches and practical 

applications. In practice, based on the above view, an adequate formalization 

should not take a proposition as a representation of an arbitrary set. In theoreti-

cal researches, such a view may lead to a better understanding of a formal system. 

In fact, our conservativity conjecture discussed in gection 6.1.3 was originally pro-

posed partly based on the above set-theoretic understanding of the calculus. The 

recent result of Geuvers and Berardi about non-conservativity discussed in sec-

tion 6.1.3 gives another support of such a view from another angle. It is obvious 

that a formal treatment of these is called for and more researches are needed to 

make it well-understood. 

It should be possible to give a full and detailed interpretation of the calculus 

based on the ideas sketched in this chapter. We remark here that defining such a 

detailed semantics for a Constructions-like calculus is a very sophisticated work. 

Because of the existence of the conversion rule, there may be more than one 

derivation of a derivable judgement. The induction principle used to define the 

semantics has to be carefully considered and examined. It seems possible to have 

a unified way to solve these problems in general for rich theories of dependent 
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types, instead of using somehow ad hoc methods; but this needs further research 

(c.f., [Str88] [Luo89b]). 



Chapter 8 

Theory Abstraction in Proof 

Development 

ECC is a formal calculus which embodies rich structural facilities as well as a 

strong logical mechanism. One of the pragmatic applications of the theory is to 

formalize mathematical problems and to be used as a basis for proof development 

in (interactive) theorem proving. 

ECC, like many type theories including the Automath type theory, Martin-

Löf's type theory and the calculus of constructions, is a basic calculus which can 

be used to do (interactive) proof development based on a proof checker (for ex-

ample, the LEGO system [Po189][LPT89], which supports ECC as well as some 

other related type systems). However, ECC has much stronger structural mech-

anisms which support more powerful reasoning facilities for proof development. 

In particular, the s-types and type universes provide a nice abstraction mecha-

nism which can be used to do abstract structured reasoning in a desirable way, 

as we shall discuss below. 

In this chapter, we discuss using theory abstraction to develop large proofs 

by structured abstract reasoning. We show how mathematical theories can be 

formalized by the abstraction and modularization facilities which the calculus 
144 
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provides and how abstract reasoning and structured reasoning can be done in 

our setting.' 

8.1 A Notion of Theory 

We need a notion of theory in proof development to do large proof development 

in a structured and modular way, just as modular programming in large program 

development. Obviously, some good form of theory mechanism is called for to 

express this intuitive notion of theory in people's mind so that it can provide us 

a nice approach to proof development. 

What is a theory? Although people feel there is a rather clear intuition about 

this, this question can not be answered precisely unless we set up a formal mecha-

nism of theory manipulation. In fact, different theory manipulation mechanisms 

give rather different impressions of what a theory might be. Here, we take a 

simple view that a theory in a proof development system basically consists of a 

signature (a group of basic notions, say constants and function symbols), a group 

of hypotheses (say axioms) and the proved theorems (possibly together with their 

proofs). 

We also conceptually distinguish between concrete theories and abstract the-

ones. A concrete theory in the calculus, as we have pointed out in section 6.1, 

is presented as a valid context. Proved theorems of such a concrete theory are 

then a set of provable formulas in the theory. For example, a concrete theory of 

natural numbers would be expressed in ECC as a context rNat  of the following 

form 

nat:Type0 , O:nat, .suc:nat --~ nat, +:nat -p nat -f nat, 

'The idea of structuring theories in proof development was suggested to the author by 

Burstall and the current presentation also benefits from discussions with Coquand, Taylor and 

Pollack. 
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where '...' contains the assumptions of the axioms for natural numbers. One 

might formalize a theory of semigroups as a concrete theory as follows: 

X:Type 0 , o:X - X -f X, P:PASS 

where an arbitrary type X stands for the carrier, o for the binary operation over 

X, and p is an assumed proof of the axiom of associativity PASS  fix, y, z:X.(xo 

(y o z) = (x o y) o z). When a large proof uses many theories, which may depend 

on one and another in various ways, some notion of 'modularization' is needed to 

control the complexity. This is analogous to the need for modules in programming 

in the large. 

It is interesting to see that we can express a notion of abstract theory as 

well by using s-types and type universes, which provides a good modulization 

mechanism for abstract and structured reasoning. We first explain the basic idea 

of using strong sum to express abstract structures and mathematical theories 

through an example. Instead of formalizing a theory of semigroups as a concrete 

theory as above, we express an abstract theory of semigroups as consisting of two 

parts: 

an (abstract) signature presentation Sig-SG 	X:Type 0 .X -* X - X; 

the (abstract) axiom which is a predicate Ax-SG over Sig-SG which, when 

given any structure .s of type Sig-SG, returns the associativity axiom for s. 

Furthermore, these two parts of the semigroup abstraction can be 'packaged' 

together as 

Mod-SG 	s:SigSG.AxSC(s) 

Then, to postulate an arbitrary semigroup is just to assume a context sg:ModSC. 

The projection operators can be used to extract the components of any semigroup 

(i.e., an object of type Mod-SG). One can then prove (abstract) theorems about 

arbitrary semigroups. Such abstract theorems constitute a predicate Thm_SG 
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over Sig-SG, which can in general be expressed as the following form (say, n 

theorems have been proved): 

ThmSG \s:SigSG. P1  & ... & P, 

Their (abstract) proofs are then a function Prf_SC of type 

Hsg:Mod_SG. Thm_SG(7r 1 (sg)). That is, given any concrete semigroup structure 

(i.e., a type and a binary operation over the type which satisfies the associativity 

axiom), Prf_SG will result in the proofs of the concrete versions of the theorems 

for the given semigroup structure. 

We now generalize the above ideas to the following definition of (abstract) 

theory. 

Definition 8.1.1 (abstract theories) A presentation of an abstract mathe-

matical theory T in ECC consists of four components 

T = (Sig-T, AxT, ThmT, PrLT) 

where 

• Sig_T is called the signature presentation of T, which is in general a >-type; 

• Ax_T is called the abstract axioms of T, which is a predicate over Sig_T 

(typically, of type Sig..T -* Prop); 

• Thm_T is called the (proved) abstract theorems of T, which is a predicate 

over Sig_T (typically of type Sig_T - Prop) and generally of the form 

As:Sig_T. P1  & P2 & ... & P,, ;. and 

• Prf_T is called the abstract proofs of the theorems of T, which is of type 

Ht:Mod_T.ThrrLT(7r 1 (t)), where 

Mod...T 	s:Sig..T.Ax_T(s) 

is the type of the T-structures satisfying the T-axioms (the models of T). 
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Somehow abusing the terminology, we often call Mod_T the abstract theory. E 

Remark It is easy to see that, in this setting, any abstract universal algebra 

with finitely many sorts, operators and axioms can be formalized as an abstract 

theory. One can also formalize categorical notions (e.g., the category of all small 

categories) in a similar way. Note that predicative universes are important in 

formalizing abstract theories. I: 

We shall show below that the notion of (abstract) theory presented above 

nicely supports an approach to abstract reasoning and structured reasoning. 

8.2 Abstract Reasoning 

The idea of abstract reasoning  is that, instead of re-proving a theorem for many 

concrete theories, we can prove an (abstract) theorem in an (abstract) theory, 

then simply instantiate the abstract proofs as concrete ones for free. The notion 

of abstract theories for computer-assisted reasoning is analogous to the notion of 

'parameterized modules' for modular programming. It becomes more useful as 

the task of proof development becomes large. 

How this idea of abstract reasoning by proof instantiation can he expressed in 

the notion of theory we presented above is best explained by a simple example. 

Consider the abstract theory SC of semigroups and suppose that we have proved 

some (abstract) theorems about it: 

ThmSG .As:SigSG. P1 & ... & P 

2  W use the phrase 'abstract reasoning' here in the sense of Paulson [Pau87], where he 

points out its desirability and the fact that the theory mechanism of Cambridge LCF, which is 

based on ideas of [SB83], does not support it. 
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Prf_SG Asg:Mod_SG. and_i ntro(p1
, ..., p) 

We can then, for instance, instantiate these theorems and proofs to the concrete 

ones about natural numbers and + (or other similar concrete theories) whenever 

we have proved that the structure consisting of nat and + satisfies the associativ-

ity axiom (say, with proof ass_nat_plus). The instantiated proofs are then easily 

constructed as  

Prf_Nat_SC Prf_SG((nat, +), ass_nat_plus) 

Remark The facility of abstract reasoning comes from the power of 11-abstraction. 

However, the type universes make it possible to formalize abstract mathematics 

(like the theory of semigroups) adequately and E-types are important for 'pack-

aging' the formalization in a well-structured way. Based on such a mechanism, 

one may build up a theory base consisting of well-organized (abstract) theories 

with proved theorems which can be used by users in many different ways. Such 

a theory base would be very useful for large proof development tasks. 

8.3 Structured Reasoning 

In larger proof development activities, one hopes to conquer a big and complex 

task by dividing it into smaller and simpler ones and then putting the results 

together in a structured way. We discuss here two aspects of this idea. 

8.3.1 Proof inheritance 

Proof inheritance between theories through theory morphisms [TL88][Coq89] al-

lows the theorems and proofs of a smaller and weaker theory to be inherited as 

those of a bigger and stronger theory. 

3 From now on, we elide the explicit typing in the pair operator for notational convenience. 
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A morphism from an (abstract) theory T to another T' is a pair of functions 

(f,g) where 

f: Sig_T -* Sig_T' 

g : Hs:Sig_T. Ax-T(s) -p Ax_T'(f(s)) 

The existence of such a morphism means that T is stronger than V. A typical 

example of such a morphism is when T (say, theory of rings) is a theory which 

contains more sorts or operators and stronger axioms than a theory T' (say, SG); 

there is a 'forgetful' morphism whose first component, f, forgets the extra sorts 

and operators and whose second component gives proofs of the axioms of T' 

under the translation of f. 

Given such a morphism, we can inherit the proofs of theorems in the weaker 

theory T' as the proofs of the corresponding theorems in T in the following way. 

Suppose Prf_T' is the (abstract) proofs of the theorems proved for T' which is of 

type Ht':T'. Thm_T'(ir 1 (t')). Then, the corresponding (abstract) theorems in T 

Thm(T,T') .\s:Sig_T. Thm_T'(f(s)) 

are proved by the following proofs inherited from Prf_T': 

Prf(T, T') 	)i:Mod_T. Prf_T'(f(ir1 (t)),g(ir1  (t), ir2 (0)) 

For example, the theorems about semigroups can be inherited as theorems about 

rings through a forgetful morphism. (There are indeed two forgetful morphisms 

which concern the operators plus and multiplication, respectively.) The idea of 

divide-and-conquer (and separation of concerns) is embodied in proof inheritance. 

Simpler and more general theorems are dealt with in simpler and weaker theories, 

and then inherited (or lifted) to more complex and stronger theories. 

8.3.2 Sharing by parameterization 

Structure sharing is important for modular proof development just as it is for 
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modular programming. The type hierarchy of ECC provides a strong form 

of polymorphism and hence a facility of defining higher-order modules. With 

this, one can define functions between abstracted modules and express shar-

ing by parameterization to structure proof development in the style of Pebble 

[Bur84][LB881, where the type of all types exists. We explain this by an exam-

ple. 

Example We define a function ringGen which results in a ring structure when 

given as arguments a semigroup and an abelian group with the same carrier, 

and a proof of the extra axiom (the distributive laws). Suppose the theories of 

semigroups and ahelian groups are defined as follows: 

Mod-SG >s:EX:Type0 .SGwrt(X). Ax-SG(s) 

Mod-AG >g:EX:Type0 .AGwrt(X). Ax-AG(g) 

where SGwrt, AGwrt : Type 0  - Type 0  and, when given X : Type 0  as carrier, 

give as results the types of the operations for semigroups and abelian groups with 

respect to X, respectively, and Ax-SG(s) and Ax-AG(g) are the propositions 

expressing the axioms of theories for semigroups and abelian groups. 

ringGen can then be defined as 

ringGen E AX:Type 0  

A * :SGwrt(X) Ap:Ax_SG(X, *) 

A(+,O,'):AGwrt(X) Aq:Ax.AG(X,+,O,') 

Ad:PDJSTR. (( X, +, 0,') *), and_i ntro(p, q, d)) 

which is of type 

HX :Type 0  

11* :SGwrt(X) Hp:AxSG(X, *) 
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Hg:AGwrt(X) llq:AxAG(X,g) 

Hd:PDISTR. Mod-Ring 

where PDISTR  is the proposition for the distributive laws and Mod-Ring is the E- 

type for the abstract theory of rings defined similarly to Mod-SG and Mod-AG. 

ringGen guarantees that its two arguments have the same carrier. 	 0 

Note that SGwrt and AGwrt are what are often called 'parameterized mod-

ules'. Supported by such a facility, the idea of divide-and-conquer can be suc-

cessfully used for proof development. For example, ringGen is useful to organize 

proof inheritance when a structure can be viewed as a ring in different ways. 

When some proofs of justifying the construction of a required structure (ring in 

this case) are more complicated, this is desirably useful to make proof develop-

ment structured. It is easy to see that such a facility is also useful for structured 

programming. 

Remark There are several different ways to control structure sharing which 

appear in programming and specification languages ML [HMM86][Mac86], Pebble 

[LB88] and Clear [BCog8O] (see [Bur84] for a simple explanation). Note that, 

as Thierry Coquand pointed out to the author, propositional equalities (e.g., 

Leibniz's equality) can not be used to express sharing constraints in the style of 

ML, since by structure sharing people mean that two substructures are the same 

in a quite strong sense which can not be expressed adequately by propositional 

equalities. For example, the following term 

)X:Type0AY:Type0)tz:(X =Type.  Y). Vx:Xy:Yx =x  y 

is not well-typed because the variable y is not of type X. The required proof z 

Of X Type.  Y does not play a role to indicate that X and Y are the same (i.e., 

convertible) as a sharing constraint does. 	 U 
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8.4 Discussions 

We have shown above that s-types and type universes provide expressive mech- 

anisms to express a notion of (abstract) theory for structured abstract reasoning. 

As well-known, existential types (or weak sums) [MP85][Rey83][Pra65] can be 

defined in the calculus of constructions [C1185], as we defined it in section 6.1.1 

the logical existential quantifier. It is interesting to note that similar construc-

tions can be given at the predicative levels of ECC [Luo89a], as we shall show 

in section 9.2.2, which are useful to express abstract data types in programming 

[MP85]. 

However, existential types are not useful to express mathematical theories 

because they 'hide' the proofs: the elimination operator for the weak sum is too 

weak and, in particular, there is no way to prove that the first component of a 

'weak pair' of type ax:A.B satisfies the property B. To express mathematical 

theories as we have shown above, strong sums (s-types) are needed. A compar-

ison of strong and weak sums in the context of modular programming can be 

found in [Mac86]. 

The approach to theory abstraction discussed above adopts a view of 'theories 

as types'. More precisely, abstract theories are expressed as E-types in our formal 

calculus, which provides a solid basis to guarantee the correctness of using the 

theory mechanism based on it. There is another approach to theory structuring 

[SB83][BLuo88][HST89] borrowing ideas from research in algebraic specification 

languages like Clear [BGog80]. The ideas in [S1383] are used in Cambridge LCF 

theory mechanism [Pau87J. This latter approach may be called 'theories as meta-

values', as there are theory operations to 'put theories together', which are per-

formed at the meta-level of implementation. In the Automath project, ideas like 

telescope of organizing mathematical texts through manipulating contexts were 

considered [dB80][Zuc75]. Further research and experience are needed to show 
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what is necessary and whether it is possible to combine these ideas together. 

As a final remark on the theory mechanism we described above, we note that 

the notion of abstract theories may even be internally formalized in ECC. 4  We 

may describe it as an (abstract) theory, as the following example shows. 

Example An internal description of the notion of abstract theory: 

• The class of signature presentations SIC can be represented as Type 1 : 

SIG =dI  Type1 

• The signature-parameterized classes of abstract axioms may be represented 

as: 

AX =df 	 S —* Prop 

• The class of abstract theories can be represented by the following E-type: 

ABS =df  Es:SIG.AX(s) 

Its constructor and destructors are: 

Abs =df )s:SIGAax:AX(s).(s,ax) 

Sig =df  )1T:ABS.7r1(T) 

Ax =11  .XT:ABS.7r2(T) 

• Given an abstract theory T of type ABS, we can represent the set of T-

structures satisfying the T-axioms (the models of T) as: 

Mod(T) =ç Es:Sig(T).Ax(T)(.$) 

Mod is of type ABS - Type 1 . 

4Thanks to Taylor and Pollack for discussions on this [TL88]. 
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• Let P2  : Sig(T) —+ Prop (i = 1, ...,n) be the proved abstract theorems of 

an abstract theory T : ABS. They can be represented as: 

Thm(T) =ç )s:Sig(T). P1 (s)&...&P(s) 

Thin is of type 11T:ABS. Sig(T) —* Prop. 

• Let p1 (s) be the proof of P1 (s) (i = 1, ...,n) above. The proofs of the 

abstract theorems can be represented as: 

Prf(T) =df .Xt:Mod(T). and_i ntro(p1 (ir1 (t)), ...,p(ir1 (t))) 

where and-intro is the proof operator corresponding to the &-introduction 

for n formulas. Prf is of type HT:ABSIIt:Mod(T). Thm(T)(7r 1 (t)). 

The notion of theory morphisms can also be formalized to represent the idea of 

proof inheritance. 

• The set of morphisms between abstract theories T and T' of type ABS can 

be represented as: 

Mor(T,T') =df >f:Sig(T) —+ Sig(T'). lls:Sig(T).Ax(T)(s) —+ Ax(T')(f(s)) 

Mor is of type ABS 4  ABS — Type 1 . 

• Given a morphism m = (f,g) of type Mor(T,T'), the proved abstract 

theorems Thm(T') in T' are transformed by the morphism m into the cor-

responding abstract theorems ThmTrans(T, T')(m) in T: 

ThmTrans(T, T')(rn) =df  .\s:Sig(T). Thm(T')(7r 1  (rn)(s)) 

ThmTrans is of type IIT:ABSHT':ABSHm:Mor(T, T'). Sig(T) — Prop. 

• The transformed theorems above are proved by the following (transformed) 

proofs: 

PrfTrans(T, T')(rn) =df At:Mod(T). Prf(T')(ir 1 (m)(ir1 (t)), 7r 2 (rn)(7r 1 (t) 1  7r2(0)) 
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PrfTrans is of type 

HT:ABSHT':ABSHm:Mor(T, T') flt:Mod(T).Thm(T')(7r 1 (m)(7r 1 (t))) 

U] 

Remark The above example of internalization shows that the calculus ECC 

is very expressive. Besides this, it is interesting to note that, in the internal 

formalization above, types at the fourth level of the type hierarchy (of type 

Type- 2 ) are necessarily used. From this, one may expect that, in some more 

sophisticated applications, higher type universes are also useful. 0 



Chapter 9 

Some Issues in Program 

Specification and Programming 

In this chapter, we briefly discuss how to view the extended calculus of construc-

tions ECC as (a core of) a programming logic. By a programming logic, we mean 

a formal system which integrates facilities of programming with a consistent logic 

so that program specifications can be expressed and program development can be 

discussed in the system. ECC may be viewed as a programming logic according 

to the following: 

. There is a powerful higher-order logic embedded in ECC (as shown in 

chapter 6); 

• The A-abstractions and the rich type structures provide core mechanisms 

to support typeful functional programming; 

• E-types in ECC provide a basic adequate mechanism for program specifi-

cation and program development. 

A full investigation of using ECC as a programming logic is out of the range 

of this thesis. There are many interesting problems in this aspect to be further 

157 
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studied. We shall concentrate on some specific aspects of using ECC to do 

program specification and programming and try to show its potential power as a 

programming logic. 

Particularly, we show that Leibniz's equality (see definition 6.1.4) can be used 

in program specifications to model computation as it reflects the definitional 

equality (theorem 9.1.1). This shows that there is no need to add a new extra 

propositional equality to the theory to reflect definitional equality. Comparisons 

with Martin-Löf's type theory in this aspect are discussed. 

We also discuss how the predicative levels of the calculus provide us with pro-

gramming facilities. We first show that Leivant's finitely stratified polymorphic 

A-calculus can be embedded in the predicative levels of ECC, which indicates 

that the predicative levels of ECC provide programming power. Then, we dis-

cuss how existential types may be defined at the predicative levels to express 

abstract data types. 

9.1 Program Specification and Equality Reflection 

As we have discussed in the introduction, E-types provide a basic adequate mech-

anism for program specifications. Most of the previous research in this aspect 

is mainly based on Martin-L&'s type theories. Since the calculus of construc-

tions does not have E-types, how to use it in program specifications has not been 

investigated. '  Particularly, how to take advantage of the logical power provided 

by impredicativity in applications like program specification has not been paid 

enough attention to investigate. After showing how program specifications can 

be expressed in ECC using E-types, we show that Leibniz's equality can be used 

to reflect the definitional equality (conversion); this can be seen as an example 

'The impression that strong sum is inconsistent with impredicativity and the difficulty of 

adding E-types seems to have prevented people from considering this aspect. 
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showing the advantage of having a powerful higher-order logic. 

Following the idea that problems (specifications) correspond to types and 

solutions (programs, implementations) to elements of specifications expressed as 

types, a program specification in ECC can be expressed in the following basic 

form as a E-type: 

S Ef:A -* B. P(f) 

where A and B are the types of inputs and outputs of the programs to be specified, 

respectively, and P(f) is a proposition describing the properties that the correct 

implementations are required to satisfy. An term I which provably inhabits this 

specification (i.e., F- I: S) shall be a pair (F, p) constituting a function (program) 

F and a correctness proof that F satisfies the required properties. It is obvious 

that our idea of lifting propositions as types so that propositions can be used in 

E-types is essential for such an idea of program specification to be expressed in 

ECC. 

However, such a basic structuring mechanism is in fact not quite enough for 

specifications yet. Something more has to be considered. For example, based on 

the above idea, a specification of the identity function of type A - A (supposing 

A to be a ()-type) would be the following: 

ID 	>f -* A. Hx:A.f(x) = x 

Then, one must ask: what is the equality = in the above specification? In fact, 

this is an important problem we must consider when claiming that program 

specifications can be expressed in a type theory like ECC. When we write down 

the equality above, we certainly mean that it is modeling the computational 

equality in our mind (1(a)  and a are computationally equal, i.e., they both 

compute the same value as their results). 

When type theories (A-calculi in general) are viewed as programming lan- 

guages, computation is modeled by reduction (i) and the computational equal- 
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ity by the definitional equality conversion 
().2  However, we certainly can not 

put to replace = in ID is not a formal entity directly expressible in the 

calculus. In other words, we must have a propositional equality which can be 

used to model the computational equality (i.e., conversion). 

In Martin-Löf's type theories, an extra propositional equality (equality type) 

is used, as we mentioned in the introduction. The weak intensional equality type 

in [ML73] reflects the definitional equality; the strong extensional equality type 

in [ML84] is equivalent to the judgemental equality. 

In our theory ECC, thanks to its strong power, there is no need to add a new 

propositional equality to model the definitional equality. We show that Leibniz's 

equality, =A  (see definition 6.1.4), does reflect the conversion relation. 

Theorem 9.1.1 (equality reflection) Suppose F-  a1  : A and F- a 2  : A. Then, 

a1  a2  if and only if I- M : a1 =A  a2  for some term M. 

Proof Necessity. If a1  a2 , we have by the type conversion rule, 

I- .AP:A -* Prop\x:Pa1 .x : (a1 =A  a2) 

Sufficiency. If I- M : ( a1 =A  a2 ), by strong normalization theorem, we may 

assume M, A, a1  and a2  are all in normal form. So, M must be of the form 

-4 Prop.Ax:Pa1 .M' such that P:A - Prop,x:Pa1  F- M' : Pa2 . Since 

M' is in normal form, it must be a base term. Let y be the key variable of 

M'. y can not be P. We have y x. Therefore, it must be the case that 

M' x, for otherwise, Qz:A 1 .B 1  Pa2  for some A 1  and B 1 , where Q E {H, El, 

which is impossible. Noticing that the only rule which can be used to derive 

P:A -* Prop,x:Pa1  F- x : Pa2  is the conversion rule, we conclude a1  c a2  by 

2 Here, we take a simple point of view. One may consider more sophisticated computational 

equality like those subject to observational equivalence. But, reduction and conversion are the 

more basic notions which are incorporated in other notions of computation and computational 

equivalence. 
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Church-Rosser theorem. 
	 II 

This result of equality reflection gives a justification of the adequacy of using 

Leibniz's equality in program specifications to model definitional (computational) 

equality. For example, the specification of identity function can now be given as 

follows: 

ID Ef:A - A. Vx:A.f(x) =A  x 

This specification is adequate. For any implementation (id, p) of ID (I—  (id, p) 

ID) and for any object a of type A (I—  a: A), we have by the above theorem of 

equality reflection, 

id(a) 	a 

Remark The above reflection result was realized and proved by the author when 

considering the adequacy problem of using Leibniz's equality to reflect computa-

tional equality (c.f., [Bur89a]) . 3  A nice consequence is that, unlike Martin-Löf's 

type theories, we no longer need to add a new equality to our calculus when we 

use s-types to do specifications. This is one of the benefits we gain from com-

bining impredicativity with (predicative) E-types. Lim 

To close this section, we conclude that s-types based on the idea of lifting 

propositions as types and the result of equality reflection provide a basic adequate 

mechanism for program specifications in ECC. 

3 After we had formulated and proved the reflection result (and reported it in LICS'89), the 

author was informed that Martin-Löf had a similar proof of this fact for the first version of his 

type theory with a type of all types [ML71]. Although the system Martin-Löf considered is 

inconsistent, his proof is essentially the same as what we give. 
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9.2 Programming at Predicative Levels 

As ECC is a very rich type system, there may be different ways to view it as 

a programming logic and further research is needed to investigate these pos-

sibilities. For example, programming facilities are provided by its underlying 

A-calculus, at both the impredicative level and the predicative levels. It is well-

known by results about the polymorphic A-calculus (c.f., [Gir72] (Rey 74][BB85]) 

that the impredicative level of ECC provides programming power. Theoretically 

speaking, the class of representable functions in F are exactly those which are 

provably total in the higher-order arithmetic [Gir73]. 

On the other hand, the predicative levels of ECC also provide programming 

facilities. Recently, Leivant [Lei89] has studied a stratified variant of the second-

order polymorphic A-calculus (called S2A') and shown that the functions rep-

resentable in the finitely-stratified A-calculus are precisely the super-elementary 

functions .4  We shall show below that Leivant's finitely-stratified polymorphic 

A-calculus can be embedded in the predicative levels of ECC through an easy 

interpretation. This shows that the predicative levels of ECC provide us pro-

gramming power as well. 

It is then possible to view ECC as a programming logic in the following way: 

. the embedded logic resides in the impredicative universe (Prop); 

. the programming facilities are provided by the predicative universes; and 

• the predicative levels also provide structural power for programming and 

specification. 

Such a view has an advantage that there can be a clear conceptual distinction 

between data types and logical formulas. In our point of view, data types are 

4 Leivant also shows that the functions representable by the stratified polymorphic A-calculus 

up to w" are exactly the primitive resursive functions. 
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represented by non-propositional types. Propositions are just used to stand for 

logical formulas; they are not data types. 

9.2.1 Embedding stratified polymorphism in ECC 

Leivant's finitely stratified polymorphic )-calculus S2X" is similar to the second-

order \-calculus except that the types are classified into levels numbered by 

natural numbers. We refer to [Lei89] for the original presentation of S2). 

S2A' can be formulated by explicit typing terms as follows, from which it is 

easy to see that it can be represented at the predicative levels of ECC. 

• Type expressions and their levels: 

Type variables at the jth level (i:Type3 ) are type expressions of level 

.1; 

Arrow types: If A and B are type expressions of levels i and j respec-

tively, A - B is a type expression of level max{i,j}, i.e., (assuming 

that all of the free variables in A and B are in F, similar below) 

FI- A:Typ; FI- B:Type, 

F I- A -p B : TYPemaX{i,j} 

This is a derivable rule in ECC. 

Universal quantification: If B is a type expression of level i and t a 

type variable of level j, then Vt:Type 3 .B is a type expression of level 

max{i,j + 11, i.e., 

F,t:Type F B : Type 1  

F F Vt:Type 3 .B : Type ax{j ,jl} 

Mapping V as H, this is a derivable rule in ECC. 

• (Object) expressions and their typings: 
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Individual variables associated for each type expression A (x:A) are 

object expressions whose types are A; 

\-abstraction (of objects): If M is an expression of type B and x is an 

individual variable of type A, then Ax:A.M is an expression of type 

A - B, i.e., 

F,x:A FM: B 

FFAX:A.M:A-3'B 

Note that an individual variable does not occur in a type expression, 

so the above rule is derivable in ECC. 

Object application: If M is an expression of type A - B and N is an 

expression of type A, then MN is an expression of type B, i.e., 

FFM:A-4B FFN:A 

FF MN: B 

This rule is a special case of the rule (app) in ECC. 

A-abstraction (of types): If M is an expression of type B and t is 

a type variable of level j, then At:Type 3 .M is an expression of type 

Vt:Type 3 .B, i.e., 

F,t:Type FM: B 

F F At:Type,.M : Vt:Type,.B 

In ECC, we do not distinguish type abstraction with object abstrac-

tion. Just mapping At:Type 3 .M as )d:Type.M, the above rule is 

derivable in ECC. 

Type application: If M is an expression of type Vt:Type.B and A is 

a type expression whose level is less than or equal to j, then MA is 

an expression of type [Alt]B, i.e., 

FFM:Vt:Type.B FFA:Type 1  
(i<j) 

F F MA: [A/t]B 
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By rules () and (app), the above rule is derivable in ECC. 

For a type expression A, Nat(A) abbreviates the type expression A - (A 

A) -* A. The nth numeral at the level j is represented by the expression 

=& At:Type)tx:L\s:t -f t.s [n]  x 

where 0] 	 1 [i+] 	/ Eu 
ere S X =df  x a 	x = ss x). The type of 1' is Vt:Type.Nat(t). 

Definition 9.2.1 (slant numerals) Let A i, be a type expression of level 2k  (k = 

1 1  ..., m) and A a type expression of level i. An expression M represents slantwise 

(at levels (j i ,...,jm ,)) an m-ary recursive function f if, for any natural numbers 

nl, ... ,nm ,n, 

= n if and only if 	 'Wi 2  

I. 

The Grzegorczyk classes Sk  (k > 0) classify the class of primitive recursive 

functions [Grz53][Ros84]. Sk consists of the recursive functions generated by 

function composition and bounded recursion from zero, successor, the projection 

functions and the function Fk, where F0  =df .suc (the successor function) and 

F +i(x) =df Fk
[x]  (x) with F[x]  being the xth interate of F. In particular, S3  is 

the class of elementary functions and E4  is called the class of super-elementary 

functions. 

Theorem 9.2.2 (Leivant [Lei89]) The recursive functions representable slant- 

wise in S2X" are exactly the super-elementary functions. 	 0 

By Leivant's result, we have 

Corollary 9.2.3 The super-elementary functions are representable at the pred- 

icative levels ofECC. 	 0 
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9.2.2 Existential types and discussion 

Besides the basic programming power of expressing functions, the rich type struc-

tures at the predicative levels provide structural mechanisms for modular pro-

gramming. For example, E-types supports a form of module mechanism (c.f., 

[BLam84] [Mac861) and parameterized sharing [Bur84] [BLam84] can be expressed. 

Furthermore, we would like to show below that existential types can also be de-

fined at the predicative levels of the theory [Luo89a] which can be used to express 

abstract data types [MP85]. 

Following the idea of defining the (impredicative) existential quantifier (see 

section 6.1.1), we can define the ith level existential-type constructor as follows: 

—df AA:Type 2  )B:A -p Type 1 . 

HC:Type 2 (Hx:A.(B(x) - C)) - C 

which is of type IIA:Type 1 ((A - Type 1 ) -* Type 21 ). The introduction and 

elimination operators rep2ix :AB( x ) and abstype t  can be similarly defined as, 

rep' =df  AA:Type, .AB:A -+ Type 1  

)x:A )y:B(x) 

AC:Type 1  )tp:Hz:A.B(z). p(a, b) 

which is of type 

IIA:Type 1 HB:A -4 Type 1 flx:Ally:B(x). '(A, B) 

and 

abstype1 =df  \AType 1  )B:A - Type 1  

.AM:(A, B) \C:Type 1  

)N:Hx:A.(B(x) - C). 

M(C,N) 
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which is of type 

HA:Type 2 flB:A -4 Type1llM:'(A,B)llC:Type1HN:llx:A.(B(x) - C). C 

According to the notation of [MP85], we may write rep'(A, B, a, b) as 

rep3.AB( X )(a, b) 

and abstype 2 (A, B, M, C, N) as 

abstypet  x with y:B(x) is M in N(x,y) 

They satisfy the desired properties such as 

abstype x with y:B(x) is rep. S.AB()(a, b) in N(x,y) tp [b/y] [a/x]N(x,y) 

Note that, unlike the propositional existential quantifier 1, these 'weak sums' 

are defined at the predicative levels. They can similarly used to play the role of 

information hiding and thus of expressing abstract data types for programming. 

This seems to show that, for expressing abstract data types, the impredicativity 

is not important. Of course, we do not have these predicative types as values in 

the strong sense of [MP85]; e.g., °x:A.B (i.e., ° (A, B)) is of type Type 1  but 

not of type Type 0 . These existential types are useful for describing abstract data 

types in programming. 

ECC lacks recursive data types to support the ordinary recursive program-

ming style. Whether the data types like those of natural numbers, lists etc. 

which are definable by coding techniques [BB85][CH85] are suitable for real pro-

gramming is still to be further investigated. One may extend the calculus with 

inductive types. For example, it is possible to introduce the types of natural 

numbers, lists etc. as in Martin-Löf's type theories. Another way may be to 

introduce a general inductive-type constructor t, as considered by Coquand and 

Mohring [CM89] and Ore [Ore89], with the following formation rule: 

F,x:Type, H A: Type 3  
(j (=- W) 

IF H ,ax:Type3 .A: Type, 



PROGRAM SPECIFICATION 

where the free occurrence of x in A must be strictly positive, together with other 

introduction and elimination rules. Then, one can define the usual concrete data 

types like those of natural numbers, lists, trees, etc.. Coquand and Mohring 

[CM891 studied how inductive types can be extended as predicative types and 

give a nice account of the issue. Ore [0re89] studies how ECC may be extended 

with inductive types based on Coquand's idea and how the set-theoretic model 

for ECC may be extended to inductive types. We refer to [CM89] and [0re89] 

for further details. This intereting direction of research is in progress. 



Chapter 10 

Conclusions and Further Research 

In this thesis, the Extended Calculus of Constructions ECC has been presented 

and studied as a promising calculus for formalization of mathematics, computer-

assisted reasoning and program specification. There are some open problems and 

further research topics which we feel interesting and summarize as follows. 

Concerning about the theory ECC itself, we have left some open problems 

to be solved. The relationships of the embedded higher-order logic with other. 

logical systems are to be investigated. The conservativity conjecture discussed in 

section 6.1.3 is one of the interesting problems in this aspect. The proof-theoretic 

power of the theory ECC is unknown; it seems to be much smaller than ZF set 

theory. In the realizability model described in this thesis, large set universes are 

used to interpret the predicative universes. It may be possible to give a small 

model without using large set universes. 

Some possible extensions to the calculus ECC may be considered interesting. 

Inductive types have been mentioned in section 9.2.2 and are useful for appli-

cations in program development and theorem-proving. One might consider the 

problem of including i7/lr-conversions into the theory, which are useful for some 

technical reasons; whether they are important in practice is to be seen. For this, 

we refer to a recent relevant work by Salvesen [5a189] which considers the Church- 
169 
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Rosser property of LF with q- conversion. Another extension of purely theoretical 

interest might be to extend the predicative levels to larger ordinals, say wW.  This 

might be interesting when considering the problem of proof-theoretic power of 

the predicative levels (c.f., [Lei891). 

Further research about semantical models of rich type theories with depen-

dent types needs to be carried out in order to have a disciplined way to define 

semantics. One may also consider models in a more traditional sense by viewing 

contexts as (logical) theories. It seems that to achieve this requires a deeper 

understanding of existing approaches to semantics of type theories as well as the 

proof-theoretical aspects of type systems. 

In the aspect of applications, further practice in theorem-proving and pro-

gram specification is needed to examine whether the facilities provided by the 

theory are adequate and strong enough in reality. A good direction would be 

to use the basic theory mechanism described in chapter 8 to build up theory 

bases for particular application areas and, based on them, to do practical ex-

amples of development of proofs and programs. Such a practice may be done 

in a proof development system like LEGO [Po189][LPT89] together with some 

supporting tools. An implementation of an environment supporting theory de-

velopment may directly based on the ideas described in chapter 8 and use ideas 

from [SB83][BLuo88] to provide theory-building operations. How to combine 

these nicely is to be further investigated. 



Bibliography 

[Bar84] 	H.P Barendregt, The Lambda Calculus: its Syntax and Semantics, 

revised edition, North-Holland. 

[Bar89a] H.P Barendregt, Typed Lambda Calculi, to appear in Handbook of 

Logic in Computer Science (eds., S. Abramsky, D. Gabbay and T.S.E. 

Maibaum), Oxford University Press. 

[Bar89b] H.P Barendregt, 'Introduction to Generalized Type Systems', to ap-

pear in Proc. of the 3rd Italian Conf. on Theoretical Computer Sci-

ence, Mandera. 

[BB85] 	C. Böhm and A. Beradurcci, 'Automatic Synthesis of Typed A- 

programs on Term Algebras', Theoretical Computer Science 39. 

[Bee85] 	M.J. Beeson, Foundations of Constructive Mathematics, Springer- 

Verlag. 

[Ber89a] S. Berardi, Type Dependence and Constructive Mathematics, 

manuscript, June 1989. 

[Ber89b] S. Berardi, Non-conservativity of Coquand's Calculus with respect to 

Higher-order Intuitionistic Logic, Talk given in the 3rd Jumelage 

meeting on Typed Lambda Calculi, Edinburgh. 

171 



BIBLIOGRAPHY 
	 172 

[BGeu89] E. Barendsen and H. Geuvers, 'Conservativity of )¼P over PRED 

manuscript. 

[BGog80] R. Burstall and J. Goguen, 'The Semantics of CLEAR, a Specification 

Language', Lecture Notes in Computer Science 86. 

[Bis67] 	E. Bishop, Foundations of Constructive Analysis, McGraw-Hill. 

[BLam84] R. Burstall and B. Lampson, 'Pebble, a Kernel Language for Modules 

and Abstract Data Types', Lecture Notes in Computer Science 173. 

[BLuo88] R. Burstall and Zhaohui Luo, 'A Set-theoretic Setting for Structuring 

Theories in Proof Development', Circulated notes. Apr. 1988. 

[BMS81] R. Burstall, D. MacQueen and D. Sannella, 'HOPE: an Experimental 

Applicative Language', Proc. 1980 LISP Conf., California. 

[Bur84] 	R. Burstall, 'Programming with Modules as Typed Functional Pro- 

gramming', Proc. Inter. Conf. on Fifth Generation Computer Systems, 

Tokyo. 

[Bur86] 	R. Burstall, Research in Interactive Theorem Proving at Edin- 

burgh University, Proc. of 20th IBM Computer Science Symposium, 

Shizuoka, Japan. Also, LFCS Report ECS-LFCS-86-12, Dept. of Com-

puter Science, Univ. of Edinburgh. 

[Bur89a] R. Burstall, An Approach to Program Specification and Development 

in Constructions, Talk given in Workshop on Programming Logic, 

Bastad, Sweden, May 1989. 

[Bur89b] R. Burstall, 'Computer-assisted Proof for Mathematics: an introduc-

tion, using the LEGO proof system', to appear in Proc. of the Institute 

for Applied Math. conf., Brighton Polytechnic. 



BIBLIOGRAPHY 
	

173 

[Card86] L. Cardelli, 'A Polymorphic )-calculus with Type:Type', manuscript. 

[Card89] L. Cardelli, Typeful Programming, Lecture notes for the IFIP State 

of the Art Seminar on Formal Description of Programming Concepts, 

Rio de Janeiro, Brazil. 

[Cart78] J. Cartmell, Generalized Algebraic Theories and Contextual Category, 

Ph.D. Thesis, University of Oxford. 

[Cart86] J. Cartmell, 'Generalized Algebraic Theories and Contextual Cate-

gory', Annals of Pure and Applied Logic 32. 

[CF58] 	H. B. Curry and R. Feys, Combinatory Logic, Vol. 1, North Holland 

Publishing Company. 

[CGW87] Th. Coquand, C. Gunter and C. Winskel, Domain Theoretic Mod-

els of Polymorphism, Tech. Report No. 116, Computer Laboratory, 

University of Cambridge. 

[CH85] 	Th. Coquand and C. Huet, 'Constructions:a Higher Order Proof Sys- 

tern for Mechanizing Mathematics', EUROCAL'85, Lecture Notes in 

Computer Science 203. 

[CH88] 	Th. Coquand and G. Huet, 'The Calculus of Constructions', Informa- 

tion and Computation 76(2/3). 

[Chu40] A. Church, 'A Formulation of the Simple Theory of Types', J. Sym-

bolic Logic 5(1). 

[Con7l] R. L. Constable, 'Constructive Mathematics and Automatic Programs 

Writers', Proc. IFIP'71. 

[Con86] R. L. Constable et al., Implementing Mathematics with the NuPRL 

Proof Development System, Pretice-Hall. 



BIBLIOGRAPHY 	 174 

[Coq85] Th. Coquand, 'Une Theorie des Constructions PhD thesis, Univer-

sity of Paris VII. 

[Coq86a] Th. Coquand, 'An Analysis of Girard's Paradox', Proc. 1st Ann. 

Symp. on Logic in Computer Science. 

[Coq86b] Th. Coquand, 'A Calculus of Constructions' manuscript, Nov. 1986. 

[Coq89] Th. Coquand, 'Metamathematical Investigations of a Calculus of Con-

structions', manuscript. 

[CM89] 	Th. Coquand and Ch. Paulin-Mohring, 'Inductively Defined Types', 

draft. 

[CW85] L. Cardelli and P. Wegner, 'On Understanding Types, Data Abstrac-

tion and Polymorphism', Computing Surveys 17. 

[dB72] 	N. G. de Bruijn, 'Lambda Calculus Notation with Nameless Dummies: 

a Tool for Automatic Formula Manipulation with Application to the 

Church-Rosser Theorem', Indag. Mathematics 34. 

[dB78] 	N. C. de Bruijn, 'A Name-free Lambda Calculus with Facilities for 

Internal Definition of Expressions and Segments', Technical Report 

78-WSK-03, Eindhoven University of Technology. 

[dB80] 	N. G. de Bruijn, 'A Survey of the Project AUTOMATH', In To H. B. 

Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-

ism, (eds., J. Hindley and J. Seldin), Academic Press. 

[Dev79] K. Devlin, Fundamentals of Contemporary Set Theory, Springer-

Verlag. 



BIBLIOGRAPHY 
	

175 

[EFH83] H. Ehrig, W. Fey and H. Hansen, ACT ONE: an Algebraic Specifi-

cation Language with Two Levels of Semantics, Tech. Report 83-03, 

Technical University of Berlin, Fachbereich Informatik. 

[Ehr88] 	T. Ehrhard, 'A Categorical Semantics of Constructions Proc. 3rd 

Ann. Symp. on Logic in Computer Science, Edinburgh. 

[Fef79] 	S. Feferman, 'Constructive Theories of Functions and Classes', in 

Logic Colloquium'78, (eds., M. Boffa, D. van Dalen and K. McAloon) 

North Holland, Amsterdam. 

[FCJM85] K. Futatsugi, J. Goguen, J.-P. Jouannaud and J. Meseguer, Principles 

of OBJ2, Proc. POPL 85. 

[Fri77] 	H. Friedman, 'Set-theoretic Foundations for Constructive Analysis 

Annals of Mathematics 105. 

[Ga189] 	J.H. Gallier, On Girard's 'Candidats de Reductibilite", To appear in 

Logic and Computer Science (ed. P. Odifreddi), Academic Press. 

[Geu89] H. Geuvers, A Modular Proof of Strong Normalization for the Calculus 

of Constructions, Talk given in the 3rd Jumelage meeting on Typed 

Lambda Calculi, Edinburgh, Sept. 1989. 

[Gir7l] 	J.-Y. Girard, 'Une extension de l'interpretation fonctionelle de Gödel 

a l'analyse et son application a l'élimination des coupures dans et la 

thèorie des types', Proc. 2nd Scandinavian Logic Symposium. 

[Gir72] 	J.-Y. Girard, Interpretation fonctionelle et elimination des coupures 

de l'arithmétique d'ordre supérieur, These, Université Paris VII. 

[Gir73] 	J.-Y. Girard, 'Quelques re'sultats sur les interpretations fonctionells', 

Lecture Notes in Mathematics 337, Springer. 



BIBLIOGRAPHY 	 176 

[Gir86] 	J.-Y. Girard, 'The System F of Variable Types, Fifteen Years Later 

Theoretical Computer Science 45. 

[Gir89] 	J.-Y. Girard, Proofs and Types, Translated by Y. Lafont and P. Taylor, 

Cambridge University Press. 

[GMW79] M.J. Gordon, R. Milner and C.P. Wadsworth, Edinburgh LCF, Lecture 

Notes in Computer Science 78, Springer. 

[Gri87] 	T. Griffin, An Environment for Formal Systems, LFCS Report ECS- 

LFCS-87-34, Dept. of Computer Science, Univ. of Edinburgh. 

[Grz53] 	A. Grzegorczyk, 'Some Classes of Resursive Functions', Rozprawy 

Mate. IV, Warsaw. 

[Hay89] 	S. Hayashi, 'Constructive Mathematics and Computer-assisted Rea- 

soning Systems', to appear in Proc. of Heyting'88, Prenum Press. 

[Hey7l] 	A. Heyting, Intuitionism: an Introduction, North-Holland. 

[HH86} 	J. Hook and D. Howe, Impredicative Strong Existential Equivalent to 

Type:Type, Technical Report TR86-760, Cornell University. 

[HHP87] R. Harper, F. Honsell and C. Plotkin, 'A Framework for Defining 

Logics', Proc. 2nd Ann. Symp. on Logic in Computer Science. 

[HMM86] R. Harper, D. MacQueen and R. Milner, Standard ML, LFCS Report 

ECS-LFCS-86-2, Dept. of Computer Science, Univ. of Edinburgh. 

[HN88] 	S. Hayashi and H. Nakano, PX: a Computational Logic, The MIT 

Press, Cambridge, Massachusetts. 

[How69] W. A. Howard, 'The Formulae-as-types Notion of Construction', In 

To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and 

Formalism (eds., J. Hindley and J. Seldin), Academic Press, 1980. 



BIBLIOGRAPHY 
	

177 

[HPit87] M. Hyland and A. Pitts, 'The Theory of Constructions: Categori-

cal Semantics and Topos-theoretic Models', Categories in Computer 

Science and Logic, Boulder. 

[HPo189] R. Harper and R. Pollack, 'Type Checking, Universe Polymorphism, 

and Typical Ambiguity in the Calculus of Constructions', To appear 

in Theoretical Computer Science. 

[11S87] 	J.R. Hindley and J.P. Seldin, Introduction to Combinators and \- 

calculus, Cambridge University Press. 

[Hue87] 	C. Huet, 'A Calculus with Type:Type unpublished manuscript. 

[Hue89] 	G. Huet (ed.), The Calculus of Constructions: Documentation and 

User's Guide, Technical Report INRIA 110. 

[Hy182] 	M. Hyland, 'The Effective Topos', in The Brouwer Symposium, (eds., 

A.S.Troelstra and Van Dalen) North-Holland. 

[Hy187] 	M. Hyland, 'A Small Complete Category', To appear in Ann. Pure 

Appl. Logic. 

[Jut77] 	B. Jutting, Checking Landau's 'Grundlagen' in the Automath System, 

Ph.D. thesis, Eindhoven University of Technology, Mathematical Cen-

tre Tracts 83. 

[K1o80] 	J. W. Klop, Combinatory Reduction Systems, Mathematical Center 

Tracts 127. 

[Kre68] 	C. Kreisel, 'Functions, Ordinals, Species', Logic, Methodology anfd 

Philosophy of Science III (eds. B. van Rootselaar and J. Staal), North-

Holland, Amsterdam. 



BIBLIOGRAPHY 
	

178 

[L1388] 	B. Lampson and R. Burstall, 'Pebble, a Kernel Language for Modules 

and Abstract Data Types', Information and Computation 76(2/3). 

[Lei89] 	D. Leivant, 'Stratified Polymorphism', Proc. of the Fourth Symp. on 

Logic in Computer Science, Asilomar, California, U.S.A. 

[Lev79] 	A. Levy, Basic Set Theory, Springer-Verlag. 

[LM88] 	G. Longo and E. Mogg], Constructive Natural Deduction and Its 'Mod- 

est'Interpretaiion, Report CMU-CS-88-131, Computer Science Dept., 

Carnegie Mellon Univ. 

[LPT89] Z. Luo, R. Pollack and P. Taylor, How to Use LECO: a preliminary 

user's manual, LFCS Technical Notes LFCS-TN-27, Dept. of Com-

puter Science, Edinburgh University. 

[Luo88a] Zhaohui Luo, A Higher-order Calculus and Theory Abstraction, LFCS 

report ECS-LFCS-88-57, Dept. of Computer Science, Univ. of Edin-

burgh. 

[Luo88b] Zhaohui Luo, CC and Its Meta Theory, LFCS report ECS-LFCS-

88-58, Dept. of Computer Science, Univ. of Edinburgh. 

[Luo88c] Zhaohui Luo, 'A Higher-order Calculus and Its —Set Model', circu-

lated notes. Jan. 1988. 

[Luo89a] Zhaohui Luo, 'ECC, an Extended Calculus of Constructions', Proc. 

of the Fourth Ann. Symp. on Logic in Computer Science, June 1989, 

Asilomar, California, U.S.A. 

[Luo89b] Zhaohui Luo, 'A Higher-order Calculus and Theory Abstraction', To 

appear in Information and Computation. 



BIBLIOGRAPHY 
	

179 

[Luo89c] Zhaohui Luo, On Girard- Tait 's Reducibility Method for Strong Nor-

malization Proofs of Type Theories, Talk given in the 3rd Jumelage 

meeting on Typed Lambda Calculi, Edinburgh. 

[Mac86] D. MacQueen, 'Using Dependent Types to Express Modular Structure', 

Proc. 13th Principles of Programming Languages. 

[McC62] J. McCarthy et al., Lisp 1.5 Programmer's Manual, MIT Press, Cam-

bridge, Mass.. 

[Mes88] J. Meseguer, Relating Models of Polymorphism, SRI-CSL-88-13, Com-

puter Science Lab, SRI International. 

[MH88] 	J. Mitchell and R. Harper, 'The Essence of ML', Proc. 15th Principles 

of Programming Languages. 

[Mi184] 	R. Milner, 'A Proposal for Standard ML', Proc. Symp. on Lisp and 

functional Programming, Austin, Texas. 

[Mit86] 	J.C. Mitchell, 'A Type Inference Approach to Reduction Properties 

and Semantics of Polymorphic Expressions', Proc. 1986 ACM Symp. 

on Lisp and Functional Programming. 

Per Martin-1,6f, A Theory of Types, manuscript. 

Per Martin-Löf, An Intuitionistic Theory of Types, manuscript. 

Per Martin-Löf, 'An Intuitionistic Theory of Types: Predicative Part', 

in Logic Colloquium'73, (eds.) H.Rose and J.C.Shepherdson. 

[ML82] 	Per Martin-Löf, 'Constructive Mathematics and Computer Program- 

ming', Logic, Methodology and Philosophy of Science VI (eds., L.J. 

Cohen et al.). North-Holland, Amsterdam. 



BIBLIOGRAPHY 	 180 

[ML84] 	Per Martin-Löf, Intuitionistic Type Theory, Bibliopolis. 

[MN87] D. Miller and C. Nadathur, 'A Logic Programming Approach to Ma-

nipulating Formulas and Programs', Proc. IEEE Symp. on Logic Pro-

gramming, San Francisco. 

[Mog85] E. Moggi, 'The PER-model as Internal Category with All Small Prod-

ucts', manuscript. 

[Moh89] Ch. Paulin-Mohring, 'Extracting Ft" Programs from Proofs in the Cal-

culus of Constructions', Proc. POPL 89. 

[MP85] 	J. Mitchell and G. Plotkin, 'Abstract Types Have Existential Type', 

Proc. 12th Principles of Programming Languages. 

[MW71] Z. Manna and R. Waldinger, 'Towards Automatic Program Synthesis', 

Communications of ACM 14. 

[Myh75] J. Myhill, 'Constructive Set Theory', J. Symbolic Logic 40. 

[NP83] 	B. Nordstrom and K. Petersson, 'Types and Specifications', Proc. 

IFIP'83, Elsevier. 

[NPS89] B. NordstrOm, K. Petersson and J. Smith, Programming in Martin-

LSf's Type Theory: an introduction, book to appear. 

[0re89] 	C-E. Ore, 'Notes about the Extensions of ECC for Including Inductive 

(Recursive) Types', draft. 

[Pau87] 	L. Paulson, Logic and Computation: Interactive Proof with Cambridge 

LCF, Cambridge University Press. 

[Pau88] 	L. Paulson, A Preliminary User's Manual for Isabelle, Technical Re- 

port 133, Computer Laboratory, Cambridge University. 



BIBLIOGRAPHY 
	

181 

[Pit87] 	A. Pitts, 'Polymorphism is Set Theoretic, Constructively', Summer 

Conf. on Category Theory and Computer Science, Edinburgh. 

[P1o87] 	G. Plotkin, 'A Search Space for LF', Workshop on General Logic, 

Edinburgh, 1987. in LFCS Report Series, ECS-LFCS-88-52. 

[Po189] 	R. Pollack, 'The Theory of LEGO', manuscript. 

[Pot87] 	G. Pottinger, Strong Normalization for Terms of the Theory of Con- 

structions, TR 11-7, Odyssey Research Associates. 

[Pra65] 	D. Prawitz, Natural Deduction, 'a Proof-Theoretic Study, Almqvist & 

Wiksell. 

[Rey74] 	J. C. Reynolds, 'Towards a Theory of Type Structure', Lecture Notes 

in Computer Science 19. 

[Rey83] 	J. C. Reynolds, 'Types, Abstraction and Parameter Polymorphism', 

Information Processing'83. 

[Rey84] 	J. C. Reynolds, 'Polymorphism is Not Set-theoretic', Lecture Notes in 

Computer Science 173. 

[Ros84] 	H.E. Rose, Subrecursion, Oxford University Press. 

[RP88] 	J. C. Reynolds and G. D. Plotkin, On Functors Expressible in the 

Polymorphic Typed Lambda Calculus, LFCS report, ECS-LFCS-88-

53, Dept. of Computer Science, Univ. of Edinburgh. 

[Rus03] 	B. Russell, The Principles of Mathematics, Vol. I, Cambridge Univer- 

sity Press. 

[Sa189] 	A. Salvesen, 'The Church-Rosser Theorem for LF with /i  reduction', 

manuscript. 



BIBLIOGRAPHY 	 182 

[S1383] 	D. Sannella and R. Burstall, 'Structured Theories in LCF, 8th Col- 

loquium on Trees in Algebra and Programming. 

[Sch77] 	K. Schütte, Proof Theory, Springer-Verlag. 

[Sco70] 	D. Scott, 'Constructive Validity', Symp. on Automatic Demonstra- 

tion, Lecture Notes in Mathematics 125. 

[See84] 	R.A.G. Seely, 'Locally Cartesian Closed Categories and Type Theory,' 

Math. Proc. Camb. Phil. Soc. 95. 

[See86] 	R.A.C. Seely, 'Categorical Semantics for Higher-order Polymorphic 

Lambda Calculus', J. of Symbolic Logic, vol. 52, no. 4. Springer-Verlag. 

[SS88] 	A. Salvesen and J. Smith, 'The Strength of Subset Type in Martin- 

Löfs Type Theory', Proc. 3rd Ann. Symp. on Logic in Computer 

Science, Edinburgh. 

[ST88] 	D. Sannella and A. Tarlecki, Building Specifications in an Arbitrary 

Institution, Information and Computation 76(2/3). 

[Str88] 	T. Streicher, Correctness and Completeness of a Categorical Seman- 

tics of the Calculus of Constructions, PhD Dissertation, Passau. 

[Tai67] 	W.W. Tait, 'Intensional Interpretation of Functionals of Finite Type 

I', J. of Symbolic Logic 32. 

[Tai75] 	W. W. Tait, 'A Realizability Interpretation of the Theory of Species', 

Logic Colloquium (ed. R. Parikh), Lecture Notes in Computer Science 

453. 

[Tak75] 	G. Takeuti, Proof Theory, Stud. Logic 81. 

[TL88] 	P. Taylor and Z. Luo, 'Theories, Mathematical Structures and Strong 

Sums', manuscript, Dec. 1988. 



BIBLIOGRAPHY 
	

183 

[Tro73a] A. S. Troelstra, Metamathematical Investigation of Intuitionistic 

Arithmetic and Analysis, Lecture Notes in Mathematics 344. 

[Tro73b] A. S. Troelstra, 'Notes on Intuitionistic Second-order Arithmetic 

Lecture Notes in Mathematics 337. 

[vD80] 	D. T. van Daalen, The Language Theory of Automath, PhD Thesis. 

Technologicval Univ., Eindhoven. 

[Zuc75] 	J. Zucker, 'Formalization of Classical Mathematics in AUTOMATH', 

Colloque Internationaux du CNRS 249, Clermont-Ferrand. 



Notation and Symbols 

The ordinary notation and symbols for meta-level statements like (in)equalities 

=, , <,... and meta-level logical operators V, 1, =, A, V,... are not included here. 

We have also used , , V,... to express meta-level negation. 

The numbers below refer to the pages on which the notation or symbol is 

introduced or of its first major occurrence. 

Miscellaneous 

Kj  the jth inaccessible cardinal 137 

dom(f) domain of function f 98 

A - B functions (morphisms, functors) from A to B 101, 134 

A 	FPP  B FPP-morphisms from A to B 134 

Eval the evaluation function 102 

VM the canonical value of E-term M 100 

C(_; -) the algorithm of type inference 126 

a, a, lrr w-set constructors 133, 135 

1-1 the interpretation of judgement - 134 

Terms and judgements 

llx:A.B, A - B 	(dependent) product type 	 22 

Ex:A.B, A x B 	(dependent) strong sum type 	 22 
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Ax:A.M Lambda-abstraction 22 

MN functional application 22 

pairA(M, N) pair 22 

7r1 (M),7r2 (M) projections of a pair 22 

[N/x]M substitution of N for x in M 22 

[N1 , ..., Nm /Xi, ..., X]M 	simultaneous substitution 100 

T(M) the principal type of M under F 62 

T,, (M) the principal type of M under E 69 

redk (M) the key-reduct of M 93 

predicative existential type 166 

rep' ,abstype2  introduction and elimination operators for 	2 (A, B) 166 

F I- M : A judgement form 24 

E I- M: N 'judgement form' under environment 68 

Sets 

0 the empty set 114 

w the set of natural numbers 21 

AC the set of kinds 126 

the set of terms 22 

FV(_) the set of free variables in - 22, 24 

V, the cumulative hierarchy of sets 137 

CR(A) the set of A-candidates of reducibility 94 

Sat(A) the set of A-saturated sets 94 

SN(A) the set of strongly normalizable terms of type A 93 

V(M) the value-set of E-termM 97 

IAI the carrier set of w-set A 131 
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Relations 

syntactical identity 

=df definitional equality 

(pa-)reduction 

N one-step Pa-)reduction 

Pa-) conversion 

fl-contraction 

77  
77-contraction 

o-contraction 

contraction of surjective pairing 

-< the cumulativity relation 

the strict cumulativity relation 

the 'level-z" cumulativity relation 

the strict 'level-i' cumulativity relation 

cumulativity equivalence 

IIA the realizability relation of w-set A 
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Environment and measures 

environment 67, 68 

E 2  the first i components of environment S 68 

the ith component of environment S 68 

ei  the ith variable of environment 1 68 

level of type - 69, 70 

j-degree of type - 76, 80, 87 

OW the complexity measure of type - 88 

a complexity measure 80 

yM a complexity measure 80 
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Embedded logic 

true truth 117 
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D implication 117 
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-' negation 117 

Vx :A.P (x) universally quantified formula 117 
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=A 
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Categories and functors 
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