63 research outputs found

    Multiclass Data Segmentation using Diffuse Interface Methods on Graphs

    Full text link
    We present two graph-based algorithms for multiclass segmentation of high-dimensional data. The algorithms use a diffuse interface model based on the Ginzburg-Landau functional, related to total variation compressed sensing and image processing. A multiclass extension is introduced using the Gibbs simplex, with the functional's double-well potential modified to handle the multiclass case. The first algorithm minimizes the functional using a convex splitting numerical scheme. The second algorithm is a uses a graph adaptation of the classical numerical Merriman-Bence-Osher (MBO) scheme, which alternates between diffusion and thresholding. We demonstrate the performance of both algorithms experimentally on synthetic data, grayscale and color images, and several benchmark data sets such as MNIST, COIL and WebKB. We also make use of fast numerical solvers for finding the eigenvectors and eigenvalues of the graph Laplacian, and take advantage of the sparsity of the matrix. Experiments indicate that the results are competitive with or better than the current state-of-the-art multiclass segmentation algorithms.Comment: 14 page

    Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction

    Full text link
    In this paper we study the long-time behavior of a nonlocal Cahn-Hilliard system with singular potential, degenerate mobility, and a reaction term. In particular, we prove the existence of a global attractor with finite fractal dimension, the existence of an exponential attractor, and convergence to equilibria for two physically relevant classes of reaction terms

    Fast and Stable Schemes for Phase Fields Models

    Get PDF
    We propose and analyse new stabilized time marching schemes for Phase Fields model such as Allen-Cahn and Cahn-Hillard equations, when discretized in space with high order finite differences compact schemes. The stabilization applies to semi-implicit schemes for which the linear part is simplified using sparse pre-conditioners. The new methods allow to significant obtain a gain of CPU time. The numerical illustrations we give concern applications on pattern dynamics and on image processing (inpainting, segmentation) in two and three dimension cases

    Primal-dual active set methods for Allen-Cahn variational inequalities

    Get PDF
    This thesis aims to introduce and analyse a primal-dual active set strategy for solving Allen-Cahn variational inequalities. We consider the standard Allen-Cahn equation with non-local constraints and a vector-valued Allen-Cahn equation with and without non-local constraints. Existence and uniqueness results are derived in a formulation involving Lagrange multipliers for local and non-local constraints. Local Convergence is shown by interpreting the primal-dual active set approach as a semi-smooth Newton method. Properties of the method are discussed and several numerical simulations in two and three space dimensions demonstrate its efficiency. In the second part of the thesis various applications of the Allen-Cahn equation are discussed. The non-local Allen-Cahn equation can be coupled with an elasticity equation to solve problems in structural topology optimisation. The model can be extended to handle multiple structures by using the vector-valued Allen-Cahn variational inequality with non-local constraints. Since many applications of the Allen-Cahn equation involve evolution of interfaces in materials an important extension of the standard Allen-Cahn model is to allow materials to exhibit anisotropic behaviour. We introduce an anisotropic version of the Allen-Cahn variational inequality and we show that it is possible to apply the primal-dual active set strategy efficiently to this model. Finally, the Allen-Cahn model is applied to problems in image processing, such as segmentation, denoising and inpainting. The primal-dual active set method proves exible and reliable for all the applications considered in this thesis

    Mini-Workshop: Analytical and Numerical Methods in Image and Surface Processing

    Get PDF
    The workshop successfully brought together researchers from mathematical analysis, numerical mathematics, computer graphics and image processing. The focus was on variational methods in image and surface processing such as active contour models, Mumford-Shah type functionals, image and surface denoising based on geometric evolution problems in image and surface fairing, physical modeling of surfaces, the restoration of images and surfaces using higher order variational formulations

    Time-fractional Cahn-Hilliard equation: Well-posedness, degeneracy, and numerical solutions

    Full text link
    In this paper, we derive the time-fractional Cahn-Hilliard equation from continuum mixture theory with a modification of Fick's law of diffusion. This model describes the process of phase separation with nonlocal memory effects. We analyze the existence, uniqueness, and regularity of weak solutions of the time-fractional Cahn-Hilliard equation. In this regard, we consider degenerating mobility functions and free energies of Landau, Flory--Huggins and double-obstacle type. We apply the Faedo-Galerkin method to the system, derive energy estimates, and use compactness theorems to pass to the limit in the discrete form. In order to compensate for the missing chain rule of fractional derivatives, we prove a fractional chain inequality for semiconvex functions. The work concludes with numerical simulations and a sensitivity analysis showing the influence of the fractional power. Here, we consider a convolution quadrature scheme for the time-fractional component, and use a mixed finite element method for the space discretization
    • …
    corecore