6 research outputs found

    Mixed aggregated finite element methods for the unfitted discretization of the Stokes problem

    Get PDF
    In this work, we consider unfitted finite element methods for the numerical approximation of the Stokes problem. It is well-known that these kinds of methods lead to arbitrarily ill-conditioned systems and poorly approximated fluxes on unfitted interfaces/boundaries. In order to solve these issues, we consider the recently proposed aggregated finite element method, originally motivated for coercive problems. However, the well-posedness of the Stokes problem is far more subtle and relies on a discrete inf-sup condition. We consider mixed finite element methods that satisfy the discrete version of the inf-sup condition for body-fitted meshes and analyze how the discrete inf-sup is affected when considering the unfitted case. We propose different aggregated mixed finite element spaces combined with simple stabilization terms, which can include pressure jumps and/or cell residuals, to fix the potential deficiencies of the aggregated inf-sup. We carry out a complete numerical analysis, which includes stability, optimal a priori error estimates, and condition number bounds that are not affected by the small cut cell problem. For the sake of conciseness, we have restricted the analysis to hexahedral meshes and discontinuous pressure spaces. A thorough numerical experimentation bears out the numerical analysis. The aggregated mixed finite element method is ultimately applied to two problems with nontrivial geometries. No separate or additional fees are collected for access to or distribution of the work

    The Sixth Copper Mountain Conference on Multigrid Methods, part 2

    Get PDF
    The Sixth Copper Mountain Conference on Multigrid Methods was held on April 4-9, 1993, at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth

    A Hierarchical Flow Solver for Optimisation with PDE Constraints

    Get PDF
    Active flow control plays a central role in many industrial applications such as e.g. control of crystal growth processes, where the flow in the melt has a significant impact on the quality of the crystal. Optimal control of the flow by electro-magnetic fields and/or boundary temperatures leads to optimisation problems with PDE constraints, which are frequently governed by the time-dependent Navier-Stokes equations. The mathematical formulation is a minimisation problem with PDE constraints. By exploiting the special structure of the first order necessary optimality conditions, the so called Karush-Kuhn-Tucker (KKT)-system, this thesis develops a special hierarchical solution approach for such equations, based on the distributed control of the Stokes-- and Navier--Stokes. The numerical costs for solving the optimisation problem are only about 20-50 times higher than a pure forward simulation, independent of the refinement level. Utilising modern multigrid techniques in space, it is possible to solve a forward simulation with optimal complexity, i.e., an appropriate solver for a forward simulation needs O(N) operations, N denoting the total number of unknowns for a given computational mesh in space and time. Such solvers typically apply appropriate multigrid techniques for the linear subproblems in space. As a consequence, the developed solution approach for the optimal control problem has complexity O(N) as well. This is achieved by a combination of a space-time Newton approach for the nonlinearity and a monolithic space-time multigrid approach for 'global' linear subproblems. A second inner monolithic multigrid method is applied for subproblems in space, utilising local Pressure-Schur complement techniques to treat the saddle-point structure. The numerical complexity of this algorithm distinguishes this approach from adjoint-based steepest descent methods used to solve optimisation problems in many practical applications, which in general do not satisfy this complexity requirement

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore