
A Hierarchical Flow Solver for Optimisation
with PDE Constraints

Dissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften

Der Fakultät für Mathematik der

Technischen Universität Dortmund

vorgelegt von

Michael Köster

A Hierarchical Flow Solver for Optimisation with PDE Constraints
Michael Köster

Dissertation eingereicht am: 20. 07. 2011
Tag der mündlichen Prüfung: 23. 11. 2011

Mitglieder der Prüfungskommission:

Prof. Dr. Stefan Turek (1. Gutachter, Betreuer)
Prof. Dr. Christian Meyer (2. Gutachter)
Prof. Dr. Joachim Stöckler
Prof. Dr. Rudolf Scharlau
Dr. Matthias Möller

`There are only two mistakes one can make along the road to truth;
not going all the way, and not starting.'

Buddha

v

Acknowledgements

This PhD thesis has been created in many years of research with a lot of highlighting
discussions, interesting talks, visits at conferences all over Europe and frustrating periods
of time in the development of the underlying code basis. During all this time, I met a lot
of people who supported me in the one or the other way. The most important of them I
would like to mention here.

First, I appreciate Prof. Dr. Stefan Turek from the TU Dortmund, my main supervisor.
He gave me the opportunity to develop the underlying methods, always had an open ear
and time for questions and discussions and gratefully supported me as a member of a
big group of young scientists with trust and expertise as well as humanity, good mood
and humour. In all these years, he was exceptionally patient with all the di�culties and
setbacks that arise in the development of a �nite element code due to to the large amount
of technical and implementational details.

Second, I am grateful to Prof. Dr. Michael Hinze from the university of Hamburg. He
provided greatest knowledge about theory and implementation of optimal control prob-
lems involving the nonstationary Navier�Stokes equations, patiently introduced the basic
concepts, explained unknown details that appeared during the derivation of the underlying
KKT systems and gave excellent support during the publication of articles and preprints
about this topic. Together with Prof. Turek, he initiated this work as a part of a project
in the SPP1253, see below.

Third, I am very much thankful to Prof. Dr. Christian Meyer. When he started his
professorship 2011 in the TU Dortmund, he provided highly valuable support during the
�nal phase of this PhD thesis.

Fourth, I would like to thank the main FEAT2 group, namely Peter Zajac, Matthias Möller
and Raphael Münster for their great commitment in the development of the FEAT2 kernel.
Due to their support, it was possible to develop all the e�cient core routines in the �nite
element package FEAT2 upon which the KKT system solver has been set up.

Fifth, I appreciate Dominik Göddeke, Matthias Möller, Robert Strehl, Raphael Münster
and Shafquat Hussain for proofreading this work. In particular, Dominik's comments
allowed to greatly improve the structure of the whole thesis.

Sixth, I would like to thank Prof. Dr. Friedhelm Schieweck from the university of Magde-
burg for enlightening and fruitful discussions about the Crank�Nicolson scheme, Jaroslav
Hron (currently working at the Charles University in Czech) for his insight about �nite

vi

elements, Hogenrich Damanik for helping me to get insight to globalisation schemes to-
gether with Jaroslav Hron, and �nally Abderrahim Ouazzi for his support concerning the
edge oriented stabilisation technique.

This thesis has been created as part of the project `Hierarchical Solution Concepts for Flow
Control Problems' as part of the priority program SPP1253, funded by the DFG (Deutsche
Forschungsgemeinschaft, TU 102/24-1+2). This program was a great opportunity for me to
be part of a large community of scientists working in the �eld of optimisation and optimal
control, and I am very grateful to the DFG that I was able to be part of it. Furthermore, I
also like to express my gratitude to the NRW Graduate School of Production Engineering
and Logistics.

For the �nal notes, I would like to switch to the german language.

Abschlieÿend möchte ich noch meiner Familie danken, für eure Geduld und euer Verständ-
nis wegen der vielen Stunden, die ich wegen dieser Arbeit nicht mit euch verbringen konnte.
Ein besonderer Dank gilt dabei meinen Eltern, die mich während all der Jahre unterstützt
haben wo immer es nötig wurde, und die während all dieser Zeit so unglaublich groÿen
persönlichen Einsatz geleistet haben, um meinem Bruder und mir eine so gute Ausbildung
zu ermöglichen.

Dortmund, July 20, 2011

Michael Köster

vii

Contents

1 Introduction 1
1.1 Why is optimisation so much more complicated than simulation? 3
1.2 The SQP approach � a remedy up to a certain extent 7
1.3 The story about hierarchical solution concepts 12
1.4 Thesis contribution . 13
1.5 Thesis outline . 14
1.6 Publications of the author . 16
1.7 General terms and de�nitions . 17

2 Problem formulation and discretisation 21
2.1 Model problems . 22
2.2 The First-Optimise-Then-Discretise calculus � step one 23
2.3 The KKT systems in detail . 26
2.4 Ellipticity of the KKT system . 28
2.5 Time discretisation with the implicit Euler scheme 31

2.5.1 The Navier�Stokes equations . 31
2.5.2 The Newton system in the implicit Euler case 34
2.5.3 The heat equation . 34

2.6 Time discretisation with a general one-step θ-scheme 36
2.6.1 The Navier�Stokes equations . 36
2.6.2 The Newton system in the Crank�Nicolson case 40
2.6.3 The heat equation . 41

2.7 Discretisation in space � the fully discretised problem 42
2.8 The First-Discretise-Then-Optimise strategy 43
2.9 Summary and conclusions . 45

3 The multigrid and the Newton solvers 47
3.1 De�nition of hierarchies . 48

3.1.1 Hierarchies in space and in time . 49
3.1.2 Space-time hierarchies created by coarsening strategies 49
3.1.3 Problem hierarchies . 51

3.2 The outer defect correction loop . 51
3.3 The inner multigrid solver . 52
3.4 Prolongation/Restriction/Coarse grid preconditioning operators 53

3.4.1 Preliminaries . 53
3.4.2 Discrete abstract functions . 54
3.4.3 The implicit Euler case . 56
3.4.4 The general θ-scheme case . 58

viii Contents

3.4.5 Coarse grid preconditioning operators 63
3.5 Smoothing operators and the coarse grid solver 65

3.5.1 Standard block smoothers . 65
3.5.2 Forward-Backward simulation smoother 66
3.5.3 Extensions: Smoothers, preconditioners and one-level solvers 69

3.6 Coupled multigrid solvers in space . 70
3.7 Stopping criteria and the inexact Newton algorithm 76

3.7.1 Basic stopping criteria . 76
3.7.2 The inexact Newton algorithm . 77

3.8 Summary and conclusions . 78

4 Extended systems and additional discretisation strategies 81

4.1 The end time observation . 81
4.1.1 End time observation for the implicit Euler scheme 82
4.1.2 End time observation for the general θ-scheme 84

4.2 Constrained Control . 87
4.2.1 The projection operator . 87
4.2.2 Discretisation in time . 89
4.2.3 The semismooth Newton method . 89
4.2.4 Discretisation in space . 91

4.3 Do-nothing and out�ow boundary conditions 95
4.4 Semi-explicit time discretisation . 97

5 Basic numerical analysis of the solver: Heat equation and Stokes equa-
tions 101

5.1 Basic solver analysis for the heat equation and the Stokes equations 102
5.1.1 Basic single grid solver analysis . 103
5.1.2 Basic two grid solver analysis . 105
5.1.3 Basic multigrid solver analysis . 105
5.1.4 Basic analysis: Inexact solvers in space 107

5.2 Higher order discretisations: Q2 and the Crank�Nicolson scheme 110
5.2.1 Basic multigrid solver analysis . 110
5.2.2 Prolongation/restriction operators for the Crank�Nicolson scheme . . 110

5.3 From the heat equation to the Stokes equations 112
5.4 The choice of the multigrid cycle . 113

5.4.1 Multigrid cycle analysis � in theory 114
5.4.2 Multigrid cycle analysis � in practice 116

5.5 Summary and conclusions . 117

6 Numerical analysis of the discretisation: Heat equation and Stokes equa-
tions 119

6.1 Notations and additional test examples . 120
6.2 Coupling of the space and the time discretisation 120

6.2.1 Space-time error for the heat equation 121
6.2.2 Space-time error for the Stokes equations 121
6.2.3 Concluding remarks . 123

6.3 The traditional θ-scheme time discretisation 124
6.3.1 Heat equation . 124
6.3.2 Stokes equations . 125

6.4 Summary and conclusions . 126

ix

7 Numerical analysis of the solver: Stokes and Navier�Stokes equations 127

7.1 Analysis of the multigrid solver . 128
7.1.1 Basic multigrid performance . 131
7.1.2 In�uence of the regularisation parameters 133
7.1.3 Anisotropic space-time meshes and coarsening strategies 133

7.2 Basic analysis of the nonlinear solver . 137
7.2.1 Nonlinear solver comparison . 138
7.2.2 In�uence of the regularisation parameters 142
7.2.3 Optimisation and simulation . 142

7.3 Constrained Control . 144
7.4 Summary and conclusions . 146

8 The KKT solver in practice 149

8.1 Basic test con�gurations . 150
8.2 In�uence of the regularisation parameters 152
8.3 A nonstationary benchmark problem . 158

8.3.1 Reference calculation . 162
8.3.2 In�uence of the time discretisation 163
8.3.3 In�uence of the space discretisation 168
8.3.4 Semi-explicit time discretisation . 170

8.4 A solver discussion . 173
8.5 Appendix: About stabilisation in optimal control problems for �uid �ow . . 179
8.6 Summary and conclusions . 185

9 Further extensions, summary, conclusions and future work 187

9.1 General summary and discussion . 187
9.1.1 Main key points of the hierarchical solution approach 187
9.1.2 Discretisation concept and solver design 188
9.1.3 Numerical results . 189

9.2 Possible future extensions . 191
9.2.1 Advanced discretisation and solver components 191
9.2.2 Further model problems and applications 193
9.2.3 The problem size . 195

A Further model problems 197

A.1 Boundary control . 197
A.2 Parametrised control spaces � linear combinations of input �elds 199

B Globalisation and enhanced robustness 203

B.1 The adaptive Newton algorithm . 203
B.2 Newton line-search . 204

C Alternative solution concepts 209

C.1 The nonlinear multigrid strategy . 209
C.2 The integral equation method . 211

D Modi�ed Crank�Nicolson discretisations 215

x Contents

E Parametric and nonparametric �nite elements 219
E.1 General terms and de�nitions . 219
E.2 Parametric elements . 221
E.3 Nonparametric elements . 223

E.3.1 Local coordinate systems . 223
E.3.2 De�nition of local basis functions for nonparametric elements 225

F List of Symbols 227

Bibliography 235

1

Introduction

In the beginning, there was an engineer coming to a mathematician.

`I have a problem, my device does not work, it sometimes even explodes. I cannot
look inside. Can you create an accurate computer program that simulates my
device so that I can see what happens?'

The trouble begun. After hours, days, months or sometimes even years, the
mathematician said: `Ok, now I can simulate your problem and I can show you
what's wrong.'

And the engineer replied: `That's great. But now, I'd like to ask you for a
little favour. As you can see, the device is not very e�ective. Can you tell your
program to optimise it for me?'

And then, the real trouble begun...

This small example demonstrates two important issues in the world of industrial engineer-
ing and simulation:

� Optimisation is the most desirable and most natural extension of simulation and
experiment. Whenever a physical process is simulated or an experiment is set up,
the intention is to do something existing in a better way.

� As natural as optimisation is an extension to simulation and experiment, as chal-
lenging and time consuming the optimisation usually is.

The term `challenge' is meant in a very general sense in this context and does not neces-
sarily restrict to a high computational e�ort. Usually, problems like high memory require-
ments, ill-conditioned physical operators in underlying equations or ill-posed optimisation
problems are faced, such that standard optimisation algorithms do not compute suitable
solutions. In fact, every kind of optimisation problem has its own challenges.

As a special example, the PDE-constrained optimisation, or more precisely, the opti-
misation with partial di�erential equations as constraints, is one of the most challenging
problems in the world of modern numerics. With increasing compute power in modern
computers, this class attracts more and more attention in the industry. It allows target-
oriented, automatic, computer-aided optimisation of physical processes without the need to
construct too many samples. For example, an engineer designing a new sheet metal roller
with speci�c physical requirements can ask a computer for the design instead of building
the device �ve to ten times in a trial and error style until the requirements are met. This

1

2 Introduction

is a big saving as the price for one such a unit used for production in the industry is about
10 000 to 500 000 dollar.1

And the application �eld of PDE-constrained optimisation is large � at least as large
as the application �eld of simulation, i. e., it can be applied everywhere where PDEs are
involved. Some famous classes where this method is successfully applied are:

� Distributed Control : A force term inside of a domain should be controlled. In indus-
trial applications, this can be used for example...

... to �nd an optimal heat source for a plate such that some regions are heated while
others stay cold; for a thin plate, a proper heater can be used, while complex
3D domains (for example, a tumour region in a body [54]) can be heated up,
e. g., by microwaves.

... to �nd optimal doping pro�les for MOSFET semiconductors; the doping pro�le
describes the concentration of impurity in a pure semiconductor material (by
`foreign' atoms) and controls the electrical properties [88, 92]. Important, e. g.,
for the chip design in the hardware of modern computers.

... to �nd an optimal magnetic �eld stirring a melt; used, e. g., in crystal growth
for the production of semiconductors to keep a molten crystal in a homogeneous
�ow [11, 47, 67, 71].

� Boundary control : Force terms acting on the boundary of a domain should be con-
trolled. Used for example...

... to control the cooling of a tissue in medicine without destroying the internal
structures [25, 94].

... to control the heating of certain parts of a human body with a special probe;
used in the RF-ablation to destroy tumour cells, cf. [4].

... in optimal glass cooling, to prevent cracks due to an improper cooling process
[88, 92].

... to control a suction or injection into a �ow; used, e. g., in aircraft design to reduce
the friction, to control separation e�ects and to reduce turbulence around an
airfoil [30, 136].

� Shape optimisation: The shape of an object or a domain is to be deformed to ful�l
certain criteria. Used for example...

... to optimise the shape of an airfoil, to reduce its drag or increase its lift at a
given velocity [27, 125, 133, 134].

... to optimise the shape of a racing yacht in order to reduce the drag/increase the
speed [28].

... to optimise the design of bypass shapes in order to reduce the shear rate in
arti�cial grafts around occlusions of blood vessels [127].

... to optimise the geometric structure of trusses, e. g., to reduce the weight while
maintaining highest stability w. r. t. the load acting on the truss [44]. Important,
e. g., for the construction of bridges, hip roofs or frame structures in buildings.

1 Determined by searching for `hydraulic roller bending machine' at http://www.alibaba.com.

http://www.alibaba.com

1.1. Why is optimisation so much more complicated than simulation? 3

1.1. Why is optimisation so much more complicated than simulation?

For the application of PDE-constrained optimisation, the knowledge of di�erent �elds has
to be combined to be successful: A physical background to understand the nature of a
partial di�erential equation that describes a physical process, a mathematical background
to properly simplify and discretise the equations and a background in computer science to
realise highly optimised computer programs that are able to solve the discrete problems
with minimal resources in terms of CPU time and memory requirements.

Optimal control and optimal design is an active �eld of research in recent years, see
for example [5, 7, 11, 43, 69, 92, 92, 94, 112�114, 117, 130] and many more. For an
understanding of some of the di�culties arising in this �eld from an algorithmic point of
view, it is instructive to consider some examples.

Low dimensional parameter optimisation The following example is an adaption of the
shape optimisation of a NACA0012 wing pro�le. The example is only roughly sketched
here for simplicity.

Consider a 2D domain Ω ⊂ R2 with an embedded NACA air�ow pro�le ΩNACA =
ΩNACA(γ, h), �xed at point M . For a �xed parabolic in�ow with maximum velocity Ymax,
the lift of the airfoil should be maximised. The angle of attack γ ∈ [0, π) as well as the
height h > 0 can be modi�ed, see Figure 1.1.

A possible formulation in a laminar Reynolds number regime involving the Navier�
Stokes equations reads as follows. Let Ω̃(γ, h) := Ω \ ΩNACA denote the domain without
the airfoil pro�le. Furthermore, let FL(y, p) denote the lift coe�cient of the airfoil (i. e.,
the lift force integrated over the wing pro�le, cf. [142]), depending on a velocity �eld
y : Ω → R2 and a pressure p : Ω → R . Both unknowns must ful�l the Navier�Stokes
equations on the domain Ω̃(γ, h). Thus, the optimisation problem can be formulated as

J(γ, h) := FL(y, p) −→ max!

s.t. − ν∆y + y∇y +∇p = 0 in Ω̃(γ, h),

−div y = 0 in Ω̃(γ, h),

for ν > 0, complemented by appropriate boundary conditions.

Figure 1.1: Two-parameter optimisation of an airfoil pro�le. Height h and angle of attack
γ are unknown. Top: Geometry. Bottom: Streamlines of a possible �ow around the airfoil.

4 Introduction

Algorithmic issues This is an example for a `low-dimensional' parameter optimisation
with a PDE as constraint. The main �ow � and thus, the functional to optimise �
depends on a small number of parameters. A standard, black-box, derivative-free opti-
misation algorithm like Compass-Search or Nelder�Mead usually does a good job here.
Such algorithms optimise the values of a target functional just by evaluating its values for
di�erent con�gurations (cf. [52, 107, 123]).

For the application of derivative-free methods, a method has to be provided that eval-
uates the target functional to be optimised. In the above example this means that a �ow
solver for the Navier�Stokes equations has to be provided as well as a routine that calcu-
lates J(·). This can be done in a black-box manner: Any arbitrary �ow solver can be used
as long as it is able to calculate the value of the functional J(γ, h) based on the geometry
parameters γ and h.

However, derivative-free optimisation algorithms are known to be e�cient only if the
number of design parameters is `small', for example, less than three or �ve, depending on
the application. Up to exponential growth in the total numerical costs can be expected
if the number of design parameters is increased (see, e. g., the discussion about level-0 or
`black-box NAND' algorithms in [153]).

Medium and higher dimensional parameter optimisation Consider the optimal dis-
tributed control of the Poisson equation as described, e. g., in [139]. For a domain Ω ⊂ Rdim

with dim = 2 or = 3, this problem reads (in a short form, ignoring boundary conditions)

J(y, u) :=
1

2
||y − z||2L2(Ω) +

α

2
||u||2L2(Ω) −→ min! (1.1)

s.t. −∆y = u in Ω

for a relaxation parameter α > 0 which is typically small, e. g., 10−3. The variable y : Ω→
R can be interpreted as a temperature distribution. The aim of this problem is to �nd a heat
source u : Ω → R such that the temperature y matches a target temperature z : Ω → R.
For a 2D domain, the heat source can be realised, e. g., as a heater, for a 3D domain, a
microwave heat source or similar can be used. As an example, Figure 1.2 illustrates2, on
a rectangular 2D domain, a target temperature z, the best possible approximation y and
the control u used to generate y.

For the optimisation, nonlinear programming methods can be applied. In the �rst step,
the problem is usually discretised and reformulated as a minimisation problem without
constraints. One typical approach is to use penalty or barrier functions, cf. [12, Chapter 9].
A possible reformulation after applying the �nite di�erence or �nite element method reads

J̃1(~y, ~u) :=
1

2
||~y − ~z||2l2 +

α

2
||~u||2l2 + µ

(
1

2
~yTA~y − ~yT~u

)
−→ min!

with ~y, ~u, ~z referring to the vectors of degrees of freedom for y, u and z and A identifying
the discrete Laplacian. The constant µ > 0 is typically chosen large, e. g., 106. Note that
the heat source u is speci�ed in every point of the domain and usually discretised in the
same way as the temperature y. This approach treats y and u independent of each other,
which results in a large number of unknowns, and the constraint −∆y = u is only satis�ed
approximately.

2 In this �gure, small over- and undershoots in y can be recognised. These are natural in this example:
The temperature y is discretised with an unstabilised Q1 �nite element approach and approximates a
discontinuous function z.

1.1. Why is optimisation so much more complicated than simulation? 5

Figure 1.2: Optimal distributed control of the Poisson equation on a domain Ω = (0, 1)2 in
2D on a regular 128× 128 mesh. α = 10−5. Left: Target temperature z. Centre: Optimal
approximation y. Right: Corresponding control u.

An even more common alternative in the context of optimal control (since it reduces the
number of unknowns J(·) depends on, and which automatically guarantees the constraint
−∆y = u to be satis�ed) is to de�ne the reduced functional

J̃2(~u) :=
1

2
||S(~u)− ~z||2l2 +

α

2
||~u||2l2 −→ min!

for the solution operator S(~u) = A−1~u. The temperature can be obtained from y = S(~u)
if necessary.

In the next step, an optimisation algorithm has to be applied. Derivative-free optimi-
sation algorithms as used in the previous example can usually not be used anymore due
to the size of the problem (see below). A more e�cient way is to apply gradient methods
of �rst and second order, see also [80] for an overview. First-order methods exploit the
explicit knowledge of DJ∗(·). Second order methods exploit either the existence or even
the explicit knowledge of the Hessian ∇2J∗(·). Typical examples for �rst order methods are
the steepest descent method or the conjugate gradient (`CG') method. Common second
order methods are the Newton mathod and Quasi-Newton methods. A widely known rep-
resentative from the group of Quasi-Newton methods is for example the BFGS algorithm
(`Broydon�Fletcher�Goldfarb�Shanno'), see [12, 18, 110, 123, 125].

Algorithmic issues Unfortunately, all methods share a common crucial disadvantage:
For a �ner mesh resolution, either the optimisation runs into severe memory issues or the
e�ciency of the algorithm su�ers:

� The steepest descent method as well as the conjugate gradient method require the
explicit knowledge of the �rst derivative ∇J̃∗ (which is usually available) and provide
�rst order convergence. The CG method converges faster than the steepest descent
method in practice. However, the convergence rate of both methods is known to
depend on the condition of the operator in the target functional. As a consequence,
in the above example, the e�ciency of the iteration su�ers with increasing re�nement
level due to the presence of the (discrete) Laplace operator in J̃∗. In the 2D case, as
a rule of thumb, the number of iterations doubles with every mesh re�nement.

6 Introduction

� Quasi-Newton methods like the BFGS method are more advanced but also need a
higher regularity of the problem. BFGS for example requires the knowledge of the
gradient ∇J̃∗(·) and assumes the existence of the Hessian. It stores an approximate
Hessian which is calculated using∇J̃∗. As an advantage in comparison to the steepest
descent or CG method, BFGS provides superlinear convergence, which is in particular
useful for nonlinear problems. However, storing the recovery information leads to
high memory requirements: For N unknowns, the algorithm internally stores a non-
sparse, N ×N matrix, i. e., the memory requirement is quadratically in the number
of unknowns. The algorithm is therefore only applicable for a low to medium number
of degrees of freedom. Software packages like MATHEMATICA [129] apply BFGS
up to 250 unknowns, but there are examples where BFGS has been applied up to
10 000 unknowns.

Example I Consider the above heat equation example on a domain Ω := (0, 1)2 ⊂
R2, y and u discretised with a Q1 �nite element on a regular mesh with 8× 8 cells.
This results in ≈ 80 degrees of freedom for u (and y) and BFGS is applicable. In this
form, the problem can be associated to the class of `medium-dimensional' problems.

Example II Consider the above heat equation example on a domain Ω := (0, 1)3 ⊂
R3, y and u discretised with a Q1 �nite element on a regular mesh with 128×128×128
cells. This results in ≈ 2 · 106 unknowns in u (and y) and the problem should be
called a `higher-dimensional' optimisation problem. BFGS can usually not be applied
anymore.

� To cope with this issue, there are limited memory variants available like L-BFGS
which store none or only a limited amount of recovery information. However, the
general convergence behaviour for limited memory Quasi-Newton methods is similar
to a CG algorithm, cf. [12, Chapter 8].

� The Newton method �nally requires the explicit knowledge of the Hessian ∇2J∗(·) �
or at least a way to apply it. For nonlinear problems, it provides quadratic conver-
gence, and for linear problems like above, it needs only one iteration. However,
during the iteration, a sequence of linear systems has to be solved for the control u.
This can be done, e. g., with standard linear solvers like GMRES or BiCGStab �
which again depend on the condition of the operator, and their performance can be
expected to degrade with increasing re�nement level.

Conclusion The main issue which introduces problems to the above examples is the size
of the discrete problem in combination with the analytic properties of the partial di�erential
equation which is used as constraint. Even for problems with a higher regularity (i. e., where
second order gradient information is available, which is assumed in the following), standard
nonlinear optimisation algorithms usually either run out-of-memory or their performance
degrades from a certain point on. The degrade is reasoned in mesh-dependent condition
issues with the underlying discrete operator.

Unfortunately, many important optimisation problems belong to the class of medium
and higher dimensional problems with ill-conditioned constraints, so black-box nonlinear
programs are in general not applicable. The situation even worsens for time dependent
optimal control which is illustrated later. At this point, specialised algorithms are needed
that fully exploit the mathematical structure of the problem in order to be successful. In
this context, the Lagrange multiplier technique has turned out to be a �exible tool to regain

1.2. The SQP approach — a remedy up to a certain extent 7

some kind of black-box character. It allows to reformulate many minimisation problems
as a well-structured set of equations. Solving minimisation problems can in this way be
reduced to solving a set of linear or nonlinear equations. This allows completely di�erent
solution techniques to be applied.

1.2. The SQP approach — a remedy up to a certain extent

The Sequential Quadratic Programming (`SQP') approach has advanced to one of the
standard methods in PDE-constrained optimisation in recent years. Using the Lagrange
multiplier technique and exploiting second order gradient information, PDE-constrained
minimisation problems can be reformulated as nonlinear equations which can be processed
by appropriate solvers.

Considering for example the above minimisation problem (1.1), the Lagrange multiplier
technique can be applied (cf. [139]) to derive an associated set of equations,

−∆y = u,

−∆λ = y − z,

u = − 1

α
λ

for an auxiliary `dual' temperature λ : Ω→ Rdim. For simplicity, the boundary conditions
are neglected. This set of equations is called `Karush-Kuhn-Tucker' or short `KKT' system.
It de�nes the set of �rst order necessary optimality conditions, or `KKT conditions', of a
special Lagrange functional. For a nonlinear PDE as constraint, the KKT system is of
course nonlinear, and solving the KKT system with a Newton method is referred to as
`SQP approach' in the literature.

The variable u can be eliminated in this example, which leads to the system

−∆y +
1

α
λ = 0,

−∆λ − y = −z.

The variable u can be calculated in a postprocessing step.

What has been gained? The advantage of this approach becomes clear if, e. g., a �nite
element discretisation is applied. This leads to a linear system(

A 1
αM

−M A

)(
~y
~λ

)
=

(
~0
~z

)
(1.2)

with A denoting the discrete Laplacian,M the mass matrix and ~y, ~λ, ~z the vectors contain-
ing the degrees of freedom corresponding to y, λ and the right-hand side z. This allows to
apply all kinds of solvers for linear systems. Smaller problems (e. g., Example I on a regular
2D mesh with 128× 128 cells, corresponding to ≈ 30 000 unknowns) can usually be solved
with a sparse LU decomposition solver. For larger problems, e. g., a preconditioned CG
algorithm can be applied. With a proper preconditioner, this algorithm is advantageous to
the unpreconditioned CG method and thus, superior to the Quasi-Newton methods known
from nonlinear programming. Other possible solvers are for example the popular (precon-
ditined) GMRES or BiCGStab method. All in all, it can be expected that problems with
a size similar to Example II from above can be solved. Memory is not an issue as well.

8 Introduction

The size of the system is only twice the size of a standard Poisson problem, and if solvers
like the CG or BiCGStab are applied, the memory consumption increases linearly with
the problem size.

What still remains Unfortunately, this is not the end of the story. The system matrix
in (1.2) contains the Laplacian on the diagonal, and the condition of this matrix cannot
be expected to be better than the condition of the discrete Laplace matrix itself. As a
consequence, the convergence behaviour of usual linear solvers like CG or GMRES still
degenerates with the problem size and lead to infeasible computational times for larger
problems. And although the size of Example II seems to be large, in the context of PDE-
constrained optimisation, this problem is small.

Example III Consider the optimal distributed control of the time dependent
Stokes equations as described, e. g., in [84]. This problem reads (in short form,
ignoring, e. g., the boundary conditions)

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q −→ min!

s.t. yt − ν∆y +∇p = u,

−div y = 0,

y(0, ·) = y0

for ν > 0, an initial condition y0 : Ω→ Rdim and is de�ned on a space-time cylinder
Q = (0, T)×Ω. The variable T > 0 corresponds to a maximum time and Ω ⊂ Rdim

with dim = 2 or = 3 de�nes a domain in space. Furthermore, y : Q → Rdim

describes a velocity, u : Q → Rdim a right-hand side force term and p : Q → R
a pressure term. This problem aims at introducing a force u (which is realised in
practice, e. g., by a magnetic �eld) such that the �ow y matches a prescribed �ow
z : Q → Rdim on a given time interval (0, T). In a modi�ed form, such a problem
can be used, e. g., to control a �ow in a crystal growth process [11]. By modifying
the �ow, the quality of crystals growing from a liquid can be controlled.

Now, the Lagrange multiplier technique can be applied. The KKT system as-
sociated with the above minimisation problem reads

yt − ν∆y +∇p = − 1

α
λ,

−λt − ν∆λ+∇ξ = y − z,
−div y = −div λ = 0,

y(0, ·) = y0,

λ(T, ·) = 0.

with a `dual velocity' λ : Q → Rdim and a `dual pressure' ξ : Q → R, u eliminated
as above.

Algorithmic issues In comparison to the Poisson example (1.1) from above, a crucial
di�erence can immediately be recognised: The KKT system contains two equations, where
one is given forward in time and the other one backward in time. Both are coupled via
the right-hand side. Thus, y and λ are fully coupled on the space-time cylinder Q. This
has severe consequences for a discretisation. Plainly speaking, the time acts as additional

1.2. The SQP approach — a remedy up to a certain extent 9

dimension. For an optimisation of the nonstationary Stokes equation in 3D, the optimisa-
tion e�ectively has to deal with a 4D discretisation. This quickly leads to a tremendously
large number of degrees of freedom for �ner meshes with a lot of timesteps.

Example III (cont.) Consider Example III on the domain Ω = (0, 1)3 ⊂ R3

and the time interval [0, T] = [0, 1]. The spatial domain can be discretised, e. g., on
a regular 128× 128× 128 mesh with the Q2 �nite element for the velocity and the
P disc

1 element for the pressure. A discretisation in time with 128 timesteps based
on the implicit Euler timestepping scheme leads to a total number of unknowns of
≈ 1.4 · 1010.

For problems of this size or larger, the application of standard linear solver techniques is
barely reasonable: The condition of the operator in the above primal/dual system cannot
be expected to be better than the condition of the standard Laplace operator. As a
consequence, the convergence rate of any usual linear solver (like, e. g., the (preconditioned)
CG or GMRES method) su�ers to such an extent that the problem cannot be computed in
reasonable time. This aspect is independent of whether a serial or even a parallel computer
system is used, it is in the nature of the mathematical algorithm.

Furthermore, problems are usually nonlinear and unstable, which induces additional
di�culties in the design of algorithms and the underlying discretisation. A nonlinearity
in the PDE induces a nonlinearity in the KKT system, and stability problems, e. g., by
dominant convection, are an issue in the KKT system as well. A simple example reads as
follows:

Example IV As an extension to the optimal control of the Stokes equation in
Example III, consider the optimal distributed control of the time dependent Navier�
Stokes equations, which reads (in simpli�ed form, ignoring, e. g., the boundary
conditions)

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q −→ min!

s.t. yt − ν∆y + y∇y +∇p = u,

−div y = 0,

y(0, ·) = y0.

The corresponding KKT system has the form

yt − ν∆y + y∇y +∇p = − 1

α
λ,

−λt − ν∆λ− y∇λ+ (∇y)Tλ+∇ξ = y − z,
−div y = −div λ = 0,

y(0, ·) = y0,

λ(T, ·) = 0.

fot ν > 0. The PDE from the constraint (including the nonlinearity) is inherited
by the KKT system. In particular, stability issues for the Navier�Stokes equations
can be expected to be stability issues for the KKT system as well.

10 Introduction

Conclusion and main challenges

PDE-constrained optimisation is a �eld in modern numerics which is characterised by two
major di�culties from the algorithmic point of view:

� The optimisation inherits all di�culties that appear also during the simulation of the
underlying PDE; a nonlinearity in the PDE induces a nonlinearity in the optimal op-
timisation, stability issues known for the underlying PDE are usually stability issues
for the optimal control, and ill-conditioned operators in the PDE are ill-conditioned
operators in the optimisation as well.

� Already rather small problems result in a tremendously large number of degrees of
freedom, at least in the time dependent case. Standard methods for nonlinear pro-
gramming are usually not applicable. The SQP approach is a remedy to some extent:
Using the Lagrange multiplier technique allows to reformulate the underlying min-
imisation problem as a set of equations which can be solved by linear and nonlinear
solvers. As a result, the memory requirement increases linearly with the problem size
and preconditioning techniques can be applied to accelerate convergence. However,
for high dimensional problems, the convergence of the underlying solvers usually suf-
fers due to the problem size and the nature of the underlying PDE to such an extent
that the problem is unsolvable in reasonable time.

Altogether, one of the main challenges in dealing with really large-scale problems from
PDE-constrained optimisation is the loss of e�ciency for increasing problem size. This is
a very disappointing point because for the simulation of a PDE, the problem is solved in
many cases, in particular for CFD problems:

Computational effort in nonstationary simulations Consider the following example.

Example V The simulation of the nonstationary Stokes equations reads

yt −∆y +∇p = f,

−div y = 0,

y(0, ·) = y0,

(complemented by the boundary conditions) for some right-hand side f : Q → Rdim,
y0 : Ω→ Rdim denoting an initial condition. Applying, e. g., the implicit Euler time
discretisation and a discretisation in space with �nite elements, the discrete system

yhn − k∆yhn + k∇phn = kfhn + yhn−1, (1.3)

−div yhn = 0,

yh0 = y0,

is obtained, n = 1, 2, 3, ..., with yh0 , y
h
1 ,... and ph1 , p

h
2 ,... referring to the discrete

velocity/pressure solutions at the di�erent timesteps and fh1 , f
h
2 , ... denoting the

corresponding right-hand sides.

The time discretisation is decoupled from the space discretisation. Doubling the number
of timesteps therefore essentially results in a doubling of the computational time. Similarly,
a re�nement in space (in 2D) would in the optimal case lead to an increase of the CPU
time by a factor of four (since a spatial re�nement leads approximately to four times

1.2. The SQP approach — a remedy up to a certain extent 11

more unknowns). However, it is not straightforward to reach this CPU time increase with
standard numerical methods.

The Stokes operator in space is ill-conditioned, or more precisely, the condition is mesh-
dependent and therefore in�uences the convergence properties of numerical solvers. At the
�rst glance, this is unsatisfactory: In time interval n, Equation (1.3) induces a linear system
in space which is usually solved with standard iterative solution schemes like GMRES or
BiCGStab. As a consequence, a re�nement of the spatial mesh would lead to a degrade
of the solver convergence behaviour and a disproportional increase of the total CPU time.

This had been a problem for a long time but it was fortunately solved. The idea has
been to apply a hierarchical (`multigrid') solution strategy which exploits the elliptic char-
acter of the Laplace operator on a hierarchy of re�nement levels. In the beginning, this
approach has been introduced for the Poisson equation [9] and has later been generalised
to the Stokes and Navier�Stokes equations, see for example [31, 75]. The main advantage
is that the solver performance does not degrade with the re�nement level. Hence, problems
in space can be solved with a numerical e�ort (in terms of CPU time and memory require-
ments) proportional to the number of unknowns. In advanced software packages [68], this
technique has been established as standard method for the simulation on �ne meshes.

All in all, re�ning the spatial mesh and doubling the number of timesteps, the problem
size and the CPU time in contemporary CFD simulation packages increase by a factor of
eight (in 2D, a factor of 16 in 3D). The complexity of the simulation is therefore O(n) in
terms of memory and CPU time, n denoting the number of degrees of freedom in space
and time.

Design aim for optimal control solvers Of course, an optimisation cannot be expected
to be carried out faster than a simulation of the underlying PDE � but the optimisation
should also not take much longer. It should have at least the same complexity. This can
be expressed as follows.

De�ning the fastest possible simulation of a PDE as a reference, the main aim in the
design of a solver strategy for PDE-constrained optimisation is to create a solver that
solves the underlying KKT system with computational costs similar to the simulation.
More precisely, the solver should ful�l

e�ort for the optimisation
e�ort for the simulation

≤ C

where e�ort for the simulation is measured by the best available numerical methods. The
constant C > 0 should have a `moderate' size which is independent of the re�nement of the
underlying problem. In practice, such a relationship is highly favourable and can hardly be
achieved. It gives the end user the ability to plan the resources for a speci�c (optimisation)
task in terms of memory usage and CPU time � and in the industry, the term `resources' is
equivalent to `money'. Just by measuring the resources needed for a small-scale simulation,
those necessary for a large scale optimisation can be estimated. Thus, the end user is able
to determine in advance whether or not the available resources are su�cient to reach a
required accuracy.

In particular for the Stokes example from above, a KKT system solver should be able
to solve the underlying KKT system with linear complexity, i. e., with CPU time (and
memory) requirements O(n), n denoting the number of degrees of freedom in space and
time. Without exploiting additional mathematical structure, this is usually not the case.
As indicated above in the notes to Example III, the performance of standard linear solvers

12 Introduction

applied to the discrete KKT system will degrade on higher mesh levels due to the ill-
conditioning of the KKT system for increasing re�nement level.

However, the methods from the simulation can serve as as source of inspiration for
the design of a KKT system solver with an improved complexity: Solving linear systems
in space during the simulation (of the heat equation or the Stokes equations, e. g.) has
been accelerated by a hierarchical approach, exploiting the elliptic character of the Laplace
operator. Similar to the Laplace operator in space, the operator that de�nes the left-hand
side of the KKT system has an elliptic character on the space-time cylinder as well. This
key property, which is also illustrated in this work, can be exploited by a hierarchical
algorithm.3

1.3. The story about hierarchical solution concepts

To the best of the author's knowledge, one of the �rst milestones for the application of
hierarchical solution strategies in the �eld of optimal control was set by Hackbusch [72].
Based on his work, Büttner analysed in [34] a hierarchical solver for the heat equation
based on �nite elements in space and proved mesh independent convergence. Independent
of this work, Borzì created linear and nonlinear space-time multigrid techniques [21�24]
based on a �nite di�erence discretisation in space and time, and some of his Time-Splitted-
Gauÿ�Seidel techniques are the root of the time-smoothing algorithms in this work.

The aim of the work The present work demonstrates and analyses one possibility to
generalise hierarchical solution methods from the heat equation to the much more general
case of the nonstationary Navier�Stokes equations. Instead of using an optimisation algo-
rithm on top of an existing �ow solver (which is often the only possibility if commercial
software is used), a fully integrated KKT system solver is designed and implemented from
the scratch. Existing code and concepts from a modern, highly e�cient open-source �ow
solver are changed and adapted to simultaneously process primal and dual variables. The
approach therefore falls into the highest, most intrusive and most sophisticated category
of level-6 or `Full-Newton SAND' methods in the solver classi�cation introduced in [153].

For high e�ciency, robustness and �exibility, most advanced �ow solver techniques
known from the CFD simulations are the core of the algorithmic approach. These tech-
niques allow to solve problems from PDE-constrained �ow control with computational
costs of the order of magnitude similar to today's fastest numerical �ow solvers. This
brings PDE-constrained optimisation of �uid �ow one step closer to an application:

� The usage of so-called local pressure Schur complement techniques in space allows to
deal with a large variety of equations, of standard as well as of saddle point type.
This renders the method capable of being later applied to more complex problems like
non-Newtonian or non-isothermal �uids � the �rst point important for instance in
biomathematics/hemodynamics (blood �ow), the second one being of special interest
in the �eld of crystal growth [11, 71].

3 An alternative approach which also aims at a small ratio between the computational costs for opti-
misation and simulation was developed in [77]. The method acts iteratively and treats primal and dual
variables monolithically during the iteration as well. It was successfully used, e. g., in the one-shot pa-
rameter optimisation of a nonlinear climate model realised in [110] or in the one-shot shape optimisation
techniques in [125]. However, to the best of the author's knowledge, it has only been applied to problems
with a stationary, low-dimensional design parameter set u, thus no comparison can be made to the methods
in this work regarding e�ciency and robustness.

1.4. Thesis contribution 13

� The combination of local pressure Schur complement techniques with monolithic
multigrid methods in space results in highly e�cient preconditioning techniques
which converge with level-independent convergence rates. The computational costs
scale linearly with the problem size.

� For �exibility in the solution process of space and space-time subproblems, a large
variety of preconditioning techniques is introduced, from weak and fast for simple
problems up to strong and more expensive for more ill-conditioned tasks.

� The discretisation in space is carried out with �nite elements. Due to this approach,
very general unstructured meshes can be used. Furthermore, the �nite element ap-
proach provides in a straightforward way the possibility to use higher order discreti-
sations. For smooth problems, this provides a high accuracy for a small number of
unknowns in space. For less smooth problems which possibly have to be stabilised,
stabilisation techniques like the edge-oriented jump stabilisation are applied and work
well in the numerical tests.

� On the other hand, a large variety of time discretisation techniques are applicable for
the discretisation in time. The work demonstrates how to realise not only the �rst
order implicit Euler but also the second order Crank�Nicolson scheme. Basically, the
method itself is capable also to deal with higher order methods like Fractional-Step or
the cGP(m) schemes introduced in [96]. For solutions which are su�ciently smooth
in time, this allows to drastically reduce the number of timesteps.

The �nal step, the application of monolithic multigrid methods on the whole space-time
cylinder in combination with a Newton solver for the nonlinearity, is the key to e�ciency.
All in all, a robust and fast solver strategy is presented which is able to solve the underlying
KKT system of an optimisation problem in such a way that

e�ort for the optimisation
e�ort for the simulation

≤ C

with a moderate constant C which is about C ≈ 20�50 in most numerical tests. In
many examples (including the optimal control of a nonstationary �ow at Re=100), there
is even C < 30. It has to be kept in mind that today's best numerical methods apply
multigrid algorithms in space and solve a simulation with complexity O(n) (n the number
of degrees of freedom in space and time), i. e., the CPU time grows linearly with the spatial
re�nement and the number of timesteps. In particular, because of the above relation, also
the optimisation scales linearly with the problem size which is the major challenge from
above.

1.4. Thesis contribution

To the best of the author's knowledge, no hierarchical solution concept for the optimal
control of the Stokes and Navier�Stokes equations has been realised up to now. In [34], a
hierarchical concept has been realised for the heat equation and in [11], the discretisation
strategy applied in Chapter 2 has been proposed for Stokes and Navier�Stokes-like equa-
tions. This work closes the gap and presents for the �rst time a realisation of a hierarchical
concept for the Stokes and Navier�Stokes equations with an extensive numerical analysis.

The de�nition and realisation follows an `uncommon' strategy compared to the meth-
ods used by many authors in the literature. Instead of discretising the control u, the primal
and dual variables are discretised in a monolithic way, and the control is implicitly used

14 Introduction

without being discretised. This allows to de�ne robust preconditioners that reduce all
global operations on the space-time cylinder to local linear systems in space. These local
systems combine primal and dual variables, have a structure similar to the local systems
solved during a simulation and are solved with similar techniques. More precisely, a multi-
grid solver in space is applied. A di�culty in this context is that the local systems exhibit
a saddle-point structure which necessitates the de�nition of appropriate smoothers. The
concept of local pressure Schur complement (`Vanka-type') smoothers known from Com-
putational Fluid Dynamics (`CFD') applications is adapted. To the best of the author's
knowledge, this concept has never been used by other authors for combined primal-dual
systems in the context of optimal control for the Navier�Stokes equations, and numerical
tests illustrate the robustness of this approach.

Another issue addressed in this work is the time discretisation of nonstationary optimal
control problems with the Crank�Nicolson scheme. The idea to modify this scheme in such
a way that the dual variables are located in the midpoints of the time intervals is rather
new and to the best of the author's knowledge only used by a very few people. This work
presents for the �rst time how this approach can be applied to discretise the KKT system
for the optimal control of the Navier�Stokes equations. In particular, this involves the
derivation of the corresponding Newton system in order to apply the Newton algorithm.
Furthermore, this work illustrates how to create appropriate prolongation/restriction oper-
ators in the multigrid context. For this purpose, the concept of `discrete abstract functions'
is introduced which allows to adapt notations from 1D multigrid schemes for �nite di�er-
ence discretisations in space to functions on the space-time cylinder.

Finally, the numerical analysis in this work contains an overview about the applicability
of the edge oriented stabilisation technique. This technique has mainly been used for the
simulation of the nonstationary Navier�Stokes equations, but to the best of the author's
knowledge, it has not yet been applied in the context of optimal control of transient �ows.

1.5. Thesis outline

This work is divided into two main parts. The �rst part, Chapter 2 to Chapter 4, contains
descriptions of model problems, discretisation strategies and solver components.

Chapter 2 formulates a set of fundamental model problems for the heat equation as
well as the Stokes and Navier�Stokes equations. Applying the Lagrange multiplier
technique, the model problems are reformulated as sets of equations, and it is demon-
strated that these exhibit an elliptic character if simultaneously considered in space
and time. In the following, a special time discretisation recipe is applied to discretise
the equations in time with the implicit Euler and general θ-schemes. In combination
with an additional �nite element discretisation in space, fully discrete systems are
derived that couple all degrees of freedom. This discretisation strategy serves as a
basis for the algorithm in Chapter 3.

Chapter 3 focuses on a detailed description of the solver methodology and all components
that have to interact with each other. This chapter is the �rst core of this work. In
the beginning, the discretisation scheme from Chapter 2 is applied to a hierarchy
of meshes in space and time. This way, a hierarchy of discrete problems is de�ned.
On the �nest level, a nonlinear space-time solver is set up to solve for the nonlin-
earity. In the nonlinear loop, a monolithic space-time multigrid solver takes care of
linear subsystems which have to be solved for the preconditioning of the nonlinear
system. The chapter introduces all necessary solver components, de�nes appropriate

1.5. Thesis outline 15

prolongation/restriction operators to traverse the problem hierarchy and describes
how solvers for linear block systems can be adapted to create space-time smoothers.
In the end, all space-time preconditioning operations are reduced to local linear sys-
tems in space that can be processed with a monolithic multigrid solver based on a
hierarchy of �nite element spaces. An important part in this context, in particular
for the control of the Stokes and Navier�Stokes equations, is the description of local
pressure Schur complement smoothers. This technique allows to apply monolithic
smoothing to local saddle-point subsystems in space.

Chapter 4 is an appendix chapter for the description of the discretisation and the solver.
The chapter introduces some extensions to common, more general minimisation prob-
lems than the model problems in Chapter 2, e. g., more general boundary conditions
and constraints in the control. This allows more �exibility in numerical tests.

Chapters 5 to 8 form the second core of this work: The solver methodology derived in the
previous chapters is applied to numerous example problems ranging from the optimal con-
trol of the heat equation to the control of the nonstationary Navier�Stokes equations. The
chapters analyse the e�ciency of the solver and its components in various situations, give
advice concerning the choice of problem/solver parameters and highlight the advantages
and disadvantages of di�erent discretisation techniques in relation to the accuracy of the
solution.

Chapter 5 starts with a numerical analysis of the linear space-time solver and its com-
ponents. More precisely, this chapter is restricted to linear, analytical test examples
based on the heat equation and the Stokes equations. In a single-grid, two-grid
and multigrid setting, e�ciency and robustness of the di�erent solver components
(single-grid solvers, smoothers, prolongation/restriction operators,...) are discussed.
The tests include low and higher order discretisations, and a �nal numerical example
illustrates the in�uence of the choice of the multigrid cycle to the complexity/CPU
time of the solver. In particular it is shown that some combinations of space-time
hierarchy and multigrid cycle have to be avoided.

Chapter 6 is an intermediate chapter that deals with the discretisation. In the beginning,
the error in the solution is analysed with respect to the choice of the �nite element
space and the time discretisation scheme. The chapter demonstrates that the space
and the time discretisation are related and gives advice about the choice of the
coupling between the spatial mesh to the time mesh. Finally, the chapter discusses
the accuracy of the modi�ed Crank�Nicolson scheme and demonstrates its accuracy
in comparison to the `traditional' Crank�Nicolson scheme. In particular, the second
order accuracy is numerically validated.

Chapter 7 extends the numerical analysis of the solver components from Chapter 5 to
non-analytical test examples of the `Driven�Cavity' type known from CFD bench-
marks. The chapter contains an in-depth discussion of e�ciency and robustness of
the linear and nonlinear solver with focus on the Stokes and Navier�Stokes equations.
The convergence properties of the linear solver are analysed, e. g., with respect to
regularisation parameters and anisotropies in the space-time mesh. The second order
convergence of the Newton solver is veri�ed, and a CPU time comparison reveals that
for the considered example, the optimisation is by a factor C ≈ 10�12 more expensive
than the simulation. Finally, the superlinear convergence of the semismooth Newton
method for the case of constrained control is veri�ed.

16 Introduction

Chapter 8 forms the concluding chapter of the numerical tests. In the beginning, test
and benchmark examples of the well-known `Flow�Around�Cylinder' type at Re=20
and Re=100 are de�ned. The aim of this chapter is to �nd �rst quantitative bench-
mark reference results for distributed control �ow solvers and to demonstrate the
relation between the accuracy of the discretisation and the numerical e�ort that has
to be invested to solve the underlying discrete systems. With the help of drag and lift
coe�cients representing physical forces, the in�uence of di�erent re�nement levels,
di�erent space and time discretisations and di�erent regularisation parameters are
shown. A solver discussion illustrates the relation between the choice of the discreti-
sation and the invested numerical e�ort and demonstrates the impact of higher order
discretisations on accuracy and e�ciency. Furthermore, a CPU time comparison
shows that for the considered Re=100 case, the optimisation is by a factor C ≈ 20�
50 more expensive than a corresponding simulation. The chapter concludes with a
discussion of the applicability of the edge oriented stabilisation technique in optimal
control. Examples demonstrate the in�uence of the stabilisation onto the e�ciency
of the solver and the accuracy of the discretisation.

Chapter 9 gives a conclusion and a discussion of further extensions of the methodology.
The work closes with some appendix chapters. In Appendix A, the proposed solver ap-
proach is applied to further well known model problems which are important in practice.
Appendix B demonstrates the incorporation of common globalisation strategies into the
proposed solver algorithm. These aim for increased robustness and global convergence.
Appendix C brie�y compares the proposed solution strategy to other existing hierarchical
methods from the literature and Appendix D motivates the special Crank�Nicolson dis-
cretisation that was chosen in Chapter 2. Finally, Appendix E gives an overview about the
de�nition of parametric and nonparametric �nite elements that are used in the numerical
tests for the discretisation in space.

Computational resources

Chapters 5 to 8 contain numerous numerical tests. The computations have been carried
out at the LiDOng cluster of the TU Dortmund using Intel Xeon E5450 processors with
3.00GHz and 16GB RAM. The �ow solver was written in Fortran 90 based on the FEAT2
library developed at Lehrstuhl III für Angewandte Mathematik und Numerik, Fakultät
für Mathematik, TU Dortmund. For compiling the code, the Intel Fortran compiler 12
was used in combination with the GOTO BLAS for linear algebra processing [36] and the
UMFPACK library for solving linear systems of moderate size [48].

1.6. Publications of the author

This work was created during the research in the DFG project `Hierarchical Solution Con-
cepts for Flow Control Problems' which is a part of the priority program SPP1253. During
the development of this project, a number of articles and preprints were published or sub-
mitted for publication by the author of this thesis. This work contains detailed descriptions
and updated results from these papers, in particular also results which did not exist at the
time of publication/submission or had to be skipped due to page limitations.

The �rst two preprints, [89] and [90] have been published in the course of the second
application to extend the grants after a �rst project period. [89] gives a �rst introduction
in the solution strategy for linear equations while [90] extends the methods to nonlinear
equations. A variant of these articles was submitted for publication to [91]. Finally in 2010,

1.7. General terms and definitions 17

a �rst survey of the method was accepted for publication in [93] as part of a proceedings
book covering the �rst period of the project.

Apart from articles in the context of optimal control, the author contributed a section
about non-parametric �nite elements to [109]. Appendix E of this thesis contains an
introduction to this topic with more details that were able to be published in this article.
In particular, this appendix introduces all types of �nite elements used in the numerical
tests, e. g., the element Q̃1.

1.7. General terms and definitions

In this work, a couple of symbols and de�nitions are used, which are generally introduced
when they are needed. However, some general notations that belong to the mathematical
standard are given here for reference in advance.

The underlying domain With Ω ⊂ Rdim (dim = 2 or = 3), a bounded domain with
smooth boundary Γ := ∂Ω is denoted. For T > 0, the interval [0, T] de�nes a time
interval under consideration and Q := (0, T) × Ω a space-time domain with boundary
Σ := (0, T)× Γ.

Standard operators The symbol ∆ refers to the Laplace operator in space and ∇ to
the usual gradient, i.e. ∆q = ∂x1x1q + ∂x2x2q + ... for a smooth function q : Rdim → R and
∇q = (∂x1q, ∂x2q, ...)

T.
For a smooth function y : Rdim → Rdim, ∆y denotes the Laplace operator in space

applied to every component. Furthermore for two di�erentiable functions v, w : Rdim →

Rdim, the operators v∇w, (∇v)Tw are de�ned in the usual way; in particular for v =

(
v1

v2

)
and w =

(
w1

w2

)
in the case dim = 2, these operators yield

v∇w = (∇w)v =

(
v1∂x1w1 + v2∂x2w1

v1∂x1w2 + v2∂x2w2

)
,

(∇v)Tw = w(∇v)T =

(
∂x1v1w1 + ∂x1v2w2

∂x2v1w1 + ∂x2v2w2

)
.

For functions y, v, w : Q → Rdim and q : Q → R, the above operators are meant to be
applied in space, which is sometimes denoted by a subscript x to avoid ambiguity, e. g.,
∆y = ∆xy = ∆xy(t, ·) for a �xed t ∈ (0, T).

The operator ∂t denotes the time derivative; it is usually abbreviated by a subscript t
on the variable to di�erentiate, i. e., ∂ty = yt.

Standard Hilbert spaces The standard Hilbert space of square integrable functions on
Ω is referred to as L2(Ω) and equipped with the standard scalar product

(u, v)Ω := (u, v)L2(Ω) :=

∫
Ω
u(x) v(x) dx

for all u, v ∈ L2(Ω). The corresponding norm is denoted by || · ||Ω = || · ||L2(Ω). The same
notation in the scalar product and norm is used for vector valued functions v, w ∈ (L2(Ω))n,

18 Introduction

n ∈ N. The standard Sobolev space for functions with weak �rst derivatives is referred
to by H1(Ω) ⊂ L2(Ω), and H1

0 (Ω) ⊂ H1(Ω) is the subspace with weak zero boundary
conditions.

Dual spaces and operators in abstract spaces For a Hilbert space V , V ∗ refers to
its dual and (·, ·)V ∗,V to the corresponding dual pairing. The (Fréchet) derivative of an
operator J ∈ V ∗ is denoted by DJ(·). If J is twice di�erentiable, ∇2J(·) stands for the
associated Hessian.

Spaces on the space-time cylinder The space L2(Q) is the space of all square-
integrable functions on Q, equipped with the scalar product

(u, v)L2(Q) :=

∫ T

0

∫
Ω
u(t, x)v(t, x) dx dt

for all u, v ∈ L2(Q). The associated norm is denoted by || · ||L2(Q).

Abstract functions on a space-time cylinder A convenient formulation for functions
on the space-time cylinder Q is the concept of `abstract functions', cf. [92, 139]. For real
valued Hilbert space X, the standard space of abstract functions on a time interval (0, T)
with values in X is denoted by L2(0, T ;X) with associated scalar product

(v, w)L2(0,T ;X) :=

∫ T

0
(v(t), w(t))Xdt ∀ v, w ∈ L2(0, T ;X)

which implies the norm

||v||L2(0,T ;X) =

(∫ T

0
(v(t), v(t))X dt

)1/2

, v ∈ L2(0, T ;X).

Spaces of abstract functions are closely related to functions on the space-time cylinder.
It is possible to identify

L2(Q) ∼= L2(0, T ;L2(Ω))

via an appropriate isomorphism. The scalar products and norms for both spaces are the
same. In this context, a function v ∈ L2(Q) is interpreted as v ∈ L2(0, T ;L2(Ω)) using the
identi�cation

[v(t)](x) := v(t, x), t ∈ (0, T), x ∈ X,

pointwise almost everywhere. The corresponding construction can be found, e. g., in [57,
82]. For simplicity, the notation in this work does not distinguish between these spaces.

Functions di�erentiable in time Important spaces for this work which allow to deal
with functions di�erentiable in time are

H1(0, T ;X) = {y ∈ L2(0, T ;X) | yt ∈ L2(0, T ;X)}

and
H1,1(Q) := L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)),

see also [139].

1.7. General terms and definitions 19

Multiple components in space For functions with multiple components in space,
product spaces are used. An additional superscript denotes the dimension. For example,
with n ∈ N,

L2(Ω)n := (L2(Ω))n,

H1(Ω)n := (H1(Ω))n,

L2(Q)n := L2(0, T ;L2(Ω)n),

H1,1(Q)n := L2(0, T ;H1(Ω)n) ∩H1(0, T ;L2(Ω)n).

The associated scalar products (and norms) are appropriately de�ned by a sum of the
scalar products of the components. For example, there is

(u, v)L2(Q)n =

∫ T

0

∫
Ω
u1v1 + ...+ unvn dx dt.

and the associated norm || · ||L2(Q)n .

Simpli�ed notation To simplify the notation involving L2 scalar products and norms,

(u, v)Q

refers to (u, v)L2(Q) or (u, v)L2(Q)dim , depending on the context. The associated norm is
identi�ed by

|| · ||Q.

20 Introduction

2

Problem formulation and discretisation

In this �rst introductory chapter, the mathematical background of (distributed) optimal
control problems with PDE constraints is highlighted and appropriate discretisation tech-
niques are presented. With the help of a set of model problems of nonstationary dis-
tributed control type, the Lagrange multiplier framework is used to demonstrate how a
PDE-constrained minimisation problem can be reformulated as a set of partial di�erential
equations, the `KKT system'. In the following, a special discretisation recipe is applied to
discretise this system in space and time. This discretisation is the core for the algorithms
in Chapter 3, since it can be applied in a hierarchical way on the space-time cylinder. In a
natural way, all degrees of freedom in the discrete KKT system are coupled, which re�ects
the fact that the KKT system exhibits a globally elliptic character � the core property
that the hierarchical approach relies on.

Outline

Section 2.1 introduces a set of basic model problems which are used throughout the whole
work. All of these model problems are minimisation problems with nonstationary partial
di�erential equations as constraints. In order to reformulate these as sets of equations,
Section 2.2 demonstrates how the Lagrange multiplier method has to be applied. In the
following, Section 2.3 formulates the KKT systems associated with the model problems in
a detailed way.

Section 2.4 forms the theoretical core of the whole methodology. This section motivates
that the KKT systems are equivalent to biharmonic systems which are second order in
time, fourth order in space and which exhibit an elliptic character if considered as global
problems on the whole space-time cylinder. This was already proven for a variant of
the heat equation and can be derived in a formal way for the Stokes and Navier�Stokes
equations as well.

Finally, the KKT systems of the model problems have to be discretised. This is done
in two steps, at �rst in time, then in space. Section 2.5 and Section 2.6 describe the
time discretisation, on the one hand based on the implicit Euler timestepping scheme,
on the other hand based on the Crank�Nicolson method. Finally Section 2.7 applies an
additional space discretisation based on the �nite element approach to derive fully discrete
KKT systems.

The complete discretisation follows a special discretisation recipe which imitates the
way, the continuous KKT system has been derived in Section 2.2. In the end, this leads to
the commutation of the First-Optimise-Then-Discretise approach with the First-Discretise-
Then-Optimise approach � a desirable property of the discretisation. Section 2.8 discusses

21

22 Problem formulation and discretisation

this topic. With this discretisation strategy at hand, Chapter 3 will then be able to
formulate a hierarchical solver strategy.

2.1. Model problems

This work considers three basic model problems, namely the optimal distributed control of
the heat equation, the nonstationary Stokes equations and the nonstationary Navier�Stokes
equations. These problems are formally de�ned as follows:

Optimal control of the heat equation

For U := L2(Q), V := H1,1(Q), u, z ∈ U and y ∈ V , formally consider the problem

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q −→ min! (2.1)

s.t. yt −∆y = u in Q,
y(0, ·) = y0 in Ω,

y = g at Σ.

The function g : Σ→ R speci�es the Dirichlet boundary conditions, u denotes the control,
y a `temperature' to be computed and z a given target `temperature' for y. Finally, α > 0
denotes a regularisation parameter. For simplicity, no restrictions are assumed on the
control u.

This problem was already analysed in [34] in a multigrid setting and is included here for
reference purposes. The equation has to be interpreted in the weak form on the space-time
cylinder. A possible formulation (cf. [26, 62]) needs the space

H1,1
0 (Q) := L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;L2(Ω)).

The function y is a solution of the above heat equation if it has the form y = ỹ+ g̃ with a
function g̃ ∈ V , g̃|Σ = g and a function ỹ ∈ H1,1

0 (Q) such that

(ỹt, v)Q + (∇ỹ,∇v)Q = (u− g̃t, v)Q − (∇g̃,∇v)Q ∀ v ∈ L2(0, T ;H1
0 (Ω)),

ỹ(0, ·) = y0 a. e. in Ω.

In particular, y|Σ = ỹ|Σ + g̃|Σ = 0 + g̃|Σ = g satis�es the boundary conditions. Under mild
conditions (cf. [58, Chapter 7]), solutions exist and are unique.

Optimal control of the nonstationary Stokes equations

For U := L2(Q)dim, V := H1,1(Q)dim, Z0 := {q ∈ L2(Ω) :
∫

Ω q dx = 0}, Z := L2(0, T ;Z0),
u, z ∈ U , y ∈ V and p ∈ Z, formally consider the problem

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q −→ min! (2.2)

s.t. yt − ν∆y +∇p = u in Q,
−div y = 0 in Q,
y(0, ·) = y0 in Ω,

y = g at Σ.

2.2. The First-Optimise-Then-Discretise calculus – step one 23

This formulation is a simpli�cation of the optimal distributed control of the Navier�Stokes
equations which were considered, e. g., in [84]. The function g : Σ → Rdim speci�es the
Dirichlet boundary conditions, u denotes the control, y the velocity vector to be computed,
p the pressure and z a given target velocity �eld for y. The parameter ν > 0 de�nes the
viscosity which is assumed to be constant. Furthermore, α > 0 again denotes a constant
regularisation parameter. For simplicity, no restrictions are assumed on the control u.

The above equation has to be interpreted in the weak sense on the space-time cylinder.
With H1,1

0 (Q) de�ned as above, the pair (y, p) is a solution of the above Stokes equations if
y has the form y = ỹ+ g̃ with a function g̃ ∈ V , g̃ = g on Σ and a function ỹ ∈ H1,1

0 (Q)dim

such that

(ỹt, v)Q + (ν∇ỹ,∇v)Q − (p,div v)Q

= (u− g̃t, v)Q − (ν∇g̃,∇v)Q ∀ v ∈ L2(0, T ;H1
0 (Ω)dim),

(−div ỹ, q)Q = (div g̃, q)Q ∀ q ∈ L2(Q),

y(0, ·) = y0 a. e. in Ω.

The above problem can be extended to the control of the Navier�Stokes equations as
follows:

Optimal control of the nonstationary Navier–Stokes equations

With the same spaces and notations as in 2.), formally consider the problem

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q −→ min! (2.3)

s.t. yt − ν∆y + y∇y +∇p = u in Q,
−div y = 0 in Q,
y(0, ·) = y0 in Ω,

y = g at Σ,

which also has to be interpreted in the weak sense, similar to the Stokes equations as above.
This problem was considered, e. g., in [1, 61, 84].

2.2. The First-Optimise-Then-Discretise calculus.
Step one: The optimisation

The First-Optimise-Then-Discretise calculus is a common way to discretise large-scale
PDE-constrained minimisation problems, cf. [92, 139]. It contains two steps:

a) In the �rst step, a set of optimality conditions is derived for the minimisation problem
under consideration. For this purpose, the formal Lagrange multiplier approach is
applied on the continuous level. An auxiliary Lagrange functional is formulated
and minimised without constraints. The �rst order necessary optimality conditions
of this Lagrange functional, also called `Karush-Kuhn-Tucker' or `KKT' conditions,
characterise a set of critical points which are candidates for local extrema of the
original minimisation problem.

b) In a second step, the KKT system (which is now a set of equations on the continuous
level) is discretised and solved.

24 Problem formulation and discretisation

While it is a problem of its own to analyse and prove under which conditions a critical
point forms a global minimum (see [157]), this work concentrates on setting up and solving
the underlying KKT system.

This section focuses on step a). The formal Lagrange multiplier approach is exemplarily
applied to the optimal control of the Navier�Stokes equations. The aim is to derive a
compact form for the associated KKT system. This form plays a central role in the whole
work. It basically contains a set of two equations, a primal and a dual equation, which are
both fully coupled on the space-time cylinder. The whole discretisation and solver concept
is based on this form.

In Section 2.5 and the following sections, a special discretisation recipe is applied to
discretise the KKT system in space and time. This realises step b). The operators used
in the recipe are constructed as discrete counterparts to the operators in the continuous
KKT system. Later, Chapter 3 will create a multilevel based solver strategy based on this
discretisation scheme.

Simplified optimal control of the Navier–Stokes equations All following notations
and formal transformations have to be interpreted in the weak sense. Consider the optimal
distributed control of the Navier�Stokes equations (2.3) on page 23. For simplicity, the
initial and boundary conditions are assumed to be homogeneous, i. e., y0 = 0 and g = 0.
Even more, boundary and initial conditions are treated as explicit constraints and are
not included into the Lagrange functional; for a proper derivation of the KKT system,
this would have to be done, but for the pure motivation of the discretisation recipe used in
later chapters, these quantities are neglected for the moment. With these settings, equation
(2.3) reads

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q −→ min! (2.4)

s.t. yt − ν∆y + y∇y +∇p = u in Q,
−div y = 0 in Q,
y(0, ·) = 0 in Ω,

y = 0 at Σ,

with U = L2(Q), V = H1,1(Q)dim, Z0 = {q ∈ L2(Ω) :
∫

Ω q = 0}, Z := L2(0, T ;Z0),
y ∈ V , u ∈ U and p ∈ Z. To simplify the notation, the spaces X := V × Z, the variables
x := (y, p) ∈ X, x̄ := (ȳ, p̄) ∈ X and the operators

J̃(x, u) := J(y, u),

H(x)x̄ :=

(
ȳt − ν∆ȳ + y∇ȳ +∇p̄,

−div ȳ

)
are introduced. With this notation, the optimal control problem can be written in the
form

J̃(x, u) −→ min! (2.5)

s.t. H(x)x =

(
u
0

)
in Q,

y(0, ·) = 0 in Ω,

y = 0 at Σ.

2.2. The First-Optimise-Then-Discretise calculus – step one 25

The formal Lagrange multiplier approach The next step applies the formal Lagrange
multiplier technique to the above equation. A description of this approach can be found,
e. g., in [92, 139], see also [11]. For a dual variable ψ := (λ, ξ) ∈ X, the Lagrange functional

L(x, u, ψ) := J(x, u) +

((
u
0

)
−H(x)x, ψ

)
Q

is introduced; initial/boundary conditions are neglected for simplicity. The scalar product
is the natural scalar product over Q, i. e., for all v = (vy, vp) ∈ X and w = (wy, wp) ∈ X,
there is

(v, w)Q = (vy, wy)Q + (vp, wp)Q.

A critical point of L(·) is a candidate for a minimiser of (2.4). The critical points are
characterised by

DL(x, u, ψ)(x̄, ū, ψ̄) = 0 (2.6)

for all (x̄, ū, ψ̄) with x̄ := (ȳ, p̄) ∈ X, ψ̄ := (λ̄, ξ̄) ∈ X and ū ∈ U . With DL(·), the Fréchet
derivative of L(·) is denoted. Equation (2.6) reads in detail

0 =

((
y − z

0

)
, x̄

)
Q

+ (αu, ū)Q

+

((
u
0

)
−H(x)x, ψ̄

)
Q

+ (ψ,DHx̄)Q

+

((
u
0

)
, ψ̄

)
Q

+

(
ψ,

(
ū
0

))
Q

(2.7)

with DH = DH(x) being the Fréchet derivative of x 7→ H(x)x, i. e.,

DH(x)x̄ =

(
ȳt − ν∆ȳ + (ȳ∇y + y∇ȳ) +∇p̄

−div ȳ

)
. (2.8)

Equation (2.7) leads to the so called `Karush-Kuhn-Tucker' or `KKT' system

H(x)x =

(
u
0

)
DH∗(x)ψ =

(
y − z

0

)
u = − 1

α
λ.


(2.9)

The last equation can be eliminated by plugging it into the �rst one. The result is the KKT
system in abstract form with two equations, which is formulated in the next corollary. For
an even more compact notation,

Bψ :=

(
− 1
αλ
0

)
and B̃x :=

(
y − z

0

)
are used.

2.1 Corollary. With the above notations, the KKT system associated with the minimi-
sation problem (2.4) reads

H(x)x = Bψ, (2.10a)

DH∗(x)ψ = B̃x. (2.10b)

26 Problem formulation and discretisation

The operator DH∗ = DH∗(x) is the adjoint operator of the Fréchet derivative DH =
DH(x) of the Navier�Stokes operator H(x)x, i. e., for all v, w ∈ X there is

(v,DHw)Q = (DH∗v, w)Q. (2.11)

Without loss of generality, (2.10) can be assumed to include the initial/end time/boundary
conditions, they can be added via additional terms in the Lagrange functional.

2.3. The KKT systems in detail

Equation (2.10) denotes in a general way the �rst order necessary optimality conditions
and holds in a similar way for all minimisation problems to which the Lagrange multiplier
approach is applied. Of course, the above formulation still lacks a proper de�nition of
the initial/boundary conditions in the primal and dual equation; these can be obtained
by including the initial/boundary conditions of the primal equation into the Lagrange
functional as well. Applying the whole calculus, the following detailed KKT systems are
obtained, which all have to be interpreted in the weak sense on the space-time cylinder (cf.
[84, 139]):

Heat equation

With U = L2(Q) and V = H1,1(Q), there are y, λ ∈ V and u ∈ U to be found such that
for z ∈ U there is

yt −∆y = u in Q,
y(0, ·) = y0 in Ω,

y = g at Σ,

 (2.12a)

−λt −∆λ = y − z in Q,
λ(T, ·) = 0 in Ω,

λ = 0 at Σ,

 (2.12b)

u = − 1

α
λ in Q. (2.12c)

In this set of equations, λ denotes the `dual temperature'. The control u can be eliminated,
which leads to the coupled system

yt −∆y = − 1

α
λ, (2.13a)

−λt −∆λ = y − z, (2.13b)

complemented by the above initial/end time/boundary conditions. (2.13a) is called the
primal and (2.13b) the dual equation.

2.3. The KKT systems in detail 27

Stokes equations

With U = L2(Q)dim, V = H1,1(Q)dim, Z0 = {q ∈ L2(Ω) :
∫

Ω q dx = 0}, Z := L2(0, T ;Z0)
there are y, λ ∈ V , p, ξ ∈ Z, u ∈ U to be found such that for z ∈ U there is

yt − ν∆y +∇p = u in Q,
−div y = 0 in Q,
y(0, ·) = y0 in Ω,

y = g at Σ,

 (2.14a)

−λt − ν∆λ+∇ξ = y − z in Q,
−div λ = 0 in Q,
λ(T, ·) = 0 in Ω,

λ = 0 at Σ,

 (2.14b)

u = − 1

α
λ in Q. (2.14c)

Herein, λ denotes the `dual velocity' and ξ the `dual pressure'. Eliminating u, the reduced
nonlinear KKT system reads

yt − ν∆y +∇p = − 1

α
λ, (2.15a)

−div y = 0,

−λt − ν∆λ+∇ξ = y − z, (2.15b)

−div λ = 0,

complemented by the above initial/end time/boundary conditions. (2.15a) is called the
primal and (2.15b) the dual equation.

Navier–Stokes equations

With the same spaces as in the case of the Stokes equations, there are y, λ ∈ V , p, ξ ∈ Z,
u ∈ U to be found such that for z ∈ U there is

yt − ν∆y + y∇y +∇p = u in Q,
−div y = 0 in Q,
y(0, ·) = y0 in Ω,

y = g at Σ,

 (2.16a)

−λt − ν∆λ− y∇λ+ (∇y)Tλ+∇ξ = y − z in Q,
−div λ = 0 in Q,
λ(T, ·) = 0 in Ω,

λ = 0 at Σ,

 (2.16b)

u = − 1

α
λ in Q. (2.16c)

28 Problem formulation and discretisation

Elimination of u leads the reduced KKT system

yt − ν∆y + y∇y +∇p = − 1

α
λ, (2.17a)

−div y = 0,

−λt − ν∆λ− y∇λ+ (∇y)Tλ+∇ξ = y − z, (2.17b)

−div λ = 0,

complemented by the above initial/end time/boundary conditions. For the exact analytical
setting of these equations including a discussion about existence and uniqueness, see [92,
139, 157].

2.4. Ellipticity of the KKT system

Consider for the moment a modi�ed optimal control problem for the heat equation, which
reads

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q −→ min!

s.t. yt −∆y + cy = u in Q,
∂ηy = g at Σ,

y(0, ·) = y0 in Ω,

 (2.18)

with constants α, c > 0 and functions y, u, z : Q → R. Here, η : Γ→ R2 denotes the outer
unit normal vector of the domain Ω ⊂ R2 and Q = (0, T) × Ω for T > 0. The �rst order
necessary optimality conditions for this problem are given by

yt −∆y + cy = u in Q, (2.19a)

−λt −∆λ+ cλ = y − z in Q, (2.19b)

∂ηy = g at Σ, (2.19c)

∂ηλ = 0 at Σ, (2.19d)

y(0, ·) = y0 in Ω, (2.19e)

λ(T, ·) = 0 in Ω, (2.19f)

αu+ λ = 0 in Q, (2.19g)

which have to be understood in the weak sense on the space-time cylinder Q.
It is shown in [121] that under suitable conditions, this problem is equivalent to the

following mixed harmonic (in time) / biharmonic (in space) problem

−λtt + ∆2λ− 2c∆λ+ (c2 +
1

α
)λ = f in Q,

∂η(∆λ) = 0 at Σ,

∂ηλ = 0 at Σ,

−λt −∆λ+ cλ = 0 at {0} × Ω,

λ(T, ·) = 0 in Ω

in the weak sense, for a properly de�ned f : Q → R2.

2.4. Ellipticity of the KKT system 29

For a more precise interpretation of this statement, in [121], Neitzel et al. de�ne the
spaces

H2,1(Q) = L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)), (2.20)

V := H̄2,1(Q) = {y ∈ H2,1(Q)) : ∂ηy = 0 on Σ, y(T, ·) = 0 in Ω}, (2.21)

and the bilinear form aα(·, ·),

aα(v, w) = (vt, wt) + (∆v,∆w)− (∆v, wt) + (vt,∆w)

+ 2c(∇v,∇w) + (c2 +
1

α
)(v, w)

+ c(v(0, ·), w(0, ·))L2(Ω) (2.22)

with (·, ·) = (·, ·)L2(Q) for v, w ∈ H2,1(Q). The dual variable λ ∈ V is the solution of a
linear equation

aα(λ,w) = (f, w) ∀w ∈ V,

for a properly de�ned f ∈ L2(Q). The control u and the solution y can be calculated from
λ in a postprocessing step using (2.18) and (2.19g). According to [121], the bilinear form
aα(·, ·) is V-elliptic, i. e., there is a constant κ > 0 such that

aα(v, v) ≥ κ||v||2H2,1(Q)

for all v ∈ V . Thus, the KKT system is equivalent to a V-elliptic problem on the space-time
cylinder Q.

Deriving the biharmonic operator in a formal way

Applying the same techniques as in [34], the mixed harmonic/biharmonic problem can also
be derived in a formal way: Solving the dual equation

−λt −∆λ+ cλ = y − z

for y and applying ∂t leads to

y = −λt −∆λ+ cλ+ z, (2.23)

yt = −λtt −∆λt + cλt + zt. (2.24)

Inserting (2.23) and (2.24) into the primal equation

yt −∆y + cy = − 1

α
λ

and cancelling out all redundant terms, the mixed harmonic/biharmonic equation

−λtt + ∆2λ− 2c∆λ+ (c2 +
1

α
)λ = f

in λ is obtained, with f := −(zt −∆z + cz).

30 Problem formulation and discretisation

The Stokes equations The same technique can also be used for the Stokes equations.
Setting formally

y, λ ∈ {g : Q → R2 : div g = 0},
the steps in a) can be applied to the KKT system for the optimal distributed control of
the Stokes equations,

yt − ν∆y = − 1

α
λ in Q

−λt − ν∆λ = y − z in Q,

which formally leads to the system

−λtt + ν2∆2λ+
1

α
λ = f

in λ, with f := −(zt−∆z). This has the form of the mixed harmonic/biharmonic problem
in a), so an elliptic character can be expected here.1

The Navier–Stokes equations In case of the Navier�Stokes equations, the KKT system
allows to formally derive

yt − ν∆y + y∇y = − 1

α
λ,

−λt − ν∆λ− y∇λ+ (∇y)Tλ− y = −z, (2.25)

⇒ λ = −α(yt − ν∆y + y∇y), (2.26)

⇒ λt = −α(ytt − ν∆yt + yt∇y + y∇yt). (2.27)

Inserting (2.26) and (2.27) into (2.25) and cancelling out redundant terms leads to a mixed
harmonic/biharmonic system for the primal variables of the form

−ytt + ν2∆2y + γ(yt, y) + y = z

for some function γ(yt, y) that contains at most third derivatives of y in space. If ν is large
enough, the system can be seen as a disturbed Stokes problem, so an elliptic character
similar to the case of the Stokes equations can be expected. Similar arguments also indicate
ellipticity for the Fréchet derivative of the KKT system.

2.2 Remark. The elliptic character of the KKT system and its Fréchet derivative on
the space-time cylinder is the key point for this work. The following chapters derive a
solver for the KKT system that acts on the whole space-time cylinder. The solver itself
is basically a Newton solver which in each iteration has to solve a linear subproblem on
the space-time cylinder that represents the Fréchet derivative of the KKT system. The
idea is now to apply a multigrid based algorithm for these linear subproblems. Multigrid
based algorithms are known to show level-independent convergence rates for problems
that have an elliptic character (cf. [72, 75]) and should therefore be able to solve the linear
subproblems with linear complexity. Finally, an outer Newton method which solves for a
possible nonlinearity is expected to converge independent of the re�nement as well.

Before the solver methodology can be presented, a proper discretisation scheme must
be applied to the minimisation problem. This is one part in the second step in the First-
Optimise-Then-Discretise calculus. The KKT system is semi-discretised in time with a
proper time discretisation scheme in a way that imitates the derivation of the KKT system
in Section 2.2. In a last step, the system is discretised in space using �nite elements.

1In this context, ellipticity refers to V-ellipticity for an appropriate space V on the space-time cylinder
Q; the term `V' is omitted for convenience.

2.5. Time discretisation with the implicit Euler scheme 31

2.5. Time discretisation with the implicit Euler scheme

For stability and e�ciency reasons (cf. [142]), the time discretisation of the KKT system
is carried out with implicit time stepping techniques. The largest admissible timestep size
for such schemes is not limited by stability constraints, and thus, it can be chosen only
based on accuracy requirements. This is preferable, as the user might want to increase
the accuracy of the spatial discretisation without having to increase the number of time
intervals due to some kind of CFL condition.

Example The main aim for the algorithm presented in this work is that the
algorithm should have linear complexity, i. e., the numerical complexity should be
proportional to the number of unknowns on the space-time cylinder. If for example
the accuracy of a computed solution induces the spatial mesh to be globally re�ned,
an increase in memory and CPU time by a factor of four on a 2D mesh can be
expected, as the number of degrees of freedom #dof grows by a factor of four. A
CFL condition due to a non-implicit timestepping would drive the time mesh to
be globally re�ned as well, which would �nally lead to an increase of #dof, CPU
time and memory by at least a factor of eight. Thus from the perspective of the
end user, the algorithm would take twice as much CPU time as expected, which is
undesirable.

The following paragraphs primarily focus on the standard �rst order implicit Euler scheme.
Later, the concept is generalised to the Crank�Nicolson or general θ-scheme, respectively.
All steps are directly applied to the Navier�Stokes equations; for the heat equation, only
the �nal results are mentioned.

2.5.1. The Navier–Stokes equations

The derivation of a proper time discretisation scheme starts with the time discretisation
of the primal equation (2.17a) on page 28,

yn − yn−1

k
− ν∆yn + yn∇yn +∇pn, = − 1

α
λn, (2.28)

−div yn = 0,

y0 = y0,

with yn, λn ∈ V and pn ∈ Z for n = 1, ..., N with N ∈ N and k = 1/N . Next, the
discretisation recipe from [11] is applied to (2.28) to derive a discrete couterpart to (2.17b)
on page 28. The involved operators I, G, D and Cn are de�ned for arbitrary velocity
vectors v and pressure functions q in space as follows:

I : v 7→ v, G : q 7→ ∇q,
Cn = C(yn) : v 7→ −ν∆v + (yn∇)v, D : v 7→ −div v.

The initial solution y0 ∈ V is not necessarily solenoidal. The initial condition y0 = y0

is therefore realised by the following solenoidal projection,

1

k
y0 − ν∆y0 + y0∇y0 +∇p0 =

1

k
y0 − ν∆y0 + y0∇y0,

−div y0 = 0.

This projection uses the same operations as the implicit Euler scheme and allows a more
consistent notation. With Xk := (V × Z)N+1, using x := (y0, p0, y1, p1, ..., yN , pN) ∈ Xk,

32 Problem formulation and discretisation

this yields the nonlinear system of the primal equation,

Hkx := Hk(x)x

=



I
k + C0 G
D
−Ik

I
k + C1 G
D
.

−Ik
I
k + CN G
D





y0

p0

y1

p1
...

yN

pN


=

(
(
I
k

+ C0)y0, 0, −λ1

α
, 0, ..., −λN

α
, 0,

)T

which is equivalent to (2.28) if y0 is solenoidal. This equation is the discrete counterpart
to the primal equation (2.10a) on page 25 that appears during the derivation of the KKT
system with the formal Lagrange principle.

In the second step, a discrete counterpart to the corresponding dual equation (2.10b)
on page 25 has to be derived. Similar to the continuous case, the starting point is the
Fréchet derivative DH of the Navier�Stokes equations, see (2.8) on page 25. The operator
DH is discretised in time by the same timestepping scheme as the operator H, so as to
obtain the discrete Fréchet derivative DHk(x) of the mapping x 7→ Hk(x)x. In particular,
for a vector x̄ := (ȳ0, p̄0, ȳ1, p̄1, ..., ȳN , p̄N) ∈ Xk the resulting scheme can be expressed in
a matrix-vector notation over all timesteps,

DHkx̄ := DHk(x)x̄

=



I
k +N0 G
D
−Ik

I
k +N1 G
D
.

−Ik
I
k +NN G
D





ȳ0

p̄0

ȳ1

p̄1
...

ȳN

p̄N


,

with the additional operator

Nn := N (yn) : v 7→ −ν∆v + (yn∇)v + (v∇)yn.

Corresponding to (2.11) on page 26, the time discretisation of the dual equation is de�ned
as the adjoint DHk,∗ of DHk,

(ψ,DHkx̄) = (DHk,∗ψ, x̄),

whereby ψ := (λ0, ξ0, λ1, ξ1, ..., λN , ξN) ∈ Xk. Exploiting D∗ = G and the adjoint of Nn
being given by

N ∗n = N ∗(yn) : v 7→ −ν∆v − (yn∇)v + (∇yn)Tv

2.5. Time discretisation with the implicit Euler scheme 33

for all velocity vectors v ∈ V , this yields

DHk,∗ψ = DHk,∗(x)ψ

=



I
k +N ∗0 G −Ik
D

I
k +N ∗1 G −Ik
D

.
I
k +N ∗N G
D





λ0

ξ0

λ1

ξ1
...

λN

ξN


= (0, 0, y1 − z1, 0, ..., yN − zN , 0)T.

The right-hand side is chosen in such a way that the First-Optimise-Then-Discretise ap-
proach used here commutes with the First-Discretise-Then-Optimise approach, see below.
Correspondingly, the time discretisation scheme of the dual equation (2.17b) on page 28
reads

λn − λn+1

k
− ν∆λn − yn∇λn + (∇yn)Tλn +∇ξn = yn − zn, (2.29a)

−div λn = 0, (2.29b)

λN
k
− ν∆λN − yN∇λN + (∇yN)TλN +∇ξN = yN − zN , (2.29c)

where (2.29c) approaches the actual end time condition λ(T, ·) = 0 for k → 0. With
wn := (yn, λn, pn, ξn), the primal and dual solutions are combined in the vector

w :=
(
y0, λ0, p0, ξ0︸ ︷︷ ︸

w0

, y1, λ1, p1, ξ1︸ ︷︷ ︸
w1

, y2, λ2, p2, ξ2︸ ︷︷ ︸
w2

, ...
)T

∈ (V × V × Z × Z)N+1.

Shifting the terms with λn and yn in (2.28) and (2.29) from the right-hand side to the
left-hand side and mixing the two matrices stemming from Hk and DHk,∗ yields the semi-
discrete system

G(w)w = f. (2.30)

The right-hand side is given by

f =
(

(I/k + C0)y0, 0, 0, 0︸ ︷︷ ︸
f0

, 0,−z1, 0, 0︸ ︷︷ ︸
f1

, ..., 0,−zN−1, 0, 0︸ ︷︷ ︸
fN−1

, 0,−zN , 0, 0︸ ︷︷ ︸
fN

)T
and the operator on the left-hand side reads

G = G(w) =


G0 Î0

Ĭ1 G1 Î1

Ĭ2 G2 Î2

.

ĬN GN

 (2.31)

34 Problem formulation and discretisation

with

G0 =


I
k + C0 0 G 0

0 I
k +N ∗0 0 G

D 0 0 0

0 D 0 0

 , Gn =


I
k + Cn I

α G 0

−I I
k +N ∗n 0 G

D 0 0 0

0 D 0 0

 ,

Ĭn =


−Ik

0

0

0

 , În−1 =


0

−Ik
0

0

 ,

for n = 1, ..., N .

2.5.2. The Newton system associated with (2.30)

With the semi-discrete system at hand, a Newton algorithm in space and time can be
formulated. Written in defect correction form, the corresponding iteration reads

wi+1 := wi + F(wi)
−1(f −G(wi)wi), i ∈ N (2.32)

starting with an initial iterate w0 ∈ (V × V × Z × Z)N+1. Here, F(w) is the Fréchet
derivative of the mapping w 7→ G(w)w which is given by the Newton matrix

F(w) =


F0 Î0

Ĭ1 F1 Î1

Ĭ2 F2 Î2

.

ĬN FN

 , (2.33)

F0 =


I
k +N0 0 G 0

R0
I
k +N ∗0 0 G

D 0 0 0

0 D 0 0

 , Fn =


I
k +Nn 1

αI G 0

−I +Rn I
k +N ∗n 0 G

D 0 0 0

0 D 0 0


for n = 1, ..., N . The additional operator Rn is de�ned as

Rn := R(λn) : v 7→ −(v∇)λn + (∇v)Tλn for all v ∈ V .

2.5.3. The heat equation

The presented derivation of the semi-discrete KKT system carries over to the heat equation
(2.13) on page 26. Using A : V → V ∗, A : v 7→ −∆v for all v ∈ V , applying the above
discretisation recipe leads to

Gw = f (2.34)

with

f =
(

(I/k +A)y0, 0︸ ︷︷ ︸
f0

, 0,−z1︸ ︷︷ ︸
f1

, ..., 0,−zN−1︸ ︷︷ ︸
fN−1

, 0,−zN︸ ︷︷ ︸
fN

)T
,

w = (y0, λ0, y0, λ1, ..., yN , λN)T,

2.5. Time discretisation with the implicit Euler scheme 35

G =


G0 Î0

Ĭ1 G1 Î1

Ĭ2 G2 Î2

.

ĬN GN

 (2.35)

and the matrices

G0 =

(
I
k +A 0

0 I
k +A

)
, Gn =

(
I
k +A I

α

−I I
k +A

)
,

Ĭn =

(
−Ik 0

0 0

)
, În−1 =

(
0 0

0 −Ik

)
,

for n = 1, ..., N . This corresponds to the (time-)discrete primal-dual system

yn − yn−1

k
−∆yn = − 1

α
λn, (2.36a)

λn − λn+1

k
−∆λn = yn − zn, (2.36b)

y0

k
−∆y0 =

y0

k
−∆y0 approximating y0 = y0, (2.36c)

λN
k
−∆λN = yN − zN approximating λN = 0, (2.36d)

accompanied by the boundary conditions.

An equivalent First-Discretise-Then-Optimise strategy The semi-discrete scheme
(2.34) (including the right-hand side) can also be derived using a special First-Discretise-
Then-Optimise discretisation strategy in time that maintains the structure of the optimi-
sation problem. For brevity, this technique is illustrated for the optimal distributed control
of the heat equation (2.1) on page 22,

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q −→ min! (2.37)

s.t. yt −∆y = u in Q,

y(0, ·) = y0 in Ω,

y = g at Σ.

The variable y := (y0, y1 , ..., yN) ∈ V N+1 denotes the set of velocity vectors and u :=
(u0, u1, ..., uN) ∈ UN+1 the set of controls, yn = y(tn), un = u(tn) for all n. The choice of
the time discretisation for the norm || · ||Q in the primal and dual space is crucial for the
form of the resulting discrete KKT system. In particular, choosing the summed rectangular
rule yields (including a projection in the �rst timestep which ensures, e. g., that boundary

36 Problem formulation and discretisation

conditions at t = 0 are satis�ed)

JIE(y, u) :=
1

2
k

N∑
n=1

||yn − zn||2Ω +
α

2
k

N∑
n=1

||un||2Ω −→ min! (2.38)

s.t. (yn − yn−1)− k∆yn = kun in Ω, n = 1, ..., N,

y0 − k∆y0 = y0 − k∆y0 in Ω,

yn = g(tn, ·) at Γ, n = 0, ..., N,

where JIE(·) denotes the discrete counterpart to J(·) based on the implicit Euler time
discretisation. Keeping the structure of the necessary optimality conditions of the First-
Optimise-Then-Discretise approach in mind, the formal Lagrange multiplier technique can
be applied to derive a discrete KKT system: Neglecting the boundary conditions for the
moment, a corresponding Lagrange functional reads

LIE(y, u, λ) := JIE(y, u)

+

N∑
n=1

(
λn, kun − (yn − yn−1 − k∆yn)

)
+
(
λ0, (y

0 + k∆y0)− (y0 − k∆y0)
)

(2.39)

for a set of dual velocities λ = (λ0, λ1, ..., λN) ∈ V N+1. System (2.34) follows from
DLIE(y, u, λ) = 0.

2.6. Time discretisation with a general one-step θ-scheme

The following paragraphs generalise the discretisation techniques from the implicit Euler
scheme to a general one step θ-scheme in time. For θ = 1, the scheme reduces to the
implicit Euler scheme from above. For θ = 1

2 , a variant of the Crank�Nicolson scheme is
obtained which is second order in time. The discretisation is again directly applied to the
nonstationary Navier�Stokes equations; results for the heat equation are mentioned brie�y.

2.6.1. The Navier–Stokes equations

Similar to the implicit Euler case, the time interval [0, T] is divided into N ∈ N equidistant
intervals of length k = 1/N . Based on the idea in [59], a special modi�ed θ-scheme is used
which stores the dual solution at points in time di�erent from the primal solution, see also
Appendix D. This idea allows a more consistent notation of the algorithm, reduces the
number of couplings in time and exploits at θ = 1

2 the special central-di�erence nature of
Crank�Nicolson. Consider the scheme

yn − yn−1

k
+ θ(−ν∆yn + yn∇yn)

+ (1− θ)(−ν∆yn−1 + yn−1∇yn−1) +∇pn−1+θ = un−1+θ (2.40)

−div yn = 0

y0 = y0

for θ ∈ [1
2 , 1] and n = 1, ..., N , yn, un−1+θ ∈ V , pn−1+θ ∈ Z.

The right hand side un−1+θ is interpreted as an approximation to u(θtn + (1− θ)tn−1).
The same holds for pn−1+θ. There is un−1+θ = un + O(k) and un− 1

2
= 1

2(un−1 + un) +

2.6. Time discretisation with a general one-step θ-scheme 37

O(k2) which re�ects the second order accuracy in time for θ = 1
2 . In comparison, the

traditional Crank�Nicolson scheme uses 1
2(un+un−1) as right hand side with un interpreted

as approximation to u(tn), see also Figure 2.1. For a more detailed discussion about the
interpretation of the pressure and the right-hand side in the time stepping scheme, see
Appendix D.

Figure 2.1: Di�erence in the right-hand side for a quadratic control u (in time). The
traditional Crank�Nicolson uses u0+u1

2 , u1+u2
2 ,... and modi�ed Crank�Nicolson scheme u 1

2
,

u 3
2
,...

In the next step, the discretisation recipe from [11] is applied. Additionally to the
operators from Section 2.5, with τ ∈ R, the operator

Cτn := Cτ (yn) : v 7→ τ(−ν∆v + (yn∇)v)

is used, for all velocity vectors v ∈ V . Using Xk := (V ×Z)N+1 and x := (y0, p−1+θ, y1, pθ,
y2, p1+θ..., yN , pN−1+θ) ∈ Xk, this yields the nonlinear system of the primal equation,

Hkx := Hk(x)x := Hkθ (x)x

=



I
k + Cθ0 G
D
−Ik + C1−θ

0
I
k + Cθ1 G
D
.

−Ik + C1−θ
N−1

I
k + CθN G
D





y0

p−1+θ

y1

pθ
...

yN

pN−1+θ


=

(
(
I
k

+ Cθ0)y0, 0, −λθ/α, 0, ..., −λN−1+θ/α, 0

)T

which is equivalent to (2.40) in case that y0 is solenoidal because of a proper projection
in the �rst timestep. This equation is the discrete counterpart to the primal equation
(2.10a) on page 25 that appears during the derivation of the KKT system with the formal
Lagrange principle.

In the second step, a discrete counterpart to the corresponding dual equation (2.10b)
on page 25 is derived. The Fréchet derivative DH of the Navier�Stokes equations (see
equation (2.8) on page 25) is discretised with the same timestepping scheme which has
been used for Hk. This leads to DHk, the discrete Fréchet derivative of the mapping
x 7→ Hk(x)x. In particular, for a vector x̄ := (ȳ0, p̄−1+θ, ȳ1, p̄θ, ..., ȳN , p̄N−1+θ) ∈ Xk the

38 Problem formulation and discretisation

resulting scheme expressed in matrix-vector notation reads

DHkx̄ := DHk(x)x̄ := DHkθ (x)x̄ := (2.41)

I
k +N θ

0 G
D
−Ik +N 1−θ

0
I
k +N θ

1 G
D
.

−Ik +N 1−θ
N−1

I
k +N θ

N G
D





ȳ0

p̄−1+θ

ȳ1

p̄θ
...

ȳN

p̄N−1+θ


with the additional operator

N τ
n := N τ (yn) : v 7→ τ(−ν∆v + (yn∇)v + (v∇)yn)

for all velocity vectors v ∈ V . Corresponding to (2.11) on page 26, the time discretisation
of the dual equation is de�ned as the adjoint DHk,∗ of DHk,

(ψ,DHkx̄) = (DHk,∗ψ, x̄),

where ψ := (λ−1+θ, ξ0, λθ, ξ1, ..., λN−1+θ, ξN) ∈ Xk. With the adjoint of N τ
n being de�ned

by

N τ,∗
n := N τ,∗(yn) : v 7→ τ(−ν∆v − (yn∇)v + (∇yn)Tv)

for all velocity vectors v ∈ V , this reads

DHk,∗ψ = DHk,∗(x)ψ

=



I
k +N θ,∗

0 G −Ik +N 1−θ,∗
0

D
I
k +N θ,∗

1 G −Ik +N 1−θ,∗
1

D
.

I
k +N θ,∗

N G
D





λ−1+θ

ξ0

λθ

ξ1
...

λN−1+θ

ξN


= (y0 − z0, 0, ..., yN−1 − zN−1, 0, θ(yN − zN), 0)T .

Similar to the implicit Euler case, the right-hand side is chosen in such a way that
the First-Optimise-Then-Discretise approach commutes with the First-Discretise-Then-
Optimise approach, see below. This corresponds to the time discretisation scheme

λn−1+θ − λn+θ

k
+ θ
(
−ν∆λn−1+θ − yn∇λn−1+θ + (∇yn)Tλn−1+θ

)
+(1− θ)

(
−ν∆λn+θ − yn∇λn+θ + (∇yn)Tλn+θ

)
+∇ξn = yn − zn

(2.42a)

−div λn−1+θ = 0 (2.42b)

λN−1+θ

k
+ θ
(
−ν∆λN−1+θ − yN∇λN−1+θ + (∇yN)TλN−1+θ

)
+∇ξN = θ(yN − zN)

(2.42c)

2.6. Time discretisation with a general one-step θ-scheme 39

applied to (2.17b) on page 28. Here, (2.42c) approaches the actual end time condition
λ(T, ·) = 0 for k → 0.

Figure 2.2 highlights the special de�nition of the points in time where the primal and
dual variables are located, here for θ = 1

2 . The points in time for the primal pressure
coincide with the points in time of the dual velocity and vice versa.

Figure 2.2: Distribution of the solutions on the time axis for θ = 1
2 .

Shifting the terms with λn−1+θ and yn in (2.40) and (2.42) from the right-hand side to
the left-hand side and mixing the two matrices originating from Hk and DHk,∗ once again
results in a semi-discrete system

G(w)w = f. (2.43)

The global solution vector w has the form

w :=
(
y0, λ−1+θ, p−1+θ, ξ0︸ ︷︷ ︸

w0

, y1, λθ, pθ, ξ1︸ ︷︷ ︸
w1

, y2, λ1+θ, p1+θ, ξ2︸ ︷︷ ︸
w2

, ...
)T

∈ (V × V × Z × Z)N+1

with wn := (yn, λn−1+θ, pn−1+θ, ξn). The right-hand side is given by

f =
(

(I/k + θC0)y0,−(1− θ)z0, 0, 0︸ ︷︷ ︸
f0

, 0,−z1, 0, 0︸ ︷︷ ︸
f1

, ..., 0,−zN−1, 0, 0︸ ︷︷ ︸
fN−1

, 0,−θzN , 0, 0︸ ︷︷ ︸
fN

)T
and the left-hand side of the system reads

G = Gθ(w) =


G0 Î0

Ĭ1 G1 Î1

Ĭ2 G2 Î2

.

ĬN GN

 (2.44)

with

G0 = Gθ
0 =


I
k + Cθ0 0 G 0

−(1− θ)I I
k +N θ,∗

0 0 G
D 0 0 0

0 D 0 0

 ,

GN = Gθ
N =


I
k + CθN

1
αI G 0

−θI I
k +N θ,∗

N 0 G
D 0 0 0

0 D 0 0

 ,

Gn = Gθ
n =


I
k + Cθn 1

αI G 0

−I I
k +N θ,∗

n 0 G
D 0 0 0

0 D 0 0



40 Problem formulation and discretisation

for n = 1, ..., N − 1 and

Ĭn = Ĭθn =


−Ik + C1−θ

n−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , În−1 = Îθn−1 =


0 0 0 0

0 −Ik +N 1−θ,∗
n−1 0 0

0 0 0 0

0 0 0 0


for n = 1, ..., N .

2.6.2. The Newton system associated with (2.43)

The application of the Newton algorithm (2.32) on page 34 requires the Fréchet derivative
of the mapping w 7→ G(w)w. For the general one-step θ-scheme, it is given by the Newton
matrix

F(w) = Fθ(w) =


F0 Ĵ0

J̆1 F1 Ĵ1

J̆2 F2 Ĵ2

.

J̆N FN

 ,

where

F0 = Fθ0 =


I
k +N θ

0 0 G 0

−(1− θ)I +Rθ0 +R1−θ
1

I
k +N θ,∗

0 0 G
D 0 0 0

0 D 0 0

 ,

FN = FθN =


I
k +N θ

N
θ
αI G 0

−θI +RθN
I
k +N θ,∗

N 0 G
D 0 0 0

0 D 0 0

 ,

Fn = Fθn =


I
k +N θ

n
θ
αI G 0

−I +Rθn +R1−θ
n+1

I
k +N θ,∗

n 0 G
D 0 0 0

0 D 0 0

 ,

for n = 1, ..., N − 1 and

J̆n = J̆θn =


−Ik +N 1−θ

n−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , Ĵn−1 = Ĵθn−1 =


0 0 0 0

0 −Ik +N 1−θ,∗
n−1 0 0

0 0 0 0

0 0 0 0

 ,

for n = 1, ..., N with the additional operator

Rτn := Rτ (λn−1+θ) : v 7→ τ
(
− (v∇)λn−1+θ + (∇v)Tλn−1+θ

)
for all velocity vectors v ∈ V .

2.6. Time discretisation with a general one-step θ-scheme 41

2.6.3. The heat equation

For the heat equation, the system reads

Gw = f (2.45)

with

f =
(

(I/k +Aθ)y0,−(1− θ)z0︸ ︷︷ ︸
f0

, 0,−z1︸ ︷︷ ︸
f1

, ..., 0,−zN−1︸ ︷︷ ︸
fN−1

, 0,−θzN︸ ︷︷ ︸
fN

)T
,

G = Gθ =


G0 Î0

Ĭ1 G1 Î1

Ĭ2 G2 Î2

.

ĬN GN

 , (2.46)

whereby Aτ : V → V ∗, Aτ : v 7→ −τ∆v for all v ∈ V . The submatrices read

G0 =

(
I
k +Aθ0 0

−(1− θ)I I
k +Aθ0

)
, GN =

(
I
k + CθN

1
αI

−θI I
k +AθN

)
,

Gn =

(
I
k + Cθn 1

αI
−I I

k +Aθn

)

for n = 1, ..., N − 1 and

Ĭn =

(
−Ik +A1−θ

n−1 0

0 0

)
, În−1 =

(
0 0

0 −Ik +A1−θ
n−1

)
for n = 1, ..., N .

An equivalent First-Discretise-Then-Optimise strategy This system can also be ob-
tained using a First-Discretise-Then-Optimise approach that imitates the First-Optimise-
Then-Discretise approach. This approach is again presented for the optimal distributed
control of the heat equation (2.37) on page 35.

For the semi-discretisation in time, the time integrals of the solution and the control
are discretised with a scheme that respects their location. The �rst timestep is again
projected. This yields

JTS(y, u) :=
1

2
k

N∑
n=1

(
(1− θ) ||yn−1 − zn−1||2Ω + θ ||yn − zn||2Ω

)

+
α

2
k

N∑
n=0

||un−1+θ||2Ω

s.t.

(yn − yn−1)− k
(
θ∆yn + (1− θ)∆yn−1

)
= kun−1+θ in Ω, n = 1, ..., N

y0 − k
(
θ∆y0

)
= y0 − kθ∆y0 in Ω

yn = g(tn) at Γ, n = 0, ..., N,

42 Problem formulation and discretisation

where JTS denotes the discrete counterpart to J based on the θ-scheme time discretisation.
Note that for θ = 1/2, the time integral of the primal equation y is discretised with
the summed trapezoidal rule while the control u is discretised with the midpoint rule.
Both schemes are second order in 1D which corresponds to the order of Crank�Nicolson
discretisation in time.

Keeping the structure of the necessary optimality conditions of the First-Optimise-
Then-Discretise approach in mind, the formal Lagrange multiplier technique can be applied
to derive a discrete KKT system. Neglecting the boundary conditions at the moment, a
corresponding Lagrange functional reads

LTS(y, u, λ) := JTS(y, u)

+
N∑
n=1

(
λn−1+θ, k un−1+θ −

(
yn − yn−1 − k(θ∆yn + (1− θ)∆yn−1)

))
+
(
λ0, (y

0 + kθ∆y0)− (y0 − kθ∆y0)
)

for λ := (λ−1+θ, λθ, ..., λN−1+θ) ∈ Xk. System (2.45) follows from DLTS(y, u, λ) = 0.

2.7. Discretisation in space — the fully discretised problem

The discretisation scheme which is applied in this work decouples the time discretisation
from the space discretisation. In the previous two sections, the semi-discretisation in time
of the continuous KKT system has been addressed. The resulting semi-discrete KKT
system has been discrete in time and continuous in space. This section deals with the
space discretisation of the resulting semi-discrete system and applies the �nite element
approach to derive a fully discrete counterpart.

Let Ωh ⊂ Rdim be a triangulation of the domain Ω. The spaces V and (potentially)
Z are replaced by appropriate �nite element spaces Vh and (potentially) Zh build upon
the mesh Ωh. The fully discretised version of the KKT system and its associated Fréchet
derivative are de�ned by replacing the spatial operators I, C, D, ... by their �nite element
counterparts Ih, Ch, Dh, ... and by incorporating boundary conditions. For a convenient
notation, the superscript σ := (h, k) denotes a simultaneous discretisation in space and
time, while single subscripts/superscripts h or k refer to a discretisation in space or in time,
respectively. The nonlinear system for a discretisation with the implicit Euler scheme reads

Gσ(wσ)wσ = fσ (2.47)

whereas the one corresponding to the general θ-scheme is

Gσ(wσ)wσ = Gθ,σ(wσ)wσ = fσ. (2.48)

Here, Gσ represents the fully discrete counterpart of the space-time matrix G that stems
from the time discretisation. The vector wσ has the form

wσ = (wh0 , w
h
1 , ..., w

h
N) ∈ VN+1

h

with N ∈ N denoting the number of time intervals. The space Vh depends on the equation
being discretised. For the heat equation, the space Vh is de�ned as Vh := Vh × Vh. The
elements in wσ are given by

whn = (yhn, λ
h
n)

2.8. The First-Discretise-Then-Optimise strategy 43

for the implicit Euler scheme or generally

whn = (yhn, λ
h
n−1+θ)

for the general θ-scheme, n = 0, ..., N . For the Stokes/Navier�Stokes equations, it is
convenient to de�ne Vh := Vh × Vh × Zh × Zh. The elements in wσ have the form

whn = (yhn, λ
h
n, p

h
n, ξ

h
n) or whn = (yhn, λ

h
n−1+θ, p

h
n−1+θ, ξ

h
n),

respectively. The right-hand side is given by

fσ = (fh0 , f
h
1 , ..., f

h
N) ∈ (V∗h)N+1, fhn ∈ V∗h.

With the corresponding dual pairing (·, ·)V∗h,Vh in Vh, the space V∗h can be identi�ed2 with
Vh,

V∗h ∼= Vh,

which immediately induces
(V∗h)N+1 ∼= VN+1

h .

via an appropriate dual pairing on VN+1
h . Therefore, fhn has a unique representation in Vh

and fσ has a unique representation in VN+1
h .

The Fréchet derivative of wσ 7→ Gσ(wσ)wσ is denoted by F σ(wσ) and F σ(wσ) =
F σ,θ(wσ), respectively. F σ is the discrete counterpart to F. An important fact is that all
matrices analogously feature a block tridiagonal form,

Gσ = Gσ(wσ) =


G0 M̂0

M̆1 G1 M̂1

.

M̆N GN

 , F σ = F σ(wσ) =


F0 M̂0

M̆1 F1 M̂1

.

M̆N FN


where N ∈ N denotes the number of time intervals. Thus, the solver for the optimal control
problem reduces to a solver for a sparse block tridiagonal system, where the diagonal blocks
Gn = Gn(wσ) correspond to the timesteps of the fully coupled KKT system.

2.3 Remarks. A solver for system (2.47) or (2.48) can be de�ned without the need to
store the complete system in memory. Indeed, only space-time vectors have to be stored:
Utilising defect correction algorithms reduces the solution process to a sequence of matrix
vector multiplications in space. A matrix-vector multiplication of a solution wh with the
space-time matrix Gσ (or F σ) reduces to 3N + 1 local matrix-vector multiplications with
approximately sparse matrices, three for each time interval with M̆n, Gn (or Fn) and M̂n.
These local matrices can be created on-demand, so Gσ (or F σ) does not have to be stored
in its complete form. A more detailed description of this procedure will be given in the
next chapter.

2.8. The First-Discretise-Then-Optimise strategy

The above approach uses a First-Optimise-Then-Discretise strategy: First, the continuous
optimality system is derived. Second, an appropriate discretisation is applied. This yields
systems (2.47) and (2.48), respectively.

2 Since the spaces are discrete, this association is isomorphic.

44 Problem formulation and discretisation

The same system can also be derived by using a First-Discretise-Then-Optimise stra-
tegy. However, the term First-Discretise-Then-Optimise is not unique in the literature.
Instead of following the Lagrange multiplier approach, starting from the minimisation
problem, a discretisation in space and time leads to a fully discrete quadratic minimisation
problem. As an example, the heat equation (2.1) on page 22 with homogeneous boundary
conditions is considered. This reads

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q −→ min! (2.49)

s.t. yt −∆y = u in Q,

y(0, ·) = y0 in Ω,

y = 0 at Σ

for appropriate y, u, z, y0 and g.
Discretising in space with �nite elements and in time with the rectangular rule yields

the discrete counterpart for the above system

JIE(yσ, uσ) :=
1

2
k

N∑
n=1

||yn − zn||2Ω +
α

2
k

N∑
n=1

||un||2Ω −→ min! (2.50a)

s.t.
yn − yn−1

k
−∆yn = un in Q,

y0 −∆yσ0 = y0 −∆y0 in Ω,

yn = 0 at Σ.

 (2.50b)

with yσ = (y0, y1, ..., yN) ∈ V N+1
h , uσ = (u0, u1, ..., uN) ∈ V N+1

h . There are basically two
choices now:

i) The system is fully discrete in the degrees of freedom of yσ and uσ. Thus, stan-
dard nonlinear programming techniques can be applied to solve the system, see for
example [17, 103, 123, 153]. For this purpose, it is a common way to de�ne a re-
duced optimisation problem and an iteration for uσ. At �rst, a solution operator
Sh : V N+1

h → V N+1
h to (2.50b) is de�ned, with Sh(uσ) = yσ for every uσ ∈ V N+1

h .
Then, the minimisation problem (2.50) is equivalent to the reduced discrete quadratic
minimisation problem

J̃IE(uσ) := JIE(Sh(yσ), uσ)

=
1

2
k

N∑
n=1

||(Sh(uσ))n − zn||2Ω +
α

2
k

N∑
n=1

||un||2Ω −→ min!. (2.51)

At this point, standard methods from nonlinear programming can be applied, e. g.,
steepest descent or nonlinear CG method. The operator Sh(·) is used in a black box
manner. As a disadvantage of this approach, the complete mathematical structure of
the problem is `hidden' in Sh and usually not exploited by the optimisation algorithm.

ii) As an alternative, the Lagrange multiplier method can be applied, cf. Section 2.5.3.
Neglecting the boundary conditions for the moment, a Lagrange functional associated

2.9. Summary and conclusions 45

with (2.50a) reads

LIE(yσ, uσ, λσ) := JIE(yσ, uσ)

+
N∑
n=1

(
λn, kun − (yn − yn−1 − k∆yn)

)
+

(
λ0, (y

0 + k∆y0)− (y0 − k∆y0)
)

with λσ = (λ0, λ1, ..., λN) ∈ V N+1
h . This is the same formula as obtained by applying

the space discretisation to (2.39) on page 36. Demanding

DLIE(yσ, uσ, λσ) = 0

and eliminating the control uσ results in system (2.47). In the case of the general
θ-scheme, the steps are the same and lead to (2.48). Thus, the First-Optimise-Then-
Discretise approach commutes with the First-Discretise-Then-Optimise approach.
Since the discrete system stems from a continuous one, the mathematical structure
of the problem is still available and can be exploited by an appropriate solver.

As a summary, the proposed schemes (2.47) and (2.48) can be seen as the `most e�ective'
discretisation techniques in the sense that they result from a rather straightforward First-
Optimise-Then-Discretise approach that commutes with First-Discretise-Then-Optimise
approach. It can be said that `the best from two worlds is combined': From the First-
Optimise-Then-Discretise view, the so-called `inconsistent gradients' are avoided which can
lead to a premature stop in the iteration (cf. [69]) without having reached a meaningful
optimum. From the First-Discretise-Then-Optimise view, these schemes aim at re�ecting
as much structure from the First-Optimise-Then-Discretise approach � i. e., from the
continuous optimisation problem � as possible, see also [92, Chapter 3.2.4].

2.9. Summary and conclusions

This chapter has provided the �rst step in the design of a solver methodology for the op-
timal distributed control of nonstationary partial di�erential equations. In the beginning,
formulations for the optimal distributed control of the heat equation, the Stokes equations
and the Navier�Stokes equations have been introduced as a set of model problems. Based
on the formal Lagrange multiplier technique, �rst order necessary optimality conditions
have been formulated in a continuous setting.

In a second step, these KKT systems have been discretised in time. The discretisation
has been carried out on the one hand based on the implicit Euler timestepping scheme, on
the other hand based on the general one-step θ-scheme which contains the Crank�Nicolson
scheme as special case. The θ-scheme uses a special interpretation of the functions on the
time axis since the dual solution is not interpreted as being located at the endpoints of the
time interval.

At the end, a discretisation in space with �nite elements has been applied. The whole
discretisation has followed a special discretisation recipe which guarantees that the so called
First-Optimise-Then-Discretise strategy (i. e., �rst create the continuous optimality con-
ditions, then discretise them) commutes with the so called First-Discretise-Then-Optimise
strategy (i. e., �rst discretise the minimisation problem, then apply an optimisation stra-
tegy). This is a highly desirable property.

The First-Optimise-Then-Discretise strategy imposes a lot of structure into the discrete
optimisation problem. The problem is reformulated as a set of partial di�erential equations

46 Problem formulation and discretisation

in the continuous sense which shows an elliptic character on the space-time cylinder. This
is the key for e�ciency. In the next chapter, Chapter 3, the continuous formulation of
the KKT system will be exploited to generate a hierarchy of discrete KKT systems based
on a set of meshes on the space-time cylinder. With the help of appropriate projection
operators that allow to traverse this hierarchy, the multigrid framework will be applied.
This approach promises level-independent convergence rates and thus, in combination with
an additional multigrid solver for subproblems in space, linear complexity of the whole
algorithm.

The First-Discretise-Then-Optimise strategy has the advantage to provide meaningful
gradient information, i. e., descent directions with respect to the discrete functional to be
minimised. Inconsistent gradients are one of the main disadvantages of the First-Optimise-
Then-Discretise strategy for common mesh resolutions in practice [69, Section 2.9, Sec-
tion 4.1] since they can lead to an iteration which does not decrease the functional J(·) �
neither the continuous one, nor its discrete counterpart. In such a situation, the computed
solution can be far away from the optimum. An approach that follows the First-Discretise-
Then-Optimise strategy on the other hand does not su�er from inconsistent gradients.
Loosely speaking, computed search directions are downhill directions and the computed
result is a minimiser, at least for the discrete counterpart of the functional J(·).

The next chapter will concentrate on the design of the solver. Apart from the de�nition
of the problem hierarchy and the general solver approaches, the two main issues will be the
de�nition of appropriate projection operators to traverse the hierarchy � which are not
obvious if the general θ-scheme is chosen for the time discretisation � and the de�nition of
e�cient one-level smoothers, preconditioners and solvers. Exploiting the special structure
of the global space-time matrices, all operations will in the end reduce to global matrix-
vector multiplications and local linear systems based on the diagonal blocks of global
matrices.

3

The multigrid and the Newton solvers

This chapter builds up a solver methodology to solve the fully discrete KKT system which
has been derived in Chapter 2. Basically, an outer Newton iteration processes the non-
linearity. The linear subproblems appearing during the Newton algorithm are solved with
a space-time multigrid approach. This approach exploits the ellipticity in the underlying
optimisation problem: The multigrid method is known to converge with level-independent
convergence rates for a large class of elliptic problems. Since the KKT system also exhibits
an elliptic character on the space-time cylinder (see Section 2.4 on page 28�), this method
is expected to work also in this situation.

The multigrid preconditioner is formulated based on a hierarchy of systems. The in�nite
dimensional KKT system is at �rst discretised with the methods from Chapter 2 on a
hierarchy of space-time meshes. In a natural way, this leads to a hierarchy of problems
and serves as a basis for a multigrid solver. On each level of the hierarchy, standard block-
preconditioning techniques allow to formulate proper one-level solvers and smoothers which
reduce global space-time problems to sequences of linear systems in space. In the end, these
can be processed by a monolithic multigrid scheme in space that exploits the hierarchy of
�nite element spaces.

Outline

Section 3.1 describes how the discretisation techniques from Chapter 2 can be used to
generate a hierarchy of discrete problems associated with any of the KKT systems of the
model problems. In particular, this section introduces di�erent methods for creating a
hierarchy of meshes on the space-time cylinder. There is some freedom in the choice due
to the fact that the space-discretisation is independent of the time-discretisation.

Section 3.2 and 3.3 formulate the basic Newton solver and the basic multigrid solver in
the space-time framework. The multigrid solver is used as a preconditioner for the linear
subproblems that appear during the nonlinear loop on the �nest level. Both algorithms can
be formulated in a straightforward way, although the multigrid method needs additional
components to be de�ned properly.

The �rst couple of additional components needed by the multigrid algorithm are pro-
longation and restriction operators, which are described in Section 3.4. These operators are
a combination of prolongation/restriction operators in space and in time. Unfortunately,
due to the fact that a special variant of the Crank�Nicolson method is used for the time
discretisation in this work, the de�nition of prolongation/restriction operators in time is
not obvious. For a proper formulation, the concept of `discrete abstract functions' is in-
troduced here. This adapts the usual concept of abstract functions to the situation that
a function is represented as set of discrete values in time, stemming from a discretisation

47

48 The multigrid and the Newton solvers

with �nite di�erences. The prolongation in time is formulated as interpolation and the
restriction as the adjoint of the prolongation with the help of a scalar product.

Furthermore, the multigrid algorithm needs the de�nition of iterative one-level smooth-
ing operators and a one-level solver for the coarse grid. These operators are described in
Section 3.5. For the de�nition, standard linear solvers for block systems (e. g., block Jacobi,
block Gauÿ�Seidel) are adapted to the space-time case, every block corresponding to one
solution in time. As a result, solving a linear system on the space-time cylinder is reduced
to solving sequences of linear systems in space.

The linear systems in space can �nally be solved with a monolithic multigrid method as
well. However, this involves the de�nition of proper smoothing algorithms, which are not
obvious for saddle-point problems like the Stokes or Navier�Stokes equations. Section 3.6
contains a detailed description of a special `local Pressure-Schur complement' smoother
which is adapted from CFD to the optimal control context.

The chapter closes with Section 3.7 which introduces the basic notation concerning
the stopping criteria of all the solver components. Additionally, the section contains a
description of the `inexact Newton' method � a variant of the standard Newton method
that adapts the stopping criteria of the inner solvers to save CPU time. This closes the
basic description of the method. Of course, there are a couple of extensions possible, and
some of them will be described in Chapter 4 and the appendices. The numerical analysis
of the described solver strategy will start in Chapter 5.

3.1. Definition of hierarchies

In the following, the fully discrete KKT system is denoted by

Gσ(wσ)wσ = fσ (3.1)

with σ = (h, k) standing for to a discretisation in space and time. Gσ(·) represents the
nonlinear, fully discrete KKT operator from (2.47) or (2.48) on page 42. wσ ∈ VN+1

h

refers to the space-time solution vector with N + 1 solutions in time, N ∈ N, discretised
in space with �nite elements. The underlying �nite element space is called Vh, build upon
a mesh Ωh ⊂ Rdim. For convenience, this space is assumed to be a cross product of all
involved �nite element spaces, i. e., in the case of the Stokes or the Navier�Stokes equations,
Vh = Vh × Vh × Zh × Zh in the notation of the previous chapter.

The vector fσ ∈ VN+1
h identi�es the right-hand side and F σ(wσ) denotes the Fréchet

derivative of wσ 7→ Gσ(wσ)wσ. The underlying mesh Ωh that was used to de�ne the �nite
element space is assumed to be the �nest mesh from a hierarchy of triangulations, see
below.

Hierarchies generated by refinement and coarsening There are di�erent choices how
to de�ne a hierarchy of discretisations on a space-time cylinder. The simplest one starts
with the de�nition of a coarse mesh in space, a coarse mesh in time and appropriate
discretisations. Using simultaneous re�nement in both space and time de�nes a hierarchy
of levels. A more general approach is to separately set up a space hierarchy and a time
hierarchy and create the space-time hierarchy by coarsening. These approaches read as
follows.

3.1. Definition of hierarchies 49

3.1.1. Hierarchies in space and in time

For L ∈ N, Ω1, ..., ΩL refers to a conforming hierarchy of triangulations of the domain Ω
in the sense of [37] with ΩL = Ωh. The mesh Ω1 is the basic coarse mesh and Ωl+1 stems
from a regular re�nement of Ωl (i. e., new vertices, edges, faces and cells are generated by
connecting opposite midpoints of edges/faces).

For each mesh Ωl, l = 1, ..., L, a space discretisation with �nite elements is carried out,
cf. Section 2.7 on page 42f. This leads to a hierarchy

V 1, ..., V L = Vh

of spatial �nite element spaces built upon these meshes.
ForM ∈ N, T 1, ..., TM de�nes a hierarchy of decompositions of the time interval [0, T]

into ordered sequences, where each Tm+1 is derived from Tm by a bisection of each time
interval,

Tm :=

{
0,

T

Nm
,

2T

Nm
, ..., T

}
, Nm = 2m−1N1, N1 ∈ N, m = 1, ...,M. (3.2)

Here, Nm refers to the number of time intervals on level m. To work with a general
θ-scheme,

Tmθ :=

{
0,
θT

Nm
,
(1 + θ)T

Nm
, ...,

(Nm − 1 + θ)T

Nm

}
(3.3)

is de�ned, which coincides with Tm for θ = 1 and which represents the arithmetic mean of
neighbouring points in Tm for θ = 1

2 .

3.1.2. Space-time hierarchies created by coarsening strategies

Based on the hierarchy of meshes in space and in time, a space-time hierarchy is created
by coarsening. Each combination of a spatial mesh Ωl, l = 1, ..., L, with a temporal mesh
Tm, m = 1, ...,M , de�nes a possible space-time mesh. For every such a combination, the
combined solution space

W l,m := (V l)Nm+1

is de�ned. The �nest possible combination of spatial and temporal mesh is used to de�ne
the �ne grid space,

WNLMAX := WL,M ,

for a `maximum level' NLMAX ∈ N.
In the next step, a hierarchy of spaces W 1, W 2,..., WNLMAX is to be de�ned, and

di�erent strategies are possible here. A straightforward way to de�ne such a hierarchy is
to apply a coarsening strategy to WNLMAX, based on the available spatial and temporal
meshes, for example:

� Semi-coarsening in time:

(WNLMAX, WNLMAX−1, ..., W 1) := (WL,M , WL,M−1, WL,M−2, ...)

� Usual 1:1 coarsening:

(WNLMAX, WNLMAX−1, ..., W 1) := (WL,M , WL−1,M−1, WL−2,M−2, ...)

50 The multigrid and the Newton solvers

� Anisotropic coarsening in time, e. g.:

(WNLMAX, WNLMAX−1, ..., W 1) := (WL,M , WL,M−1,

WL−1,M−2, WL−1,M−3,

WL−2,M−4, ...)

� Semi-coarsening in space:

(WNLMAX, WNLMAX−1, ..., W 1) := (WL,M , WL−1,M , WL−2,M , ...)

or combinations of these. Figure 3.1 illustrates an example of a full space-time hierarchy
obtained by 1:1 coarsening and Figure 3.2 the semi-coarsening in time. The choice of the
hierarchy in�uences the solver stability, the total numerical costs of solving the system as
well as theoretical properties of the solver. This issue will be discussed in later chapters
for some selected numerical tests. In particular it will be shown that a wrong choice of the
hierarchy can lead to an algorithm that loses the property of having linear complexity �
in theory as well as in practice.

Figure 3.1: A space-time hierarchy on Q = (0, T) × Ω with Ω ⊂ R2, obtained by 1:1
coarsening.

Figure 3.2: A space-time hierarchy on Q = (0, T) × Ω with Ω ⊂ R2, obtained by semi-
coarsening in time.

3.2. The outer defect correction loop 51

3.1.3. Problem hierarchies

The discretisation of the KKT system in space and time on space level l and time level m
leads to the discrete space-time system which is denoted by

Glm(wlm)wlm = f lm, (3.4)

and
F lm(wlm) (3.5)

refers to the Fréchet derivative of the operator w 7→ Glm(w)w evaluated in w = wlm. Here,

wlm ∈W l,m, f lm ∈ (W l,m)×,

whereby
(W l,m)× := (V l,∗)Nm+1 ∼= (V l)Nm+1

refers to the space of right-hand sides, V l,∗ = (V l)∗. Using an appropriate dual pairing
(see Section 2.7 on page 42f), this space is identi�ed with (V l)Nm+1, which is expressed in
the notation `∼='.

3.1 Remark. The actual space for the right hand sides is (W l,m)∗. However, due to the
fact that the spaces are discrete, there is

(W l,m)∗ =
(
(V l)Nm+1

)∗ ∼= (V l,∗)Nm+1 = (W l,m)×.

In this work, the notation (W l,m)× is used to underline the fact that the right hand side
consists of Nm + 1 components, one for each solution in time.

Simplified notation To simplify the de�nition of the multigrid method, it is convenient
to assume L = M = NLMAX. This corresponds to the above 1:1 coarsening. For each
level l = 1, ...,NLMAX, the solution and right-hand side spaces are abbreviated as

W l := W l,l = (V l)Nl+1, (W l)× = (W l,l)× ∼= (V l)Nl+1.

The corresponding space-time system

Gl(wl)wl = f l (3.6)

is of the form (3.1) for a solution vector wl ∈ W l, a right-hand side f l ∈ (W l)× and the
system operator Gl : W l → (W l)×. In particular, on level NLMAX, the system reads

GNLMAX(wNLMAX)wNLMAX = fNLMAX (3.7)

with wNLMAX = wσ, fNLMAX = fσ andGNLMAX = Gσ representing the discrete right-hand
side, the solution and system operator on the �nest level, respectively.

3.2. The outer defect correction loop

The discrete system (3.7), which stems from the discretisation, is nonlinear. A typical way
to solve such a nonlinear system is a nonlinear (preconditioned) defect correction loop,
or `�xed point iteration', which can be found, e. g., in [53, 104, 142]. For an initial guess
wσ0 ∈WNLMAX, a �xed point iteration is typically de�ned in the form

wσi+1 := wσi + C(wσi)−1
(
fσ −Gσ(wσi)wσi

)
, i ∈ N. (3.8)

Algorithm 3.1 illustrates this iteration in an algorithmic style. As usual, the update (3.8)
is expressed in two steps, involving the solution of a linear system C(whi)gi = di, see (3.9).
An e�cient way to obtain a solution of this auxiliary system is the space-time multigrid
method which is introduced in the next section.

52 The multigrid and the Newton solvers

Fixed point and Newton method A crucial choice in this defect correction loop is the
preconditioner C(wσi). One possibility is to choose

C(wσi) := Gσ(wσi)

as preconditioner; the corresponding algorithm is simply called `�xed point method' in the
following. This iteration was used, e. g., in [142] in the context of simulation. Another
common choice (cf. [53]) is the Fréchet derivative matrix F σ(wσi) as de�ned in Section 2.7
on page 42�,

C(wσi) := F σ(wσi).

The corresponding algorithm de�nes a Newton iteration on the space-time cylinder.

Algorithm 3.1 Nonlinear defect correction loop

1: function NonlinearDefectCorrection(wσ0 ,f
σ)

2: i← 0
3: while (wσi not converged) do
4: Solve C(wσi)gi = di :=

(
fσ −Gσ(wσi)wσi

)
(3.9a)

5: wσi+1 ← wσi + gi ∈WNLMAX (3.9b)
6: i← i+ 1
7: end while
8: return wσi
9: end function

3.3. The inner multigrid solver

In each nonlinear step, the linear equation (3.9a) has to be solved, which reads

C(wσi)gi = di. (3.10)

By exploiting the hierarchical structure of the space-time meshes, system (3.10) can be
solved within a multigrid framework. A description of this framework can be found, e. g.,
in [9, 75, 118, 161]. It necessitates a couple of de�nitions, i. e., prolongation and restriction
operators, a set of coarse grid matrices, a smoother on every level and a coarse grid solver:

a) For l = 1, ...,NLMAX − 1, the operator P l : W l → W l+1 denotes a prolongation
operator and Rl : (W l+1)× → (W l)× a corresponding restriction operator.

b) For each level l, C l refers to a representation of the operator C(wσi) on level l. The
sequence C1, ..., CNLMAX−1 forms a hierarchy of operators on W 1, ...,WNLMAX−1

approximating C(wσi). On level l = NLMAX, CNLMAX := C(wσi) is used. For a
proper de�nition of the coarse grid preconditioning operators, see Section 3.4.5.

c) For level l = 2, ...,NLMAX, S : W l → W l de�nes a smoothing operator with
NSMpre,NSMpost ∈ N0 referring to the numbers of pre- and postsmoothing steps,
respectively.

d) For level l = 1, (C l)−1 refers to a coarse grid solver.

Appropriate de�nitions of all these operators follow in the next sections. Algorithm 3.2
describes a basic multigrid V-cycle to solve a system of the form

C lw = f, w ∈W l, f ∈ (W l)×,

3.4. Prolongation/Restriction/Coarse grid preconditioning operators 53

and problem (3.9a) is solved by the call

gi := SpaceTimeMultigrid(0; di;NLMAX)).

For variations of this algorithm which use the W- or F-cycle, see [9, 75, 161].

Algorithm 3.2 Space-time multigrid

Prede�ned constant: NSMpre ∈ N0: number of presmoothing steps
Prede�ned constant: NSMpost ∈ N0: number of postsmoothing steps

1: function SpaceTimeMultigrid(w;f ;l)
2: if (l = 1) then
3: return (C l)−1f . coarse grid solver
4: end if
5: while (not converged) do
6: w ← S(C l, w, f,NSMpre) . presmoothing
7: dl−1 ← Rl(f − C lw) ∈ (W l−1)× . restriction of the defect
8: gl−1 ← SpaceTimeMultigrid(0; dl−1; l − 1) ∈W l−1 . coarse grid solution
9: w ← w + P l(gl−1) . coarse grid correction
10: w ← S(C l, w, f,NSMpost) . postsmoothing
11: end while
12: return w . solution
13: end function

3.4. Prolongation/Restriction/Coarse grid preconditioning operators

The discretisation of the KKT system is based on �nite di�erences in time and �nite ele-
ments in space. The operators for transferring solution/correction and right-hand side/de-
fect vectors between the di�erent levels can therefore be decomposed into a �nite di�erence
prolongation/restriction in time (see also [76]) and �nite element prolongation/restriction
in space.

3.4.1. Preliminaries

Let l ∈ {1, ...,NLMAX−1} be a space-time level and N = Nl the number of time intervals
on that level. In the following, the vector

w = wl = (w0, ..., wN) ∈W l

stands for a space-time vector on level l to be prolongated and

dl+1 = (dl+1
0 , ..., dl+1

2N) ∈ (W l+1)×

for a space-time defect vector on level l + 1 to be restricted. A prolongation

P l : W l →W l+1

and a corresponding restriction

Rl : (W l+1)× → (W l)×

is formulated as a combination of a �nite di�erence prolongation/restriction in time com-
bined with a �nite element prolongation/restriction in space.

54 The multigrid and the Newton solvers

Prolongation/Restriction in space Appropriate prolongation/restriction operators in
space are usually available via the �nite element approach, see for example [75, 142]. In
the following,

Pspace = P lspace : V l → V l+1

denotes a �nite element prolongation and

Rspace = Rlspace : V l+1,∗ → V l,∗

the corresponding restriction. It is noted that using the appropriate dual pairing, it is
possible to associate

V l,∗ ∼= V l and V l+1,∗ ∼= V l+1.

Thus, Rspace has a representation as an operator Rspace = Rlspace : V l+1 → V l. It is usually
formulated as weighted mean of the degrees of freedom, while the prolongation is realised
as an appropriate interpolation to the higher level.

Prolongation/Restriction in time The de�nition of the �nite di�erence prolongation/re-
striction in time involves some special notation. In the end, it can be written down as
matrix-vector product, where a prolongation/restriction matrix is applied to the subvec-
tors in time. The choice of the matrix depends on the choice of the timestep scheme. For a
convenient description, the following concept of `discrete abstract functions' is introduced,
which allows to adapt concepts of the 1D case in [75, 76] to the situation considered here.
Sections 3.4.3 and 3.4.4 apply this concept to derive prolongation/restriction operators in
time and in space-time.

3.4.2. Discrete abstract functions

In the following, Ξ denotes an ordered sequence of N + 1 points, N ∈ N, on the time
interval [0, T],

Ξ = {ξ0 < ξ1 < ... < ξN | 0 ≤ ξn ≤ T, n = 0, ..., N}.

Furthermore, X stands for a �nite dimensional Hilbert space, e. g., X = R or the �nite
element space X = V l on level l. The space of discrete abstract functions from Ξ to X is
de�ned as the set of equivalence classes of functions which have the same values in {ξi}.
A more precise de�nition necessitates the notation

v̄ := (v0, v1, ..., vN)T := (v(ξ0), v(ξ1)..., v(ξN))T ∈ XN+1

which represents a vector of point values of a function v : [0, T]→ X in Ξ. Using

Y0 := Y0(Ξ, X) := {v : [0, T]→ X | v̄ = 0},

an equivalence relation on {v : [0, T]→ X} is de�ned by

u ∼ v :⇔ u− v ∈ Y0 ⇔ ū = v̄,

for all u, v : [0, T]→ X. The equivalence classes form the quotient space

Y (Ξ, X) := {v : [0, T]→ X}
/
Y0

which is called the `space of discrete abstract functions' from Ξ to X.

3.4. Prolongation/Restriction/Coarse grid preconditioning operators 55

Scalar product on Y (Ξ, X) For two functions u, v ∈ L2(0, T ;X) in time with values in
X, the corresponding scalar product on L2(0, T ;X) reads

(u, v)L2(0,T ;X) =

∫ T

0
(u(t), v(t))X dt. (3.11)

This scalar product motivates the following choice of a scalar product on the space Y (Ξ, X).
For u, v ∈ Y (Ξ, X), a discrete weighted scalar product is de�ned as

(u, v)Ξ :=
1

N

N∑
n=0

(un, vn)X . (3.12)

This scalar product induces the norm

||u||Ξ =
√

(u, u)Ξ, u ∈ Y (Ξ, X).

Association with XN+1 The spaces Y (Ξ, X) and XN+1 can be associated, which is in
the following expressed by

Y (Ξ, X) ∼= XN+1. (3.13)

For every v ∈ Y (Ξ, X), there is a uniquely associated counterpart v̄ ∈ XN+1 by de�nition.
On the other hand, for w̄ ∈ XN+1, it is possible to construct w ∈ Y (Ξ, X) with wn =
w(ξn) = w̄n using, e. g., a piecewise linear interpolation in time of the values w̄n.

3.2 Remarks. a) The concept of discrete abstract functions is motivated by the 1D
multigrid theory in [75]. The scalar product is de�ned similar to the weighted scalar
product for �nite di�erence functions in [75, Section 3.5] but adapted to functions on the
time axis. It is used for the de�nition of weighted restrictions in time.

b) If u, v ∈ Y (Ξ, X), equation (3.12) is the l2 scalar product of the values in all t ∈ Ξ
(up to the term 1

N (u0, v0)) and as such an approximation to the L2 scalar product in (3.11)
for equidistant time stepping.

c) With the above scalar product, Y (Ξ, X) forms a Hilbert space. The dual space of
Y (Ξ, X) is denoted by Y (Ξ, X)∗ and 〈·, ·〉 refers to the dual pairing. Since the space is
discrete, Y (Ξ, X) can be identi�ed with its dual space via the Riesz representation theorem,

Y (Ξ, X)∗ ∼= Y (Ξ, X).

d) Similar to (3.13), the spaces Y (Ξ, X)∗ and (X∗)N+1 can be associated,

Y (Ξ, X)∗ ∼= (X∗)N+1, (3.14)

by applying the association X∗ ∼= X to every component in time,

Y (Ξ, X)∗ ∼= Y (Ξ, X) ∼= XN+1 ∼= (X∗)N+1.

3.3 Example a) For a sequence Ξ̃ of N + 1 discrete points in time on the time
interval [0, T],

Ξ̃ := {0 =: t0 < t1 < ... < tN := T | 0 ≤ tn ≤ T, n = 0, ..., N},

the space Y (Ξ̃,R) represents the point values of functions v : [0, T] → R in the
discrete points Ξ̃ in time. There is

56 The multigrid and the Newton solvers

v ∈ Y (Ξ̃,R) ⇒ v̄ = (v(t0), v(t1), ..., v(tN))T ∈ RN+1.

b) On level l, if the time discretisation is carried out with the implicit Euler
scheme, the space W l is characterised by the sequence T l of points in time and the
�nite element space V l, see Section 3.1.1. In this case, W l has a representation in
terms of discrete abstract functions due to (3.13),

Y (T l, V l) ∼= (V l)Nl+1 = W l,

and for the space of right-hand side functions, there is

Y (T l, V l)∗ ∼= (V l,∗)Nl+1 = (W l)×

due to (3.14).

Linear mappings of discrete abstract functions For M,N ∈ N,

Ξ1 := {ξ0 < ξ1 < ... < ξM | 0 ≤ ξn ≤ T, n = 0, ...,M} and

Ξ2 := {η0 < η1 < ... < ηN | 0 ≤ ηn ≤ T, n = 0, ..., N}

de�ne two ordered sequences of points in time. Considering a linear mapping

K : Y (Ξ1, X)→ Y (Ξ2, X),

the action v = Ku for u ∈ Y (Ξ1, X) and v ∈ Y (Ξ2, X) is described by a matrix-vector
multiplication. Due to

Y (Ξ1, X) ∼= XM+1 and Y (Ξ2, X) ∼= XN+1,

without loss of generality, the mapping K can be expressed as a matrix

K ∈ R(N+1)×(M+1)

with entries Kij , i = 0, ..., N , j = 0, ...,M . For ū = (u0, ..., uM), the entries of v̄ =
(v0, ..., vN) are given by

vi =

M∑
j=0

Kijuj , i = 0, ..., N.

3.4 Remark. In particular, the linear mapping only a�ects the components in time and
is independent of the space X.

3.4.3. The implicit Euler case

Using the notations in Section 3.4.1, in the case of the implicit Euler timestepping scheme,
the prolongation wl+1 := P lw ∈W l+1 of a vector w ∈W l is formulated as

1.) w̃ := (Pspacew0, ..., PspacewN) ∈W l+1,l

2.) wl+1 := Ptimew̃ ∈W l+1,l+1 = W l+1

with a time prolongation operator Ptime : W l+1,l →W l+1,l+1 representing an interpolation
of the solutions in time. This operator can be formulated by means of discrete abstract
functions: With X := V l+1, due to (3.13), the spaces

W l+1,l ∼= Y (T l, X) and W l+1,l+1 ∼= Y (T l+1, X) (3.15)

can be identi�ed.

3.4. Prolongation/Restriction/Coarse grid preconditioning operators 57

Prolongation in time A prolongation Ptime = P ltime : Y (T l, X) → Y (T l+1, X) that
computes intermediate solutions as arithmetic means is speci�ed by the matrix

Ptime =



1
1/2 1/2

1
1/2 1/2

...
1

 ∈ R(2N+1)×(N+1),

see also [76]. Figure 3.3 illustrates the action of Ptime onto a space-time vector. New
values of time midpoints are obtained by interpolating the neighbouring solutions. Since
the interpolation is linear, piecewise linear functions in time are interpolated exactly.

Figure 3.3: Weights in the prolongation for the implicit Euler. Primal solution yn (top)
and dual solution λn (bottom), with wn = (yn, λn), n = 0, 1, 2,

Restriction in time Restriction operators are naturally de�ned as adjoint of prolongation
operators, cf. [75, Section 3.5]. Here, a restriction is �rst applied in time, then in space.
For the restriction in time, using (3.14), the spaces of the right-hand side functions are
associated with duals of discrete abstract spaces,

(W l+1,l)× ∼= Y (T l, X)∗ and (W l+1,l+1)× ∼= Y (T l+1, X)∗. (3.16)

A restriction in time Rtime = Rltime : Y (T l+1, X)∗ → Y (T l, X)∗ follows as the adjoint of the
prolongation via the dual pairing. For arbitrary v′ ∈ Y (T l+1, X)∗, its Riesz representative
v ∈ Y (T l+1, X) and w ∈ Y (T l, X), considering

〈Rtimev
′, w〉 = 〈v, Ptimew〉

⇔ (Rtimev, w)T l = (v, Ptimew)T l+1

⇔ 1

N

N∑
n=0

((Rtimev)n, wn)X =
1

2N

2N∑
n=0

(vn, (Ptimew)n)X

motivates the choice

Rtime =
1

2
(Ptime)

T (3.17)

as expected from a �nite di�erence restriction, see e. g. [76] and in particular [75, Sec-
tion 2.3]. The restriction R : (W l+1)× → (W l)× with dl := Rldl+1 follows in the form

1.) d̃ := Rtimed
l+1 ∈ (W l+1,l)×

2.) dl := (Rspaced̃0, ..., Rspaced̃N) ∈ (W l,l)× = (W l)×.

58 The multigrid and the Newton solvers

3.4.4. The general θ-scheme case

In the case of a general θ-scheme, proper prolongation and restriction operators are slightly
more involved. The location of the degrees of freedom in time should be respected. The
crucial point is that the right-hand side functions are de�ned in di�erent points in time than
the solution vectors, and that the components in a solution vector are de�ned in di�erent
points in time according to their role: For the Stokes and Navier�Stokes equations as an
example, y and ξ are located according to T l, while λ and p are located according to T lθ.
For the right-hand side, the roles are exactly opposite. This has immediate consequences
on the choice of the prolongation and restriction operators.

Decomposition of solutions For space level l ∈ N and time level m ∈ N, the space

W l,m = (V l)N+1

is considered, with N = Nm denoting the number of time intervals. Based on this space,
the space-time system reads, cf. equation (3.5),

G(w)w = f

for some w = (w0, ..., wN) ∈W l,m, the space-time operator G = Glm and some right-hand
side function f = (f0, ..., fN) ∈ (W l,m)×.

a) Concentrating on one element wn of the solution, n ∈ {0, ..., N}, some components
in wn are located in time according to T l, while others are located in time according
to T lθ. Without loss of generality, it is possible (eventually after resorting) to assume a
decomposition

wn = (wpn, w
d
n)

with wpn being located in time according to T l and wdn located in time according to T lθ.

b) Resorting the components in fn in the same way as in a) allows to assume a decom-
position

fn = (fpn, f
d
n)

with fpn being the right-hand side corresponding to wpn and fdn being the right-hand side
to wdn. It is important that due to the timestepping scheme, the roles in time change: fpn
can be interpreted as being located in time according to T lθ while f

d
n corresponds to T l.

c) The decomposition in a) can also be applied to the underlying �nite element spaces.
It is possible to assume that V l is decomposed as follows,

V l = V l
p × V l

d ,

such that wn = (wpn, wdn) ∈ V l
p × V l

d and fn = (fpn, fdn) ∈ V l,∗
p × V l,∗

d
∼= V l,∗.

d) With the decomposition in a) and the spaces in c), appropriate spaces on the space-
time cylinder can be de�ned. The setting

W l,m
p := (V l

p)Nm+1, W l,m
d := (V l

d)Nm+1

suggests a decomposition of the solution w into

wp := (wp0, ..., w
p
N) ∈W l,m

p ,

wd := (wd0 , ..., w
d
N) ∈W l,m

d .

3.4. Prolongation/Restriction/Coarse grid preconditioning operators 59

Similarly, for the right-hand side,

(W l,m
p)× := (V l,∗

p)Nm+1, (W l,m
d)× := (V l,∗

d)Nm+1

denote the right-hand side spaces corresponding to W l,m
p and W l,m

d and suggests a decom-
position of f in the form

fp := (fp0 , ..., f
p
N) ∈ (W l,m

p)×,

fd := (fd0 , ..., f
d
N) ∈ (W l,m

d)×.

3.5 Example. As an example, the Stokes or Navier�Stokes equations with solution w and
right-hand side f is considered. Each entry in w and f has the form

wn = (yn, λn−1+θ, pn−1+θ, ξn),

fn = (fyn−1+θ, f
λ
n , f

p
n, f

ξ
n−1+θ).

The index at each component indicates the location of the component in time. For example,
yn and ξn are interpreted to be located according to T l while λn−1+θ and pn−1+θ are
located according to T lθ. Without loss of generality, sorting the components according to
their location in time, the vectors are rewritten in the form

wn = (yn, ξn︸ ︷︷ ︸
wpn

, λn−1+θ, pn−1+θ︸ ︷︷ ︸
wdn

), fn = (fyn−1+θ, f
ξ
n−1+θ︸ ︷︷ ︸

fpn

, fλn , f
p
n︸ ︷︷ ︸

fdn

),

and the subvectors

wp := (y0, ξ0︸ ︷︷ ︸
wp0

, ..., yN , ξN︸ ︷︷ ︸
wpN

),

fp := (fy−1+θ, f
ξ
−1+θ︸ ︷︷ ︸

fp0

, ..., fyN−1+θ, f
ξ
N−1+θ︸ ︷︷ ︸

fpN

),

wd := (λ−1+θ, p−1+θ︸ ︷︷ ︸
wd0

, ..., λN−1+θ, pN−1+θ︸ ︷︷ ︸
wdN

)

fd := (fλ0 , f
p
0︸ ︷︷ ︸

fd0

, ..., fλN , f
p
N︸ ︷︷ ︸

fdN

)

are formulated.

The prolongation Using the notations in Section 3.4.1, w ∈ W l denotes be a solution
vector at level l. The corresponding wp contains solutions located at T l, so they can be
processed with the same prolongation as in the case of the implicit Euler scheme; this
prolongation is second order in time (it realises a linear interpolation in each timestep)
and can therefore be used for the implicit Euler and the general θ-scheme. Alike, wd is
located in-between the endpoints of the time intervals, and hence, a di�erent interpolation
matrix is required. The prolongation wl+1 := P lw ∈W l+1 is de�ned as

1.) w̃ := (w̃1, ..., w̃N) := (Pspacew0, ..., PspacewN) ∈W l+1,l

2.) (wl+1
p , wl+1

d) := (P ptimew̃p, P
d
timew̃d) ∈ (W l+1,l+1

p ,W l+1,l+1
d)

with some time prolongation operators

P ptime = P l,ptime : W l+1,l
p →W l+1,l+1

p and

P dtime = P l,dtime : W l+1,l
d →W l+1,l+1

d .

60 The multigrid and the Newton solvers

Using Xp := V l+1
p , Xd := V l+1

d and (3.13), the spaces

W l+1,l
p

∼= Y (T l, Xp), W l+1,l+1
p

∼= Y (T l+1, Xp),

W l+1,l
d

∼= Y (T lθ, Xd), W l+1,l+1
d

∼= Y (T l+1
θ , Xd),

are associated and above operators are interpreted in terms of discrete abstract functions,

P ptime : Y (T l, Xp)→ Y (T l+1, Xp) and (3.18)

P dtime : Y (T lθ, Xd)→ Y (T l+1
θ , Xd). (3.19)

The operators can be realised, e. g., as linear interpolations in time. In matrix form, these
read

P ptime =



1
1/2 1/2

1
1/2 1/2

...
1

 , P dtime =



1

0 1 + 1
2θ −1

2θ
1
2 + 1

2θ
1
2 −

1
2θ

1
2θ 1− 1

2θ
1
2 + 1

2θ
1
2 −

1
2θ

1
2θ 1− 1

2θ

...
1
2 + 1

2θ
1
2 −

1
2θ

1
2θ 1− 1

2θ
1
2θ −

1
2

3
2 −

1
2θ



.

Figure 3.4 depicts the weights for the Crank�Nicolson case (θ = 1/2).

Figure 3.4: Weights in the prolongation of the primal (top) and dual (bottom) space in
the case of the Crank�Nicolson scheme at the beginning of the time interval.

3.6 Remark. The di�erent weights for the �rst and last solution in time (the �rst two
rows and the last row of P dtime) result from an extrapolation and constant prolongation in
time: The last dual solution on the �ne mesh is located behind the last dual solution on the
coarse mesh and must therefore be extrapolated. The �rst dual solution on the other hand
has no physical meaning as this solution is not used as a right-hand side for the primal
equation. To prevent it from in�uencing the dual solution inside the temporal domain, it

3.4. Prolongation/Restriction/Coarse grid preconditioning operators 61

is treated separately with a constant prolongation. As this does not in�uence the solutions
in the other timesteps, this treatment does not destroy the global approximation order of
the prolongation.

The restriction In the following, a restriction operator is de�ned which maps the space
of right-hand sides to the coarser level,

Rl : (W l+1)× → (W l)×.

Similar to the implicit Euler case, this operator is constructed as the `adjoint' of the
prolongation, realised in two steps. First, a restriction in time

Rtime : (W l+1)× = (W l+1,l+1)× → (W l+1,l)×

is needed. Similar to the case of the prolongation, this can be decomposed into two
restrictions, one for the solution components located in time according to T l and one
corresponding to the components located in time according to T lθ,

Rptime : (W l+1,l+1
p)× → (W l+1,l

p)×,

Rdtime : (W l+1,l+1
d)× → (W l+1,l

d)×.

On the other hand, a restriction in space must be carried out as the adjoint of the prolon-
gation in space; the operator

Rspace : V l+1,∗ → V l,∗

from the �nite element space provides this task. Having de�ned these operators, a possible
choice for the restriction dl := Rldl+1 of a defect dl+1 = (dp, dd) ∈ (W l+1)× reads

1.) (d̃p, d̃d) := (Rptimedp, R
d
timedd)

2.) dl := (Rspace(d̃0), ..., Rspace(d̃N))

with an auxiliary vector d̃ ∈ (W l+1,l)×.

What remains is the de�nition of suitable restriction operators Rptime and R
d
time in time.

Intuitively, these would be created by transposing the corresponding prolongation matrices,

Rptime =
1

2
(P ptime)

T, Rdtime =
1

2
(P dtime)

T, (3.20)

but a closer look on the analysis reveals that this choice is not the optimal one: P ptime and
P dtime have to be interchanged.

Similar to the prolongation, all spaces are interpreted in terms of discrete abstract
functions. It is important that the right-hand side and defect vectors have to be considered
in a way `opposite' to the solution vectors used in the prolongation. With Xp := V l+1

p and

Xd := V l+1
d , using (3.14), the spaces

(W l+1,l
p)× ∼= Y (T lθ, Xp)

∗, (W l+1,l+1
p)× ∼= Y (T l+1

θ , Xp)
∗,

(W l+1,l
d)× ∼= Y (T l, Xd)

∗, (W l+1,l+1
d)× ∼= Y (T l+1, Xd)

∗,

are associated and the restriction operators are interpreted as

Rptime : Y (T l+1
θ , Xp)

∗ → Y (T lθ, Xp)
∗ and

Rdtime : Y (T l+1, Xd)
∗ → Y (T l, Xd)

∗.

62 The multigrid and the Newton solvers

A possible restriction in time, Rptime, follows as the adjoint of the prolongation via the
dual pairing. For this purpose, a function v′ ∈ Y (T l+1

θ , Xp)
∗, its Riesz representative

v ∈ Y (T l+1
θ , Xp) and w ∈ Y (T lθ, Xp) are used. According to (3.19) and Remark 3.4, the

prolongation in the space Y (T lθ, Xp) has the same matrix representation as P dtime, thus the
restriction is de�ned according to

〈Rptimev
′, w〉 = 〈v, P dtimew〉

⇔ (Rptimev, w)T lθ
= (v, P dtimew)T l+1

θ

⇔ 1

N

N∑
n=0

((Rptimev)n, wn)Xp =
1

2N

2N∑
n=0

(
vn, (P

d
timew)n

)
Xp
.

For Rdtime, the corresponding formulas are similar and involve (3.18). In conclusion, the
above considerations suggest the following choice for the restriction in time, which ex-
changes the roles of the prolongation matrices if they are used for the de�nition of the
restriction,

Rptime =
1

2
(P dtime)

T, Rdtime =
1

2
(P ptime)

T. (3.21)

3.7 Example. For the Navier�Stokes equations, a solution w ∈ W l at level l can be
decomposed into the components

w 7→ (wy, wλ, wp, wξ)

with

wy = (y0, ..., yN), wλ = (λ−1+θ, ..., λN−1+θ),

wp = (p−1+θ, ..., pN−1+θ), wξ = (ξ0, ..., ξN).

The prolongation wl+1 = P lw is formulated in two steps,

1.) w̃ := (w̃0, ..., w̃N) := (Pspace(w0), ..., Pspace(wN))

2.) (wl+1
y , wl+1

λ , wl+1
p , wl+1

ξ) := (P ptimew̃y, P
d
timew̃λ, P

d
timew̃p, P

p
timew̃ξ)

with an auxiliary vector w̃ = (w̃0, ..., w̃N). In the above notation, the vector w̃ has an
associated decomposition (w̃y, w̃λ, w̃p, w̃ξ) and the vector wl+1 an associated decomposition
(wl+1

y , wl+1
λ , wl+1

p , wl+1
ξ) into the velocity/pressure components as above.

A defect vector dl+1 ∈ (W l+1)× at level l+ 1 can be decomposed into the components

dl+1 7→ (dy, dλ, dp, dξ)

with

dy = (dy−1+θ, ..., d
y
2N−1+θ), dλ = (dλ0 , ..., d

λ
2N)

dp = (dp0, ..., d
p
2N), dξ = (dξ−1+θ, ..., d

ξ
2N−1+θ).

The restriction dl = Rldl+1 reads

1.) (d̃y, d̃λ, d̃p, d̃ξ) :=
1

2

(
(P dtime)

Tdy, (P ptime)
Tdλ, (P ptime)

Tdp, (P dtime)
Tdξ
)

2.) dl := (Rspace(d̃0), ..., Rspace(d̃N))

with an auxiliary vector d̃ = (d̃0, ..., d̃N) and associated decomposition (d̃y, d̃λ, d̃p, d̃ξ) as
above.

3.4. Prolongation/Restriction/Coarse grid preconditioning operators 63

3.4.5. Coarse grid preconditioning operators

The multigrid algorithm needs a hierarchy of operators C1,...,CNLMAX corresponding to
the levels l = 1, ...,NLMAX. At the �nest level, the equation

C(wσi)gi = di

has to be solved, see (3.10), on coarser levels systems of the form

C lw = f, w ∈W l, f ∈ (W l)×.

With the underlying hierarchy of space-time meshes, C(wσi) is interpreted as �ne grid
operator of a hierarchy of operators C1, ..., CNLMAX with CNLMAX = C(wσi).

The linear case In case of the heat equation or the Stokes equations, the state equation
is linear, i. e.,

C(wσi) = C = CNLMAX

independent of wσi , and chosen as

C = Gσ = GNLMAX.

Due to equation (3.6), the set G1, ..., GNLMAX−1 forms a hierarchy of operators approxi-
mating C on level l = 1, ...,NLMAX − 1. Correspondingly, the preconditioning matrices
for the multigrid algorithm are canonically de�ned by

C l := Gl, l = 1, ...,NLMAX.

The nonlinear case In the nonlinear case, the operator C := CNLMAX = C(wσi) depends
on the solution wσi , and wσi is only given at the �nest level. Therefore, a hierarchy of
preconditioning operators C1, ..., CNLMAX−1 approximating C is not naturally given; it
has to be created it via an appropriate approximation.

On level NLMAX, there is by de�nition

CNLMAX = GNLMAX(wσi) = Gσ(wσi) or CNLMAX = FNLMAX(wσi) = F σ(wσi)

for the �xed point or the Newton algorithm, respectively. On level l ∈ {1, ...,NLMAX−1},
an approximation wli ∈W l to wσi is needed. The problem hierarchy (3.6) suggests that

Gl(wli) ≈ GNLMAX(wσi).

The Fréchet derivative of w 7→ Gl(w)w in w = wli is given by F l(wli), and thus,

F l(wli) ≈ FNLMAX(wσi).

Therefore, a canonical choice for the preconditioner C l is given by

C l := Gl(wli) or C l := F l(wli) (3.22)

for the �xed point or the Newton algorithm, respectively. What remains is a de�nition
of the approximation wli to w

σ
i , which is obtained here by a recursive interpolation of wσi

to the coarser levels. Similar to a prolongation or restriction operator, an appropriate

64 The multigrid and the Newton solvers

interpolation operator is formulated using a combination of �nite di�erence interpolation
in time and �nite element interpolation in space.

For convenience, the subscript i is dropped in the following, i. e., wl = wli. With
w := wl+1 ∈W l+1 the current `�ne' grid solution on level l+ 1 is denoted, wNLMAX = wσi .
In space, there is a natural �nite element interpolation available,

Ispace = I lspace : V l+1 → V l.

This is realised, e. g., by a standard L2-projection in space or a simple interpolation op-
erator that evaluates a �nite element function on a lower level. An interpolation operator
I l : W l+1 → W l on the space-time cylinder with wl = I lw ∈ W l is formulated in two
steps,

1.) w̃ = (w̃0, ..., w̃N) := Itimew ∈W l+1,l,

2.) wl := (Ispacew̃0, ..., Ispacew̃N) ∈W l,l = W l,

with a time interpolation operator Itime : W l+1 → W l+1,l. De�ning X := V l+1 and using
(3.13) to identify

W l+1,l ∼= Y (T l, X) and W l+1,l+1 ∼= Y (T l+1, X), (3.23)

the time interpolation can be interpreted in terms of discrete abstract functions by

Itime = I ltime : Y (T l+1, X)→ Y (T l, X).

A possible interpolation is given by the matrix

Ptime =


1 0 0 0 0 ... 0
0 0 1 0 0 ... 0
0 0 0 0 1 ... 0

...
0 0 0 0 0 ... 1

 ∈ R(N+1)×(2N+1).

This realises a constant interpolation in time: The solutions at the endpoints of the time
intervals on the coarser time mesh are taken from the corresponding solutions of the time
�ne mesh. All other solutions of the time �ne mesh are ignored, see Figure 3.5.

Figure 3.5: Constant interpolation of solutions onto a time coarse mesh.

3.5. Smoothing operators and the coarse grid solver 65

3.8 Remarks. The above constant time interpolation can be seen as the `best' choice in
the case of the implicit Euler scheme since it exactly reproduces the solution of the time �ne
grid onto the time coarse grid. As long as there are no constraints used, this interpolation
can also be used for the Crank�Nicolson scheme: The interpolation can ignore the dual
equation. Without constraints, the nonlinearity is completely speci�ed by the solution y
in the state equation, there are no nonlinear terms involving the dual variable λ (not to
mention the primal and dual pressure). Since the layout of the timesteps of y is the same
for both time discretisation schemes, the constant time interpolation can also be used in
both cases.

The situation slightly changes if additional constraints are used for the control, see
Section 4.2 on page 87�. The state equation depends in a nonlinear way on the dual
variable λ, and thus, λ has to be interpolated to the lower level as well. In the θ-scheme
case, the time interpolation for the dual variable would have to be modi�ed, similar to the
restriction. However, numerical tests in later sections neglect this fact. Always using a
constant time interpolation for both, primal and dual variables, no considerable impact on
the convergence speed is observed, see Section 7.3 on page 144�.

3.5. Smoothing operators and the coarse grid solver

By de�nition, the global space-time preconditioner C l on level l has the structure of a three-
band block matrix (see Section 2.7 on page 42�) with N + 1 block columns and rows, N =
Nl denoting the number of time intervals on level l. This special matrix structure allows
to de�ne iterative smoothing operators based on the defect correction approach. In the
following, a couple of basic block smoothing algorithms are introduced: FBJacSmoother,
FBGsSmoother and FBSimSmoother. They realise a block Jacobi iteration, a block
Gauÿ�Seidel iteration and a `simulation' solver that carries out (linear) forward-backward
simulations (with a �xed nonlinearity). These algorithms are modi�cations of common
block algorithms (cf. [10]), adapted to the space-time case.

3.5.1. Standard block smoothers

For a proper formulation, the (linear) system on a space-time level l is denoted by

C lw = f (3.24)

for some a right-hand side vector f and a space-time vector w. Let w be an approximate
to a solution w∗ of (3.24) which should be smoothed. The matrix C l can be decomposed
into blocks corresponding to the time intervals as follows:

C lx =:


C0,0 C0,1

C1,0 C1,1 C1,2

.
CN,N−1 CN,N



L :=


0

C1,0 0
.

CN,N−1 0

 , R :=


0 C0,1

0 C1,2

.
0



66 The multigrid and the Newton solvers

D :=


C0,0

C1,1

. . .
CN,N

 .

For a damping parameter ω ∈ R, the special matrix structure suggests the use of a damped
Block-Jacobi method, see Algorithm 3.3.

Similar to a Block-Jacobi algorithm, it is possible to design a damped forward-backward
block Gauÿ�Seidel algorithm for smoothing, see Algorithm 3.4. This algorithm decomposes
into a forward-loop and a backward-loop. In contrast to Block-Jacobi, it exploits basic
coupling in time without signi�cant additional costs.

3.9 Remark. With some minor changes, the FBGSSmoother algorithm can also be
modi�ed to a forward-backward block SOR algorithm (see Algorithm 3.5 with ωSOR ∈ R
denoting a relaxation parameter), but this algorithm will not be in the focus of the numer-
ical experiments in later chapters. It is noted that in line 3 of the algorithm, x1 appears
on the left as well as on the right side, but on the right side multiplied with L. This has to
be interpreted as a forward sweep in the typical Gauÿ�Seidel like manner: The calculation
of a new entry in x1 depends on the previously calculated values of the new iterate. The
same holds for line 4 which has to be interpreted as a backward sweep for x2.

Reduction to linear systems in space The expensive part in all the algorithms is
the application of the operator D−1. Since D is a block diagonal system, this step can
equivalently be expressed as a sequence of linear systems in space,

w = D−1f ⇔ Dw = f

⇔ Dnwn = fn n = 0, ..., Nl,

⇔ Cn,nwn = fn n = 0, ..., Nl, (3.25)

for w ∈ W l, f ∈ (W l)×. The diagonal matrix Dn = Cn,n represents the fully coupled
primal-dual system in each time interval, and (3.25) is a sequence of linear systems in space.
Similar to a linear system in each timestep of a simulation, it can be solved with a multigrid
approach in space. A spatial multigrid solver is expected to have linear complexity and
provides the �nal key for the e�ciency of the whole algorithm. However, the crucial point
in the de�nition is again the smoother. In Section 3.6, this topic will be discussed in detail.

3.5.2. Forward-Backward simulation smoother

FBJacSmoother and FBGsSmoother treat the primal and dual solution in a coupled
way. As an alternative, the solution components can be decoupled and processed by a (lin-
ear) forward simulation for the primal solution, followed by a (linear) backward simulation
for the dual solution. This type of algorithm, which is called `forward-backward simulation
algorithm' here, abbreviated FBSimSmoother, is rather natural and is motivated by a
primal-dual simulation strategy which was used also by other authors before (see, e. g.,
[71, 152]). It is expected to be a compromise between speed and stability: Fully coupled
systems in space are avoided, so the computation of each timestep is faster. On the other
hand, due to the reduced coupling, the convergence speed of the overall solver is expected
to deteriorate in comparison to FBGsSmoother.

3.5. Smoothing operators and the coarse grid solver 67

Algorithm 3.3 Space-time Block-Jacobi smoother

Prede�ned constant: ω > 0: damping parameter

1: function FBJacSmoother (C l,w,f ,NSM)
2: for istep = 1 to NSM do
3: w ← w + ωD−1(f − C lw)
4: end for
5: return w
6: end function

Algorithm 3.4 Forward-Backward Block-GS smoother

Prede�ned constant: ω > 0: damping parameter

1: function FBGsSmoother (C l,w,f ,NSM)
2: for istep = 1 to NSM do
3: x1 ← w + (L+D)−1(f − C lw) = w +D−1(f − (D +R)w − Lx1)
4: x2 ← x1 + (R+D)−1(f − C lx1) = x1 +D−1(f − (D + L)x1 −Rx2)
5: w ← (1− ω)w + ωx2

6: end for
7: return w
8: end function

Algorithm 3.5 Forward-Backward Block-SOR smoother

Prede�ned constant: ωSOR ∈ R: relaxation parameter
Prede�ned constant: ω > 0: damping parameter

1: function FBSorSmoother (C l,w,f ,NSM)
2: for istep = 1 to NSM do
3: x1 ← w + ωSORD

−1(f − (D +R)w − Lx1)
4: x2 ← x1 + ωSORD

−1(f − (D + L)x1 −Rx2)
5: w ← (1− ω)w + ωx2

6: end for
7: return w
8: end function

68 The multigrid and the Newton solvers

To formulate this smoother, a modi�cation of D is used. The matrix

Ddec :=


Cdec

0,0

Cdec
1,1

. . .

Cdec
N,N


de�nes the decoupled part of this matrix D. The diagonal blocks Cdec

n,n stem from Cn,n by
removing the coupling matrices between the primal and the dual part. For example, in
case of the heat equation discretised with the implicit Euler scheme, this means

Cn,n =

(
Ih
k +Ah Ih

α

−Ih Ih
k +A

)
⇒ Cdec

n,n =

(
Ih
k +Ah 0

0 Ih
k +A

)
,

and in the case of the Navier�Stokes equations, with C = G(wl),

Cn,n =


Ih
k + Cn,h Ih

α Gh 0

−Ih Ih
k +N ∗n,h 0 Gh

Dh 0 0 0

0 Dh 0 0



⇒ Cdec
n,n =


Ih
k + Cn,h 0 Gh 0

0 Ih
k +N ∗n,h 0 Gh

Dh 0 0 0

0 Dh 0 0

 .

Thus, the problem of solving a linear system with Cn,n for each component in time decom-
poses into two smaller, independent linear systems, one for the forward and one for the
backward equation.

Algorithm 3.6 is similar to FBGsSmoother but uses the matrix Ddec instead of
D to formulate the smoothing iteration. The algorithm assumes a decomposition x =
(xprimal, xdual) of a space-time vector x ∈ W l into a primal and dual part. In a �rst step,
line 4 of the algorithm, only the primal part is updated by a forward simulation using the
dual part as right-hand side. In the second step, line 5 of the algorithm, only the dual part
is updated using the primal part as right-hand side.

Algorithm 3.6 Forward-Backward simulation smoother

Prede�ned constant: ω > 0: damping parameter
Notation: x = (xprimal, xdual): decomposition into primal/dual part

1: function FBSimSmoother (C l,w,f ,NSM)
2: for istep = 1 to NSM do
3: x← w
4: xprimal ←

(
x+ (L+Ddec)−1(f − C lx)

)
primal

. Update primal part

5: xdual ←
(
x+ (R+Ddec)−1(f − C lx)

)
dual

. Update dual part
6: w ← (1− ω)w + ωx
7: end for
8: return w
9: end function

3.5. Smoothing operators and the coarse grid solver 69

3.5.3. Extensions: Smoothers, preconditioners and one-level solvers

The above smoothers de�ne a set of basic defect correction based algorithms which can
be applied to the discrete space-time problem. In their basic form, these algorithms are
sometimes slow and unstable. A common approach to enhance the robustness is to combine
them with other iterative schemes by applying preconditioning techniques. This leads in
a natural way to a concept which is called `cascased smoothers' here and allows to de�ne
rather general one-level solvers which can be used for smoothing and coarse grid solving.

Every smoother can work as a preconditioner Let xSmoother identify any of the
above smoothers. For an arbitrary initial guess w and right-hand side f , setting

w̃ := xSmoother(C l, w, f,NSM)

for an arbitrary NSM ∈ N produces a new approximate w̃ to a solution w∗ with C lw∗ = f .
In particular, the simplest setting

w̃ := xSmoother(C l, 0, f, 1) (3.26)

generates an approximation w̃ to w∗. This can be used to de�ne a preconditioner: One
step of a typical preconditioned defect correction loop with preconditioner C̃ has the form

wnew := w + C̃−1(f − C lw)

or equivalently
1.) C̃g = d := (f − C lw)

2.) wnew := w + g.

The preconditioner C̃ should be an approximation to C l, i. e., solving C̃g = d should
produce an intermediate solution g which is an approximation to g∗ with C lg∗ = d. Setting
f := d, this is exactly what (3.26) does, so g can be de�ned by

C̃g = d :⇔ g := xSmoother(C l, 0, d, 1).

For an arbitrary (defect) vector d, based on the smoothers above, the following precondi-
tioners can therefore be de�ned:

1.) FBJacPrec(d) := FBJacSmoother(C l, 0, d, 1)

2.) FBSimPrec(d) := FBSimSmoother(C l, 0, d, 1)

3.) FBGsPrec(d) := FBGsSmoother(C l, 0, d, 1)

4.) FBSorPrec(d) := FBSorSmoother(C l, 0, d, 1)

Cascaded smoothers With the above preconditioners de�ned, any block-based, itera-
tive, preconditioned, defect correction based solver can be used as a smoother in a multigrid
setting. This is done by performing NSM ∈ N solver steps with one of the above precondi-
tioners for preconditioning. Such a technique was for example successfully applied in [108]
in order to avoid damping parameters in iterative smoothers like the Jacobi smoother.
However, it has to be noted that the underlying system is not symmetric: Already the
di�erent structure of the mass matrix block on the o�diagonals disturb the symmetry, not
to mention a potential nonlinearity. Algorithms that assume symmetric matrices (like the
standard CG method) should therefore be avoided.

70 The multigrid and the Newton solvers

For numerical tests in later chapters, the most prominent example of such a `cascaded'
algorithm is adapted from [108] to the space-time case: With BiCGStab(C l, w, f,NITE),
NITE steps of the BiCGStab algorithm [154] is identi�ed, starting from an initial approx-
imation w to w∗ with C lw∗ = f . Furthermore, xPrec refers to any of the preconditioners
in b). Using the preconditioned variant of BiCGStab, a cascaded smoother can be de�ned
by

BiCGStab(xPrec,NSM).

As an example, BiCGStab(FBGSPrec,NSM) stands for applying NSM smoothing steps
with a BiCGStab solver, BiCGStab(C l, w, f,NSM), preconditioned by FBGSPrec.

The coarse grid solver Finally, every iterative smoother can also be used as a solver to
solve an equation of the form C lw = f (assuming convergence of the smoother). For that
purpose, the �xed number of iterations in the smoother has to be replaced by a stopping
criterion depending on the residuum. This can be used to formulate a coarse grid solver
for the multigrid iteration; for example BiCGStab(FBGSPrec) or a similar combination
of algorithms can be used as solver for the coarse grid problems.

Generally, for a smoother xSmoother, the corresponding solver will in the following be
denoted by xSolver. If the smoother is depending on a damping parameter, this is added
to the notation. For example, FBJacSolver(ω) denotes the solver that corresponds to
the damped Block Jacobi smoother. A preconditioned BiCGStab solver will be referred
to as BiCGStab(xPrec), so in contrast to the smoother, the NSM is omitted in the
notation.

3.6. Coupled multigrid solvers in space

Up to this point, the structure of the submatrices in the global space-time matrix did not
matter. All algorithms have been formulated in an abstract matrix-vector form without
exploiting the structure of the underlying state and adjoint equations in space. However,
for an e�cient preconditioning of the spatial subproblems, this plays an important role.

As mentioned above, for each component in time, linear systems of the form

Dnwn = fn (3.27)

have to be solved. These can be interpreted as subproblems in space, with wn and fn
denoting the n-th time component of the solution and right-hand side block vectors w ∈W l

and f ∈ (W l)×, respectively. Dn = Cn,n refers to the n-th diagonal block of the underlying
space-time matrix C l on level l. If the system stems from FBSimSmoother/FBSimPrec,
there is Dn = Ddec

n = Cdec
n,n.

Since the operator Dn represents a continuous operator (like Poisson, Stokes, convec-
tion,...), e. g., a monolithic multigrid solver in space can be applied which is expected to
converge with a (space-) level-independent convergence rate. This type of solver builds
upon the hierarchy of spatial meshes which has been generated during the discretisation
of the space-time problem. Basically, it needs a hierarchy of problems, a smoother on each
level, a coarse grid solver and appropriate prolongation/restriction operators. Figure 3.6
illustrates this situation: For every solution component n (identi�ed with time tn here), a
local spatial hierarchy is formed which serves as basis for an underlying multigrid in space.

3.6. Coupled multigrid solvers in space 71

The local hierarchy in space Equation (3.27) corresponds to level l in the space-time
hierarchy. Due to the fact that w ∈W l = W l,l and f ∈ (W l)× = (W l,l)×, there is

wn ∈ V l, fn ∈ (V l)∗.

A natural �nite element hierarchy corresponding to Ω1, ...,Ωl is

V 1, ..., V l.

The operator Dn stems from a continuous operator and thus, there is a hierarchy of oper-
ators in space available,

D1, ..., Dl = Dn, Dm : V m → (V m)∗, Dm ≈ Dn, m = 1, ..., l.

Here, Dm = Dm
n ≈ Dn denotes that Dm is a representation of Dn on level m, created with

techniques similar to the space-time case in Section 3.4.5.

Canonical definition of the operator hierarchy The canonical way to create the hier-
archy D1, ..., Dl is sketched in the following. In the nonlinear case, according to (3.22), the
canonical choice for C l in W l = W l,l is

C l = Gl(wli) and C l = F l(wli),

respectively. Similarly, a canonical choice for a preconditioner in W l,m is

C l,m := Gl,m(wl,mi) and C l,m := F l,m(wl,mi),

Figure 3.6: During the space-time preconditioning sweeps (topmost mesh row), a local
mesh hierarchy is formed at each tn to solve a local linear system with a spatial multigrid
solver (mesh columns).

72 The multigrid and the Newton solvers

respectively, with wl,mi ∈ W l,m an approximation to wσi created with the methods in
Section 3.4.5 � however, due to the fact that the time level l is not modi�ed, there is no
restriction in time necessary.

Similarly, in the linear case, the canonical way for the preconditioner in W l,m is

C l,m := Gl,m

In all cases, C l,m approximates C l,l. Thus, Dm = Dm
n is chosen as the n-th diagonal

block of C l,m.

Prolongation/Restriction/Coarse grid operators in space The required prolongation
and restriction operators based on the applied �nite element spaces are standard and well
known (see for example [9, 32, 75, 142, 161]). Thus, the investigations are restricted to a
short discussion of smoothing operators. For the coarse grid problems, either a direct solver
can be used (for small problems) or a coarse grid solver can be derived from a smoothing
operator by processing the smoothing iteration on the coarse mesh until convergence (see
also Section 3.5.3).

Smoothing operators in space The de�nition of a smoothing operator in space is a
rather delicate task. On the one hand, the smoother should be `strong' enough to guarantee
fast convergence. On the other hand, its application should be fast. For standard problems
like the heat equation, there are a couple of iterative numerical algorithms available, e. g.,
(Block)-Jacobi, (Block)-Gauÿ Seidel, SSOR or ILU algorithms. All of them are applicable
in the optimal control context as well. However, the block systems that arise during the
discretisation of Stokes or Navier�Stokes problems cannot be handled with these algorithms
due to the saddle-point character. As a possible remedy, the following paragraphs give
an introduction into the pressure Schur complement (`PSC') approach known from CFD
problems (see also [132, 155, 159]). The main property of this approach is that it treats all
variables in a monolithic way, i. e., it acts simultaneously on the primal and dual variables.

For simplicity, the smoothing algorithms are only described here for space level l,
i. e., if being applied to (3.27). In a full multigrid context, smoothing takes place at
level m = 2, ..., l, and thus, the underlying operator Dn = Dl has to be replaced by its
counterpart Dm on level m.

The saddle point system in detail Equation (3.27) has an algebraic counterpart of the
form

Ax = b

with a matrix A ∼= Dn, a vector x = ~wn ∼= wn and a right-hand side vector b = ~fn ∼= fn.
The notation A ∼= Dn is used to express that A is the matrix corresponding to the operator
Dn. Furthermore, ~wn and ~fn refer to the vectors with degrees of freedom of wn and fn,
respectively, which is expressed as ~wn ∼= wn and ~fn ∼= fn.

In the case of the Stokes� and Navier�Stokes equations, on the background of optimal
distributed control, this system can be written in the form

Aprimal Mdual B 0
Mprimal Adual 0 B
BT 0 0 0
0 BT 0 0




y
λ
p
ξ

 =


by
bλ
bp
bξ

 .

3.6. Coupled multigrid solvers in space 73

In the special case that the primal and dual variables are decoupled (if FBSimSmoother/-
FBSimPrec is used), this system reduces to

Aprimal 0 B 0
0 Adual 0 B
BT 0 0 0
0 BT 0 0




y
λ
p
ξ

 =


by
bλ
bp
bξ


or in short to the two decoupled subsystems(

Aprimal B
BT 0

)(
y
p

)
=

(
by
bp

)
,

(
Adual B
BT 0

)(
λ
ξ

)
=

(
bλ
bξ

)
.

All systems are typical saddle point problems for primal and/or dual variables, with velocity
submatrices Aprimal, Adual, the possible coupling matrices between the primal and dual
velocity Mprimal and Mdual, and the gradient/divergence matrices B and BT.

The PSCSMOOTHER The idea of the PSCSmoother is to apply a defect correction of
the type

xj+1 := xj + ωC−1
space(b−Axj), ω > 0

element by element, with Cspace an appropriate preconditioner in space. The underlying
mesh of the �nite element space on (space-) level l is again denoted by Ωl. In an outer loop
over all all elements K ∈ Ωl, a global defect dj := b− Axj is created. The components of
the defect which do not belong to the current element are forced to zero. As a consequence,
the global defect can be reduced to a local defect dK , and the global preconditioner reduces
to a local preconditioner as all rows and columns not belonging to that element can be
eliminated. This gives a local linear system and a local update for the current element. A
more formal description reads as follows:

Let I(K) identify a list of all degrees of freedom that can be found on element K,
containing numbers for the primal and/or dual velocity vectors in all spatial dimensions
and for the primal and/or dual pressure. With this index set, AI(K) de�nes a (rectangular)
matrix containing only those rows from A identi�ed by the index set I(K). In the same way,
xI(K) and bI(K) refer to the subvectors of x and b containing only the entries identi�ed by
I(K). Furthermore, AI(K),I(K) stands for the (square) matrix that stems from extracting
only those rows and columns from A identi�ed by I(K).

This notation allows to formulate the basic PSCSmoother in space, see Algorithm 3.7.
The parameter ω > 0 is a damping parameter. Of course, this formulation is not yet
complete, as it lacks a proper de�nition of the local preconditioner C−1

K . This is a small
square matrix with as many rows and columns as indices in I(K).

Local element-preconditioners Two basic approaches for this preconditioner are com-
monly used. The �rst approach, which is entitled by PSCSmootherFull, results in the
simple choice of CK := AI(K),I(K) and applies C−1

K by invoking a LU decomposition (e. g.,
with the LAPACK package [122]) or a local Schur complement decomposition. This ap-
proach is rather robust and still feasible as the system is small; for the Q̃1/Q0 space (see
[142]) that is used in a number of numerical tests in later chapters, the system has 9 or 18
unknowns, respectively.

74 The multigrid and the Newton solvers

Algorithm 3.7 PSCSmoother for smoothing an approximate solution to Ax = b

Prede�ned constant: ω > 0: damping parameter

1: function PSCSmoother(A,x,b,NSM)
2: for ism = 1 to NSM do . NSM smoothing sweeps
3: for all K ∈ Ωl do . loop over the elements
4: xI(K) ← xI(K) + ωC−1

K (bI(K) −AI(K)x) . local correction
5: end for
6: end for
7: return x . solution
8: end function

The second approach, which is referred to by PSCSmootherDiag, employs a di�erent
subset of the matrix A for the construction of CK . To describe this approach, the following
submatrix of A is used,

Â :=


diag(Aprimal) 0 B 0
0 diag(Adual) 0 B
BT 0 0 0
0 BT 0 0

 ,

where `diag(·)' refers to the operator taking only the diagonal of a given matrix. The local
preconditioner can then be formulated as CK := ÂI(K),I(K). This approach decouples the

primal and dual variables in the local system. Applying Â−1
I(K),I(K) decomposes into two

independent subproblems. This reduces the stability but leads to a much faster solution
procedure. Similar to the choice CK := AI(K),I(K), the local systems are of saddle point
type, so either a direct solver or a Schur complement decomposition can be invoked.

3.10 Remark. The choice CK := AI(K),I(K) is the most natural one and motivated by
the local linear system behind the correction. The defect in line 4 of Algorithm 3.7 can be
interpreted in the following way:

bI(K) −AI(K)x = b̃K −AI(K),I(K) xI(K) (3.28)

with
b̃K := bI(K) −AI(K) x+AI(K),I(K) xI(K).

One directly veri�es that b̃K does not depend on xI(K), the corresponding contributions
from x and xI(K) cancel out. Therefore, (3.28) creates a defect for the local linear system

AI(K),I(K) xI(K) = b̃K .

This system only solves for the degrees of freedom in K, all others are treated as `Dirichlet
values', i. e., as known. The optimal preconditioner in a defect correction loop is C−1

K with
CK := AI(K),I(K).

3.11 Example. The PSCSmoother approach is a rather general approach and can be
applied to a large variety of systems. To demonstrate the action of this smoother, a simple
Poisson problem of the form

−∆y = f

3.6. Coupled multigrid solvers in space 75

is considered on the domain Ω = (0, 1)2, y, f : Ω → R. If this problem is discretised
with the Q1 �nite element approach on a regular mesh with 9 cells, the associated discrete
system reads

Ax = b (3.29)

with A ∈ R16×16 a system matrix and x, b ∈ R16 the vectors with the degrees of freedom
of the solution y and the right-hand side f , respectively.

For a given approximation x to a solution x∗ of (3.29), Algorithm 3.7 applies an update-
loop over all elements. Figure 3.7 illustrates a situation in which the elements K1,...,K4

are already processed. The formula to update the degrees of freedom corresponding to
element K5 with PSCSmoother reads

x6

x7

x10

x11

 :=


x6

x7

x10

x11

+ ωC−1
5



b6
b7
b10

b11

−

a6,1 ... a6,16

a7,1 ... a7,16

a10,1 ... a10,16

a11,1 ... a11,16


 x1

...
x16




whereby

C5 =


a6,6 a6,7 a6,10 a6,11

a7,6 a7,7 a7,10 a7,11

a10,6 a10,7 a10,10 a10,11

a11,6 a11,7 a11,10 a11,11

 or C5 =


a6,6

a7,7

a10,10

a11,11


for the PSCSmootherFull or PSCSmootherDiag approach, respectively. The entry
ai,j corresponds to the i-th row and j-th column of the matrix A. The old entries x6,
x7, x10 and x11 are overwritten and the new values are used for all remaining cells Kj ,
j = 6, 7, 8, 9.

Figure 3.7: For element K5, the PSCSmoother approach updates x6, x7, x10 and x11.

3.12 Remarks. a) PSCSmootherDiag and PSCSmootherFull can also be used as
a preconditioner in an outer iteration if applied with NSM = 1 and start vector x = 0

76 The multigrid and the Newton solvers

to a defect vector. The corresponding algorithms are called PSCPrecDiag and PSC-

PrecFull and are used in numerical tests as preconditioners in a BiCGStab algorithm.
Such `cascaded' algorithms are denoted in a similar way to previous sections: The term
BiCGStab(PSCPrecDiag,NSM=4) for example refers to a BiCGStab smoother with
four smoothing steps, preconditioned by PSCPrecDiag.

b) Most of the numerical tests in later chapters are carried out using BiCGStab(PSC-
PrecDiag,NSM=4) as smoother in space unless otherwise indicated. As coarse grid solver,
BiCGStab(PSCPrecDiag) is usually used.

c) If spatial problems turn out to be very di�cult, it is possible to increase the stability
by applying this approach to certain patches of cells (cf. [132]) but this concept is beyond
the scope of the investigations here.

3.7. Stopping criteria and the inexact Newton algorithm

The above descriptions of iterative solution algorithms still lack the de�nition of proper
stopping criteria. Di�erent choices are possible here. The following list gives an overview
about the stopping criteria of all the solver components that interact with each other or are
used in numerical tests. Generally speaking, all stopping criteria provide a `relative' control
of the residual, i. e., they aim at damping the norm of a given initial residual by a number
of digits. All calculations are carried out in double precision. An optional `absolute' error
bound stops the iteration prematurely if the norm of the residual drops below a certain
value. This is meant as a kind of fallback strategy if the norm of the residual drops below
machine accuracy and cannot be reduced anymore. There is no control of the iteration
in the sense that the norm of the residual must drop below an de�ned value or that the
relative change in the solution has to be less than a minimum tolerance. Such variants can
be seen as possible extensions but are beyond the scope of this work.

3.7.1. Basic stopping criteria

The l2-norm of a vector containing degrees of freedom is denoted by || · ||l2 . Furthermore,
εOptNL, εOptMG, εCoarseMG, εSpaceMG, εSimNL, εSimMG > 0 de�ne `relative' error bounds.
Appropriate choices for these parameters are given in later sections based on numerical
studies.

1.) In a full space-time Newton algorithm, a couple of solvers interact with each other.
The outer Newton solver is a nonlinear solver which produces in the n-th nonlinear iteration
a residual rOptNLn . The solver stops the iteration if

||rOptNLn ||l2 < εOptNL||rOptNL0 ||l2 or ||rOptNLn ||l2 < 10−14

is ful�lled. The solver detect divergence of the iteration if the initial residuum is increased
by more than �ve digits. Except where noted di�erently, the iteration is stopped prema-
turely if more than 20 iterations are carried out.

2.) In each nonlinear iteration, the linear space-time multigrid solver produces in its
n-th step the residual rOptMG

n . The solver stops the iteration once

||rOptMG
n ||l2 < εOptMG||rOptMG

0 ||l2 or ||rOptMG
n ||l2 < 10−14

is ful�lled. The solver detect divergence of the iteration if the initial residuum is increased
by more than three digits. Except where noted di�erently, the iteration is stopped prema-
turely if more than ten iterations are carried out.

3.7. Stopping criteria and the inexact Newton algorithm 77

3.) On the space-time coarse mesh, a linear one-level solver is used. This is an iterative
solver (usually a preconditioned version of BiCGStab) which produces in its n-th step
the residual rCoarseMG

n . The solver stops the iteration if

||rCoarseMG
n ||l2 < εCoarseMG||rCoarseMG

0 ||l2 or ||rCoarseMG
n ||l2 < 10−14

is ful�lled. For the coarse grid solver, εCoarseMG = εOptMG is always used, except where
noted. The solver detect divergence of the iteration if the initial residuum is increased by
more than three digits. Except where noted di�erently, the iteration is stopped prematurely
if more than 15 iterations are carried out.

4.) For solving and preconditioning subproblems in space, a linear multigrid solver is
applied. The n-th step of this solver produces a residual rSpaceMG

n . The solver stops if

||rSpaceMG
n ||l2 < εSpaceMG||rSpaceMG

0 ||l2 or ||rSpaceMG
n ||l2 < 10−14

is ful�lled. The solver detect divergence of the iteration if the initial residuum is increased
by more than three digits. Except where noted di�erently, the iteration is stopped prema-
turely if more than 100 iterations are carried out.

5.) Sometimes, a comparison between an optimisation and a simulation is done. To keep
the solvers comparable, the simulation solver always uses the same kind of preconditioners
in space as the optimisation (usually both use PSCSmootherDiag). The nonlinear
simulation solver in space produces in its n-th step the residual rSimNLn and stops if

||rSimNLn ||l2 < εSimNL||rSimNL0 ||l2 or ||rSimNLn ||l2 < 10−14

is ful�lled. In each nonlinear iteration, a spatial multigrid solver is used for the linear
subproblems. This solver produces in its n-th step the residual rSimMG

n and stops if the
relative stopping criterion

||rSimMG
n ||l2 < εSimMG||rSimMG

0 ||l2 or ||rSimMG
n ||l2 < 10−14

is ful�lled.

3.7.2. The inexact Newton algorithm

Based on the above stopping criteria, a variant of Newton's algorithm is formulated to
reduce numerical costs during the calculation. The idea is to adapt the accuracy (stop-
ping criterion) of the inner linear solver in relation to the residual of the outer nonlinear
Newton solver in such a way that quadratic convergence is maintained. Heuristically, this
strategy invests exactly as much e�ort into the linear subproblems as necessary for the
global nonlinear iteration, thus reducing the overall CPU time in a quasi-optimal way. A
description of this strategy can be found, e. g., in [84, 85] or [92, Chapter 4.3.2]. For an
analysis of inexact Newton methods, see [104, Chapter 6].

The n-th nonlinear residual of the space-time Newton is again denoted by rOptNLn and
rOptMG
m refers to the m-th residual in the linear space-time-solver during the n-th nonlinear
iteration. The inexact Newton algorithm is de�ned as the standard Newton algorithm with
a modi�ed stopping criterion for the linear solver. In detail, the linear solver terminates
in its m-th iteration if

||rOptMG
m ||l2

||rOptMG
0 ||l2

≤ min


(
||rOptNLn ||l2
||rOptNL0 ||l2

)q−1

, εOptIN

 (3.30a)

78 The multigrid and the Newton solvers

holds. If zero is used as initial guess of the linear solver, an equivalent formulation reads

||rOptMG
m ||l2
||rOptNL0 ||l2

≤ min

{(
||rOptNLn ||l2
||rOptNL0 ||l2

)q
, εOptIN

(
||rOptNLn ||l2
||rOptNL0 ||l2

)}
(3.30b)

due to the fact that rOptMG
0 = rOptNLn . The constant εOptIN > 0 speci�es the minimum

residual reduction in each nonlinear iteration and can be set, e. g., to εOptIN := 10−2. On
the other hand, q > 0 speci�es the convergence order. For q := 2, the algorithm converges
quadratically near the optimum similar to the standard Newton algorithm. Setting 1 <
q < 2 results in superlinear convergence.

3.8. Summary and conclusions

In this chapter, the whole solver methodology has been described. The key for the design
is that the underlying optimisation problem has been formulated as a continuous set of
partial di�erential equations, the KKT system, on the space-time cylinder. Following the
discretisation introduced in the previous chapter, this KKT system has been discretised
on a hierarchy of meshes.

A nonlinear defect correction solver has been applied on the �nest mesh which
realises in a special case a nonlinear Newton solver.

A linear space-time multigrid solver has been formulated which exploits the prob-
lem hierarchy. The purpose of this solver has been to act as a preconditioner during the
above nonlinear iteration. The main di�culties in the de�nition of a multigrid solver
have been the de�nition of prolongation/restriction operators and the de�nition of e�cient
smoothers/preconditioners/coarse grid solvers which are usually only e�cient if created in
a problem dependent way.

Prolongation/restriction operators have been formulated as a combination of �nite
di�erence prolongation/restriction operators in time and �nite element prolongation/re-
striction operators in space. The most crucial choice in this context has been an appro-
priate de�nition of the restriction operator for the general θ-scheme due to the special
interpretation of the discrete dual solutions in time. For the formulation of the operators,
the concept of `discrete abstract functions' has been introduced which has allowed to adapt
the standard multigrid notation for 1D �nite di�erence discretisations to the time axis.

Smoothers/preconditioners/coarse grid solvers have been derived based on the
special matrix form of the discrete KKT system. The most important point in this con-
text is that all space-time matrices feature a block tridiagonal form. This has allowed to
adapt iterative block-based solution algorithms like the block Jacobi or block Gauÿ�Seidel
algorithm as smoother, preconditioner and coarse grid solver. With the help of other iter-
ative schemes like BiCGStab, complex, cascaded smoothers/coarse grid solvers have been
formulated which aim at avoiding the choice of damping parameters. At the end of the
day, the solution of linear systems on the space-time cylinder has been reduced to global
matrix-vector multiplications and sequences of local linear systems, based on the diagonal
blocks of the global matrices.

Local linear systems in space have been processed by a standard monolithic multi-
grid solver, based on a hierarchy of �nite element discretisations in space. At this point,

3.8. Summary and conclusions 79

the de�nition of local pressure Schur complement solvers has come into play which have
allowed to reduce linear systems in space to small linear systems on each cell of the �nite
element mesh. Finally, this is the key for e�cient smoothers in space, also for linear sys-
tems with saddle-point structure which appear during the discretisation of the Stokes and
the Navier�Stokes equations.

This completes the description of the main solver components. Of course, there are sev-
eral possible extensions which have been omitted for simplicity. For example, the technique
can be applied to more complicated model problems including, e. g., end time observation
or constraints in the control. The next chapter will illustrate some of these extensions; glob-
alisation strategies to enhance the robustness of the solver can be found in Appendix B for
completeness. Chapter 5 will continue with the numerical analysis of the proposed solver
strategy. Starting with an analysis of the heat equation and proceeding to the Navier�
Stokes equation, the analysis will cover all main proposed solver components as well as
some of the extensions and study their e�ciency and robustness.

80 The multigrid and the Newton solvers

4

Extended systems and additional discretisation
strategies

Based on a set of model problems, the two previous chapters have introduced on the one
hand a discretisation strategy for the underlying KKT systems on the space-time cylinder,
on the other hand a hierarchical solution strategy which aims at solving the underlying
KKT systems with linear complexity.

This chapter provides an overview of important extensions to the method. The model
problems from Chapter 2 are modi�ed, e. g., to more general boundary conditions and
constraints in the control. The previous model problems are special cases of the new ones.
These modi�cations provide additional �exibility for numerical tests in later chapters.

Outline

Sections 4.1 to 4.4 describe a set of common extensions of the method to more general model
problems. At �rst, Section 4.1 introduces an additional end time observation at t = T .
Section 4.2 illustrates constraints in the control and Section 4.3 generalises the boundary
conditions to support out�ow boundary conditions in the context of optimal control of
the Stokes and Navier�Stokes equations. Finally, Section 4.4 switches the focus from
model problems to discretisation strategies. This section describes the semi-explicit time
discretisation which is used by other authors and highlights advantages and disadvantages
in comparison to the implicit Euler and Crank�Nicolson time discretisation.

4.1. The end time observation

The formulations of the considered optimisation problems can be extended by an end time
observation. This allows the user to in�uence the behaviour of the solution at the end of
the time interval. In the following, the end time observation is at �rst introduced using the
heat equation and later generalised to the Stokes and Navier�Stokes equations. Although
the de�nition is easily introduced into the in�nite dimensional problem, the choice of an
appropriate discretisation is more delicate if it comes to higher order time discretisation
schemes such as the Crank�Nicolson scheme.

With a parameter γ ≥ 0, adapting the notation from Chapter 2, the distributed control
problems involving end time observation have the following, form. cf. [61, 84]. For the heat
equation, y, u : Q → R have to be computed with

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q +

γ

2
||y(T, ·)− z(T, ·)||2Ω −→ min! (4.1)

81

82 Extended systems and additional discretisation strategies

such that

yt −∆y = u in Q,
y(0, ·) = y0 in Ω,

y = g at Σ.

For the Stokes/Navier�Stokes equations on the other hand, y, u : Q → Rdim and p : Q → R
have to be computed with

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q +

γ

2
||y(T, ·)− z(T, ·)||2Ω −→ min! (4.2)

such that
yt − ν∆y +∇p = u in Q,

−div y = 0 in Q,
y(0, ·) = y0 in Ω,

y = g at Σ,

 or


yt − ν∆y + y∇y +∇p = u in Q,

−div y = 0 in Q,
y(0, ·) = y0 in Ω,

y = g at Σ,


respectively. Similar to Chapter 2, y0 and g de�ne the initial and boundary conditions.
Applying the usual Lagrange multiplier technique, the corresponding in�nite dimensional
KKT systems are derived. These are identical to those in Chapter 2 with the exception
that the end time condition

λ(T, ·) = 0 in Ω

is replaced by
λ(T, ·) = γ(y(T, ·)− z(T, ·)) in Ω. (4.3)

To derive an appropriate discretisation in terms of an implicit time stepping scheme, the
First-Discretise-Then-Optimise strategy based on the Lagrange multiplier approach is used
in the following.

4.1.1. End time observation for the implicit Euler scheme

The implicit Euler timestepping scheme allows to work with values at the end of the time
intervals. As a consequence, the discretisation of the end time condition can be done in a
straightforward way.

The heat equation At �rst, the optimal control of the heat equation is considered.
Similar to Section 2.5 on page 31�, a discrete form of the functional J(·, ·) is de�ned
as follows.

JIET (y, u) :=
1

2
k

n∑
n=1

||yn − zn||2Ω +
α

2
k

n∑
n=1

||un||2Ω +
γ

2
||yN − zN ||2Ω −→ min! (4.4)

s.t. (yn − yn−1)− k∆yn = kun in Ω, n = 1, ..., N,

y0 − k∆y0 = y0 − k∆y0 in Ω,

yn = g at Σ, n = 0, ..., N.

4.1. The end time observation 83

In the next step, the Lagrange functional is set up,

LIET (y, u, λ) := JIET (y, u)

+

N∑
n=1

(
λn, kun − (yn − yn−1 − k∆yn)

)
+

(
λ0, (y

0 + k∆y0)− (y0 − k∆y0)
)
,

with λ0, ..., λN : Rdim → R. Requiring DLIET (y, u, λ) = 0 and eliminating the control u
results in the discrete KKT system (2.36) on page 35 with the discrete end time condition
replaced by

λN
k
−∆λN = −(1 +

γ

k
)(yN − zN). (4.5)

Using A : V → V ∗, A : v 7→ −∆v for all v ∈ V , the KKT system can be written in
matrix-vector notation on the space-time cylinder,

Gw = f,

for wn := (yn, λn), w := (w0, w1, ...). The right hand side is given by

f =

(
(I/k +A)y0, 0︸ ︷︷ ︸

f0

, 0,−z1︸ ︷︷ ︸
f1

, ..., 0,−zN−1︸ ︷︷ ︸
fN−1

, 0,−(1 + γ/k)zN︸ ︷︷ ︸
fN

)
,

which is the same as in Section 2.5.3 on page 34f except for the last entry. The system
matrix reads

G =


G0 Î0

Ĭ1 G1 Î1

Ĭ2 G2 Î2

.

ĬN GN

 (4.6)

with the submatrices de�ned as in Section 2.5.3. The only exception is the last diagonal
block which is replaced by

GN =

(
I
k +A I

α

−(1 + γ
k)I I

k +A

)
.

The Stokes/Navier–Stokes equations For the Stokes and the Navier�Stokes equations,
the modi�cations are exactly the same. In the case of the Navier�Stokes equations, the
discretisation of the end time condition is given by

λN
k

+N ∗NλN +∇ξN = −(1 +
γ

k
)(yN − zN)

−div λN = 0

with N ∗N de�ned as in Section 2.5. The whole space-time system reads again

G(w)w = f,

84 Extended systems and additional discretisation strategies

with the right-hand side given by

f =

(
(I/k + C0)y0, 0, 0, 0︸ ︷︷ ︸

f0

, 0,−z1, 0, 0︸ ︷︷ ︸
f0

,

..., 0,−zN−1, 0, 0︸ ︷︷ ︸
fN−1

, 0,−(1 + γ/k)zN , 0, 0︸ ︷︷ ︸
fN

)T

and the system matrix

G = G(w) =


G0 Î0

Ĭ1 G1 Î1

Ĭ2 G2 Î2

.

ĬN GN

 . (4.7)

The submatrices are the same as in Section 2.5, only the last diagonal matrix block changes
to

GN =


I
k + Cn I

α G 0

−(1 + γ
k)I I

k +N ∗n 0 G
D 0 0 0

0 D 0 0

 .

This has a slight in�uence to the Fréchet derivative which is used for the Newton iteration.
Similar to Section 2.5.2 on page 34, the corresponding matrix has the form

F(w) =


F0 Î0

Ĭ1 F1 Î1

Ĭ2 F2 Î2

.

ĬN FN

 .

with the same submatrices as in Section 2.5.2, except for

FN =


I
k +NN 1

αI G 0

−(1 + γ
k)I +RN I

k +N ∗N 0 G
D 0 0 0

0 D 0 0

 .

4.1.2. End time observation for the general θ-scheme

For a time discretisation with a general θ-scheme in the proposed way, the pointwise
restriction

λ(T, ·) = γ(y(T, ·)− z(T, ·))

cannot be formulated in terms of yN , λN and zN since there is no λN , but λN−1+θ for
0 < θ < 1. For the de�nition of a proper discrete functional JTST (y, u), the term γ

2 ||y(T, ·)−

4.1. The end time observation 85

z(T, ·)||2Ω in the functional J(y, u) has to be discretised in an appropriate way. Di�erent
choices are possible here. One possibility is for example to use the approximation

||y(T, ·)− z(T, ·)||2Ω =
1

K

∫ T

T−K

(
y(t)− z(t)

)2
dt+O(K) (4.8)

for K > 0 small and to replace ||y(T, ·) − z(T, ·)||2Ω by 1
K

∫ T
T−K

(
y(t) − z(t)

)2
dt. The

advantage is that
∫ T
T−K

(
y(t)− z(t)

)2
dt can be discretised with the trapezoidal rule in the

same way as ||y − z||2Q. The corresponding scheme would be of order O(K) in the (real)
end time condition, provided that k is small enough, i. e., 0 < k � K. For a �xed K and
θ = 1/2, this scheme would be second order accurate in time and in the (modi�ed) end
time condition.

A modi�cation of this scheme is preferred in this work. Setting K := k, an end time
condition is obtained which converges with �rst order to ||y(T, ·)− z(T, ·)||2Ω. For the heat
equation and the Stokes/Navier�Stokes equations, this approach reads as follows.

The heat equation Using a (modi�ed) trapezoidal rule for the last timestep results in
the discrete functional

JTST (y, u) :=
1

2
k

n∑
n=1

(
(1− θ) ||yn−1 − zn−1||2Ω + θ ||yn − zn||2Ω

)

+
α

2
k

n∑
n=0

||un−1+θ||2Ω

+
γ

2

(
(1− θ) ||yN−1 − zN−1||2Ω + θ ||yN − zN ||2Ω

)
(4.9)

which has to be minimised under the constraint of the heat equation or the Stokes/Navier�
Stokes equations.

To derive the appropriate scheme, once again, a proper discrete Lagrange functional
LTST (·) is de�ned. From DLTST (·) = 0, the discrete KKT system is obtained. This can
be formulated in matrix-vector notation on the space-time cylinder,

Gw = f,

with

G = Gθ =


G0 Î0

Ĭ1 G1 Î1

Ĭ2 G2 Î2

.

ĬN GN

 . (4.10)

In the particular case of the heat equation, the solution w has the form

w := (w0, w1, ...) with wn := (yn, λn−1+θ),

and the submatrices are the same as in Section 2.6.3 on page 41 except for the last two
diagonal blocks; these read

GN−1 =

(
I
k +AθN−1

1
αI

−(1 + (1− θ)γk)I I
k +AθN−1

)
, GN =

(
I
k +AθN

1
αI

−(θ + θ γk)I I
k +AθN

)
.

86 Extended systems and additional discretisation strategies

The right-hand side is given by

f =

(
(I/k +Aθ0)y0,−(1− θ)z0︸ ︷︷ ︸

f0

, 0,−z1︸ ︷︷ ︸
f1

, ..., 0,−zN−2︸ ︷︷ ︸
fN−2

,

0,−
(

1 + (1− θ)γ
k

)
zN−1︸ ︷︷ ︸

fN−1

, 0,−
(
θ + θ

γ

k

)
zN︸ ︷︷ ︸

fN

)

and coincides with the right-hand side in Section 2.6.3 except for the last two subvectors.
In an explicit form, the end time condition reads

λN−2+θ − λN−1+θ

k
− θ∆λN−2+θ − (1− θ)∆λN−1+θ =

(
1 + (1− θ)γ

k

)
(yN−1 − zN−1),

λN−1+θ

k
− θ∆λN−1+θ =

(
θ + θ

γ

k

)
(yN − zN).

For θ = 1, this reduces to (4.5).

The Stokes/Navier–Stokes equations A similar modi�cation can also be applied for
the Stokes and Navier�Stokes equations. In particular in the Navier�Stokes case, the
Laplace operator changes to the corresponding nonlinear operator, thus the end time con-
dition in explicit form reads

λN−2+θ − λN−1+θ

k
−N θ,∗

N−1λN−2+θ −N 1−θ,∗
N−1 λN−1+θ =

(
1 + (1− θ)γ

k

)
(yN−1 − zN−1),

λN−1+θ

k
−N θ,∗

N λN−1+θ =
(
θ + θ

γ

k

)
(yN − zN),

−div λN−2+θ = −div λN−1+θ = 0.

Therefore, the right-hand side changes to

f =

(
(I/k + θC0)y0,−(1− θ)z0, 0, 0︸ ︷︷ ︸

f0

, 0,−z1, 0, 0︸ ︷︷ ︸
f1

, ...,

0,−
(

1 + (1− θ)γ
k

)
zN−1, 0, 0︸ ︷︷ ︸

fN−1

, 0,−
(
θ + θ

γ

k

)
zN , 0, 0︸ ︷︷ ︸

fN

)

and, in contrast to the scheme in Section 2.6, the last two diagonal blocks read

GN−1 = Gθ
N−1 =


I
k + CθN−1

1
αI G 0

−(1 + (1− θ)γk)I I
k +N θ,∗

N−1 0 G
D 0 0 0

0 D 0 0

 ,

GN = Gθ
N =


I
k + CθN

1
αI G 0

−(θ + θ γk)I I
k +N θ,∗

N 0 G
D 0 0 0

0 D 0 0

 .

4.2. Constrained Control 87

This also has a direct in�uence to the matrix of the corresponding Fréchet derivative which
is used for the Newton iteration. The Fréchet derivative F(w) of the mapping w 7→ G(w)w
is the matrix

F(w) = Fθ(w) =


F0 Ĵ0

J̆1 F1 Ĵ1

J̆2 F2 Ĵ2

.

J̆N FN

 ,

where all submatrices are the same as in Section 2.6.2, except for the last two diagonal
blocks. These read

FN−1 = FθN−1 =


I
k +N θ

N−1
θ
αI G 0

−(1 + (1− θ)γk)I +RθN−1 +R1−θ
N

I
k +N θ,∗

N−1 0 G
D 0 0 0

0 D 0 0

 ,

FN = FθN =


I
k +N θ

N
θ
αI G 0

−(θ + θ γk)I +RθN
I
k +N θ,∗

N 0 G
D 0 0 0

0 D 0 0

 .

4.2. Constrained Control

The following paragraphs focus on a variant of the distributed control of the nonstationary
Navier�Stokes equations, introducing constraints in the control. This problem can formally
be expressed in the minimisation problem

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q −→ min! (4.11)

s.t. yt − ν∆y + y∇y +∇p = u in Q,
−div y = 0 in Q,
y(0, ·) = y0 in Ω,

y = g at Σ,

a ≤ u ≤ b in Q,

for y, z, u : Q → Rdim, p : Q → R and two functions a, b : Q → Rdim, a ≤ b a. e. in Q.

4.2.1. The projection operator

The following three steps de�ne a standard projection operator onto a closed interval in R
and generalise it in a straightforward way to abstract functions on the space-time cylinder.
With the help of this projection operator, the above problem can be translated into a
standard KKT system.

88 Extended systems and additional discretisation strategies

The scalar projection operator For η1, η2 ∈ R, a pointwise projection operator
P[η1,η2] : R→ R is de�ned by

P[η1,η2](τ) := max
{
η1,min{η2, τ}

}
, τ ∈ R.

Extension to vectors For m ∈ N, η1, η2 ∈ Rm, η1 ≤ η2, the projection P[η1,η2] : Rm →
Rm is de�ned by applying P to each component,

P[η1,η2](τ) :=

 P[η1
1 ,η

1
2](τ1)
...

P[ηm1 ,η
m
2](τm)

 , τ ∈ Rm.

Extension to functions in space or space-time For m ∈ N and η1, η2 ∈ L2(Q)m,
η1 ≤ η2 almost everywhere, using the de�nition in b), the projection P[η1,η2] : L2(Q)m →
L2(Q)m is pointwise de�ned by

P[η1,η2](f)(t, x) := P[η1(t,x),η2(t,x)]

(
f(t, x)

)
, f ∈ L2(Q)m

for almost all (t, x) ∈ Q.

Reformulation of the problem as KKT system With the projection operator at
hand, the KKT system corresponding to the above problem reads (cf. [84, 152]),

yt − ν∆y + y∇y +∇p = u in Q,
−div y = 0 in Q,

y = g at Σ,

y(0, ·) = y0 in Ω,

−λt − ν∆λ− y∇λ+ (∇y)Tλ+∇ξ = y − z in Q,
−div λ = 0 in Q,

λ = 0 at Σ,

λ(T, ·) = 0 in Ω,

u = P[a,b]

(
− 1

α
λ

)
in Q.

After elimination of u (and ignoring the boundary conditions for simplicity), the KKT
system reads

yt − ν∆y + y∇y +∇p = P[a,b]

(
− 1

α
λ

)
, (4.12a)

−div y = 0,

−λt − ν∆λ− y∇λ+ (∇y)Tλ+∇ξ = y − z, (4.12b)

−div λ = 0.

4.2. Constrained Control 89

The right-hand side of the primal equation (4.12a) is obviously not smooth anymore, which
necessitates some changes in the solution algorithm. In particular, the Newton algorithm
has to be replaced by a semismooth Newton algorithm (cf. [151, 152]) in order to achieve
superlinear convergence. The changes in the discretisation and in the algorithm are as
follows.

4.2.2. Discretisation in time

The time discretisation is carried out in the usual way, similar to Section 2.5, 2.6 or 4.1. The
only di�erence is that the operator − 1

αλn has everywhere to be replaced by P[an,bn](− 1
αλn),

with an = a(tn, ·) and bn = b(tn, ·). In the case of the implicit Euler time discretisation
scheme, this yields the nonlinear system (2.30) on page 33, where the diagonal submatrices
of the matrix G in (4.7) are replaced by

Gn =


I
k + Cn −Pαn G 0

−I I
k +N ∗n 0 G

D 0 0 0

0 D 0 0

 , (4.13)

with

Pαn λn := P[an,bn]

(
−λn
α

)
(4.14)

for n = 1, ..., N . If the general θ-scheme is used for the time discretisation, the changes in
the system are the same, but here the operator reads

Pαn λn−1+θ := P[an−1+θ,bn−1+θ]

(
−λn−1+θ

α

)
with

an−1+θ = a
(
(1− θ)tn−1 + θtn

)
, bn−1+θ = b

(
(1− θ)tn−1 + θtn

)
.

For simplicity, the following descriptions concentrate on the implicit Euler case.

4.2.3. The semismooth Newton method

To process nonlinear terms in the KKT system, a Newton or Newton-like method similar
to Chapter 3.2 should be used. The standard Newton algorithm consists of two main steps,
see Algorithm 3.1 on page 52:

a) Create the nonlinear defect.

b) Apply a linear space-time solver to the defect to calculate an update for the solution.

Introducing the projection operator into the nonlinear system necessitates some changes
in the underlying algorithm. The modi�cations for step a) are rather straightforward, and
Section 4.2.4 on page 91 gives an overview about the techniques to create the nonlinear
defect. However, step b) is slightly more complicated. The operator Pαn is nonlinear and
nonsmooth and thus, it does not have a Fréchet derivative. Therefore, the assembly of the
preconditioner C(wσi) in Algorithm 3.1 is not trivial:

a) In the discrete space, the action of the nonlinear operator Pαn cannot be formulated
as matrix-vector product with a linear matrix. As a consequence, the action of

90 Extended systems and additional discretisation strategies

the preconditioner C(wσi) = Gσ(wσi) cannot be formulated as matrix-vector product
with a linear matrix, too. The standard �xed point method can therefore not be
generalised in a straightforward way to the constrained case. A possible remedy is
to apply Pαn only during the calculation of the nonlinear defect, but to ignore it in
setting up C(wσi). If the iteration converges, the solution is still correct due to the
defect correction scheme.

b) In contrast to the �xed point method in a), a generalisation of the Newton method to
constrained control is available. In the discrete space, the action of the preconditioner
C(wσi) = F σi (wσi) can be formulated as a matrix-vector product with a linear matrix.
However, due to the fact that wσ 7→ Gσ(wσ)wσ is nonsmooth, F σi (wσi) is not a Fréchet
derivative anymore. An appropriate de�nition and interpretation of F σi (wσi) involves
the concept of semismoothness which leads to the `semismooth Newton' approach,
cf. [151, 152].

The following paragraphs give a brief overview about the implementation of the semismooth
Newton method in b); for details about the underlying theory, see [151]. Due to the lack
of smoothness, this modi�cation of Newton's method does usually not show quadratic
convergence anymore; however, numerical tests in later sections show that superlinear
convergence can be expected in practice.

Figure 4.1: Left: A function λ in 1D. Centre: P[a,b](λ). Right: DP[a,b](λ).

At �rst, it is noted that the projection operator P[η1,η2](·) is smooth almost everywhere;
it is either piecewise linear or constant, see also Figure 4.1. An generalised derivative DPαn
of the operator Pαn in timestep n = 1, ..., N and component i = 1, ..., dim is de�ned by(

DPαn

)i
=

(
DPαn (λn)

)i
=

 − 1

α
I , where ain ≤ −

1

α
λin ≤ bin

0 , elsewhere,
(4.15)

which is one representative of the generalised Newton derivative (cf. [39, 92]). For a �xed
n, the operator DPαn can be discretised in the nonlinear loop based on λn. In the case
of the implicit Euler time discretisation scheme, the generalised derivative F(w) of the
mapping w 7→ G(w)w is therefore given by matrix (2.33) on page 34, where the diagonal
blocks Fn, n = 1, ..., N , are replaced by

F̃n :=


I
k +Nn −DPαn G 0

−I +Rn I
k +N ∗n 0 G

D 0 0 0

0 D 0 0

 . (4.16)

4.2. Constrained Control 91

The defect correction loop (3.8) on page 51 with this modi�ed generalised derivative matrix
used as preconditioner is called `semismooth Newton method'. In the case of the general
θ-scheme, the corresponding change in the derivative matrix is similar, but the coupling
matrix of the dual to the primal space reads DPαn−1+θ, n = 1, ..., N .

4.1 Remarks. In the case of the heat equation and the Stokes equations, the nonsmooth-
ness of the operator Pαn introduces a kind of nonlinearity into the system. Therefore,
although the equation is basically linear, the corresponding discrete space-time system has
to be embedded into a nonlinear loop. As an example, the heat equation is considered,
discretised in time with the implicit Euler scheme, see Section 2.5.3 on page 34. The
space-time system (2.34) on page 34 transforms to

G(w)w = f (4.17)

which is a nonlinear system. The system matrix G(w) has still the structure (2.35) on
page 35 but the diagonal blocks Gn are replaced by

G̃n :=

(
I
k +A −Pαn
−I I

k +A

)
(4.18)

for n = 1, ..., N . The generalised derivative F(w) of the mapping w 7→ G(w)w is the
matrix G from (2.35) with the diagonal blocks Gn replaced by

F̃n :=

(
I
k +A −DPαn
−I I

k +A

)
. (4.19)

4.2.4. Discretisation in space

For the discretisation of the operators Pαn and DPαn in space, there are basically two
di�erent methods available. On the one hand, a cut-o� function is applied during the
integration in every cubature point. On the other hand, a postprocessing strategy can be
used to change �nite element vectors and mass matrices based on λn. The latter method
is only applicable for �nite elements of Lagrangian type while the �rst one can be applied
to general �nite element functions integrating a nonsmooth function on each element. A
short overview about these methods is given in the following.

Method 1 This method uses the operator Pαn pointwise, i. e., in every cubature point,
basically ignoring all nonsmoothness. The approach is demonstrated for simplicity based
on the heat equation (without end time observation) for an n ∈ {1, ..., N}.

As starting point, yn, λn ∈ Vh denotes a given pair of �nite element functions on the
underlying �nite element space Vh. A matrix-vector product of this pair with the discrete
counterpart G̃h

n to G̃n in (4.18) reads

dn := G̃h
n

(
yn

λn

)
=

(
Ih
k +Ah (−Pαn)h

−Ih Ih
k +Ah

)(
yn

λn

)
∈ V ∗h × V ∗h .

It has been created by replacing the continuous operators A, I, ... by their discrete coun-
terparts Ah, Ih,

The operator (−Pαn)h cannot be modelled as a matrix in the linear algebra sense since
it is nonlinear and implicitly given. Thus, a nonlinear loop is required � even for a

92 Extended systems and additional discretisation strategies

linear equation as PDE constraint � which applies the operator during the creation of
the nonlinear defect dn. To describe the action of this operator in terms of �nite element
functions, ϕ1, ϕ2, ... denotes a basis of the underlying �nite element space Vh. The above
matrix-vector product can be expressed in the form

dn =

(
Ih
k +Ah 0

−Ih Ih
k +Ah

)(
yn

λn

)
+

(
µn

0

)

with the auxiliary functional µh ∈ V ∗h given by

µn : v 7→
(
(−Pαn)hλn, v

)
Ωh

for all v ∈ Vh,

whereby
(−Pαn)hλn =

∑
j

µjϕj ∈ Vh

is speci�ed by the coe�cients (i. e., degrees of freedom of the �nite element function)

µj := (−Pαn λn, ϕj)Ωh =

∫
Ωh

−Pαn λn(x)ϕj(x) dx.

As usual, Ωh refers to the underlying mesh. Thus, on the linear algebra level, a matrix-
vector multiplication of (yn, λn)T with G̃h

n involves the assembly of the auxiliary `right-hand
side' function µn represented by the right-hand side vector (µ1, µ2,)T. For the Stokes
and Navier�Stokes equations, this can be done in the same way by applying the projection
to every component of λn.

To create a discrete counterpart to DPαn , it is noted that similar to (4.15), DPαn can
be de�ned as

DPαn = DPαn (λn) =

 − 1

α
I , where an ≤ −

1

α
λn ≤ bn

0 , elsewhere.
(4.20)

A characteristic function χn : Ω→ R of the (`inactive') set{
x ∈ Ω

∣∣∣∣ an(x) ≤ − 1

α
λn(x) ≤ bn(x)

}
is pointwise de�ned for x ∈ Ω by

χn(x) := χλn,α[an,bn](x) :=

 1 , if an(x) ≤ − 1

α
λn(x) ≤ bn(x),

0 , else,
(4.21)

The discretisation of DPαn yields a matrix Mα
n of mass matrix type. The entries mij :=

(Mα
n)ij are de�ned as integrals over all cells K of the mesh Ωh,

mij =

∫
Ωh

(
−χn
α
ϕj ϕi

)
(x) dx =

∑
K∈Ωh

∫
K
−χn(x)

α
ϕj(x)ϕi(x) dx. (4.22)

They can be calculated by usual cubature formulas. In particular,∫
K
−χn
α
ϕj(x)ϕi(x) dx ≈

M∑
k=1

−χn(xk)

α
ωk ϕj(xk)ϕi(xk) (4.23)

4.2. Constrained Control 93

for M ∈ N cubature points x1, ..., xM ∈ Rdim on element K ∈ Ωh and their associated
cubature weights ω1, ..., ωM ∈ R. The order of the approximation in (4.23) is basically
determined by the order of the cubature formula. However, it has to be noted that on
some elements, χn is discontinuous which leads to a loss in the order of the cubature, see
also the remarks below (in particular, Remarks 4.2c)).

In the case of the Stokes and Navier�Stokes equations, the above method has to be
applied to every component of λn. The discrete counterpart to DPαn in (4.15) is a block
matrix Mα

n of the form

Mα
n =

M
α
n,1

. . .
Mα
n,d

 , (4.24)

with Mα
n,i created as above based on λin, i = 1, ..., dim.

Method 2 For simplicity, the following description again restricts to the heat equation
case. The underlying �nite element space Vh is assumed to be of Lagrangian type, i. e., for
every �nite element function vh ∈ Vh there is a representation

vh =
∑
j

vjϕj with vj = v(xj) ∈ R (4.25)

for j ∈ N on a �nite set of vertices {xj} ⊂ Ω.
For n ∈ {1, ..., N − 1}, yn, λn ∈ Vh refers to a given pair of �nite element functions

on the underlying �nite element space Vh. A matrix-vector product of this pair with the
discrete counterpart G̃h

n to G̃n in (4.18) reads

dn := G̃h
n

(
yn

λn

)
=

(
Ih
k +Ah (−Pαn)h

−Ih Ih
k +Ah

)(
yn

λn

)

=

(
Ih
k +Ah 0

−Ih Ih
k +Ah

)(
yn

λn

)
+

(
0 −Ih
0 0

)(
0

un

)
(4.26a)

=

(
Ih
k +Ah 0

−Ih Ih
k +Ah

)(
yn

λn

)
+

(
µ̃n

0

)
, (4.26b)

with µ̃n = −Ihun, Ih : Vh → V ∗h denoting the discrete identity. The discrete `control' un, is
de�ned by a `nodal projection' of − 1

αλn as follows. Due to (4.25), λn has the representation

λn =
∑
j

λjϕj .

The control un ∈ Vh is calculated by projecting every node in the vector of degrees of
freedoms of λn, i. e.,

un =
∑
j

ujϕj , uj = P[an(xj),bn(xj)]

(
− 1

α
λj
)
.

In the Stokes and Navier�Stokes case, this method has to be applied to every component
of λn.

94 Extended systems and additional discretisation strategies

The discrete counterpart to DPαn is again denoted by Mα
n . This matrix can be set up

with a similar node-wise approach: Mα
n is de�ned by the scaled mass matrix − 1

αMh of the
underlying �nite element space Vh with the rows{

j ∈ N
∣∣∣∣− 1

α
λj < an(xj) or − 1

α
λj > bn(xj)

}
replaced by zero. For the Stokes/Navier�Stokes case, this has to be done for every compo-
nent, resulting again in a block-diagonal matrix Mα

n of the form (4.24).

4.2 Remarks. a) Although the integral mean value based �nite element Q̃1 is not of
Lagrangian type, the degrees of freedom can be interpreted as approximation to the values
in the edge midpoints and method 2 can be applied. As numerical tests in later chapters
show, the resulting approximation still generates an acceptable solution.

b) The main di�erence between method 1 and method 2 is the discrete identity Ih :
Vh → V ∗h in front of the auxiliary function un for method 2:

� Method 1 calculates the defect dn using a function µn ∈ V ∗h which is implicitly de�ned
by λn and computed by cubature.

� Method 2 calculates un and incorporates it into the defect in the form µ̃n = −Ihun ∈
V ∗h , see (4.26). On the discrete level, this results in a mass matrix multiplied with
the coe�cient vector of the auxiliary control un. If applicable, this strategy is usually
faster than method 1 since no integration has to be performed.

In the optimisation context, the di�erence between the two methods can be interpreted
as a di�erent handling of the control: Method 2 discretises the control un = P[·,·](− 1

αλn),
while method 1 directly models the action of un without discretising it as a function of the
underlying �nite element space Vh.

c) Method 1 applies the projection based on the cubature points in integral terms. This
method has the disadvantage that the term below the integral is nonsmooth on each element
that crosses the active set of the constraints. Therefore, it is generally not su�cient to use
higher order cubature formulas in order to better resolve the integral on such elements,
especially for higher order �nite element spaces. There are basically two solutions:

On the one hand, it is possible to use an adapted mesh around the interface where the
constraints get active (e. g., adapted by grid deformation [63�65] or h-adaptivity). On the
other hand, if an element crosses the border of the active set of the control (i. e., the part
of Ω where the constraints are active), adaptive integration can be used. This leads to a
piecewise integration on di�erent parts of such an element [45, 49, 102, 138, 156]. A third
approach that can be considered as a modi�cation of adaptive integration can be found in
[92], where the active set of the constraints is approximated by dividing the elements that
cross the border of the active set. Then, the di�erent parts of each element are integrated
independently of each other.

All these modi�cations improve the accuracy of the discretisation but are not expected
to fundamentally change the behaviour of the solver. Therefore, the nonsmoothness is not
considered further in this work.

d) A third method to deal with Pαn , which is given here for the sake of reference,
was introduced in [121]. Neitzel et al. replaced the nonsmooth projection operator by a
regularised, smooth counterpart and showed convergence of the approximate solution for
decreasing regularisation parameter.

4.3. Do-nothing and outflow boundary conditions 95

4.3. Do-nothing and outflow boundary conditions

So far, all distributed optimal control problems have been formulated with pure Dirichlet
boundary conditions. Formally, the systems can also be extended to the case that a part
of the boundary is characterised by Neumann boundary conditions (in the case of the heat
equation) or out�ow boundary conditions (in the case of the Stokes/Navier�Stokes equa-
tions). Such boundary parts are typically realised by the so-called `do-nothing' boundary
conditions. Although only limited information about this type of boundary conditions can
be found in the literature (see for example [66, 81]) � in particular concerning optimal
distributed control � the numerical analysis in later chapters will show con�rm this type
of boundary condition usually works �ne.

To give a small introduction, the optimal control of the heat equation, the Stokes
equations and the Navier�Stokes equations is considered on a domain Ω. The boundary
Γ := ∂Ω is decomposed into two parts, Γ =: Γd ∪ Γn with Γd describing the Dirichlet
boundary and Γn the Neumann/out�ow boundary. According to [26, 81, 84, 139, 142], the
corresponding KKT systems that include `do-nothing' boundary conditions at Γn read (in
strong formulation)

1.) Optimal control of the heat equation

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q −→ min! (4.27)

s.t. yt −∆y = u in Q,
y(0, ·) = y0 in Ω,

y = g at (0, T)× Γd,

∂ηy = 0 at (0, T)× Γn,

2.) Optimal control of the nonstationary Stokes equations

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q −→ min! (4.28)

s.t. yt − ν∆y +∇p = u in Q,
−div y = 0 in Q,
y(0, ·) = y0 in Ω,

y = g (0, T)× Γd,

ν∂ηy − pη = 0 (0, T)× Γn,

3.) Optimal control of the nonstationary Navier�Stokes equations

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q −→ min! (4.29)

s.t. yt − ν∆y + y∇y +∇p = u in Q,
−div y = 0 in Q,
y(0, ·) = y0 in Ω,

y = g at (0, T)× Γd,

ν∂ηy − pη = 0 at (0, T)× Γn.

96 Extended systems and additional discretisation strategies

In all of the three systems, the same de�nitions for y, p, u and g hold as in Chapter 2.
Here, η : Γ→ Rdim stands for the outer unit normal vector of the domain Ω.

Formally, it is possible to derive the corresponding KKT systems using the Lagrange
multiplier approach. These read (cf. [61, 84, 137])

1.) Heat equation

yt −∆y +
1

α
λ = 0 in Q,

y = g at (0, T)× Γd,

∂ηy = 0 at (0, T)× Γn,

y(0, ·) = y0 in Ω,

−λt −∆λ− y = −z in Q,
λ = 0 at (0, T)× Γd,

∂ηλ = 0 at (0, T)× Γn,

λ(T, ·) = 0 in Ω,

2.) Stokes equations

yt − ν∆y +∇p+
1

α
λ = 0 in Q,

−div y = 0 in Q,
y = g at (0, T)× Γd,

ν∂ηy − pη = 0 at (0, T)× Γn,

y(0, ·) = y0 in Ω,

−λt − ν∆λ+∇ξ − y = −z in Q,
−div λ = 0 in Q,

λ = 0 at (0, T)× Γd,

ν∂ηλ− ξη = 0 at (0, T)× Γn,

λ(T, ·) = 0 in Ω,

3.) Navier�Stokes equations

yt − ν∆y + y∇y +∇p+
1

α
λ = 0 in Q,

−div y = 0 in Q,
y = g at (0, T)× Γd,

ν∂ηy − pη = 0 at (0, T)× Γn,

y(0, ·) = y0 in Ω,

−λt − ν∆λ− y∇λ+ (∇y)Tλ+∇ξ − y = −z in Q,
−div λ = 0 in Q,
λ(t, ·) = 0 at (0, T)× Γd,

ν∂nλ− ξn+ (y η)λ = 0 at (0, T)× Γn,

λ(T, ·) = 0 in Ω.

4.4. Semi-explicit time discretisation 97

4.3 Remarks. a) For all equations, Dirichlet boundary conditions in the primal equation
imply homogeneous Dirichlet boundary conditions in the dual equation.

b) For the heat equation and the Stokes equations, `do-nothing' boundary conditions
in the primal equations imply `do-nothing' boundary conditions for the dual equation.

c) For the Navier�Stokes equations, the situation is similar. However, the `do-nothing'
boundary conditions in the primal equations imply the additional term (y η)λ in the `do-
nothing' boundary conditions of the dual equation, rising up from a derivation of the
term −y∇λ. This boundary term must be assembled into the matrices using a boundary
integral. It depends on the velocity y, so during a nonlinear iteration, it can be set up,
e. g., with the help of the last nonlinear iterate for y.

d) The nonlinear boundary condition appearing in the optimal control of the Navier�
Stokes equations induces a modi�ed Newton operator in the Newton iteration: The above
KKT system corresponding to the Navier�Stokes case can formally be written in an oper-
ator form,

G(w)w = f,

with
w := (y, p, λ, ξ)T, f := (0, 0, 0,−z, 0, 0)T

and

G(w)w :=



yt − ν∆y + y∇y +∇p+ 1
αλ

−div y
ν∂ηy − pη

−λt − ν∆λ− y∇λ+ (∇y)Tλ+∇ξ − y
−div λ

ν∂nλ− ξn+ (y η)λ

 ,

with the third and sixth component applied at the boundary. Hence, the corresponding
Fréchet derivative F(w) of the mapping w 7→ G(w)w formally reads

F(w)w̄ :=



ȳt − ν∆ȳ + y∇ȳ + ȳ∇y +∇p̄+ 1
α λ̄

−div ȳ
ν∂ηȳ − p̄η

−λ̄t − ν∆λ̄− ȳ∇λ− y∇λ̄+ (∇ȳ)Tλ+ (∇y)Tλ̄+∇ξ̄ − ȳ
−div λ̄

ν∂nλ̄− ξ̄n+ (ȳ η)λ+ (y η)λ̄


for w̄ = (ȳ, p̄, λ̄, ξ̄). The additional term (ȳ η)λ in the last part of the operator stems from
the nonlinearity in the out�ow boundary condition and acts only on the out�ow. Numerical
tests in later chapters skip this term during the assembly of the discrete Newton operator.
That way, the KKT system and its Fréchet derivative have the same boundary conditions
which simpli�es the assembly. In practice, this simpli�cation does not destroy the quadratic
convergence of the Newton iteration.

4.4. Semi-explicit time discretisation

As an alternative to the fully implicit time discretisation with the implicit Euler scheme,
this section highlights a variant, namely the semi-explicit discretisation of the Navier�
Stokes equations in time. This approach was used, e. g., in [11]: The di�usion term is
treated implicitly while the nonlinearity is treated explicitly.

98 Extended systems and additional discretisation strategies

For an overview about this method, the optimal control of the nonstationary Navier�
Stokes equation is considered, which is expressed in the KKT system

yt − ν∆y + y∇y +∇p = − 1

α
λ, (4.30a)

−div y = 0,

−λt − ν∆λ− y∇λ+ (∇y)Tλ+∇ξ = y − z, (4.30b)

−div λ = 0,

complemented by initial/end time/boundary conditions, see also (2.17) on page 28. To
derive the corresponding discrete KKT system, the discretisation recipe from [11] can be
applied. This involves at �rst a discretisation in time of the primal equation (4.30a). Using
the semi-explicit Euler timestepping scheme, this reads

yn
k
− ν∆yn +∇pn = − 1

α
λn +

yn−1

k
− yn−1∇yn−1 (4.31)

−div yn = 0

y0 = y0

which is linear for every n = 1, ..., N with N ∈ N denoting the number of time intervals
and k = 1/N . Similar to Section 2.5 on page 31, the remaining steps of the discretisation
recipe can be applied to obtain a semi-discrete system. This leads to a system of the form

G(w)w = f

with

G = G(w) =


G0 Î0

Ĭ1 G1 Î1

Ĭ2 G2 Î2

.

ĬN GN

 (4.32)

and the submatrices de�ned by

G0 =


I
k +A 0 G 0

0 I
k +A 0 G

D 0 0 0

0 D 0 0

 , Gn =


I
k +A I

α G 0

−I I
k +A 0 G

D 0 0 0

0 D 0 0


for n = 1, ..., N and

Ĭn =


−Ik +Kn−1

0

0

0

 , În−1 =


0

−Ik −Kn−1 +K∗n−1

0

0

 .

4.4. Semi-explicit time discretisation 99

The additional operators needed here and in the following are de�ned as

A : v 7→ −ν∆v

Kn = K(yn) : v 7→ (yn∇)v

Kn = K(yn) : v 7→ (v∇)yn

K∗n = K∗(yn) : v 7→ (∇yn)Tv

For the initial condition, the projection scheme has to be changed slightly, so the right-hand
side reads

f =

(
(I/k +A)y0, 0, 0, 0︸ ︷︷ ︸

f0

, 0,−z1, 0, 0︸ ︷︷ ︸
f1

,

..., 0,−zN−1, 0, 0︸ ︷︷ ︸
fN−1

, 0,−zN , 0, 0︸ ︷︷ ︸
fN

)
.

The corresponding Fréchet derivative F(w) of the mapping w 7→ G(w)w reads

F(w) =


F0 Î0

J̆1 F1 Ĵ1

J̆2 F2 Ĵ2

.

J̆N FN

 , (4.33)

with

F0 =


I
k +A 0 G 0

R1
I
k +A 0 G

D 0 0 0

0 D 0 0

 , Fn =


I
k +A I

α G 0

−I +Rn+1
I
k +A 0 G

D 0 0 0

0 D 0 0


for n = 1, ..., N and

J̆n =


−Ik +Kn−1 +Kn−1

0

0

0

 , Ĵn−1 =


0

−Ik −Kn−1 +K∗n−1

0

0

 .

The systems for the case of the general θ-scheme can be derived in a similar way.

4.4 Remarks. The advantage of the semi-explicit scheme is the higher numerical stability
of the local systems in space since the diagonal blocks do not contain any nonlinear terms.
Pressure correction schemes like those introduced in [11] can also easily be applied for in-
stance in smoothers like the FBSimSmoother. On the other hand, the explicit treatment
of the nonlinearity usually introduces some kind of CFL condition to the timestep size
which necessitates small timesteps for stability reasons, cf. [119]. This fact contradicts the
paradigm to use higher order timestep schemes with large timestep sizes in order to reduce
the numerical costs by reducing the number of timesteps.

100 Extended systems and additional discretisation strategies

The scheme is of interest because of a possible numerical tradeo�: The advantage of
faster or more stable solvers in space (due to the missing nonlinearity in the matrix blocks
on the diagonal) faces the disadvantage of smaller timesteps. On the other hand, as it is
shown in the numerical tests in later chapters, the timestep is anyway coupled to the space
discretisation due to accuracy reasons. Therefore, faster CPU times of the solver for the
same numerical accuracy can be expected. Numerical tests in later chapters analyse this
e�ect of the semi-explicit timestepping.

5

Basic numerical analysis of the solver:
Heat equation and Stokes equations

The following chapter is the �rst in a row of four chapters dealing with the numerical anal-
ysis of the proposed discretisation and solver strategy. In general, the analysis is structured
to cover a large variety of parameters and test cases with increasing complexity. Together
with Chapters 6, this chapter focuses on linear equations, namely the heat equation and
the Stokes equations, and is restricted to analytical test examples. Chapter 7 and 8 will
extend the analysis to non-analytical test problems and nonlinear solver techniques.

The main aim of all the numerical analysis is as follows: Determine a combination
of discretisation and solver con�guration maximising the accuracy while at the same time
minimising the numerical e�ort. This is a minimisation problem of its own and basically
in�uenced by two di�erent choices: The parameter setting of the solver and the choice of
the underlying discretisation. In the beginning, these two are treated independently. This
chapter �xes di�erent discretisation and focuses on �nding proper solver con�gurations that
reduce the numerical e�ort. In a second step, Chapter 6 concentrates on the discretisation,
completely ignoring e�ciency issues. Later chapters will treat e�ciency and accuracy
requirements in a combined way.

Outline

The analysis starts with the KKT system for the heat equation. Section 5.1 de�nes ba-
sic analytical test examples. The di�erent smoothing/preconditioning techniques from
Chapter 3 (block Jacobi, block Gauÿ�Seidel,...) are applied in a one-level, two-level and
multilevel fashion to the underlying KKT system for a �xed discretisation. The di�erent
approaches are compared with respect to e�ciency and robustness and good choices for
certain basic solver parameters are determined.

Section 5.2 extends the analysis to more general discretisations, introducing higher or-
der discretisations in space and time. In particular, this involves the analysis of the special
prolongation/restriction operators derived for the θ-scheme discretisation. Section 5.3 ver-
i�es the experiences of the previous sections also in the case of the Stokes equations. It
is shown that there are no fundamental di�erences to the results obtained for the heat
equation, although the stability is slightly more sensitive to the choice of regularisation
parameters.

The chapter closes with Section 5.4. This section focuses on the choice of the space-
time hierarchy and the multigrid cycle. As described in Section 3.1 on page 48�, the user
has some freedom in the choice of the hierarchy, and this section demonstrates that for
the wrong choice of hierarchy and multigrid cycle, the linear complexity of the multigrid

101

102 Basic numerical analysis of the solver: Heat equation and Stokes equations

algorithm is lost.

5.1. Basic solver analysis for the heat equation and the Stokes equations

The numerical analysis starts with the de�nition of simple model problems which are tested
for a number of model parameters and solver con�gurations to verify the basic applicability
of the proposed linear solver algorithms.

5.1 Heat equation example 1 Consider the optimal control of the heat equa-
tion and focus on the following modi�ed KKT system,

yt −∆y = f − 1

α
λ,

−λt −∆λ = y − z,
λ(T) = γ(y(T)− z(T)).

 (5.1)

The original KKT system (2.12) on page 26 is a special case of this more gen-
eral form. The additional function f : Q → R is introduced to allow a simpler
de�nition of analytical reference functions. An additional end time observation
introduces the option to control y(T), see also Chapter 4.1 on page 81. The fol-
lowing reference functions are de�ned in terms of an eigenfunction w : R2 → R,
w(x) := sin(πx1) sin(πx2), of the Laplace operator in space.

ȳ(t, x) := sin(tπ/2)w(x1, x2),

λ̄(t, x) :=
(

sin(tπ/2)− 1
)
w(x1, x2).

The corresponding right-hand side functions are calculated by substituting ȳ = y
and λ̄ = λ in the KKT system, i. e.,

f := ȳt −∆ȳ +
1

α
λ̄,

z := λ̄t + ∆λ̄+ ȳ.

The domain under consideration is Ω := (0, 1)2 and the time interval [0, T] := [0, 1].
The initial condition is y(0, ·) = 0. On the boundary, Dirichlet boundary conditions
y(·, x) = 0 for all x ∈ ∂Ω are prescribed.

5.2 Stokes equations example 1 Consider the optimal control of the Stokes
equations and focus on the following modi�ed KKT system,

yt −∆y +∇p = f − 1

α
λ,

−λt −∆λ+∇ξ = y − z,
λ(T) = γ(y(T)− z(T))

−div y = δy,

−div λ = δλ.


(5.2)

Similar to the previous heat equation example, the additional right-hand side func-
tions f : Q → R2, δy, δλ : Q → R allow a simpler de�nition of analytical reference
functions. The parameter γ for the end time condition allows again to control
y(T), see also Section 4.1 on page 81�. Using the eigenfunction w2 : R2 → R,

5.1. Basic solver analysis for the heat equation and the Stokes equations 103

w2(x) := sin(π2x1) sin(πx2) of the Laplace operator in space, the following reference
functions are de�ned.

ȳ(t, x) := sin(tπ/2)

(
w2(x1, x2)
w2(x1, x2)

)
,

λ̄(t, x) :=
(

sin(tπ/2)− 1
)(w2(x1, x2)

w2(x1, x2)

)
,

p̄(t, x) := ξ̄(t, x) := 0.

Substituting y = ȳ, λ = λ̄, p = p̄ and ξ = ξ̄ in (5.2) the associated right-hand side
functions f , z, δy and δλ are computed.

The spatial domain and the underlying time interval are the same as in Exam-
ple 5.1. At t = 0, the initial condition y(0, ·) = 0 is used, and on the boundary,
Dirichlet boundary conditions y(·, x) = 0 are prescribed for all x ∈ ∂Ω\Γ2 with Γ2

being the right edge. On Γ2, do-nothing boundary conditions are used. It is noted
that for w2 there holds ∂ηw2(x) = 0 for x ∈ Γ2, thus for the reference functions, the
natural boundary conditions ∂ηy−pη = 0 for the primal equation and ∂ηλ−ξη = 0
for the dual equation are ful�lled on Γ2, η : ∂Ω → R2 denoting the outer normal
unit vector.

5.1.1. Basic single grid solver analysis

The numerical solver analysis starts with linear single-grid solvers. The three solvers FB-
JacSolver, FBSimSolver and FBGsSolver are used, at �rst without damping; there
is no extra analysis for the FBSorSolver carried out. The stopping criterion of the
space-time solver is set to εCoarseMG = 10−10, the space discretisation is done with Q1

and time-discretisation with the implicit Euler scheme. The linear solver in space is an
optimised Gaussian elimination solver (cf. [48]). This is suitable since the problem size is
small, and it helps to avoid errors that possibly in�uence the convergence of the space-time
solver. (However, the in�uence of the error in the spatial solver is rather small; this will
be shown later.)

Focusing on Example 5.1 involving the heat equation, the underlying coarse mesh in
space is the cell [0, 1] × [0, 1], the underlying coarse mesh in time is one time interval
[0, T] = [0, 1]. This basic space-time mesh is completely isotropic and simultaneously
re�ned in space and time. On each level, the number of iterations #ite and the convergence
rate ρ of the solver are measured, where the latter one is de�ned as

ρ :=

(
‖r#ite‖
‖r0‖

) 1
#ite

.

Here, ‖ri‖ denotes the l2 norm of the vector of degrees of freedom of the i-th residual ri.
Table 5.1 shows the results for di�erent regularisation parameters α and γ. In the very
simple setting α = 1.0, γ = 0.0, all solvers work �ne for every level. For FBJacSolver the
number of iterations increases with every additional level which is typical for this kind of
solver. FBSimSolver and FBGsSolver on the other hand show even level-independent
convergence rates. For the more restrictive setting α = 0.001, γ = 1, FBJacSolver and
FBGsSolver still work �ne, but the number of iterations increases from level to level.
On higher levels, FBGsSolver fails. FBSimSolver does not work at all.

The convergence behaviour changes with the damping parameter. In Table 5.2, a
damping parameter of ω = 0.5 is used. Both, FBJacSolver(ω) and FBGsSolver(ω)

104 Basic numerical analysis of the solver: Heat equation and Stokes equations

FBJacSolver FBSimSolver FBGsSolver

h k #ite ρ #ite ρ #ite ρ

α = 1.0 1/16 1/16 25 3.85E-01 5 3.69E-03 4 7.87E-04
γ = 0.0 1/32 1/32 43 5.79E-01 5 3.77E-03 4 1.58E-03

1/64 1/64 78 7.41E-01 5 3.82E-03 4 2.47E-03
1/128 1/128 147 8.54E-01 5 3.88E-03 5 3.18E-03

α = 0.001 1/16 1/16 21 3.28E-01 div div 10 8.61E-02
γ = 1.0 1/32 1/32 36 5.20E-01 div div 18 2.76E-01

1/64 1/64 69 7.12E-01 div div 437 9.48E-01
1/128 1/128 136 8.43E-01 div div div div

Table 5.1: FBJacSolver, FBSimSolver and FBGsSolver on di�erent levels, no damp-
ing.

FBJacSolver FBSimSolver FBGsSolver

h k #ite ρ #ite ρ #ite ρ

α = 0.001 1/16 1/16 50 6.28E-01 div div 33 4.93E-01
γ = 1.0 1/32 1/32 73 7.29E-01 div div 33 4.94E-01

1/64 1/64 129 8.36E-01 div div 33 4.94E-01
1/128 1/128 263 9.15E-01 div div 37 5.30E-01

Table 5.2: FBJacSolver, FBSimSolver and FBGsSolver on di�erent levels, damping
with ω = 0.5.

are now unconditionally stable in this example whereas FBSimSolver(ω) still does not
work. It is noted that FBGsSolver converges with level-independent convergence rates
on all levels. This is remarkable, since it shows that this solver is so strong that for simple
test problems, there is no multigrid necessary to achieve level-independent convergence
rates. Nevertheless, the behaviour of the solver is level dependent for harder problems
which will be shown in later examples.

In a next step, all the three solvers are embedded as preconditioners into a BiCGStab
solver, see Table 5.3. Using this technique, the manual choice of a damping parameter is
avoided, cf. [108]. The solvers in the next tests are BiCGStab(FBJacPrec), BiCG-
Stab(FBSimPrec) and BiCGStab(FBGsPrec) without damping for α = 0.001 and
γ = 1. The e�ect of this embedding is remarkable: All solvers are stable and converge in
only a few number of iterations. BiCGStab(FBJacPrec) shows the worst convergence
behaviour, the number of iterations is still doubled with every re�nement level. BiCG-
Stab(FBGsPrec) has the best convergence behaviour and BiCGStab(FBSimPrec) is
somewhere in the middle. The number of iterations grows slightly with every higher level
for these solvers.

Finally, Table 5.3 also illustrates results for the setting γ = 1000. In that case, BiCG-
Stab(FBJacPrec) and BiCGStab(FBGsPrec) are still stable and BiCGStab(FBGs-
Prec) converges very rapidly, very similar to the case γ = 1. BiCGStab(FBSimPrec)
fails for higher levels. All in all, it can concluded that BiCGStab(FBGsPrec) is the
strongest solver and � together with BiCGStab(FBJacPrec) � a good choice for a
coarse grid solver in a multigrid setting. The quality of these solvers if being used as
smoothers will be analysed next.

5.1. Basic solver analysis for the heat equation and the Stokes equations 105

FBJacPrec FBSimPrec FBGsPrec

h k #ite ρ #ite ρ #ite ρ

α = 0.001 1/16 1/16 13 1.36E-01 11 1.22E-01 4 1.48E-03
γ = 1.0 1/32 1/32 23 3.51E-01 13 1.48E-01 6 1.72E-02

1/64 1/64 49 6.19E-01 14 1.85E-01 8 3.89E-02
1/128 1/128 114 8.12E-01 16 2.14E-01 10 8.22E-02

α = 0.001 1/16 1/16 13 1.33E-01 70 8.31E-01 4 1.49E-03
γ = 1000 1/32 1/32 23 3.46E-01 443 9.49E-01 6 2.03E-02

1/64 1/64 50 6.25E-01 div div 8 4.01E-02
1/128 1/128 112 8.11E-01 div div 10 9.01E-02

Table 5.3: Preconditioned BiCGStab space-time solver. The column headline denotes
the preconditioner.

5.1.2. Basic two grid solver analysis

The second set of tests focuses for the �rst time on a two-grid solver. The test problem
under consideration is Example 5.1 involving the heat equation, the solver in space is a
Gaussian elimination and the space-time coarse grid solver is BiCGStab(FBGsPrec).
The coarse grid solver and the two-grid solver are both con�gured to reduce the norm of
the residual by ten digits, εOptMG = εCoarseMG = 10−10. On the �ne grid of the two-grid
solver, there are four postsmoothing steps of the FBJacSmoother, FBSimSmoother
and FBGsSmoother applied, in the �rst test without damping. Presmoothing is not
used. Table 5.4 shows the number of iterations #ite and the convergence rate ρ of the
two-grid solver for di�erent re�nement levels.

The behaviour is very similar to the one-level case. For the regularisation parameters
α = 1.0 and γ = 0.0, the solvers work quite well, but using α = 0.001, γ = 1.0, most of
the solver con�gurations break down. The convergence is also not level-independent, so it
is clear that damping has to be used here.

For Table 5.5, the previous test is repeated with a damping of ω = 0.5 for all smoothers.
The solvers behave much better. Using FBJacSmoother, the number of iterations still
grows slightly (mainly because the re�nement level is still too low), but the convergence is
clearly not deteriorating anymore. The FBGsSmoother based solver shows a completely
level-independent convergence behaviour, very stable for all levels. The FBSimSmoother
based solver does not work in this situation.

The third test introduces the preconditioned BiCGStab based smoothers, see Ta-
ble 5.6. This smoother type does not use any damping parameter. The smoothers in this
test example are BiCGStab(FBJacPrec,NSM=4), BiCGStab(FBGsPrec,NSM=4),
and BiCGStab(FBGsPrec,NSM=4). All solvers work very well and rather level-inde-
pendently, converging in a few iterations. The only problem is encountered for the FBSim-
Prec preconditioner in combination with BiCGStab which fails for a too strong setting
of the regularisation parameter γ.

5.1.3. Basic multigrid solver analysis

Multigrid can be seen as a perturbation of the two-grid method. Thus, using a full space-
time multigrid approach, the results are be expected to be similar to the two-grid case.
In the following, the problem under consideration is again Example 5.1 involving the heat
equation, using a BiCGStab(FBGsPrec) space-time coarse grid solver, the Gaussian

106 Basic numerical analysis of the solver: Heat equation and Stokes equations

FBJacSm. FBSimSm. FBGsSm.
h k #ite ρ #ite ρ #ite ρ

α = 1.0 1/16 1/16 5 9.15E-03 1 3.21E-12 1 6.38E-15
γ = 0.0 1/32 1/32 9 6.25E-02 1 1.29E-12 1 3.19E-14

1/64 1/64 16 2.27E-01 1 5.70E-13 1 9.36E-14
1/128 1/128 29 4.49E-01 1 3.74E-13 1 2.78E-13

α = 0.001 1/16 1/16 5 5.49E-03 div div 2 8.38E-06
γ = 1.0 1/32 1/32 7 3.28E-02 div div 4 1.33E-03

1/64 1/64 13 1.42E-01 div div 10 8.86E-02
1/128 1/128 22 3.50E-01 div div div div

Table 5.4: Two grid solver on di�erent levels, smoothing with FBJacSmoother, FB-
SimSmoother and FBGsSmoother, no damping.

FBJacSm. FBSimSm. FBGsSm.
h k #ite ρ #ite ρ #ite ρ

α = 0.001 1/16 1/16 8 5.15E-02 div div 8 4.01E-02
γ = 1.0 1/32 1/32 9 7.23E-02 div div 8 4.00E-02

1/64 1/64 12 1.32E-01 div div 8 4.01E-02
1/128 1/128 14 1.91E-01 div div 8 4.01E-02

Table 5.5: Two grid solver on di�erent levels, smoothing with FBJacSmoother, FB-
SimSmoother and FBGsSmoother, damping with ω = 0.5.

FBJacPrec FBSimPrec FBGsPrec

h k #ite ρ #ite ρ #ite ρ

α = 0.001 1/16 1/16 3 3.15E-05 5 3.26E-03 1 6.16E-14
γ = 1.0 1/32 1/32 4 1.38E-03 5 3.16E-03 2 2.64E-08

1/64 1/64 7 2.63E-02 5 4.56E-03 2 3.37E-06
1/128 1/128 8 5.46E-02 4 1.09E-03 3 2.18E-05

α = 0.001 1/16 1/16 2 8.75E-06 div div 1 1.18E-14
γ = 1000 1/32 1/32 4 7.33E-04 div div 2 1.25E-08

1/64 1/64 6 1.66E-02 div div 2 4.13E-07
1/128 1/128 7 3.40E-02 div div 2 4.41E-06

Table 5.6: Two grid solver on di�erent levels, smoothing with a preconditioned BiCGStab
smoother. The column headlines entitle the preconditioner.

5.1. Basic solver analysis for the heat equation and the Stokes equations 107

FBJacSm. FBSimSm. FBGsSm.
h k #ite ρ #ite ρ #ite ρ

α = 1.0 1/16 1/16 5 9.15E-03 1 3.21E-12 1 6.56E-15
γ = 0.0 1/32 1/32 9 6.26E-02 1 1.29E-12 1 3.20E-14

1/64 1/64 16 2.27E-01 1 5.70E-13 1 9.37E-14
1/128 1/128 29 4.49E-01 1 3.74E-13 1 2.78E-13

α = 0.001 1/16 1/16 5 5.49E-03 div div 2 8.38E-06
γ = 1.0 1/32 1/32 7 3.26E-02 div div 4 1.33E-03

1/64 1/64 13 1.42E-01 div div 10 9.03E-02
1/128 1/128 22 3.50E-01 div div div div

Table 5.7: Multigrid solver on di�erent levels, smoothing with FBJacSmoother, FB-
SimSmoother and FBGsSmoother, no damping.

FBJacSm. FBSimSm. FBGsSm.
h k #ite ρ #ite ρ #ite ρ

α = 0.001 1/16 1/16 8 5.20E-02 div div 8 4.01E-02
γ = 1.0 1/32 1/32 9 7.41E-02 div div 8 4.01E-02

1/64 1/64 12 1.33E-01 div div 8 4.03E-02
1/128 1/128 14 1.90E-01 div div 8 4.03E-02

Table 5.8: Multigrid solver on di�erent levels, smoothing with FBJacSmoother, FB-
SimSmoother and FBGsSmoother, damping with ω = 0.5.

elimination as solver for the subproblems in space and stopping the coarse grid and multi-
grid iteration with a relative stopping criterion of εOptMG = εCoarseMG = 10−10. The coarse
grid is �xed at level 2 which corresponds to h = k = 1/2. The �rst set of tests uses again
the FBJacSmoother, FBSimSmoother and FBGsSmoother smoothers in a V-cycle
multigrid and analyses the behaviour of the solver for α = 1.0, γ = 0 and α = 0.001,
γ = 1.0, respectively. Table 5.7 contains results for the case of no damping and Table 5.8
for the case of damping with ω = 0.5.

The behaviour of the solver is almost indistinguishable to the two-grid case. For α =
1.0, γ = 0.0, the solver work perfectly, while for α = 0.001, γ = 1.0, the smoother has
to be damped. FBSimSmoother fails, while FBGsSmoother features a stable, level-
independent convergence if damping is used.

Using a preconditioned BiCGStab solver instead, the convergence behaviour gets more
stable, see Table 5.9. All solvers converge nicely as long as the regularisation parameter γ
is not too large � in the latter case, BiCGStab(FBSimPrec,...) fails as a smoother (the
problem is too hard). The BiCGStab(FBGsPrec,...) smoother is again the most stable,
the solver converges in only two iterations.

5.1.4. Basic analysis: Inexact solvers in space

The tests in the previous subsections have all used a Gaussian elimination solver for the
subproblems in space, which is appropriate as long as the spatial problems are `small'. An
alternative for `larger' problems is the use of a multigrid solver in space which asymptoti-
cally solves spatial problems with linear complexity. This o�ers the additional possibility
to solve spatial problems inexactly: As long as the convergence behaviour of an outer defect
correction scheme does not su�er, solving inner problems only up to a certain accuracy is

108 Basic numerical analysis of the solver: Heat equation and Stokes equations

FBJacPrec FBSimPrec FBGsPrec

h k #ite ρ #ite ρ #ite ρ

α = 0.001 1/16 1/16 3 3.15E-05 5 3.45E-03 1 6.16E-14
γ = 1.0 1/32 1/32 4 1.38E-03 5 3.36E-03 2 2.64E-08

1/64 1/64 8 4.42E-02 4 2.47E-03 2 3.37E-06
1/128 1/128 8 5.58E-02 4 1.91E-03 3 2.18E-05

α = 0.001 1/16 1/16 2 8.75E-06 div div 1 1.18E-14
γ = 1000 1/32 1/32 4 7.33E-04 div div 2 1.26E-08

1/64 1/64 7 2.93E-02 div div 2 4.13E-07
1/128 1/128 7 3.48E-02 div div 2 4.41E-06

Table 5.9: Multigrid solver on di�erent levels, smoothing with a preconditioned BiCG-

Stab smoother. The column headlines entitle the preconditioner.

a simple way to reduce numerical costs.
The following numerical test concentrates on Example 5.1 involving the heat equation.

Based on a space-time hierarchy de�ned as in Table 5.10, a space-time multigrid solver is
applied to solve the underlying KKT system with the following four con�gurations.

a) α = 1.0, γ = 0.0, space-time smoother is FBGsSmoother(ω = 1.0, NSM = 1).

b) α = 1.0, γ = 0.0, space-time smoother is FBGsSmoother(ω = 0.5, NSM = 1).

c) α = 0.001, γ = 1.0, space-time smoother is FBGsSmoother(ω = 0.5, NSM = 1).

d) α = 0.001, γ = 1.0, space-time smoother is BiCGStab(FBGsPrec, NSM = 1).

The subsolver in space is on the one hand a Gaussian elimination solver [48] and on
the other hand a multigrid solver. The latter one uses a BiCGStab smoother with
NSMspace = 4 postsmoothing steps, preconditioned by SSOR. To analyse the in�uence
of solving the spatial subproblems inexactly, the spatial multigrid uses the relative stop-
ping criteria εSpaceMG = 10−1, 10−2 and 10−6. The results can be seen in Tables 5.11 to
5.14.

It is remarkable that the stopping criterion of the linear solver in space has almost
no in�uence to the global convergence. Although the setting εSpaceMG = 10−1 is too
weak in some cases, using εSpaceMG = 10−2 produces nearly as good convergence results
as using the Gaussian elimination. The di�erence in the convergence behaviour between
εSpaceMG = 10−2 and εSpaceMG = 10−6 is negligible. Therefore, εSpaceMG = 10−2 can be
seen as the best compromise between stability and e�ciency in all solver con�gurations.

lv. h k

1 1/4 1/4
2 1/8 1/8
3 1/16 1/16
4 1/32 1/32
5 1/64 1/64
6 1/128 1/128

Table 5.10: Space-time hierarchy for tests with an inexact solver in space.

5.2. Basic solver analysis for the heat equation and the Stokes equations 109

a) b) c) d)
lv. #ite ρ #ite ρ #ite ρ #ite ρ

2 5 8.83E-03 34 4.98E-01 29 4.48E-01 4 1.12E-03
3 5 8.08E-03 34 4.98E-01 29 4.45E-01 4 1.23E-03
4 5 7.75E-03 34 4.98E-01 29 4.45E-01 6 1.30E-02
5 5 7.59E-03 34 4.98E-01 29 4.48E-01 7 2.85E-02
6 5 7.50E-03 34 4.99E-01 29 4.49E-01 7 2.32E-02

Table 5.11: Linear solver in space: Multigrid with stopping criterion εSpaceMG = 10−1.

a) b) c) d)
lv. #ite ρ #ite ρ #ite ρ #ite ρ

2 3 2.05E-04 33 4.93E-01 29 4.46E-01 3 6.34E-05
3 3 1.04E-04 33 4.93E-01 29 4.41E-01 4 7.83E-04
4 3 1.04E-04 33 4.93E-01 29 4.42E-01 5 6.22E-03
5 3 1.44E-04 33 4.94E-01 29 4.45E-01 7 2.85E-02
6 3 2.02E-04 33 4.94E-01 29 4.46E-01 6 1.87E-02

Table 5.12: Linear solver in space: Multigrid with stopping criterion εSpaceMG = 10−2.

a) b) c) d)
lv. #ite ρ #ite ρ #ite ρ #ite ρ

2 3 6.00E-05 33 4.93E-01 29 4.46E-01 3 6.34E-05
3 3 6.83E-05 33 4.93E-01 29 4.41E-01 4 7.52E-04
4 3 8.77E-05 33 4.93E-01 29 4.42E-01 5 6.23E-03
5 3 1.07E-04 33 4.94E-01 29 4.45E-01 7 2.85E-02
6 3 1.63E-04 33 4.94E-01 29 4.46E-01 6 1.88E-02

Table 5.13: Linear solver in space: Multigrid with stopping criterion εSpaceMG = 10−6.

a) b) c) d)
lv. #ite ρ #ite ρ #ite ρ #ite ρ

2 3 5.93E-05 33 4.93E-01 29 4.46E-01 3 6.35E-05
3 3 6.12E-05 33 4.93E-01 29 4.41E-01 4 7.52E-04
4 3 5.03E-05 33 4.93E-01 29 4.42E-01 5 6.23E-03
5 3 4.40E-05 33 4.93E-01 29 4.45E-01 7 2.85E-02
6 3 6.46E-05 33 4.93E-01 29 4.46E-01 6 1.88E-02

Table 5.14: Linear solver in space: Gaussian elimination.

110 Basic numerical analysis of the solver: Heat equation and Stokes equations

5.2. Higher order discretisations: Q2 and the Crank–Nicolson scheme

For a discretisation with the Crank�Nicolson scheme in time and/or a discretisation with
Q2 in space, the results are expected to be similar to a discretisation with Q1 and the
implicit Euler scheme. The following numerical results will con�rm this. However, it will
be shown that the smoother has to be strong enough or the time discretisation has to be
�ne enough, otherwise the level independent convergence is lost.

5.2.1. Basic multigrid solver analysis

Consider Example 5.1 involving the heat equation, set up with α = 0.001 and γ = 0.0 and
discretised with Q1 in space and the implicit Euler as well as the Crank�Nicolson scheme
in time. Table 5.15 shows the convergence properties of a space-time multigrid solver
that uses a BiCGStab(FBGsPrec,NSM=2) smoother. The hierarchy in this example
is build by 1:1 coarsening in space and time, starting from k and h in the table down
to hcoarse = kcoarse = 1/16. Similar to the numerical tests in Section 5.1, the space-time
solver reduces the norm of the residual by ten digits. A very rapid, level-independent
convergence of the solver is visible and there is hardly any di�erence in the convergence of
all the con�gurations.

However, the situation changes if a weaker smoother is used. Tables 5.16 and 5.17
depict the convergence behaviour of the same space-time multigrid solver on the same
level hierarchy for a BiCGStab(FBJacPrec,NSM=2) smoother, once discretised in time
with the implicit Euler, once with Crank�Nicolson scheme. As an additional parameter,
Tmin is introduced: The time interval under consideration is [Tmin, 1], divided into #int
time intervals. All previous tests adopted Tmin = 0.0 which was convenient.

Concerning the implicit Euler scheme, the solver converges rather well for Tmin = 0.0,
but the e�ciency reduces for Tmin → 1.0. The level-independent convergence is nearly lost.
This behaviour is a consequence of anisotropy in the space-time mesh (there is k � h), a
more detailed analysis follows later. In the Crank�Nicolson case, the situation is slightly
di�erent. For Tmin = 0.0, the level-independent convergence is lost. It can be regained
for Tmin → 1.0, although the overall convergence slightly su�ers, the closer Tmin is to 1.0,
which is then again similar to the test with the implicit Euler scheme.

Table 5.18 �nally lists the results for a discretisation with Q2 in space and Crank�
Nicolson in time. The convergence behaviour of the solver is essentially the same as in
the case of a discretisation with Q1 in space. There is no fundamental di�erence visible
in comparison to Table 5.17 which was also generated based on the Crank�Nicolson time
discretisation.

5.2.2. Prolongation/restriction operators for the Crank–Nicolson scheme

As described in Section 2.6 on page 36, the special time discretisation in the Crank�
Nicolson case induces modi�ed prolongation/restriction operators. In practice however,
di�erent choices are possible, and the following numerical tests should draw a picture
about their applicability.

Similar to the previous tests, the optimal control of the heat equation (cf. Example 5.1)
on the unit space-time cylinder is considered. The discretisation is carried out using the Q1

element in space and the Crank�Nicolson scheme in time. For di�erent re�nement levels
in space and time, Table 5.19 illustrates the number of iterations and the convergence rate
for the following choices of prolongation/restriction operators in time:

5.2. Higher order discretisations: Q2 and the Crank–Nicolson scheme 111

Discr.: Q1, impl. Euler Q1, Crank�Nic. Q2, Crank�Nic.
h k #ite ρ #ite ρ #ite ρ

1/32 1/32 2 6.94E-06 2 3.33E-06 2 1.33E-06
1/64 1/64 3 1.70E-04 3 6.93E-05 3 4.02E-05
1/128 1/128 4 5.81E-04 3 2.86E-04 3 1.74E-04

Table 5.15: Space-time multigrid with BiCGStab(FBGsPrec,NSM=2) smoother. Q1

and Q2 in space, implicit Euler and Crank�Nicolson scheme in time.

Tmin = 0.0 Tmin = 1− 1/128 Tmin = 1− 1/1024

h #int #ite ρ #ite ρ #ite ρ

1/32 32 7 2.20E-02 15 2.07E-01 17 2.46E-01
1/64 64 9 6.20E-02 19 2.94E-01 23 3.55E-01
1/128 128 11 1.16E-01 31 4.75E-01 29 4.47E-01

Table 5.16: Space-time multigrid with BiCGStab(FBJacPrec,NSM=2) smoother, Q1

in space and the implicit Euler scheme in time. Di�erent Tmin.

Tmin = 0.0 Tmin = 1− 1/128 Tmin = 1− 1/1024

h #int #ite ρ #ite ρ #ite ρ

1/32 32 32 4.73E-01 13 1.44E-01 15 1.90E-01
1/64 64 49 6.24E-01 14 1.75E-01 21 3.23E-01
1/128 128 82 7.48E-01 17 2.44E-01 19 2.95E-01

Table 5.17: Space-time multigrid with BiCGStab(FBJacPrec,NSM=2) smoother, Q1

in space and the Crank�Nicolson scheme in time. Di�erent Tmin.

Tmin = 0.0 Tmin = 1− 1/128 Tmin = 1− 1/1024

h #int #ite ρ #ite ρ #ite ρ

1/32 32 29 4.47E-01 13 1.48E-01 14 1.84E-01
1/64 64 38 5.45E-01 14 1.85E-01 14 1.77E-01
1/128 128 47 5.97E-01 22 3.47E-01 15 2.11E-01

Table 5.18: Space-time multigrid with BiCGStab(FBJacPrec,NSM=2) smoother, Q2

in space and the Crank�Nicolson scheme in time. Di�erent Tmin.

112 Basic numerical analysis of the solver: Heat equation and Stokes equations

a) b) c)
h k #ite ρ #ite ρ #ite ρ

1/8 1/64 8 4.63-02 6 2.12E-02 7 3.07E-02
1/16 1/128 9 6.92-02 6 2.11E-02 9 6.81E-02
1/32 1/256 16 2.33-01 6 1.85E-02 13 1.70E-01
1/64 1/512 >50 � 6 1.54E-02 34 5.07E-01

Table 5.19: Convergence for di�erent prolongation/restriction operators in time.

a) Linear prolongation/full weighted restriction similar to the implicit Euler case (see
Section 3.4.3 on page 56). The special time discretisation is ignored.

b) Linear prolongation/full weighted restriction as de�ned for the θ-scheme in Sec-
tion 3.4.4 on page 58. Natural restriction: The roles of the prolongation matrices are
changed for the de�nition of the restriction, see (3.21) on page 62.

c) Linear prolongation/full weighted restriction as de�ned for the θ-scheme in Sec-
tion 3.4.4. The restriction uses the `intuitive' approach that the restriction matrices
are created by transposing the prolongation matrices without changing the roles,
see (3.20) on page 61.

To show the e�ect of the modi�ed time prolongation/restriction more clearly, the results
in Table 5.19 are computed with a pure two-grid algorithm in time: The columns entitled
`k' and `h' again de�ne the resolution of the �ne grid on the space-time cylinder, and the
coarse grid is generated by one pure time coarsening. The coarse grid solver is adjusted
to gain �ve digits and on the �ne grid, FBGsSmoother(ω = 0.5, NSM = 4) is used
for postsmoothing; presmoothing is not applied. The other parameters in these tests are
chosen as α = 0.001, γ = 0.0.

It can be seen from Table 5.19 that all methods perform rather well for lower levels.
For higher re�nement levels however, the special prolongation/restriction operators that
exchange the roles of the prolongation matrices (variant b)) are advantageous. It is the
only method in this example which preserves the level-independent convergence for all
considered re�nement levels.

5.3. From the heat equation to the Stokes equations

Consider Example 5.2 on page 102 involving the Stokes equations. The corresponding
KKT system is discretised on the one hand with Q̃1/Q0 in space and the implicit Euler
scheme in time, on the other hand with Q2/P

disc
1 in space and the Crank�Nicolson scheme

in time. For the basic coarse mesh, (h, k)coarse = (1/8, 1/8) is used. The regularisation
parameters1 are chosen as α = 1.0, γ = 0 as well as α = 0.01, γ = 10.0. Although this
type of problem exhibits a saddle-point character in space and must therefore be treated
with PSCSmoother type smoothers, the equations are still linear and comparable to the
heat equation; for that reason, the solver behaviour is expected to be similar as well.

The Tables 5.20 and 5.21 summarise the basic solver behaviour. For this test, a BiCG-
Stab(FBJacPrec,NSM=2) and a BiCGStab(FBGsPrec,NSM=2) smoother is used

1 Note that for a stronger setting of α and γ, the solver starts to get instable, which can also be seen
in the results in later chapters (see in particular Section 7.1.2 at page 133). Therefore, the tests in this
chapter restrict to values for these regularisation parameters which are not too strong but still show a
characteristic solver behaviour.

5.4. The choice of the multigrid cycle 113

for postsmoothing on every level. Presmoothing is not used. For the Q̃1/Q0/implicit
Euler discretisation, all smoothers show a rather level-independent convergence behaviour,
and the BiCGStab(FBGsPrec,NSM=2) smoother outperforms the BiCGStab(FBJac-
Prec,NSM=2) smoother similar to the heat equation case. For the Q2/P

disc
1 /Crank�

Nicolson discretisation on the other hand, the BiCGStab(FBJacPrec,NSM=2) smoo-
ther is not strong enough, the convergence is not level-independent. The BiCGStab(FB-
GsPrec,NSM=2) smoother on the other hand shows a perfect, level-independent conver-
gence behaviour. All in all, the convergence properties of the proposed solver methodology
in the Stokes case is similar to the heat equation case.

α = 1.0, γ = 0 α = 0.01, γ = 10

FBJacPrec FBGsPrec FBJacPrec FBGsPrec

h k #ite ρ #ite ρ #ite ρ #ite ρ

1/16 1/16 4 2.39E-03 2 6.85E-07 5 3.63E-03 2 1.89E-06
1/32 1/32 6 1.22E-02 2 9.31E-07 6 1.43E-02 2 8.50E-06
1/64 1/64 7 3.49E-02 2 1.80E-06 8 4.33E-02 3 1.00E-04
1/128 1/128 9 6.88E-02 2 4.53E-06 10 8.39E-02 4 7.72E-04

Table 5.20: Convergence of the space-time multigrid method for the Stokes equations.
Q̃1/Q0/implicit Euler discretisation. BiCGStab smoother.

α = 1.0, γ = 0 α = 0.01, γ = 10

FBJacPrec FBGsPrec FBJacPrec FBGsPrec

h k #ite ρ #ite ρ #ite ρ #ite ρ

1/16 1/16 17 2.46E-01 1 8.80E-11 43 5.80E-01 3 2.19E-04
1/32 1/32 27 4.13E-01 2 1.68E-06 65 7.01E-01 3 1.06E-04
1/64 1/64 42 5.75E-01 1 9.59E-11 104 7.97E-01 3 1.58E-04
1/128 1/128 76 7.42E-01 2 6.99E-06 212 8.96E-01 4 1.68E-03

Table 5.21: Convergence of the space-time multigrid method for the Stokes equations.
Q2/P

disc
1 /Crank�Nicolson discretisation. BiCGStab smoother.

5.4. The choice of the multigrid cycle

One key point of a general multigrid scheme is the linear complexilty of the algorithm,
i. e., the numerical e�ort for solving a linear system should be proportional to the number
of unknowns. Given a mesh hierarchy with levels 1, 2, 3, ...,NLMAX =: n this means
that the total CPU time Ttotal(n) which is necessary to solve the system at level n ∈ N
is proportional to the number of unknowns NEQ(n) on that level, i. e., there are some
c1, c2 > 0 with2

c1 NEQ(n) ≤ Ttotal(n) ≤ c2 NEQ(n) ∀n ∈ N.

The time Ttotal(n) can be decomposed into

2 The number of unknowns is usually large, already for moderate mesh resolutions. As an example,
consider the optimal distributed control of the Stokes equations, Example 5.2 on page 102. On a regular
2D mesh with 128× 128 cells in space and 128 time intervals, if the problem is discretised with Q2/P

disc
1

in space and the implicit Euler scheme in time, there are NEQ ≈ 46 · 106 fully coupled unknowns on the
space-time cylinder. In general, c1 and c2 should therefore be small to be able to solve such a problem in
reasonable time.

114 Basic numerical analysis of the solver: Heat equation and Stokes equations

� number of iterations #ite, multiplied with

� the time Tsmooth(2, ..., n) necessary for smoothing on all levels, plus

� the time Tcoarse necessary for coarse grid solving,

which gives the formula

Ttotal(n) = #ite (Tsmooth(2, ..., n) + Tcoarse).

For simplicity, the following idealised scenario is assumed: The number of iterations #ite
of the multigrid solver is constant, independent of the re�nement level. Furthermore, the
time Tcoarse for coarse grid solving is constant. The total solver time is therefore determined
by the time necessary for smoothing, Tsmooth(2, ..., n). Tsmooth(2, ..., n) �nally depends on
the number of smoothing steps on each level, the type of the cycle that is used in multigrid
and the time that is necessary to perform one smoothing step.

The number of smoothing steps is denoted by NSM, which is assumed to be constant
for all levels, and T ls refers to the mean time necessary for NSM smoothing step on level
l = 2, ..., n. Then, the time for smoothing on level n depends on the cycle; for the special
case of the V- and W-cycle, there is

a) V-cycle: Tsmooth(2, ..., n) = Tns + Tn−1
s + Tn−2

s + ...+ T 2
s (5.3)

b) W-cycle: Tsmooth(2, ..., n) = Tns + 2Tn−1
s + 4Tn−2

s + ...+ 2n−2T 2
s . (5.4)

The time for smoothing Tns can be assumed to grow linearly in n; this is reasonable since
usually, all operations in the smoother work with approximately sparse matrices, e. g.,
matrix-vector multiplications. It follows that the algorithm has linear complexity if

Tsmooth(2, ..., n) ≤ c Tns

is ful�lled for some constant c > 0 and n ∈ N arbitrary. Unfortunately, in the case of the
space-time multigrid scheme discussed here, this is not always the case.

5.4.1. Multigrid cycle analysis – in theory

The space-time multigrid scheme proposed in the previous chapters allows some freedom
in the choice of the space-time hierarchy, see Section 3.1.2 on page 49. With increasing
space-time level, the de�nition of the hierarchy below the maximum level can be created
by di�erent coarsening strategies. Keeping the spatial mesh �xed for all space-time levels,
e. g., allows to de�ne a pure time-multigrid algorithm, but one can also think about other
variants like one space-coarsening every two time-coarsenings or similar.

In the following, the term `time-multigrid' stands for a space-time multigrid with semi-
coarsening in time, while the term `full space-time multigrid' denotes the case that the
hierarchy is created by 1:1 coarsening. Furthermore, `spatial space-time multigrid' refers
to the situation where the hierarchy is created by semi-coarsening in space, see also Sec-
tion 3.1.2 at page 49f.

The choice of the coarsening has direct in�uence to the time needed to perform one
space-time smoothing step. At �rst, the time-multigrid and the full space-time multigrid
are considered. In this case, level n in the hierarchy has twice as many timesteps as level
n− 1 (due to the regular re�nement/coarsening in time). Depending on the dimension of

5.4. The choice of the multigrid cycle 115

the spatial mesh, Tn−1
s can therefore roughly be estimated in terms of Tns as follows:

a) Time-multigrid, 2D and 3D: Tn−1
s ≈ 1/2 Tns

b) Full space-time multigrid, 2D: Tn−1
s ≈ 1/8 Tns

c) Full space-time multigrid, 3D: Tn−1
s ≈ 1/16 Tns

On the other hand, in the case of spatial space-time multigrid, which keeps the time level
�xed, Tn−1

s can be estimated by

d) Spatial space-time multigrid, 2D: Tn−1
s ≈ 1/4 Tns

e) Spatial space-time multigrid, 3D: Tn−1
s ≈ 1/8 Tns

This allows to estimate the sums in (5.3) and (5.4):

a) Pure time multigrid, 2D and 3D:

V-cycle: (Tns + Tn−1
s + Tn−2

s + ...+ T 2
s)

≈ (1 + 1/2 + 1/4 + ...)Tns ≤ 2 Tns ,

W-cycle: (Tns + 2Tn−1
s + 4Tn−2

s + ...+ 2n−1T 2
s)

≈ (1 + 1 + ...+ 1)Tns = (n− 1) Tns .

In the same way, there is:

b) Full space-time multigrid, 2D:

V-cycle: (Tns + Tn−1
s + Tn−2

s + ...+ T 2
s) / 8/7 Tns ,

W-cycle: (Tns + 2Tn−1
s + 4Tn−2

s + ...+ 2n−1T 2
s) / 4/3 Tns

c) Full space-time multigrid, 3D:

V-cycle: (Tns + Tn−1
s + Tn−2

s + ...+ T 2
s) / 16/15 Tns ,

W-cycle: (Tns + 2Tn−1
s + 4Tn−2

s + ...+ 2n−1T 2
s) / 8/7 Tns

d) Spatial space-time multigrid, 2D:

V-cycle: (Tns + Tn−1
s + Tn−2

s + ...+ T 2
s) / 4/3 Tns ,

W-cycle: (Tns + 2Tn−1
s + 4Tn−2

s + ...+ 2n−1T 2
s) / 2 Tns

e) Spatial space-time multigrid, 3D:

V-cycle: (Tns + Tn−1
s + Tn−2

s + ...+ T 2
s) / 8/7 Tns ,

W-cycle: (Tns + 2Tn−1
s + 4Tn−2

s + ...+ 2n−1T 2
s) / 4/3 Tns .

Consequently, the time-multigrid in combination with the W-cycle does not have linear
complexity as the coe�cient in front of Tns increases with the number of grid levels. Pure
time multigrid in combination with the V-cycle is theoretically the most expensive one
(from those solver con�gurations that have linear complexity), the full multigrid costs
twice as much time as the smoothing on the �nest level. In case of the full space-time
multigrid, the choice of the cycle is less signi�cant.

The following numerical test shows that the bounds are indeed sharp and can also be
observed in practice. The case of the time-multigrid and full space-time multigrid serve as
an example.

116 Basic numerical analysis of the solver: Heat equation and Stokes equations

5.4.2. Multigrid cycle analysis – in practice

Consider Example 5.1 involving the heat equation, which is an example in 2D. The coarse
mesh in space consists of only one cell [0, 1]× [0, 1] and the coarse mesh in time consists of
one time interval [0, T] = [0, 1]. Two mesh hierarchies are generated by coarsening accord-
ing to Table 5.22. Hierarchy a) represents a mesh generated by coarsening only in time
with a �xed �ne grid in space, while hierarchy b) stands for a full space-time coarsening.
The solver in this example is the proposed space-time multigrid where the stopping cri-
terion is chosen to reduce the norm of the initial residual by ten digits, εOptMG = 10−10.
The smoother in this test is BiCGStab(FBGsPrec,NSM) with NSM=2 (post-)smoothing
steps. The problems in space are so small that it is possible to use a optimised Gaussian
elimination solver (cf. [48]) without running into the region of superlinear runtime.

Hierarchy a) for time-MG Hierarchy b) for full space-time MG
lv. space-lv. time-lv. #intervals #cells space-lv. time-lv #intervals #cells
1 8 2 2 16384 4 2 2 64
2 8 3 4 16384 5 3 4 256
3 8 4 8 16384 6 4 8 1024
4 8 5 16 16384 7 5 16 4096
5 8 6 32 16384 8 6 32 16384

Table 5.22: Space-time hierarchies for the multigrid cycle test. For every space-time level
`lv.': Corresponding space-level, time-level, number of cells in space and number of time
intervals.

Time-MG Full space-time MG

V-cycle W-cycle V-cycle W-cycle

#ite CPU #ite CPU #ite CPU #ite CPU

T 5
s = Tsmooth(5, ..., 5) 3 455 3 457 3 455 3 457

Tsmooth(4, ..., 5) 3 690 3 925 3 495 3 532

Tsmooth(3, ..., 5) 3 814 3 1321 3 502 3 544

Tsmooth(2, ..., 5) 3 889 3 1636 3 502 3 549

Tsmooth(2,...,5)
Tsmooth(5,...,5) ≈ 2 (n− 1) = 4 8/7 4/3

Table 5.23: CPU time in seconds used for smoothing in the multigrid cycle test.

The complete hierarchy in this test contains �ve levels, the space-time �ne mesh at
level 5 is �xed. For l = 2, ..., 5, a space-time multigrid is applied on levels l − 1, ..., 5, i. e.,
on level l − 1, the coarse grid solver is applied and from level l on the smoothers. The
test aims at computing total CPU time in seconds used for smoothing on all levels of this
hierarchy, Tsmooth(l, ..., 5). The time for solving coarse grid problems is neglected.

Table 5.23 illustrates the number of multigrid iterations and the total CPU time for
smoothing in the case of the time-multigrid and the full space-time multigrid, where in both
cases the V-cycle and the W-cycle are tested. The solver needs 3 iterations in all situations
independent of whether the coarse grid stems from a pure time coarsening or coarsening
in space and time. Furthermore, the predicted computational time is very well reproduced
in practice: For the pure time multigrid using the W-cycle the CPU time increases by
Tsmooth(5, ..., 5) ≈ 400...450 seconds with every additional level in the hierarchy. The

5.5. Summary and conclusions 117

V-cycle on the other hand remains bounded by 2 · 450 seconds. In the case of the full
space-time multigrid, the CPU time for the V-cycle remains bounded by 8/7 · 450 seconds
and for the W-cycle by 4/3 · 450 seconds.

5.5. Summary and conclusions

This chapter has concentrated on the basic analysis of the linear solver. Based on model
problems for the heat equation and the Stokes equations, the di�erent space-time solvers,
smoothers and preconditioners have been analysed with respect to their robustness in a
one-level, two-level and multilevel context.

� As expected, by a proper setting of the solver parameters, the multigrid solver stra-
tegy converges with level independent-convergence rates. The proposed smoothing
and preconditioning algorithms work well and robust for a large variety of model prob-
lems, and the BiCGStab(FBGsPrec,...) smoother turned out to be the strongest
one.

� Local problems in space can be solved inexactly without disturbing the global con-
vergence. This allows to signi�cantly reduce the CPU time.

� Concerning higher order discretisations it has been shown that the correct choice
of the prolongation/restriction operator is crucial. In particular for the general θ-
scheme, the restriction in time has to be modi�ed as suggested in Section 3.4 on
page 53�.

But although the multigrid solver converges with level-independent convergence rates,
it does not necessarily converge with linear complexity. It has been demonstrated that
improper combinations of mesh hierarchy and multigrid cycle destroy the linear complexity
of the algorithm.

The next chapter will continue with the numerical analysis of the heat equation and
the Stokes equations. In contrast to this chapter, the discretisation will be in the focus of
Chapter 6. It will be demonstrated that the space discretisation has to be coupled to the
time discretisation in order to increase the global accuracy upon re�nement of the mesh.

118 Basic numerical analysis of the solver: Heat equation and Stokes equations

6

Numerical analysis of the discretisation:
Heat equation and Stokes equations

The previous chapter has started the numerical analysis and concentrated on the solver
and its components. For �xed space-time discretisations, the solver has been analysed with
respect to e�ciency and robustness. This chapter continues the numerical analysis, but in
contrast, all solver issues are neglected. The main focus here is the proper choice of the
discretisation. Advantages and disadvantages of di�erent combinations of the discretisation
techniques proposed in Chapter 2 are emphasised. Similar to Chapter 5, the analysis
is again based on analytical test examples involving the heat equation and the Stokes
equations.

The aim of this chapter is twofold: On the one hand, the correctness of the discretisation
is veri�ed. In particular it is shown with the help of numerical examples that the modi�ed
Crank�Nicolson time discretisation introduced in Chapter 2 is second order accurate. On
the other hand, there are a couple of important facts repeated from the literature to give
a practitioner some advice how to set up a discretisation and a proper space-time mesh.
This should help to quantify, e. g., the advantages of higher order discretisations in space
and time.

Outline

The chapter provides three sections. After the de�nition of an additional analytic test
example in Section 6.1, Section 6.2 concentrates on the accuracy of the space-time dis-
cretisation. For the heat equation as well as for the Stokes equations it is veri�ed that the
accuracy of the space discretisation must be coupled to the accuracy of the time discretisa-
tion in order to guarantee global convergence. This is a well known fact from the literature.
However, to the best of the author's knowledge, the error bounds have not been veri�ed
in numerical examples for the optimal control of the Stokes equations. In particular it is
shown in this section that the modi�ed Crank�Nicolson time discretisation is second order
accurate.

The remaining Section 6.3 focuses on the modi�ed Crank�Nicolson discretisation and
compares the accuracy of this scheme to the traditional Crank�Nicolson scheme, i. e., the
Crank�Nicolson scheme with the dual solution located at the endpoints of the time interval.
Both schemes are second order accurate, but the analysis also shows that for the same
resolution of the space-time mesh, the solutions are similarly `close' to each other, i. e., not
only in the limit for h, k → 0.

119

120 Numerical analysis of the discretisation: Heat equation and Stokes equations

6.1. Notations and additional test examples

For a combination of h and k, there is σ := (h, k) and vσ the discrete counterpart to a
function v ∈ L2(Q) under a given space-time discretisation.

The following test example is similar to Example 5.2 on page 102, but uses a noncon-
stant, time-dependent pressure:

6.1 Stokes equations example 2 Consider the optimal distributed control of
the Stokes equations (without end time observation) for ν = 1, expressed in the
following modi�ed KKT system,

yt −∆y +∇p = f − 1

α
λ,

−λt −∆λ+∇ξ = y − z,
λ(T) = 0,

−div y = δy,

−div λ = δλ,

with δy, δλ : Q → R and f : Q → R2. Similar to Example 5.2, the underlying
domain is the unit square Ω = (0, 1)2 on the time interval [0, T] = [0, 1]. The
following reference functions are de�ned in terms of an eigenfunction w2 : R2 → R,
w2(x) := sin(π2x1) sin(πx2), of the Laplace operator in space:

y(t, x) := sin(tπ/2)

(
w2(x1, x2)
w2(x1, x2)

)
,

λ(t, x) :=
(

sin(tπ/2)− 1
)(w2(x1, x2)

w2(x1, x2)

)
,

p(t, x) := ξ(t, x) := sin(tπ/2)w2(x1, x2).

The corresponding right-hand side functions are calculated using the KKT system,

f := yt −∆y +∇p+
1

α
λ,

z := λt + ∆λ−∇ξ + y,

δy := −div y,

δλ := −div λ.

Boundary conditions are de�ned as in Example 5.2.

6.2. Coupling of the space and the time discretisation

Following [115, 116], the choice of the space and time discretisation for a space-time problem
should be coupled. By (y, λ), a solution of the continuous KKT system (2.1) on page 22
for the heat equation is denoted, and (yσ, λσ) is the solution of its discrete counterpart. In
the special case of linear and quadratic �nite elements in space and a time discretisation
with the implicit Euler or Crank�Nicolson scheme, the following error estimates can be
derived under proper assumptions:

a) Q1 in space, implicit Euler in time:

||y − yσ||Q = O(k) +O(h2), ||λ− λσ||Q = O(k) +O(h2)

6.2. Coupling of the space and the time discretisation 121

b) Q1 in space, Crank�Nicolson in time:

||y − yσ||Q = O(k2) +O(h2), ||λ− λσ||Q = O(k2) +O(h2)

c) Q2 in space, implicit Euler in time:

||y − yσ||Q = O(k) +O(h3), ||λ− λσ||Q = O(k) +O(h3)

d) Q2 in space, Crank�Nicolson in time:

||y − yσ||Q = O(k2) +O(h3), ||λ− λσ||Q = O(k2) +O(h3)

Similar estimates can be expected for the Stokes equations as well, but due to the fact
that the trial space for the pressure is one order lower (tests use Q̃1/Q0 and Q2/P

disc
1 ,

respectively, for velocity and pressure), the order of the error in space should be one order
lower. The following examples show that this coupling between the space and the time
error can indeed be seen in practice as well.

6.2.1. Space-time error for the heat equation

Consider at �rst Example 5.1 involving the heat equation, discretised with Q1/implicit
Euler, Q1/Crank�Nicolson and Q2/Crank�Nicolson in space and time, respectively.1 The
regularisation parameters are chosen as α = 0.001 and γ = 0.0 and the coarse mesh is
de�ned as a fully isotropic quadrilateral space-time mesh with (h, k)coarse = (1/16, 1/16).

For the test, the coarse mesh is re�ned at �rst only in space, second only in time and
third in space and time according to the theoretical between h and k. For a discretisation
with Q1/implicit Euler for example, the simultaneous re�nement in space and time would
apply two re�nements in time per re�nement in space, which corresponds to h ∼ k2.

Figures 6.1 to 6.3 depict the error ||y−yσ||Q and ||λ−λσ||Q for the di�erent re�nement
strategies. Obviously, pure space re�nement or pure time re�nement is not the appropriate
way to decrease the error: From a certain point on, the error stagnates or even increases.
Re�ning in both space and time however, the error decreases as predicted.

6.2.2. Space-time error for the Stokes equations

Consider the Stokes equations example 2, Example 6.1, with the regularisation param-
eter set to α = 0.01. Figures 6.4 and 6.5 illustrate the errors ||y − yσ||Q, ||λ− λσ||Q,
||p− pσ||Q and ||ξ − ξσ||Q for a discretisation with Q̃1/Q0 in space and the Crank�Nicolson
scheme in time. The coarse mesh is again de�ned as a fully isotropic space-time mesh with
(h, k)coarse = (1/16, 1/16) and properly re�ned: For measuring the error in the velocity,
the re�nement is done according to h ∼ k as an error reduction of O(h2) + O(k2) is ex-
pected. For the errors in the pressure on the other hand, a reduction of O(h) + O(k2) is
expected, so this test uses a set of meshes based on the relation h ∼ k2 to compensate for
the di�erent order in the reduction of the error in space and time. The behaviour of the
error is similar to the results in Section 6.2.1 for the heat equation: Re�ning only in space
or only in time, the error stagnates, while re�ning in both space and time according to the
theoretical relation between k and h, the error reduces as expected.

1Results for theQ2/implicit Euler discretisation are not presented. There are no fundamental di�erences
to the Q1/implicit Euler discretisation except for the memory consumption: c) implies that one re�nement
in space would have to be accompanied by three re�nements in time. This would lead to an extremely
high number of timesteps and very high memory requirements on higher levels (see also Section 6.2.3),
rendering the discretisation unattractive in practice.

122 Numerical analysis of the discretisation: Heat equation and Stokes equations

 1e-005

 0.0001

 0.001

 0.01

 10 100 1000

||e
rr

or
||

1/h

O(h2)

||y-yσ||, space-time-refinement
||λ-λσ||, space-time-refinement

||y-yσ||, space-refinement
||λ-λσ||, space-refinement

 1e-005

 0.0001

 0.001

 0.01

 10 100 1000

||e
rr

or
||

1/k

O(k)

||y-yσ||, space-time-refinement
||λ-λσ||, space-time-refinement

||y-yσ||, time-refinement
||λ-λσ||, time-refinement

Figure 6.1: Heat equation, discretisation with Q1/implicit Euler, error reduction. Loga-
rithmic scale on the x- and y-axis. Left: Space and space-time re�nement. Right: Time
and space-time re�nement.

 1e-005

 0.0001

 0.001

 0.01

 10 100 1000

||e
rr

or
||

1/h

O(h2)

||y-yσ||, space-time-refinement
||λ-λσ||, space-time-refinement

||y-yσ||, space-refinement
||λ-λσ||, space-refinement

 1e-005

 0.0001

 0.001

 0.01

 10 100 1000

||e
rr

or
||

1/k

O(k2)

||y-yσ||, space-time-refinement
||λ-λσ||, space-time-refinement

||y-yσ||, time-refinement
||λ-λσ||, time-refinement

Figure 6.2: Heat equation, discretisation with Q1/Crank�Nicolson, error reduction. Log-
arithmic scale on the x- and y-axis. Left: Space and space-time re�nement. Right: Time
and space-time re�nement.

 1e-005

 0.0001

 0.001

 0.01

 10 100

||e
rr

or
||

1/h

O(h3)

||y-yσ||, space-time-refinement
||λ-λσ||, space-time-refinement

||y-yσ||, space-refinement
||λ-λσ||, space-refinement

 1e-005

 0.0001

 0.001

 0.01

 10 100

||e
rr

or
||

1/k

O(k2)

||y-yσ||, space-time-refinement
||λ-λσ||, space-time-refinement

||y-yσ||, time-refinement
||λ-λσ||, time-refinement

Figure 6.3: Heat equation, discretisation with Q2/Crank�Nicolson, error reduction. Log-
arithmic scale on the x- and y-axis. Left: Space and space-time re�nement. Right: Time
and space-time re�nement.

6.3. Coupling of the space and the time discretisation 123

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 10 100

||e
rr

or
||

1/h

O(h2)

||y-yσ||, space-time-ref.
||λ-λσ||, space-time-ref.

||y-yσ||, space-ref.
||λ-λσ||, space-ref.

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 10 100

||e
rr

or
||

1/k

O(k2)

||y-yσ||, space-time-ref.
||λ-λσ||, space-time-ref.

||y-yσ||, time-ref.
||λ-λσ||, time-ref.

Figure 6.4: Stokes equations, discretisation with Q̃1/Q0/Crank�Nicolson, error reduction
in the velocity. Logarithmic scale on the x- and y-axis. Left: Space and space-time
re�nement. Right: Time and space-time re�nement.

 0.001

 0.01

 0.1

 10 100

||e
rr

or
||

1/h

O(h)

||p-pσ||, space-time-ref.
||ξ-ξσ||, space-time-ref.

||p-pσ||, space-ref.
||ξ-ξσ||, space-ref.

 0.001

 0.01

 0.1

 10 100

||e
rr

or
||

1/k

O(k2)

||p-pσ||, space-time-ref.
||ξ-ξσ||, space-time-ref.

||p-pσ||, time-ref.
||ξ-ξσ||, time-ref.

Figure 6.5: Stokes equations, discretisation with Q̃1/Q0/Crank�Nicolson, error reduction
in the pressure. Logarithmic scale on the x- and y-axis. Left: Space and space-time
re�nement. Right: Time and space-time re�nement.

6.2.3. Concluding remarks

Due to the strong coupling, it is advisable to equilibrate the accuracy of the space and
time discretisation to avoid high computational cost in practical situations: Linear �nite
elements in space should be combined with a second order time stepping scheme like
Crank�Nicolson, quadratic �nite elements with a third order time stepping scheme. Other
combinations can quickly lead to high memory requirements due to a very high number of
timesteps:

Consider the heat equation test in Section 6.2.1, discretised with Q2/implicit Euler. If
the lowest level uses a resolution of (h, k)coarse = (1/16, 1/16) and if the mesh is re�ned
three times based on the relationship k ∼ h3, there is (h, k)�ne = (1/128, 1/8192) � so
8 192 timesteps had to be used, very quickly growing with every re�nement level. As h
is typically small, higher order time discretisations are therefore highly favourable. An
example illustrating the construction of such schemes is given in [96]. Hussain et al. inter-
pret the Crank�Nicolson time stepping as a special case of the so called cGP(1) method.
Timestepping schemes of higher order are constructed by using a �nite element approach
in time with degrees of freedoms in the Gaussian points in time in combination with a
nonlinear iteration for multiple solutions in a time interval.

124 Numerical analysis of the discretisation: Heat equation and Stokes equations

6.3. The traditional θ-scheme time discretisation

In Section 2.6 on page 36�, a special discretisation for the Crank�Nicolson scheme has
been proposed. This scheme has been applied with the aim that the First-Optimise-Then-
Discretise approach commutes with the First-Discretise-Then-Optimise approach. It has
been derived by discretising the KKT system in such a way that the discrete KKT system
of the First-Optimise-Then-Discretise approach matched the discrete KKT system of the
First-Discretise-Then-Optimise approach.

However, the primal and dual equations of the KKT system can also be discretised
`traditionally', i. e., using the standard θ-scheme. This type of discretisation is easier to
use in practice, e. g., there is no special prolongation/restriction in time necessary and
the implementation of a possible end time observation is similar to the implicit Euler
case. However, matrix-vector multiplications with the space-time matrix are slightly more
expensive due to additional operators on the o�-diagonal matrix bands. In the following it
is shown that � at least for analytical test problems � the results are acceptable as well
and show the expected convergence properties.

6.3.1. Heat equation

For simplicity, the heat equation is considered at �rst, see (2.1) on page 22. On the one
hand, the KKT system is discretised with the scheme proposed in Section 2.6, on the other
hand following [34] with the traditional θ-scheme. The �rst approach from Section 2.6,
which is called `derived' approach here, reads

yn − yn−1

k
− θ∆yn − (1− θ)∆yn−1 = − 1

α
λn−1+θ,

λn−1+θ − λn+θ

k
− θ∆λn−1+θ − (1− θ)∆λn+θ = yn − zn,

y0 = y0,
λN
k
− θ∆λN = θ(yN − zN),

and the second, called `traditional' approach,

yn+1 − yn
k

− θ∆yn+1 − (1− θ)∆yn = − θ
α
λn+1 − 1− θ

α
λn,

λn − λn+1

k
− θ∆λn − (1− θ)∆λn+1 = − θ

α
(yn − zn)− 1− θ

α
(yn+1 − zn+1),

y0 = y0, λN = 0,

with n = 0, ..., N − 1, k = 1/N , complemented by the boundary conditions. The initial
condition in the traditional approach can alternatively be realised, e. g., with a projection
which mimics the timestep operator of the θ-scheme,

(
I
k
− θ∆)y0 = (

I
k
− θ∆)y0.

This type of projection ensures, e. g., correct boundary conditions into y0. For the Stokes
and Navier�Stokes equations, the projection is even more important. It has the additional
e�ect to impose the additional condition `−div y0 = 0' into the initial solution in case it
is not solenoidal.

Now, the analytical test Example 5.1 is considered, with α = 0.001, γ = 0.0. The KKT
system is discretised with Q1 in space and the Crank�Nicolson scheme in time, once with
the derived and once with the traditional approach. Table 6.1 lists the errors ||y − yσ||Q

6.4. The traditional θ-scheme time discretisation 125

and ||λ− λσ||Q for di�erent levels on re�nement. Although both approaches show similar
results and reduce the error with the expected order for increasing re�nement level, the
error for the traditional Crank�Nicolson scheme is even slightly smaller in this example.

CN derived CN traditional
h k ||y − yσ|| ||λ− λσ|| ||y − yσ|| ||λ− λσ||

1/8 1/8 4.79E-02 1.95E-03 3.84E-02 1.57E-03
1/16 1/16 1.30E-02 5.19E-04 9.99E-03 4.52E-04
1/32 1/32 3.38E-03 1.34E-04 2.57E-03 1.21E-04
1/64 1/64 8.58E-04 3.43E-05 6.48E-04 3.17E-05
1/128 1/128 2.15E-04 8.68E-06 1.62E-04 8.10E-06

Table 6.1: Heat equation. Error for the derived and traditional Crank�Nicolson discreti-
sation.

6.3.2. Stokes equations

Applying the two Crank�Nicolson schemes to the Stokes equations, the results are similar
to those from the heat equation. Example 6.1 is considered, and the KKT system is
discretised with Q̃1/Q0 and the Crank�Nicolson scheme. The corresponding errors are
shown in Figure 6.6. For the velocity graphs (Figure 6.6 left), the space-time meshes use
the relationship h = k. An error reduction corresponding to O(h2) + O(k2) is expected
which can be seen in the graph. For the pressure graphs on the other hand, a di�erent test
is performed which does two re�nements in space per re�nement in time to compensate
for the reduced order of the pressure in space, i. e., h = k2. Figure 6.6 right shows that the
error reduces with the expected order O(h) +O(k2).

All in all, it can therefore be stated that the traditional approach as well as the derived
approach provide similar results, at least for simple test examples. The situation can be
di�erent in the case of the full Navier�Stokes equations in combination with a stabilisation
for the convective terms, but this analysis is beyond the scope of this work.

 1e-005

 0.0001

 0.001

 0.01

 10 100

||e
rr

or
||

1/h, 1/k

O(h2)+O(k2)

||y-yσ||, CN derived
||y-yσ||, CN traditional

||λ-λσ||, CN derived
||λ-λσ||, CN traditional

 0.01

 0.1

 10

||e
rr

or
||

1/h, 1/k2

O(h)+O(k2)

||p-pσ||, CN derived
||p-pσ||, CN traditional

||ξ-ξσ||, CN derived
||ξ-ξσ||, CN traditional

Figure 6.6: Stokes equations. Error for the derived and traditional Crank�Nicolson dis-
cretisation. Logarithmic scale on the x- and y-axis. Left: Primal and dual velocity. Right:
Primal and dual pressure.

126 Numerical analysis of the discretisation: Heat equation and Stokes equations

6.4. Summary and conclusions

Chapter 5 and Chapter 6 have provided the �rst part of the numerical analysis of the
proposed discretisation and solver strategy.

At �rst, Chapter 5 has concentrated on a basic analysis of the linear solver. Numerical
examples were created based on the heat equation and the Stokes equations. The focus of
this chapter has been the choice of solver parameters and the robustness/e�ciency of the
di�erent solver components.

Independently of the solver, Chapter 6 has analysed important properties of the space-
time discretisation. The most important point is that the space discretisation has to be
coupled to the time discretisation. This is a well known fact which can be seen in the error
upon re�nement of the space-time mesh and which has been veri�ed for both the heat
equation and the Stokes equations, for �rst and higher order discretisations. In addition,
the chapter has analysed the accuracy of the modi�ed Crank�Nicolson time discretisation
preferred in this work. The error for this discretisation strategy has been shown to be
similar to the error of the `traditional' Crank�Nicolson time discretisation which interprets
all solutions as being located at the endpoints of the time interval. In particular, the
modi�ed Crank�Nicolson scheme provides a second order accurate discretisation in time.

The next two chapters, Chapter 7 and Chapter 8, will apply a deeper numerical anal-
ysis. The focus will change to the optimal control of the Stokes and the Navier�Stokes
equations, i. e., to problems with a saddle-point structure. All underlying model problems
will be de�ned based on model and benchmark problems from CFD instead of analyti-
cal formulas. The overall aim will be a) to demonstrate the applicability of the solver
methodology also for non-analytical test problems and b) to give an advice concerning the
choice of discretisation and solver parameters to �nd a compromise between e�ciency and
robustness.

7

Numerical analysis of the solver:
Stokes and Navier–Stokes equations

Chapter 5 and 6 have started the numerical analysis based on analytical test examples. The
main focus of these chapters has been the heat equation as well as the Stokes equations.
First tests have given a general overview about the e�ciency and robustness of the di�erent
solver components introduced in Chapter 3, and a numerical error analysis has illustrated
the in�uence of the coupling between the space and the time mesh to the accuracy of the
solution.

Chapter 5 has brie�y demonstrated at the end that the proposed discretisation and
solver strategy is well applicable to the optimal control of the nonstationary Stokes equa-
tions, for �rst order as well as for higher order space and time discretisations. Based on
the experiences acquired there, this chapter continues with an extended analysis of the
proposed solver strategy, this time with the focus on non-analytical test problems from
�uid dynamics. The �rst half of the chapter deals with the optimal distributed control of
the Stokes equations and illustrates, e. g., the in�uence of regularisation parameters or the
choice of the mesh and the mesh hierarchy to the convergence properties of the solver. The
second half concentrates on the application of nonlinear solver techniques to distributed
control problems based on the Navier�Stokes equations, with and without constraints in
the control.

The solver is numerically analysed with respect to the following key points:

� Robustness: How does the solver react to di�erent settings of the regularisation
parameters? How does anisotropy in the space-time mesh in�uence the solver? How
does the applied discretisation in space and time in�uence the solver stability?

� E�ciency: How e�cient is the optimisation solver in comparison to a solver for a
simulation? Which parameters in�uence the solver e�ciency and how do they have
to be chosen (e. g., stopping criteria of linear and nonlinear solvers)?

In particular, this chapter compares the numerical e�ort (CPU time) of optimisation and
simulation to illustrate the linear complexity of the method and to give an overview about
the additional costs of the optimisation compared to a simulation. However, similar to
Chapter 5, the chapter does not analyse any relation between the accuracy of a chosen
discretisation and the numerical e�ort that has to be invested to solve the underlying
KKT system. This �nal link will be part of the last chapter concerning numerical tests,
Chapter 8.

127

128 Numerical analysis of the solver: Stokes and Navier–Stokes equations

Outline

Section 7.1 extends the analysis of the space-time multigrid solver from Chapter 5. A
nonstationary distributed control problem for the Stokes equations is de�ned which is based
on the so called `Driven�Cavity' con�guration. This is used to compare the numerical e�ort
in terms of CPU time for optimisation and simulation, to determine the in�uence of the
regularisation parameters in the KKT system in more detail and to analyse the e�ects of
anisotropy in the space-time mesh on the e�ciency of the solver.

In the second part, Section 7.2, the focus is turned to nonlinear problems. Similar to
Section 7.1, an underlying nonstationary distributed control problem of `Driven�Cavity'
type is de�ned, this time for the Navier�Stokes equations. The section concentrates at �rst
on the di�erent nonlinear solver techniques introduced in Chapter 3 to �nd a con�guration
that solves a given nonlinear problem with the smallest possible CPU time. It turns out
that although the smallest CPU time can be achieved by a manual choice of the stopping
criteria, the adaptive Newton scheme gives the best compromise between e�ciency of the
solver and simplicity for the end user.

The section continues with the analysis of the in�uence of regularisation parameters
to the nonlinear solver and closes with a comparison of the CPU time between simulation
and optimisation. It is shown that for the example considered there, the optimisation is
less than ten times more expensive than a corresponding simulation.

Finally in Section 7.3, the e�ects of constraints on the control are analysed. The section
applies the di�erent discretisation techniques from Section 4.2 on page 87� to realise the
constraints and illustrates the e�ciency of the semismooth Newton method for di�erent
space-time discretisations.

7.1. Analysis of the multigrid solver

As a starting point the following linear test problem is introduced, based on the optimal
control of the nonstationary Stokes equations. An initial stationary Stokes �ow should be
controlled over time to a stationary Navier�Stokes �ow.

7.1 Stokes equations, `Driven�Cavity' example Consider the optimal con-
trol of the Stokes equations including an end time observation, see Equation (4.2)
page 82. The underlying domain is Ω = (0, 1)2. On the four boundary edges

Γ1 := {0} × (0, 1) = {(0, x2) ∈ R2 |x2 ∈ (0, 1)},
Γ2 := [0, 1]× {0} = {(x1, 0) ∈ R2 |x1 ∈ [0, 1]},
Γ3 := {1} × (0, 1) = {(1, x2) ∈ R2 |x2 ∈ (0, 1)},
Γ4 := [0, 1]× {1} = {(x1, 1) ∈ R2 |x1 ∈ [0, 1]},

the Dirichlet boundary conditions y(x, t) = (0, 0) for x ∈ Γ1 ∪Γ2 ∪Γ3 and y(x, t) =
(1, 0) for x ∈ Γ4 are used. The coarse grid consists of only one square element. The
time interval for this test case is [0, T] with T = 1, the viscosity parameter is set to
ν = 1/400. The initial �ow y0 is the fully developed, stationary Stokes �ow, while
the target �ow z is chosen as the fully developed, stationary Navier�Stokes �ow at
ν = 1/400.

Table 7.1 depicts an overview about the problem size on di�erent mesh levels. Figure 7.1
shows a picture of the streamlines of the target and the initial �ow with the corresponding
velocity magnitude in the background. For better visualisation, the positive and negative

7.1. Analysis of the multigrid solver 129

simulation optimisation
h k #dof(space) #dof(total) #dof(space) #dof(total)

1/16 1/16 1 344 22 848 2 688 45 696
1/32 1/32 5 248 167 936 10 496 335 872
1/64 1/64 20 736 1 347 840 41 472 2 695 680
1/128 1/128 82 432 10 551 296 164 864 21 102 592

Table 7.1: `Driven�Cavity' example, problem size. Number of degrees of freedom in
space (`#dof(space)') and on the whole space-time domain including the initial condition
(`#dof(total)'). Discretisation with Q̃1/Q0 in space.

Figure 7.1: `Driven�Cavity' example, Streamlines of the stationary Stokes (initial) �ow
(left) and stationary Navier�Stokes (target-) �ow (right). Velocity magnitude in the back-
ground.

Figure 7.2: `Driven�Cavity' example, Surface-LIC representation of u at t = 0.0625 (left)
and t = 0.5 (right).

130 Numerical analysis of the solver: Stokes and Navier–Stokes equations

Figure 7.3: `Driven�Cavity' example, controlled �ow at t = 0.0625 (top), t = 0.25 (centre)
and t = 0.5 (bottom). Left: Streamlines with primal velocity magnitude in the background.
Right: Control magnitude.

7.1. Analysis of the multigrid solver 131

streamlines are shown with a di�erent resolution, so the big and small vortices can be seen
more clearly. Figure 7.2 depicts the control u at t = 0.0625 and t = 0.5 using the Surface-
LIC (`Line-Integral-Convolution') representation and Figure 7.3 the controlled �ow and
the control at t = 0.0625, t = 0.25 and t = 0.5 for α = 0.01 and γ = 0.0. Similar to the
streamline representation, the Surface-LIC representation illustrates the path of particles
in the �ow. Two main vortices in the control u can be observed which `push' the Stokes
�ow to the Navier�Stokes �ow at the beginning of the time interval. For t = 0.5, the
vortices are still visible but much weaker; the �ow at t = 0.5 is visibly close to the desired
�ow.

7.1.1. Basic multigrid performance

The �rst analysis concentrates on the behaviour of the solver if being applied to the non-
analytical test problem from above. To be more speci�c, the purpose of the following
paragraphs is two-fold. On the one hand, the convergence behaviour is compared to the
results of Chapter 5. The solver behaviour is not expected to change much if the solver
is applied to a non-analytical test problem. On the other hand, the convergence analysis
involves CPU time measurements and comparisons to simulations. The purpose is here to
show that the desired relationship

e�ort for optimisation
e�ort for simulation

≤ C

for a moderate constant C > 0 holds also in terms of CPU time.

Measurement of the numerical effort In the following numerical tests, the numerical
e�ort for the optimisation is compared to the numerical e�ort of a `corresponding' simula-
tion. The term `numerical e�ort' is always measured in terms of CPU time. All such tests
are executed on the same computer architecture in the following way:

1.) The optimal control problem is solved for a speci�c target �ow z as de�ned in
the above test example. The stopping criteria are always set to εOptMG = 10−10 for the
space-time multigrid solver, εCoarseMG = 10−10 for the space-time coarse grid solver and
εSpaceMG = 10−2 for the multigrid solver in space, based on the result of Section 5.1.4
on page 107�. The space-time coarse grid solver is BiCGStab(FBGsPrec). This step
generates a control u.

2.) A pure simulation of the nonstationary Stokes�equations is calculated. The simula-
tion uses the same discretisation in space and time as the previous optimal control problem
and takes the computed control u from step 1 as right-hand side. In each timestep the
norm of the residual is reduced by ten digits, εSimMG = 10−10.

Basic comparison of simulation and optimisation For the �rst couple of tests, the
regularisation parameters are �xed to α = 0.01 and γ = 0.0, and the underlying KKT
system is discretised with Q̃1/Q0 in space and the implicit Euler scheme in time. In
Table 7.2, results from optimisation and simulation are compared. The optimisation
uses a full space-time hierarchy which is set up by full space-time coarsening down to
(h, k)coarse = (1/16, 1/16). The space-time multigrid solver uses a V-cycle and applies a
BiCGStab(FBGsPrec,NSM=4) smoother; from the numerical analysis in Section 5.1 on
page 102�, this smoother is known to be the most stable one in this work, thus showing
representative results for all introduced space-time smoothers. On the one hand, Topt de-
scribes the time needed for the optimisation, ITEopt and ρopt the number of iterations and

132 Numerical analysis of the solver: Stokes and Navier–Stokes equations

convergence rate of the space-time multigrid. On the other hand, Tsim denotes the time for
the simulation. The optimisation solver converges rapidly and level-independent, although
the convergence is slightly slower than it was for the analytic test problem in Chapter 5.
Compared to the simulation, it can be seen that the solver needs ≈ 10�12 times more CPU
time. Furthermore, the CPU time for, both simulation and optimisation, grows by a factor
of ≈ 8 in correspondence to the problem size which con�rms the linear complexity of both
algorithms.

A similar behaviour can also be observed in the Tables 7.3 and 7.4. Here, the time
discretisation is carried out with the Crank�Nicolson scheme, the space discretisation once
using the Q̃1/Q0 and once using the Q2/P

disc
1 �nite element pair. The Q̃1/Q0/Crank�

Nicolson shows a factor ≈ 10�12 as well while the Q2/P
disc
1 /Crank�Nicolson discretisation

has an even a better ratio of ≈ 5..7 in this example.

All in all, the e�ort for solving the KKT system grows linearly with the problem size.
For the test problem above, the factor between the optimisation and the simulation is
C ≈ 5..12. Of course, this factor depends on the problem and on the setting of the
regularisation parameters; an example for this will be given in the next section.

h k ITEopt ρopt Topt Tsim
Topt
Tsim

1/32 1/32 5 5.30E-03 620 57 10.7
1/64 1/64 6 1.85E-02 4 266 415 10.2
1/128 1/128 7 2.53E-02 35 128 3 104 11.3

Table 7.2: Simulation and optimisation for the control of the Stokes equations. `Driven�
Cavity' example. Discretisation with Q̃1/Q0 in space and the implicit Euler scheme in
time.

h k ITEopt ρopt Topt Tsim
Topt
Tsim

1/32 1/32 4 2.25E-03 608 53 11.4
1/64 1/64 7 2.41E-02 5 253 418 12.5
1/128 1/128 7 3.61E-02 38 898 3 371 11.5

Table 7.3: Simulation and optimisation for the control of the Stokes equations. `Driven�
Cavity' example. Discretisation with Q̃1/Q0 in space and the Crank�Nicolson scheme in
time.

h k ITEopt ρopt Topt Tsim
Topt
Tsim

1/32 1/32 4 8.8E-04 2 119 429 4.9
1/64 1/64 4 7.2E-04 12 615 2 171 5.8
1/128 1/128 4 9.0E-04 93 671 13 786 6.8

Table 7.4: Simulation and optimisation for the control of the Stokes equations. `Driven�
Cavity' example. Discretisation with Q2/P

disc
1 in space and the Crank�Nicolson scheme in

time.

7.1. Analysis of the multigrid solver 133

7.1.2. Influence of the regularisation parameters

For the optimal distributed control of the Stokes equations including an end time ob-
servation, the corresponding functional J(·) to minimise depends on two regularisation
parameters, namely α and γ (cf. Equation (4.2) page 82). While α penalises too high
costs in the control, the parameter γ models the in�uence of the end time observation. An
`anisotropic choice' of these parameters, i. e., lower values for α and higher values of γ, is
expected to have a negative impact on the e�ciency of the solver. This was already brie�y
discussed for the heat equation in Section 5.1.4 on page 107� and will be shown here for
the Stokes equations in a more detailed way.

The ‘Driven–Cavity’ example for different regularisation parameters Consider the
`Driven cavity' example for the Stokes equations, Example 7.1, based on a space-time
mesh with (h, k) = (1/64, 1/64) and a hierarchy with two levels, the coarse mesh de-
�ned by (h, k)coarse = (1/32, 1/32). The solver in the following test is a two-grid solver
using a BiCGStab(FBGsPrec,NSM=4) smoother for (postsmoothing (as above) and
a BiCGStab(FBGsPrec) coarse grid solver (which is the strongest proposed one-level
solver). The local systems in space are solved with a spatial multigrid solver that uses a
PSCSmootherDiag/PSCSmootherFull smoother combination: Wherever possible,
the proposed PSCSmootherDiag is used which provides fast monolithic smoothing for
the spatial subproblems. If the spatial multigrid solver does not converge, the compu-
tation is repeated using the stronger (but slower) PSCSmootherFull smoother. This
strategy helps to improve convergence in the last one or two time intervals, where the end
time observation introduces numerical di�culties for large values of γ. The other solver
parameters are adjusted as described in Section 7.1.1.

Based on this solver con�guration, the convergence properties are measured for dif-
ferent α and γ, see Tables 7.5 to 7.7. The tables di�er in the underlying discretisation:
For Table 7.5, the problem is discretised with Q̃1/Q0 and the implicit Euler scheme, for
Table 7.6 with Q̃1/Q0 and the Crank�Nicolson scheme and for Table 7.7 with Q2/P

disc
1

and the Crank�Nicolson scheme. The general behaviour can be summarised as follows: For
smaller parameter α and larger parameter γ, the solver faces more numerical di�culties,
thus the number of iterations increases. For too strong parameter settings, the solver does
not even converge anymore (indicated by `div'). A discretisation with the implicit Euler
scheme in time is more stable than a discretisation with the Crank�Nicolson scheme in
time. Switching from Q̃1/Q0 to Q2/P

disc
1 in space hardly in�uences the stability.

Comparing the results with those obtained for the heat equation in Section 5.1 on
page 102� it can be said that the regularisation parameters have a stronger in�uence
to the numerical stability than for the heat equation: For the heat equation, the solver
converged perfectly even for α = 0.001, γ = 1000. In case of the Stokes equation on the
other hand, stronger values than α = 0.01, γ = 10 necessitate a stronger solver in space or
may even lead to a complete breakdown of the solver.

7.1.3. Anisotropic space-time meshes and coarsening strategies

It is well known (cf. [75, Chapter 10], [6], [141, Chapter 5.1] that anisotropic meshes have
an in�uence on the convergence behaviour of a solver. Consider for example the standard

134 Numerical analysis of the solver: Stokes and Navier–Stokes equations

α: 1.0 0.1 0.01
γ #ite ρ #ite ρ #ite ρ

0.0 5 5.01E-03 5 5.39E-03 5 9.17E-03
1.0 4 1.96E-03 6 1.56E-02 6 2.04E-02
10.0 8 5.39E-02 9 7.04E-02 9 5.94E-02
100.0 6 1.83E-02 7 2.83E-02 div div
1000.0 7 2.52E-02 div div div div

Table 7.5: `Driven�Cavity' example. Convergence of the space-time multigrid solver de-
pending on α and γ. Discretisation with Q̃1/Q0 in space and the implicit Euler scheme in
time. `div' indicates a solver breakdown.

α: 1.0 0.1 0.01
γ #ite ρ #ite ρ #ite ρ

0.0 5 5.57E-03 5 8.02E-03 8 5.41E-02
1.0 4 1.27E-03 8 4.52E-02 8 4.64E-02
10.0 5 9.31E-03 11 1.14E-01 9 6.93E-02
100.0 12 1.40E-01 14 1.81E-01 div div
1000.0 21 3.20E-01 div div div div

Table 7.6: `Driven�Cavity' example. Convergence of the space-time multigrid solver de-
pending on α and γ. Discretisation with Q̃1/Q0 in space and Crank�Nicolson in time.
`div' indicates a solver breakdown.

α: 1.0 0.1 0.01
γ #ite ρ #ite ρ #ite ρ

0.0 2 4.45E-06 3 1.36E-04 4 1.35E-03
1.0 3 4.51E-05 6 1.21E-02 8 5.06E-02
10.0 5 8.80E-03 12 1.34E-01 9 6.84E-02
100.0 14 1.78E-01 16 2.21E-01 div div
1000.0 20 3.09E-01 div div div div

Table 7.7: `Driven�Cavity' example. Convergence of the space-time multigrid solver de-
pending on α and γ. Discretisation with Q2/P

disc
1 in space and Crank�Nicolson in time.

`div' indicates a solver breakdown.

7.1. Analysis of the multigrid solver 135

anisotropic Poisson equation

−div D∇y = f on Ω, (7.1)

y = 0 on ∂Ω,

on a domain Ω ⊂ R2 for a regular 2 × 2 di�usion tensor D and f : Ω → R2, g : ∂Ω → R.
If this problem is discretised with a �nite element or �nite di�erence approach, most
standard solvers work well as long as D = I is the identity tensor, while they deteriorate

if D describes an anisotropic operator, e. g. D =
(

1/ε2 0
0 1

)
, ε > 0 small.

The reason is that the anisotropy in the continuous operator on an isotropic mesh
introduces an anisotropy in the discrete operator due to the mapping between the reference
and the real element. However, a similar anisotropy is introduced by an isotropic operator
on an anisotropic mesh: The above problem is essentially equivalent to the problem

−div ∇y = f̃ on Ω̃

y = 0 on ∂Ω̃

on Ω̃ = (0, ε)× (0, 1) with f̃(x1, x2) = f(εx1, x2), cf. [6]. To deal with such an anisotropy,
an appropriate smoother has to be used. Following [6], a smoother is well designed for
an anisotropic problem if it focuses on the `tight connections' of the degrees of freedoms
(which can be interpreted as the `direction of main sti�ness'), i. e., if it is a line smoother
for those degrees of freedom which are `close' to each other.

This insight can be carried over to the �eld of optimal control problems. The solver
methodology introduced in Chapter 3 basically processes all degrees of freedom in a mono-
lithic way, but it treats the degrees of freedom in time in a di�erent way than those in
space. For smoothers like FBGsSmoother or FBJacSmoother, a local spatial solver
is applied, so all degrees of freedom in space are `tightly' coupled by the smoother. On the
other hand, the degrees of freedom in time are `more loosely' coupled, they are processed
by a weaker Block-Jacobi or Block-Gauÿ�Seidel approach. The space-time smoothers from
Chapter 3 can therefore be seen as line smoothers in space. As a consequence the con-
vergence of the solver should improve if the timestep size is increased and deteriorate for
smaller timesteps. This statement is veri�ed in the next numerical test.

‘Driven–Cavity’ with anisotropic space-time meshes The basic underlying optimal
control problem is the `Driven cavity' example for the Stokes equations, Example 7.1. The
regularisation parameters are chosen as α = 0.01, γ = 0.0. A fully isotropic mesh with
(h, k)iso = (1/32, 1/32) is chosen as initial �ne mesh. The mesh is gradually re�ned, once
only in space up to (h, k) = (1/256, 1/32), once only in time up to (h, k) = (1/32, 1/256).
This gives a couple of �ne meshes with di�erent levels of anisotropy.

From each �ne mesh, a mesh hierarchy for the space-time multigrid solver is generated
by coarsening until either h = 1/8 or k = 1/8 is reached. This is done with di�erent
coarsening strategies, i. e., 1:1 coarsening, pure time coarsening and anisotropic coarsening
in time (which coarsens two levels in time per one space coarsening), see Section 3.1 on
page 48�. Table 7.8 gives an example of the two mesh hierarchies based on the isotropic
�ne mesh with (h, k)iso = (1/32, 1/32).

Finally, the discretisation of the KKT systems is carried out with Q̃1/Q0 in space
and the Crank�Nicolson and implicit Euler timestepping scheme in time. The resulting
linear space-time systems are solved with a space-time multigrid using a BiCGStab(FB-
GsPrec,NSM=2) smoother.

136 Numerical analysis of the solver: Stokes and Navier–Stokes equations

coarsening: space-time only time 2× time/space
lv. h k k h k h

1 1/8 1/8 1/8 1/32 1/8 1/16
2 1/16 1/16 1/16 1/32 1/16 1/32
3 1/32 1/32 1/32 1/32 1/32 1/32

Table 7.8: Space-time hierarchy with (h, k)iso = (1/32, 1/32). Hierarchy created by space-
time coarsening and pure time coarsening.

Discretisation with the Crank–Nicolson scheme The �rst result column in Table 7.9,
entitled `space-time', lists the convergence behaviour of the solver for di�erent degrees of
anisotropy in the space-time mesh if the space-time hierarchy is created by full space-
time coarsening. For the time discretisation, the Crank�Nicolson scheme is used. The
convergence of the solver deteriorates for h� k. For h� k on the other hand, the solver
behaves well. The proposed solver methodology from Chapter 3 is therefore well suited for
higher order timestep techniques that allow large timesteps for solutions that are smooth
in time.

The situation is slightly di�erent if the space-time hierarchy is set up in a di�erent
way. The next column in Table 7.9, entitled `only time', shows the convergence behaviour
of the solver if the space-time hierarchy is created by pure time coarsening. The solver
hardly deteriorates for small k. This is reasonable: The algorithm can be interpreted
as pure 1D time-multigrid for an equidistant mesh in time. Such a situation is similar
to a 1D Laplace problem discretised with a �nite di�erence scheme, for which multigrid
is known to converge with level-independent convergence rates (cf. [75]). For very small
timesteps, semi-coarsening in time should be chosen; this is more stable than full space-time
coarsening.

An alternative to pure semi-coarsening in time is the strategy to coarsen the time-mesh
twice per space coarsening � or more precisely, to coarsen the spatial mesh every two time
coarsenings. The last column in Table 7.9, entitled `2×time/space', depicts the convergence
results of the solver in this case. A similar strategy was proposed in [75, �10.5] for general
anisotropic meshes to reduce the anisotropy from level to level. The convergence is rather
similar to the pure time-coarsening case although the number of unknowns in space is
reduced. Since the total number of unknowns for this strategy is between the total number
of unknowns for the time coarsening and the full space-time coarsening, this strategy can
be used as a compromise between robustness and problem size.

�ne grid space-time only time 2×time/space
h k #ite ρ #ite ρ #ite ρ

1/256 1/32 6 1.78E-02 7 2.40E-02 7 2.38E-02
1/128 1/32 8 5.61E-02 7 2.67E-02 6 2.13E-02
1/64 1/32 7 3.62E-02 6 1.73E-02 6 1.85E-02
1/32 1/32 7 3.18E-02 6 2.09E-02 6 1.86E-02
1/32 1/64 11 1.09E-01 6 2.00E-02 6 1.70E-02
1/32 1/128 15 1.89E-01 7 2.38E-02 8 4.43E-02
1/32 1/256 20 3.06E-01 7 3.59E-02 10 9.40E-02

Table 7.9: Solver convergence for di�erent degrees of anisotropy. Discretisation with
Q̃1/Q0/Crank�Nicolson.

7.2. Basic analysis of the nonlinear solver 137

�ne grid space-time only time 2×time/space
h k #ite ρ #ite ρ #ite ρ

1/256 1/32 6 1.79E-02 6 1.65E-02 6 1.64E-02
1/128 1/32 6 1.63E-02 6 2.14E-02 6 2.01E-02
1/64 1/32 6 1.63E-02 6 2.14E-02 6 2.01E-02
1/32 1/32 7 2.94E-02 7 2.29E-02 7 1.94E-02
1/32 1/64 11 9.67E-02 8 3.70E-02 8 3.64E-02
1/32 1/128 14 1.76E-01 10 7.97E-02 9 7.14E-02
1/32 1/256 19 2.84E-01 8 4.32E-02 9 7.49E-02

Table 7.10: Solver convergence for di�erent degrees of anisotropy. Discretisation with
Q̃1/Q0/implicit Euler.

Discretisation with the implicit Euler scheme Table 7.10 �nally lists the results in the
case that the implicit Euler scheme is used for the time discretisation. The results are quite
similar, but in this case, the reduced order of the time discretisation has an in�uence to the
results computed with pure time coarsening: The number of iterations is slightly larger
for smaller time intervals, which has not been the case for the Crank�Nicolson scheme.
Coarsening twice in time per space-level gives satisfactory results as well, similar to the
previous test.

7.2. Basic analysis of the nonlinear solver

The following example extends the `Driven cavity' example for the Stokes equations, Ex-
ample 7.1 on page 128, to the Navier�Stokes equations. Basically, the setting is turned
around: Instead of controlling a Stokes �ow to a Navier�Stokes �ow, a Navier�Stokes �ow
is controlled to a Stokes �ow.

7.2 Navier�Stokes equations, `Driven�Cavity' example Consider the op-
timal control of the Navier�Stokes equations including an end time observation, see
Section 4.1 at page 81�. The underlying domain is Ω = (0, 1)2. On the four
boundary edges

Γ1 := {0} × (0, 1) = {(0, x2) ∈ R2 |x2 ∈ (0, 1)},
Γ2 := [0, 1]× {0} = {(x1, 0) ∈ R2 |x1 ∈ [0, 1]},
Γ3 := {1} × (0, 1) = {(1, x2) ∈ R2 |x2 ∈ (0, 1)},
Γ4 := [0, 1]× {1} = {(x1, 1) ∈ R2 |x1 ∈ [0, 1]},

the Dirichlet boundary conditions y(x, t) = (0, 0) for x ∈ Γ1 ∪Γ2 ∪Γ3 and y(x, t) =
(1, 0) for x ∈ Γ4 are de�ned. The coarse grid consists of only one square element.
The time interval for this test case is [0, T] with T = 1, the viscosity parameter is
set to ν = 1/400. The initial �ow y0 is the stationary fully developed Navier�Stokes
�ow at ν = 1/400, while the target �ow z is chosen as the fully developed Stokes
�ow.

A stationary counterpart of this example was analysed in [3]. In [152], Ulbrich analysed this
problem under constraints, see also [83, 84]. Figure 7.4 depicts the streamlines of the target
�ow and the initial �ow with the corresponding velocity magnitude in the background.

138 Numerical analysis of the solver: Stokes and Navier–Stokes equations

For better visualisation, the positive and negative streamlines are shown with a di�erent
resolution, so the big and small vortices can be seen more clearly. Figure 7.5 depicts the
control u at t = 0.0625 and t = 0.5 using the Surface-LIC representation and Figure 7.6
the controlled �ow with corresponding control at t = 0.0625, t = 0.25 and t = 0.5. The
regularisation parameters are chosen as α = 0.01 and γ = 0.0. Two main vortices in the
control u can be identi�ed at the beginning of the time interval which `push' the Navier�
Stokes �ow to the Stokes �ow. These nearly disappear when the Navier�Stokes �ow reaches
the `optimal' state, or more precisely, they change to large `conservation' vortices which
keep the Navier�Stokes �ow in shape.

7.2.1. Nonlinear solver comparison

In a �rst test, the convergence properties and the e�ciency of the following three nonlinear
solvers are analysed:

� Fixed point iteration with �xed εOptMG,

� Newton iteration with �xed εOptMG,

� inexact Newton (with q = 2 and εOptIN = 10−2 in (3.30b), see page 78).

The following well known behaviour from the algorithms is expected:

a) The standard �xed point iteration is expected to converge linearly and almost inde-
pendently of εOptMG.

b) The Newton iteration converges quadratically if εOptMG is small enough. However,
the residual is reduced at most by εOptMG in every iteration, thus the quadratic
convergence reduces to (fast) linear convergence as soon as the residual is small
enough.

c) The inexact Newton converges quadratically; as εOptMG is automatically chosen, the
user does not have to de�ne this parameter.

Nonlinear solver convergence test Consider Example 7.2 with α = 0.01 and γ = 0.0.
The corresponding KKT system is discretised with Q̃1/Q0/implicit Euler on a mesh with
(h, k) = (1/64, 1/64) and solved with the above three nonlinear algorithms using the
stopping criterion εOptNL = 10−8 � i. e., the nonlinear solver reduces the norm of the
residual by eight digits. For the inner space-time multigrid solver, the stopping criterion
is set to εOptMG = 10−1, 10−2 and 10−10, respectively. Multigrid itself operates as 3-level
solver with V-cycle on a space-time hierarchy created by full space-time coarsening down to
(h, k)coarse = (1/16, 1/16). For smoothing, a BiCGStab(FBGsPrec,NSM=4) smoother
is chosen, similar to Section 7.1.

Figure 7.7 depicts the convergence of the di�erent solvers. The standard �xed point
iteration (left picture) shows a linear reduction of the residual. There is hardly any dif-
ference between the curves from εOptMG = 10−1 to εOptMG = 10−10, so the solver is quite
independent of εOptMG as expected.

The right part of Figure 7.7 shows the convergence of the Newton and inexact Newton
algorithms. For εOptMG = 10−1, the solver converges linearly and for εOptMG = 10−10

quadratically as expected. The inexact Newton solver converges much the same way as
the standard Newton solver for εOptMG = 10−2; both converge quadratically except for
the last step: The Newton solver with εOptMG = 10−2 stops the quadratic convergence

7.2. Basic analysis of the nonlinear solver 139

Figure 7.4: `Driven�Cavity' example, Streamlines with velocity magnitude in the back-
ground. Left: Stationary Navier�Stokes (initial) �ow. Right: Stationary Stokes (target)
�ow.

Figure 7.5: `Driven�Cavity' example, Surface-LIC representation of u at t = 0.0625 (left)
and t = 0.5 (right).

140 Numerical analysis of the solver: Stokes and Navier–Stokes equations

Figure 7.6: `Driven�Cavity' example, controlled �ow at t = 0.0625 (top), t = 0.25 (centre)
and t = 0.5 (bottom). Left: Streamlines with primal velocity magnitude in the background.
Right: Control.

7.2. Basic analysis of the nonlinear solver 141

 1e-013

 1e-012

 1e-011

 1e-010

 1e-009

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0 2 4 6 8 10 12

||d
ef

ec
t||

iteration

fixed point, εOptMG = 10-1

fixed point, εOptMG = 10-2

fixed point, εOptMG = 10-10

 1e-018

 1e-016

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 1 2 3 4 5 6 7

||d
ef

ec
t||

iteration

Newton, εOptMG = 10-1

Newton, εOptMG = 10-2

Newton, εOptMG = 10-10

inexact Newton

Figure 7.7: Convergence of the nonlinear solver for di�erent εOptMG. Logarithmic scale
on the y-axes. Left: standard �xed point iteration. Right: Newton and inexact Newton.

because the residual was small enough to reach the region of linear convergence. The
inexact Newton solver stops the quadratic convergence for a di�erent reason: the residual
was small enough, so εOptMG is chosen in such a way that the nonlinear solver reaches its
stopping criterion with one last step. A stronger nonlinear stopping criterion had led to
quadratic convergence as well.

Table 7.11 compares the number of iterations for the nonlinear solver (`#NL'), the
total number of iterations of the linear solver (`Σ#MG', summed up over all nonlinear
iterations) and the total CPU time (in seconds) of the di�erent algorithms. It is noted
that the critical measure for the CPU time is the number of linear steps: Since the whole
methodology does not set up the global matrix, a change in the nonlinearity does not lead
to a new global matrix which is assembled in advance � a technique which is common
for a simulation. Instead, the linear space-time solver assembles the local matrices in each
timestep on demand. The actual update in the nonlinear loop is a rather cheap vector
update, the expensive step is the solution of the linear system.

The table reveals the following facts: Due to the fast convergence of the linear solver,
a �xed stopping criterion εOptMG = 10−2 with a Newton iteration is su�cient. In this
example, the lowest CPU time is obtained by choosing the Newton iteration with εOptMG =
10−1 (as it requires the fewest linear iterations). For harder problems however, where the
linear solver is not that strong, this stopping criterion is not expected to lead to the lowest
CPU time. On the other hand, using a stronger stopping criterion than εOptMG = 10−2

does not make sense, it only increases the number of linear iterations and the CPU time
without reducing the number of nonlinear steps. However, this optimal choice depends on

Def.Corr. Newton
εOptMG #NL Σ#MG time #NL Σ#MG time

10−1 10 10 5229 6 6 4433
10−2 10 11 5712 4 8 5780
10−10 10 96 39442 4 34 21460

inexact Newton 4 8 5914

Table 7.11: Convergence behaviour of the standard �xed point and Newton iteration (top)
as well as the inexact Newton (bottom). The inexact Newton does not depend on εOptMG.

142 Numerical analysis of the solver: Stokes and Navier–Stokes equations

the stopping criterion εOptNL of the nonlinear solver: For a lower value of εOptNL, lower
values of εOptMG can make sense due to a faster convergence in the last couple of steps.

In this context, the inexact Newton gives a good compromise between convergence
speed and simplicity. This algorithm automatically chooses εOptMG in a quasi-optimal
way, thus leading to the same convergence1 as a manually chosen εOptMG = 10−2. From a
practical point of view, this type of solver is therefore the most preferable as the choice of
εOptMG is avoided without any considerable increase in the CPU time.

7.2.2. Influence of the regularisation parameters

As it was shown in Section 7.1.2, the choice of the regularisation parameters α and γ has
an in�uence to the convergence properties of the linear solver. The nonlinear solver on the
other hand depends on the solutions of the linear solver. However, if the Newton solver
is used, the convergence of the nonlinear solver is not expected to (indirectly) depend on
the regularisation parameters since Newton should converge quadratically as soon as the
region of quadratic convergence is reached. This is veri�ed next.

Convergence test for different regularisation parameters Consider Example 7.2 with
the KKT system discretised using the Q̃1/Q0 element pair and the implicit Euler timestep-
ping scheme. The �ne mesh is de�ned by a regular mesh with (h, k) = (1/64, 1/64). A mesh
hierarchy with three levels is created by 1:1 coarsening down to (h, k)coarse = (1/16, 1/16).
To process the nonlinearity, an inexact Newton iteration is used with εOptNL = 10−8 char-
acterising the stopping criterion. The inner space-time multigrid preconditioner solves the
linear systems using a BiCGStab(FBGsPrec,NSM=4) smoother.

Depending on di�erent parameters α and γ, the number of nonlinear iterations (`#NL')
and the total number of linear iterations (`Σ#MG', summed up over all nonlinear itera-
tions) is measured, see Table 7.12. A behaviour similar to Section 7.1.2 for the linear
solver is observed here: The number of linear iterations increases with decreasing α and
increasing γ. However, the nonlinear solver does not show any dependence on the regular-
isation parameters; the number of nonlinear iterations remains essentially constant for all
combinations of α and γ which is in line with the expectations.

α 1.0 0.1 0.01
γ #NL Σ#MG #NL Σ#MG #NL Σ#MG
0.0 3 4 4 6 4 8
1.0 4 5 4 7 4 9
10.0 4 7 4 8 4 9

Table 7.12: Convergence behaviour of the inexact Newton iteration for di�erent α and γ.

7.2.3. Optimisation and simulation

From a practical point of view, the total costs of the optimisation are important. In Sec-
tion 7.1.1 it has already been experimentally shown that the solver methodology introduced
here has linear complexity, and that the CPU time was about a factor 5−12 more expensive

1 Although the number of iterations is the same for the inexact Newton as for the manual choice
εOptMG = 10−2, the CPU time is slightly higher. This slight increase stems from the stopping criterion on
the coarse grid, which is also chosen adaptively for the inexact Newton.

7.2. Basic analysis of the nonlinear solver 143

than a simulation � at least in the linear case. The same should also hold for the nonlinear
case (possibly with a di�erent ratio of the simulation and the optimisation), and this is
ful�lled if the number of linear and nonlinear iterations is independent of the re�nement
level. The focus of this section will therefore be on a comparison of the optimisation with
a corresponding simulation for di�erent levels of re�nement.

CPU time comparison test Consider Example 7.2 with the regularisation parameters of
the optimal control problem set to α = 0.01 and γ = 0.0. The KKT system is discretised
with Q̃1/Q0 and Q2/P

disc
1 in space and implicit Euler and Crank�Nicolson timestepping

scheme in time. To process the nonlinearity, a standard Newton solver2 is chosen. Sim-
ilar to previous examples, the stopping criterion of the nonlinear solver is characterised
by εOptNL = 10−8. The linear subproblems are solved with a multigrid solver using a
BiCGStab(FBGsPrec, NSM=4) smoother, reducing the norm of the residual by two
digits, i. e., εOptMG = 10−2. From a given �ne mesh, the mesh hierarchy is created by 1:1
coarsening down to (h, k)coarse = (1/16, 1/16).

h k #NLopt Σ#MGopt Topt Tsim
Topt
Tsim

1/32 1/32 5 5 583 96 6.0
1/64 1/64 4 8 5 790 633 9.1
1/128 1/128 4 8 38 784 4 296 9.0

Table 7.13: `Driven�Cavity' example, simulation and optimisation for the optimal control
of the Navier�Stokes equations. Discretisation with Q̃1/Q0/implicit Euler.

h k #NLopt Σ#MGopt Topt Tsim
Topt
Tsim

1/32 1/32 4 7 930 170 5.4
1/64 1/64 4 7 6 627 598 11.0
1/128 1/128 4 7 43 667 4 060 10.7

Table 7.14: `Driven�Cavity' example, simulation and optimisation for the optimal control
of the Navier�Stokes equations. Discretisation with Q̃1/Q0/Crank�Nicolson.

h k #NLopt Σ#MGopt Topt Tsim
Topt
Tsim

1/32 1/32 4 5 4 090 602 6.7
1/64 1/64 4 4 20 811 2 717 7.7
1/128 1/128 4 6 202 074 15 451 13.1

Table 7.15: `Driven�Cavity' example, simulation and optimisation for the optimal control
of the Navier�Stokes equations. Discretisation with Q2/P

disc
1 /Crank�Nicolson.

For the �ne grids (h, k) = (1/32, 1/32), (1/64, 1/64) and (1/128, 1/128), Tables 7.13
to 7.15 compare the convergence properties of the optimisation solver with those of a
corresponding simulation solver. The procedure is the same as in Section 7.1.1: In a
�rst step, the solution of the KKT system is calculated, which gives a control u. In a
second step, the calculated control u from the KKT system is used as right-hand side in
a nonstationary simulation. The tables contain on the one hand the number of nonlinear

2The inexact Newton solver is also possible in this test but would lead to slightly higher CPU times.

144 Numerical analysis of the solver: Stokes and Navier–Stokes equations

iterations (`#NLopt') as well as the total number of linear iterations (`Σ#MGopt', summed
up over all nonlinear iterations) of the optimisation solver. On the other hand, they depict
the required CPU time for the optimisation Topt and the simulation Tsim. The number of
linear and nonlinear iterations is rather independent of the re�nement level. As a result of
this, the factor C =

Topt
Tsim

between the optimisation and the simulation is bounded. In this
simple test problem, the bound amounts to C ≈ 10�12.

7.3. Constrained Control

In the case of constrained control, the solver is expected to converge slower in general,
but still, the convergence should be superlinear, cf. [151, 152]. Using the proposed solver
methodology, the convergence should be level-independent for a �xed choice of α and γ.

Constrained control convergence test Consider the `Driven�Cavity' example for the
Navier�Stokes equations, Example 7.2 on page 137, with α = 0.01, γ = 0.0 and the
additional constraint

a ≤ ui(t, x) ≤ b, i = 1, 2,

with the two values a := −0.5 and b := 0.5 (for simplicity, the same values are used
for all components of u). In the unconstrained case, the components of the control u
approximately take values in the range [−2, 3.5], so this really de�nes a limit for the
values, in particular at the beginning of the time interval. The corresponding KKT system
is discretised with di�erent discretisations in space and time on a �ne mesh de�ned by
(h, k) = (1/32, 1/32), (1/64, 1/64) and (1/128, 1/128). Figure 7.8 depicts the control u at
t = 0.0625 and t = 0.5 using the Surface-LIC representation and Figure 7.9 the �ow and
the computed control at the time t = 0.0625, 0.25 and 0.5. The thick line surrounds the
area where at least one constraint is active, while in the region surrounded by the thin
line, both controls have to be projected. Especially at the beginning of the time interval,
large areas can be observed where the control is restricted. These regions nearly vanish
while the �ow approaches the desired �ow state.

Figure 7.8: `Driven�Cavity' example, Surface-LIC representation of u at t = 0.0625 (left)
and t = 0.5 (right). Constrained control.

7.3. Constrained Control 145

Figure 7.9: `Driven�Cavity' example, controlled �ow at t = 0.0625 (top), t = 0.25 (centre)
and t = 0.5 (bottom). Constrained case. Left: Streamlines with primal velocity magnitude
in the background. Right: Control.

146 Numerical analysis of the solver: Stokes and Navier–Stokes equations

For the solver test, the semismooth Newton method is chosen with the stopping criterion
de�ned by εOptNL = 10−8. The inner space-time multigrid solver uses a �xed stopping
criterion εOptMG = 10−2, applies a BiCGStab(FBGsPrec,NSM=4) smoother and is
based on a space-time hierarchy created by full space-time coarsening down to (h, k)coarse =
(1/16, 1/16).

Figure 7.10 illustrates the convergence behaviour of the nonlinear solver in the case
(h, k) = (1/64, 1/64). The �rst curve in these diagrams represents the convergence be-
haviour in the unconstrained case and serves as a reference for quadratic convergence. The
other two curves correspond to the two methods introduced in Section 4.2 on page 87�:
`Cub. pt. based' stands for the cubature point based discretisation method 1 and `DOF
based' for the discretisation method 2 which is based on a projection of the degrees of
freedom. The left diagram uses a discretisation with Q̃1/Q0/implicit Euler, the right with
Q̃1/Q0/Crank�Nicolson. Although not showing quadratic convergence as in Section 7.2.1,
the solver still converges superlinearly for both discretisation methods. Comparing the two
cases, the reduction of the norm of the initial residual is similar in this example. Hence,
the convergence of the semismooth Newton method is rather independent of the method
of discretisation.

Tables 7.16 to 7.18 summarise the convergence behaviour of the solver, on the one
hand for the two projection methods, on the other hand for the three space-time discreti-
sations Q̃1/Q0/implicit Euler, Q̃1/Q0/Crank�Nicolson and Q2/P

disc
1 /Crank�Nicolson. For

di�erent levels of re�nement, the number of nonlinear (`#NL') and total number of linear
(`Σ#MG') iterations remain rather constant, although the convergence is slightly faster
on very coarse levels. Concerning the discretisation method, the tables con�rm that there
is no considerable di�erence in the convergence properties visible whether the `Cub. pt.
based' or the `DOF based' method is used.

The number of multigrid steps per nonlinear step (Σ#MG / #NL, not depicted in the
tables) is approx. two if the space discretisation is carried out with the Q̃1/Q0 �nite element
pair and approx. one if the Q2/P

disc
1 �nite element pair is used (Table 7.18). This behaviour

is similar to the unconstrained case (cf. Tables 7.13 to 7.15), thus, the projection operators
in the constrained case do not disturb the convergence of the space-time multigrid method.

The CPU time (`time') increases by a factor ≈ 8 per level which �ts to the experiences
from the uncontrolled case. As expected, the `Cub. pt. based' method is slightly more
expensive than the `DOF based' method due to the additional assembly time. This can
be seen in the higher CPU time per multigrid step (time / Σ#MG, not depicted in the
tables).

7.4. Summary and conclusions

This chapter has provided an analysis based on the `Driven�Cavity' example. Starting with
the optimal control of the Stokes equations, the space-time multigrid solver has been con-
sidered at �rst. The robustness of the solver has been analysed with respect to the choice
of the regularisation parameters, the choice of the multigrid hierarchy and the anisotropy
in the space-time mesh. It has been shown that the solver converges fast for a large variety
of regularisation parameters. Concerning the multigrid hierarchy, the pure time coarsen-
ing strategy and the strategy to coarsen in space once per two time coarsenings have been
demonstrated to be usually more robust than full space-time coarsening. Furthermore, the
anisotropy tests have indicated that the choice of large timesteps in relation to the reso-
lution of the spatial mesh are advantageous. Thus, higher order timestepping techniques
are highly favourable: Without signi�cant loss in the accuracy, such schemes allow to re-

7.4. Summary and conclusions 147

 1e-015

 1e-014

 1e-013

 1e-012

 1e-011

 1e-010

 1e-009

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0 1 2 3 4 5 6 7

||d
ef

ec
t||

iteration

unconstrained
Cub. pt. based

DOF based

 1e-016

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0 1 2 3 4 5 6 7

||d
ef

ec
t||

iteration

unconstrained
Cub. pt. based

DOF based

Figure 7.10: Convergence of the nonlinear solver for di�erent projection methods in
the constrained case. Logarithmic scale on the y-axes. Left: Discretisation with
Q̃1/Q0/implicit Euler. Right: Discretisation with Q̃1/Q0/Crank�Nicolson.

Cub. pt. based DOF based
h k #NL Σ#MG time #NL Σ#MG time

1/32 1/32 7 9 1 103 8 10 1 100
1/64 1/64 7 12 9 594 7 12 8 417
1/128 1/128 7 15 84 168 7 14 67 285

Table 7.16: `Driven�Cavity' example. Convergence of the solver for constrained control.
Discretisation with Q̃1/Q0/implicit Euler.

Cub. pt. based DOF based
h k #NL Σ#MG time #NL Σ#MG time

1/32 1/32 7 7 1 006 8 8 1 036
1/64 1/64 7 12 11 824 7 9 8 259
1/128 1/128 7 13 94 234 7 12 76 646

Table 7.17: `Driven�Cavity' example. Convergence of the solver for constrained control.
Discretisation with Q̃1/Q0/Crank�Nicolson.

Cub. pt. based DOF based
h k #NL Σ#MG time #NL Σ#MG time

1/32 1/32 7 7 4 864 7 7 4 759
1/64 1/64 7 9 38 621 7 7 28 876
1/128 1/128 6 7 218 065 7 8 241 522

Table 7.18: `Driven�Cavity' example. Convergence of the solver for constrained control.
Discretisation with Q2/P

disc
1 /Crank�Nicolson.

148 Numerical analysis of the solver: Stokes and Navier–Stokes equations

duce the number of timesteps, which not only reduces the memory consumption but also
increases the e�ciency of the solver. Finally, in the considered example, the KKT system
solver has been proven to be only �ve to twelve times more expensive than a corresponding
simulation in terms of CPU time, independent of the re�nement level. This veri�es the
linear complexity of the proposed solver strategy and underlines its e�ciency.

In a second part, this chapter has illustrated the e�ciency of the nonlinear solver
being applied to the optimal control of the Navier�Stokes equations. The Newton solver
has provided quadratic convergence, independent of the regularisation parameters. For
constraints in the control, the solver has been shown to converge superlinearly. In the
unconstrained case, the adaptive Newton scheme has numerically proven to be a good
alternative to the standard Newton scheme with �xed stopping criterion for the linear
preconditioner. A user can apply this type of solver in a black-box manner, there are no
parameters to be adapted. Finally, it has been demonstrated that also the nonlinear solver
converges with a constant number of iterations and that in the considered test example,
the CPU time for the optimisation has only been by a factor ten to twelve higher than the
CPU time of a corresponding simulation.

The next chapter will continue with the numerical analysis of the discretisation and
the solver based on a more complex example. Benchmark problems of the `Flow-around-
cylinder' type known from CFD will be de�ned and used for an analysis of the accuracy
of the discretisation and the e�ciency and robustness of the solver.

8

The KKT solver in practice

This chapter is the concluding chapter for the numerical tests. Chapter 5 and 6 have started
with the numerical analysis of the solver for the optimal control of the heat equation and
the Stokes equations and illustrated the in�uence of the space-time discretisation to the
global error. Chapter 7 has continued with the solver analysis for the optimal control of
the Stokes and Navier�Stokes equations for more general example problems from CFD.

So far, all three chapters have discussed the solver con�guration independently of the
discretisation. This chapter combines the experiences from these chapters to �nd a com-
promise between the accuracy of the discretisation and the e�ort that has to be invested
to solve the underlying KKT system. Basically, advices should be given to questions like:

� In how far can the described methods be applied also to more general problems?

� In how far does the choice of the discretisation quantitatively in�uence the solution?

� How does the choice of the regularisation parameters quantitatively in�uence the
solution and in comparison, what is the numerical e�ort that has to be invested in
the numerical solver to solve the underlying systems?

Generally said, in the course of the analysis, a rough picture should be drawn of what can
be solved with the proposed solver methodology, how the solutions look like, which amount
of available resources (e. g., in terms of CPU time) leads to which accuracy in the solution
and how to �nd a compromise.

Outline

The �rst two sections, Section 8.1 and Section 8.2, are of introductory nature. A basic
`Flow�Around�Cylinder' test at Re=20 is de�ned, and the in�uence of the regularisation
parameters in the KKT system is analysed with respect to the discretisation and the
robustness of the solver. As a basic measure for the accuracy on di�erent re�nement levels
and for the in�uence of parameters, drag and lift coe�cients based on the forces acting on
the cylinder are introduced.

The next two sections, Sections 8.3 and 8.4, contain the main discussion of this chapter.
In the beginning of Section 8.3, a nonstationary benchmark problem of the `Flow�Around�
Cylinder' type at Re=100 with an oscillating initial condition is de�ned. With the help
of an accurate space-time discretisation, reference values for the drag and lift coe�cients
are computed. These quantify errors introduced by di�erent space-time discretisations and
re�nement levels.

In a second step, Section 8.4 contains a discussion about the e�ciency and robustness
of the solver, in particular, in relation to the accuracy of the underlying discretisation. The

149

150 The KKT solver in practice

section compares the computational time of optimisation and simulation for di�erent dis-
cretisations. It is shown that for this more general benchmark problem, a factor of 20�50,
in most cases even < 30, between optimisation and simulation is reached. Furthermore,
the convergence behaviour of the solver is analysed with respect to the space-time dis-
cretisation, the coarsening strategy of the space-time mesh and the nonlinear solver. The
main results obtained here are as follows: i) The implicit Euler or Crank�Nicolson scheme
should be preferred to the semi-explicit Euler scheme for stability reasons, ii) simultaneous
coarsening in space and time usually lead to the best CPU times and iii) the adaptive
Newton gives again a good compromise between simplicity for the end user and e�ciency
of the solver. In a �nal step, the section expresses the error in the solution in relation to
the CPU time needed to solve the underlying KKT system. This gives an advice to the
balancing of accuracy and numerical e�ort by the choice of the discretisation.

The chapter closes with an appendix section which deals with stabilisation operators
for the convection. Stabilisation is a crucial issue for the higher Reynolds number case since
instabilities in convection dominated �ows usually lead to wrong solutions and convergence
problems in the solver. This section applies the edge-oriented stabilisation technique which
can be found, e. g., in [124], and analyses its e�ect on the accuracy of the solution as well
as on the e�ciency of the solver. It is shown that this type of stabilisation is well suited
for the application to optimal control problems in CFD.

8.1. Basic test configurations

One of the central test con�gurations used in this chapter is the following `Flow�Around�
Cylinder' example, based on a DFG benchmark [68, 128, 142, 146].

8.1 Navier�Stokes equations, `Flow�Around�Cylinder' example Con-
sider the optimal control of the Navier�Stokes equations including end time obser-
vation, see Section 4.1 on page 81�. The spatial domain is described by a rectangle
without an inner cylinder,

Ω := (0, 2.2)× (0, 0.41) \Br(0.2, 0.2), r = 0.05,

see Figure 8.1. The boundary of this domain is decomposed into �ve parts:

Γ1 := {0} × [0, 0.41] = {(0, x2) ∈ R2 |x2 ∈ [0, 0.41]},
Γ2 := (0, 2.2]× {0} = {(x1, 0) ∈ R2 |x1 ∈ (0, 2.2]},
Γ3 := {2.2} × (0, 0.41) = {(2.2, x2) ∈ R2 |x2 ∈ (0, 0.41)},
Γ4 := (0, 2.2]× {0.41} = {(x1, 0.41) ∈ R2 |x1 ∈ (0, 2.2]},

and

Γ5 := ∂Br(0.2, 0.2).

The boundary conditions are de�ned as follows: y(x, t) := (0, 0) for x ∈ Γ2∪Γ4∪Γ5,
do-nothing boundary conditions on Γ3 and a parabolic in�ow pro�le with maximum
velocity Umax := 0.3 on Γ1. The time interval for this test case is [0, T] with T = 0.5.
Similar to the `Driven�Cavity'-example, the initial �ow is the stationary Navier�
Stokes �ow at ν = 1/1000 while the target �ow is the stationary Stokes �ow. The
viscosity parameter in the optimisation is set to ν = 1/1000 as well (resulting in
a Re=20 optimisation). Figure 8.2 depicts the mesh, the initial condition and the
target �ow. Table 8.1 gives an overview of the problem size.

8.2. Basic test configurations 151

Figure 8.1: Benchmark con�guration `Flow�Around�Cylinder'.

Figure 8.2: `Flow�Around�Cylinder' control. Top: Coarse mesh, space-level one. Centre:
Initial condition at t = 0, velocity magnitude, Navier�Stokes at Re = 20. Bottom: Target
�ow, velocity magnitude, Stokes.

Level sp.lv. #NEL #dof(space) k #int.
1 2 520 5 408 1/32 16
2 3 2 080 21 216 1/64 32
3 4 8 320 84 032 1/128 64
4 5 33 280 334 464 1/256 128

Table 8.1: `Flow�Around�Cylinder' control. Problem size for di�erent re�nement levels.
Re�nement level in space (`sp.lv.'), number of elements, number of degrees of freedom in
space (`#dof(space)'), number of time intervals (`#int'). Space-discretisation with Q̃1/Q0.

152 The KKT solver in practice

8.2. Influence of the regularisation parameters

The following analysis gives a rough overview about the in�uence of changes in the reg-
ularisation parameters α and γ to the solution. Consider Example 8.1, discretised with
Q̃1/Q0/implicit Euler on re�nement level three in space-time (which corresponds to re�ne-
ment level four in space and 64 time intervals).

Figure 8.3 shows the streamlines of the velocity �eld in the wake of the cylinder for
the initial condition (left) and the target velocity �eld z (right). Figure 8.4 and 8.5 depict
the primal velocity �eld of the solution of the KKT system at t = 1/64, 0.25, 0.375 and
0.5. Starting from the Navier�Stokes solution, the streamlines of the Stokes solution are
nicely reproduced at t = 0.25 and 0.375 up to rather small details. Only at the end due to
γ = 0.0, the accuracy of the approximation deteriorates slightly.

Tables 8.2 to 8.5 illustrate ||yσ − z||Q, ||u||Q, ||yσ(T)− z(T)||Ω and J(yσ, uσ) for dif-
ferent values of α and γ. The discrete velocity is denoted by yσ and the discrete control
by uσ. The behaviour of the errors and the values of the functionals can be summarised
as follows.

� A reduction of α by the factor ten reduces the error ||yσ − z||Q roughly by a factor
two. A reduction of γ barely in�uences ||yσ − z||Q.

� For �xed α, doubling γ reduces ||yσ(T)− z(T)||Ω roughly by a factor 1.5�2.

� For decreasing α and increasing γ, the amount of the control ||u||Ω increases. As
expected, the costs for the control are dominated by the weight α; a reduction of
α by a factor ten increases the costs by an order of magnitude. For `large' values
of α (around 1.0), a certain in�uence of the weight γ can be observed. This nearly
disappears for small values of α.

� The functional J(yσ, uσ) is dominated by the control costs ||u||Ω and has a similar
behaviour. Only for small values of α (where ||u||Ω is rather constant), the in�uence
of ||yσ(T)− z(T)||Ω to J(·) can clearly be observed.

Table 8.6 �nally gives an overview about the convergence behaviour of the Newton
solver which is used for solving the nonlinear systems. The solver is con�gured to reduce
the norm of the nonlinear residual by eight digits, εOptNL = 10−8, using a space-time
multigrid solver that reduces the norm of the residual by two digits, εOptMG = 10−2. The
preconditioner in space is BiCGStab(PSCPrecDiag,NSM=4) in most cases, but for
α = 0.001 the solver automatically repeats a couple of calculations with BiCGStab(PSC-
SmootherFull,NSM=4) since the spatial problems are di�cult to solve.

The weight α has the strongest in�uence to the convergence properties of the solver.
A smaller value of α leads to an increased number of iterations. For a �xed α, the value
γ = 0.5 leads to the smallest number of iterations. For smaller or larger values of γ,
the performance of the solver is usually worse. It is noted that this behaviour does not
contradict to the results from Section 7.1.2 on page 133�: The observation concentrates
on γ in the range [0, 2] in this test while in Section 7.1.2, the range [0, 1000] was taken.
Larger values for γ lead to a worse convergence behaviour, as indicated in the last row of
Table 8.6. This row illustrates the solver behaviour for γ = 100. The number of iterations
of the linear solver increases in comparison to γ ≤ 2. For α = 0.001, the solver diverged
due to a breakdown in the convergence of the space-time multigrid solver (marked as `div').

8.2. Influence of the regularisation parameters 153

Figure 8.3: `Flow�Around�Cylinder' control. Streamlines in the wake of the cylinder for
the stationary reference �ows. Left: Navier Stokes �ow, initial condition. Right: Stokes
�ow, target �ow z.

Figure 8.4: `Flow�Around�Cylinder' control. Streamlines in the wake of the cylinder.
Left: At t = 1/64. Right: At t = 0.25.

Figure 8.5: `Flow�Around�Cylinder' control. Streamlines in the wake of the cylinder.
Left: At t = 0.375. Right: At t = 0.5.

154 The KKT solver in practice

γ \ α 1.00 0.10 0.01 0.001
0.0 1.97E-02 1.40E-02 7.01E-03 3.80E-03
0.1 1.94E-02 1.34E-02 6.93E-03 3.79E-03
0.5 1.85E-02 1.23E-02 6.89E-03 3.79E-03
1.0 1.76E-02 1.19E-02 6.88E-03 3.79E-03
2.0 1.65E-02 1.16E-02 6.87E-03 3.79E-03

Table 8.2: `Flow�Around�Cylinder' control. ||yσ − z||Q for di�erent α and γ.

γ \ α 1.00 0.10 0.01 0.001
0.0 2.72E-02 1.65E-02 5.42E-03 1.75E-03
0.1 2.64E-02 1.37E-02 3.10E-03 5.75E-04
0.5 2.35E-02 8.37E-03 1.23E-03 1.96E-04
1.0 2.08E-02 5.72E-03 7.42E-04 1.18E-04
2.0 1.69E-02 3.57E-03 4.38E-04 7.12E-05

Table 8.3: `Flow�Around�Cylinder' control. ||yσ(T)− z(T)||Ω for di�erent α and γ.

γ \ α 1.00 0.10 0.01 0.001
0.0 4.81E-03 2.98E-01 7.36E+00 1.27E+02
0.1 6.01E-03 3.31E-01 7.48E+00 1.27E+02
0.5 1.05E-02 4.07E-01 7.62E+00 1.27E+02
1.0 1.51E-02 4.49E-01 7.67E+00 1.27E+02
2.0 2.18E-02 4.85E-01 7.70E+00 1.27E+02

Table 8.4: `Flow�Around�Cylinder' control. ||u||Q for di�erent α and γ.

γ \ α 1.00 0.10 0.01 0.001
0.0 2.05E-04 4.54E-03 2.71E-01 8.09E+00
0.1 2.42E-04 5.59E-03 2.80E-01 8.14E+00
0.5 3.66E-04 8.38E-03 2.91E-01 8.17E+00
1.0 4.88E-04 1.01E-02 2.94E-01 8.17E+00
2.0 6.62E-04 1.18E-02 2.96E-01 8.18E+00

Table 8.5: `Flow�Around�Cylinder' control. J(yσ, uσ) for di�erent α and γ.

α 1.00 0.10 0.01 0.001
γ #NL Σ#MG #NL Σ#MG #NL Σ#MG #NL Σ#MG
0.0 4 6 4 7 4 10 4 13
0.1 3 5 4 7 5 12 4 14
0.5 4 5 4 7 4 9 4 12
1.0 4 6 4 9 4 12 5 16
2.0 4 5 4 12 4 12 4 13

100.0 4 11 4 14 4 20 div div

Table 8.6: `Flow�Around�Cylinder' control. Number of nonlinear (#NL) and linear
(Σ#MG) iterations of the solver.

8.2. Influence of the regularisation parameters 155

Measuring drag and lift coefficients

Apart from the di�erence ||y − z|| to a reference function in an integral norm, practition-
ers are often more interested in an accurate approximation y to z in terms of physical
quantities. One example, which is common for `Flow�Around�Cylinder' type benchmark
con�gurations, is the set of forces that act on the cylinder, represented by the drag and
lift coe�cients. These are de�ned by

CD = CD(t) :=
2

ρLU2
mean

∫
Γ5

(
ρν
∂yτΓ
∂η

ηy − pηx
)
dΓ (8.1)

and

CL = CL(t) :=
2

ρLU2
mean

∫
Γ5

(
ρν
∂yτΓ
∂η

ηx − pηy
)
dΓ (8.2)

with η = (ηx, ηy)
T the unit normal vector on Γ5 directing into Ω, τΓ = (ηy,−ηx)T the

tangential vector on Γ5, yτΓ the tangential velocity, ρ := 1 the (by convention) constant
density, L the diameter of the cylinder and Umean the mean in�ow velocity. In this case,
Umean = 2/3Umax = 0.2 and L = 0.1 are chosen, cf. [99, 142, 146]. For small ||y − z||,
the drag and lift coe�cients of y are usually expected to match those of z. This is not
necessarily true as the following setting demonstrates.

Drag and lift coefficients for different regularisation parameters Figure 8.6 and 8.7
plot the drag and lift coe�cients of the nonstationary simulation for di�erent values of α
and γ. The KKT system is discretised with Q̃1/Q0/implicit Euler. The crosses on the left
on the diagrams indicate the drag and lift coe�cients of the stationary Navier�Stokes �ow,
while the crosses on the right mark those of the stationary Stokes �ow with ν = 1/1000.
At �rst, the behaviour of the drag is turned into focus, see Figure 8.6. For decreasing α,
the whole drag approaches the drag of the stationary Stokes �ow. Increasing γ in�uences
the value y(T, ·) and (due to the elliptic nature) also the values of the drag around t = T :
The curve `bends' towards the reference drag. The value γ = 0.1 can be seen as the nearly
optimal value in this case as the �ow remains rather stationary at the end of the time
interval � a fact that was also observed in [69, 70].

For the lift coe�cients in Figure 8.7 however, the situation is quite di�erent. Decreasing
α and increasing γ has the opposite e�ect, the lift values are `torn away' from the reference
lift. Only for the smaller value α = 0.01, the weight γ = 0.5 for the end time observation
has an e�ect and reduces CL(T) in direction of the reference as one would expect.1

Drag and lift coefficients for different refinement levels This e�ect is not caused by
problems with the accuracy of the discretisation. Figure 8.8 and 8.9 plot the drag and lift
values for di�erent re�nement levels and di�erent parameters of α. The parameter γ was
�xed to 0.0 in this test. For every setting of α, convergence with increasing re�nement
level can be observed, but the limit is di�erent from the reference drag/lift.

Conclusion This example demonstrates that controlling the error ||y− z|| in an integral
norm over the whole space-time cylinder does not necessarily mean that local quantities

1For α = 0.10 there is CL(γ = 0.0) < CL(γ = 0.5); for α = 0.01 the situation is opposite at the end,
there is CL(γ = 0.0) > CL(γ = 0.5).

156 The KKT solver in practice

 3

 3.5

 4

 4.5

 5

 5.5

 0 0.1 0.2 0.3 0.4 0.5

D
ra

g
co

ef
fic

ie
nt

 C
D

time

Drag, Q
~

1/Q0/IE, Level 3

α=1.00, γ=0.0
α=1.00, γ=0.1
α=1.00, γ=0.5
α=0.10, γ=0.0
α=0.10, γ=0.1
α=0.10, γ=0.5
α=0.01, γ=0.0
α=0.01, γ=0.1
α=0.01, γ=0.5

Figure 8.6: `Flow�Around�Cylinder' control. Drag coe�cients CD for di�erent α and γ.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

Li
ft

co
ef

fic
ie

nt
 C

L

time

Lift, Q
~

1/Q0/IE, Level 3

α=1.00, γ=0.0
α=1.00, γ=0.1
α=1.00, γ=0.5
α=0.10, γ=0.0
α=0.10, γ=0.1
α=0.10, γ=0.5
α=0.01, γ=0.0
α=0.01, γ=0.1
α=0.01, γ=0.5

Figure 8.7: `Flow�Around�Cylinder' control. Lift coe�cients CL for di�erent α and γ.

8.2. Influence of the regularisation parameters 157

 3

 3.5

 4

 4.5

 5

 5.5

 0 0.1 0.2 0.3 0.4 0.5

D
ra

g
co

ef
fic

ie
nt

 C
D

time

Drag, γ=0.0, Q
~

1/Q0/IE

α=0.1, Lv. 2
α=0.1, Lv. 3
α=0.1, Lv. 4

α=0.01, Lv. 2
α=0.01, Lv. 3
α=0.01, Lv. 4

Figure 8.8: `Flow�Around�Cylinder' control. Drag coe�cients CD for di�erent α and
re�nement level.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

Li
ft

co
ef

fic
ie

nt
 C

L

time

Lift, γ=0.0, Q
~

1/Q0/IE

α=0.1, Lv. 2
α=0.1, Lv. 3
α=0.1, Lv. 4

α=0.01, Lv. 2
α=0.01, Lv. 3
α=0.01, Lv. 4

Figure 8.9: `Flow�Around�Cylinder' control. Lift coe�cients CL for di�erent α and re-
�nement level.

158 The KKT solver in practice

depending on y can be controlled implicitly. The forces acting on the cylinder in this
example mainly depend on the pressure acting on the cylinder. The lift coe�cient in
particular mainly depends on the pressure di�erence on the top and the bottom of the
cylinder, the drag coe�cient on the pressure di�erence on its front and rear. Figure 8.10
illustrates the pressure, the primal velocity �eld around the cylinder, the streamlines of
the primal velocity and the Surface-LIC representation of the velocity �eld. The left
column represents the target velocity �eld z(t, ·) and the corresponding pressure, while the
right column shows the controlled Navier�Stokes velocity �eld y(t, ·) with the associated
pressure at t = 0.25. Visually, the velocity y (centre/bottom right) is close to the target
z (centre/bottom left) as it should be. However, the pressure corresponding to y (top
right) is very di�erent from the pressure corresponding to z (top left). Therefore, the
expectation that physical quantities depending on the controlled velocity �eld y (like drag
and lift values) match any expected physical quantity depending on the target velocity
�eld z should be taken with care.

8.3. A nonstationary benchmark problem

While the previous chapters have dealt with controlling a stationary initial �ow to a sta-
tionary target �ow, the method is also designed for real nonstationary problems. One
example is the control of a fully nonstationary �ow with vortex shedding at Re=100 to
a stationary target �ow. This setting was originally introduced in [85] and is an adap-
tion of the nonstationary `Flow�Around�Cylinder' problem introduced in [146]. In the
following, this example is formulated in a way which is suitable for benchmarking. The
di�erent discretisation techniques described and introduced in this work are applied to
show quantitative results about their e�ectiveness.

The analysis starts with a proper benchmark con�guration:

8.2 `Flow�Around�Cylinder' control for an oscillating initial condition
Consider the basic `Flow�Around�Cylinder' con�guration from Example 8.1. The
in�ow at Γ4 is de�ned as parabolic pro�le with maximum in�ow velocity Umax = 1.5;
using ν = 1/1000, this results in a Re=100 optimisation. The initial �ow y0 is the
fully developed nonstationary Navier�Stokes �ow (see below), the target �ow is the
stationary Stokes �ow.

For the generation of the initial condition y0, the following steps are carried
out. At �rst, a fully nonstationary simulation at a high spatial level with small
timestep length is calculated, possibly also with a high order �nite element, until
the oscillation in the solution is fully developed, cf. [146]. (In this example, the
simulation is carried out with Q2/P

disc
1 and the Crank�Nicolson scheme on space-

level 5 with k = 1/1600.) The L2 projection is used to project this solution down to
the �nite element space/level where the optimisation is to be carried out. Using this
solution as initial condition, Tsim = 0.7 seconds of simulation time are simulated
which roughly corresponds to two oscillations in the �ow. (In this work, a time
discretisation with the Crank�Nicolson scheme at k = 1/800 is used.) The solution
in the second half [0.35, 0.7] of the simulated time interval which shows the smallest
lift coe�cient is used as initial condition y0 for the optimisation.

The quality of the calculated solution is measured using the drag and lift coe�-
cient along the time axis. For the optimisation, a time interval [0, T] with T = 0.35
is chosen which roughly corresponds to one oscillation in the uncontrolled �ow. The

8.3. A nonstationary benchmark problem 159

Figure 8.10: `Flow�Around�Cylinder' control at t=0.25 for α = 0.01, γ = 0.0. Left:
Stationary Stokes �ow. Right: Controlled Navier�Stokes �ow. Top: Pressure. Centre:
Magnitude of y and streamlines. Bottom: Surface-LIC representation of the velocity �elds.

160 The KKT solver in practice

Figure 8.11: Nonstationary `Flow�Around�Cylinder' control. Initial condition y0. Veloc-
ity magnitude (top) and Surface-LIC representation (bottom)

Figure 8.12: Nonstationary `Flow�Around�Cylinder' control. Surface-LIC representation
of the primal velocity �eld y at t = 0.0175, t = 0.0875, t = 0.175 and t = 0.2625 (from top
to bottom).

8.3. A nonstationary benchmark problem 161

Figure 8.13: Nonstationary `Flow�Around�Cylinder' control. Surface-LIC representation
of the dual velocity �eld λ at t = 0.0175, t = 0.0875, t = 0.175 and t = 0.2625 (from top
to bottom).

Figure 8.14: Nonstationary `Flow�Around�Cylinder' control. Control u at t = 0.0175.

162 The KKT solver in practice

KKT solver starts with an initial iterate w0 = (y0, p0, λ0, ξ0) where (y0, p0) is the
solution of a pure forward simulation starting from y0 and (λ0, ξ0) := (0, 0).

Figure 8.11 depicts the initial condition y0, which shows the typical vortex shedding.
Figure 8.12 and 8.13 show the Surface-LIC representation of the primal and dual velocity
�eld, respectively, at di�erent points in time. For these �gures, the calculation was carried
out with Q̃1/Q0 in space and the Crank�Nicolson scheme in time using a timestep of
k = 1/800. In the Surface-LIC representation of the dual velocity, the typical vortices of
the term y∇y (which is approximated by λ or u, respectively) can be observed. Figure
8.14 �nally depicts the control u at t = 0.0175.

All following tests use a Newton solver with an inner space-time multigrid solver for
solving the linear subproblems. Similar to the other chapters, the Newton solver is con-
�gured to reduce the norm of the residual by eight digits, εOptNL = 10−8, and the space-
time multigrid solver reduces the norm of the residual two digits per nonlinear step,2

εOptMG = 10−2. The space-time smoother and coarse grid solver is BiCGStab(FBSim-
Prec,NSM=4) unless noted otherwise.3 The space-time hierarchy is obtained from the
�nest space-time mesh by coarsening down to k = 1/200 or space-level 2. Table 8.7 gives
an overview about the problem size for all re�nement levels in space and in time that are
used in the di�erent numerical tests. For any combination of space and time level forming
the �ne mesh, the tests usually build a full space-time multigrid hierarchy with simulta-
neous coarsening in space and time. Those cases which apply a pure time-multigrid, i. e.,
without coarsening in space, are mentioned explicitly.

Space- Q̃1/Q0 Q2/P
disc
1

lv. #NEL #dof(space) #dof(space)
2 520 5 408 11 856
3 2 080 21 216 46 592
4 8 320 84 032 184 704

time-lv. k #int.
1 1/200 70
2 1/400 140
3 1/800 280
4 1/1600 560

Table 8.7: `Flow�Around�Cylinder' control. Problem size for di�erent re�nement levels in
space (left) and time (right).

8.3.1. Reference calculation

In a �rst test, reference values for the drag and lift coe�cients are determined. The
spatial discretisation is carried out with the Q2/P

disc
1 element pair, which is expected to

give a better approximation of the drag/lift coe�cients than Q̃1/Q0. In time, the Crank�
Nicolson discretisation (abbreviated by `CN' for convenience) is chosen which divides the
time interval of interest into 560 intervals (which corresponds to k = 1/1600). Figures 8.15
and 8.16 depict the drag and lift coe�cients over time for di�erent re�nement levels in
space, Figure 8.17 and 8.18 zoom in to subintervals in time. The �nest space discretisation
possible is re�nement level four which consumes 12GB of memory out of the 16GB available
on the machine. This calculation is taken as global reference for all future tests.

2 Alternatively, the adaptive Newton could have been used. However, the static choice of the stopping
criteria leads to slightly lower CPU times in this example, which is shown later.

3 This is in slight contrast to the previous chapters which mostly use the more stable FBGsPrec
based smoothers. On the one hand, this choice demonstrates that, although potentially being less stable,
FBSimPrec based smoothers are applicable in practice as well. On the other hand, it helps to reduce the
CPU time since some calculations in this chapter are extremely time consuming.

8.3. A nonstationary benchmark problem 163

Table 8.8 illustrates these results in quantitative form. The table contains the minimum
drag and the maximum lift values on the di�erent space levels as well as the point in time
where these values are taken. The last row of this table is used as a reference for later
tests. The corresponding reference solution is illustrated illustrated as a thick black solid
line later plozs.

discr. sp.lv. #int. t(Cmin
D) Cmin

D t(Cmax
L) Cmax

L

Q2/P
disc
1 /CN 2 560 0.1846875 2.41392 0.1746875 0.23401

Q2/P
disc
1 /CN 3 560 0.1721875 2.46917 0.1734375 0.24007

Q2/P
disc
1 /CN 4 560 0.1621875 2.51516 0.1734375 0.24325

Table 8.8: Minimum drag and maximum lift coe�cients for di�erent space re�nements.

8.3.2. Influence of the time discretisation

In the next test, the in�uence of the time discretisation is analysed. For this purpose, the
above nonstationary control problem is calculated for a �xed discretisation and re�nement
level in space (Q̃1/Q0, re�nement level three, 21 216 unknowns in space) and varying time
discretisation. The drag and lift coe�cients are measured over time. In particular, this test
uses a time discretisation with the implicit Euler (abbreviated by `IE' for convenience) and
the Crank�Nicolson scheme, each with 70 up to 560 intervals. Figures 8.19 and 8.20 depict
the measured drag and lift coe�cient values for the whole time interval, while Figures 8.21
and 8.22 zoom in to the time subintervals [0.18, 0.22] and [0.15, 0.21], respectively.

It is remarkable that independent of the timestep length, the drag and lift coe�cients for
the Crank�Nicolson discretisation visually match. A time discretisation with 560 intervals
(black solid line) with this time discretisation scheme can therefore be used as reference
values for an arbitrary discretisation in space, at least up to the level of accuracy which
is considered in this work. In practice on the other hand, using a timestep k = 1/200
(corresponding to 70 intervals) would completely be enough to be close to the reference for
a �xed space discretisation. This helps to reduce the CPU time by about 60�85 percent,
see Section 8.4.

The time discretisation with the implicit Euler scheme is less accurate, which is the
expected behaviour. Using a discretisation with only 70 intervals is far away from the
reference calculated with the Crank�Nicolson scheme using the same space discretisation.
For 560 intervals, the results are much better but still, the di�erence to the Crank�Nicolson
discretisation can clearly be seen in the zoomed diagrams.

Table 8.9 illustrates these results in quantitative form. The table measures the min-
imum drag and maximum lift values for di�erent time discretisations on di�erent space
levels as well as the point in time where these values are taken. The upper part of the table
shows the result for a space discretisation with Q̃1/Q0, the last two rows give an overview
about the reference result calculated with Q2/P

disc
1 . In the Crank�Nicolson case, the drag

and lift coe�cients on each space level do not change in the �rst three digits, independent
of whether 70 or 560 timesteps are used. On space level four, the maximum lift values
match even up to �ve digits. The accuracy of the implicit Euler time discretisation is in
all cases between one and two digits lower.

164 The KKT solver in practice

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

D
ra

g
co

ef
fic

ie
nt

 C
D

time

Drag, Q2/P1
disc/CN, 560 steps

Space-level 2
Space-level 3
Space-level 4

Figure 8.15: Drag coe�cient CD. Q2/P
disc
1 /CN discretisation. Di�erent space levels, 560

intervals.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Li
ft

co
ef

fic
ie

nt
 C

L

time

Lift, Q2/P1
disc/CN, 560 steps

Space-level 2
Space-level 3
Space-level 4

Figure 8.16: Lift coe�cient CD. Q2/P
disc
1 /CN discretisation. Di�erent space levels, 560

intervals.

8.3. A nonstationary benchmark problem 165

 2.4

 2.42

 2.44

 2.46

 2.48

 2.5

 2.52

 2.54

 2.56

 0.18 0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22

D
ra

g
co

ef
fic

ie
nt

 C
D

time

Drag, Q2/P1
disc/CN, 560 steps

Space-level 2
Space-level 3
Space-level 4

Figure 8.17: Drag coe�cient CD. Q2/P
disc
1 /CN discretisation. Di�erent space levels, 560

intervals. Zoom to the time interval [0.18, 0.22].

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.15 0.16 0.17 0.18 0.19 0.2 0.21

Li
ft

co
ef

fic
ie

nt
 C

L

time

Lift, Q2/P1
disc/CN, 560 steps

Space-level 2
Space-level 3
Space-level 4

Figure 8.18: Lift coe�cient CD. Q2/P
disc
1 /CN discretisation. Di�erent space levels, 560

intervals. Zoom to the time interval [0.15, 0.21].

166 The KKT solver in practice

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

D
ra

g
co

ef
fic

ie
nt

 C
D

time

Drag, Q
~

1/Q0/IE and CN, space-level 3

IE, Space-lv. 3, 70 steps
IE, Space-lv. 3, 560 steps
CN, Space-lv. 3, 70 steps

CN, Space-lv. 3, 560 steps

Figure 8.19: Drag coe�cient CD. Space-level three, time discretisation with the implicit
Euler and Crank�Nicolson scheme.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Li
ft

co
ef

fic
ie

nt
 C

L

time

Lift, Q
~

1/Q0/IE and CN, space-level 3

IE, Space-lv. 3, 70 steps
IE, Space-lv. 3, 560 steps
CN, Space-lv. 3, 70 steps

CN, Space-lv. 3, 560 steps

Figure 8.20: Lift coe�cient CL. Space-level three, time discretisation with the implicit
Euler and Crank�Nicolson scheme.

8.3. A nonstationary benchmark problem 167

 2.84

 2.845

 2.85

 2.855

 2.86

 0.18 0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22

D
ra

g
co

ef
fic

ie
nt

 C
D

time

Drag, Q
~

1/Q0/IE and CN, space-level 3

IE, Space-lv. 3, 70 steps
IE, Space-lv. 3, 560 steps
CN, Space-lv. 3, 70 steps

CN, Space-lv. 3, 560 steps

Figure 8.21: Drag coe�cient CD. Space-level three, time discretisation with the implicit
Euler and Crank�Nicolson scheme. Zoom to the time interval [0.18, 0.22].

 0.14

 0.142

 0.144

 0.146

 0.148

 0.15

 0.152

 0.154

 0.156

 0.158

 0.15 0.16 0.17 0.18 0.19 0.2 0.21

Li
ft

co
ef

fic
ie

nt
 C

L

time

Lift, Q
~

1/Q0/IE and CN, space-level 3

IE, Space-lv. 3, 70 steps
IE, Space-lv. 3, 560 steps
CN, Space-lv. 3, 70 steps

CN, Space-lv. 3, 560 steps

Figure 8.22: Lift coe�cient CL. Space-level three, time discretisation with the implicit
Euler and Crank�Nicolson scheme. Zoom to the time interval [0.15, 0.21].

168 The KKT solver in practice

discr. sp.lv. #int. t(Cmin
D) Cmin

D t(Cmax
L) Cmax

L

Q̃1/Q0/IE 3 140 0.2100000 2.849933 0.1850000 0.1513358
3 560 0.2087500 2.847162 0.1850000 0.1546166

Q̃1/Q0/CN 3 70 0.2075000 2.846160 0.1875000 0.1557214
3 140 0.2087500 2.846234 0.1862500 0.1557038
3 560 0.2084375 2.846255 0.1859375 0.1556929

Q̃1/Q0/IE 4 280 0.1800000 2.725510 0.1725000 0.2147027
4 560 0.1775000 2.724760 0.1731250 0.2167395

Q̃1/Q0/CN 4 70 0.1725000 2.723840 0.1725000 0.2187618
4 280 0.1743750 2.723973 0.1743750 0.2187658
4 560 0.1740625 2.723980 0.1740625 0.2187661

Q2/P
disc
1 /CN 4 70 0.1625000 2.515065 0.1725000 0.2432457

4 560 0.1621875 2.515169 0.1734375 0.2432525

Table 8.9: Minimum drag and maximum lift coe�cients for di�erent discretisations.

8.3.3. Influence of the space discretisation

As explained in Chapter 6, the space and time discretisation are coupled in the optimal
control case. Figures 8.23 and 8.24 give an overview about the in�uence of the space
discretisation in the whole optimisation process. Figure 8.25 highlights the lift coe�cients
in a smaller time interval. The space discretisation in these tests is carried out with
the Q̃1/Q0 and the Q2/P

disc
1 �nite element pair on di�erent levels of re�nement. For

the the time discretisation, the strongest available con�guration is used, which is the
Crank�Nicolson scheme with 560 intervals. Thus, it is assumed that the error in time is
insigni�cant.

For increasing space level, the drag and lift coe�cients using the Q̃1/Q0 element pair
converge towards the reference computed with Q2/P

disc
1 , but for space-level four, a con-

siderable discrepancy can still be seen. The Q2/P
disc
1 discretisation shows a much higher

accuracy. The drag and lift plots on level two are visually much closer to the reference than
those computed with Q̃1/Q0 on level four. This behaviour is also con�rmed by Table 8.10
which lists the minimum drag coe�cient, maximum lift coe�cient and the time where
these values are taken.

The computed drag and lift extrema are much closer to the reference for the Q2/P
disc
1

discretisation; roughly estimated, the Q2/P
disc
1 is about two to three space levels more

exact than Q̃1/Q0 in this example. In combination with the experiences from the previous
section, which states that it is enough to use only 70 timesteps, it can be concluded that
a discretisation with Q2/P

disc
1 /CN on level 2 with 70 timesteps gives even better results

discr. sp.lv. #int. t(Cmin
D) Cmin

D t(Cmax
L) Cmax

L

Q̃1/Q0/CN 3 560 0.2084375 2.84625 1.859375 0.15569
Q̃1/Q0/CN 4 560 0.1740625 2.72398 1.740625 0.21876
Q2/P

disc
1 /CN 2 560 0.1846875 2.41392 1.746875 0.23401

Q2/P
disc
1 /CN 3 560 0.1721875 2.46917 1.734375 0.24007

Q2/P
disc
1 /CN 4 560 0.1621875 2.51516 1.734375 0.24325

Table 8.10: Minimum drag and maximum lift coe�cients for di�erent space discretisations.

8.3. A nonstationary benchmark problem 169

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

D
ra

g
co

ef
fic

ie
nt

 C
D

time

Drag, Q
~

/Q0 and Q2/P1
disc; CN with 560 steps

Q
~

1/Q0, Space-lv. 3
Q
~

1/Q0, Space-lv. 4
Q2/P1

disc, Space-lv. 2
Q2/P1

disc, Space-lv. 3
Q2/P1

disc, Space-lv. 4

Figure 8.23: Drag coe�cient CD. Di�erent space levels and space discretisations.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Li
ft

co
ef

fic
ie

nt
 C

L

time

Lift, Q
~

1/Q0 and Q2/P1
disc; CN with 560 steps

Q
~

1/Q0, Space-lv. 3
Q
~

1/Q0, Space-lv. 4
Q2/P1

disc, Space-lv. 2
Q2/P1

disc, Space-lv. 3
Q2/P1

disc, Space-lv. 4

Figure 8.24: Lift coe�cient CL. Di�erent space levels and space discretisations.

170 The KKT solver in practice

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.15 0.16 0.17 0.18 0.19 0.2 0.21

Li
ft

co
ef

fic
ie

nt
 C

L

time

Lift, Q
~

1/Q0 and Q2/P1
disc; CN with 560 steps

Q
~

1/Q0, Space-lv. 3
Q
~

1/Q0, Space-lv. 4
Q2/P1

disc, Space-lv. 2
Q2/P1

disc, Space-lv. 3
Q2/P1

disc, Space-lv. 4

Figure 8.25: Lift coe�cient CL. Di�erent space levels and space discretisations. Zoom to
the time interval [0.15, 0.21].

than a discretisation with Q̃1/Q0/IE on level four to �ve with 560 timesteps � at least
in this example. For the overall CPU time, this means a reduction by approx. 95 percent,
see Section 8.4.

8.3.4. Semi-explicit time discretisation

In Section 4.4 on page 97, the semi-explicit time discretisation has been introduced. The
main property of this scheme is that the local problems in each time interval are linear.
The following analysis gives a rough overview about the in�uence of this practice to the
quality of the solution.

Similar to previous tests, the drag and lift coe�cients are measured along the time axis.
The space discretisation is �xed to re�nement level three, using Q̃1/Q0. THe Figures 8.26
and 8.27 compare the Crank�Nicolson time discretisation (abbreviated again by `CN')
with the implicit Euler scheme (abbreviated by `IE') and the semi-explicit Euler scheme
(abbreviated by `SEE') for 560 intervals. Figure 8.28 and 8.29 zoom in to the time intervals
[0.18, 0.22] and [0.15, 0.21], respectively.

The curve corresponding to the Crank�Nicolson scheme can be seen as the reference
(black solid line). Both schemes, the implicit as well as the semi-explicit Euler scheme,
give an acceptable approximation. A closer comparisons reveals that the implicit Euler
scheme `smears' the solution more than the Crank�Nicolson scheme: The minimum drag
values are larger, the maximum lift values smaller than the reference. For the semi-explicit
Euler scheme, the situation is opposite, the scheme `ampli�es' the solution: The minimum
drag value is smaller and the maximum lift value larger than the reference. However, the
di�erence is small, in particular in case of the drag. Relative to the values computed with
the Crank�Nicolson scheme, the di�erence in the minimum drag coe�cient between the
two Euler schemes is less than 0.1 percent and the di�erence in the maximum lift coe�cient
is about two percent.

8.3. A nonstationary benchmark problem 171

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

D
ra

g
co

ef
fic

ie
nt

 C
D

time

Drag, Q
~

1/Q0/IE/SEE and CN, space-level 3

CN, Space-lv. 3, 560 steps
IE, Space-lv. 3, 560 steps

SEE, Space-lv. 3, 560 steps

Figure 8.26: Drag coe�cient CD. Space-level three, time discretisation with the implic-
it/semi explicit Euler and Crank�Nicolson scheme.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Li
ft

co
ef

fic
ie

nt
 C

L

time

Lift, Q
~

1/Q0/IE/SEE and CN, space-level 3

CN, Space-lv. 3, 560 steps
IE, Space-lv. 3, 560 steps

SEE, Space-lv. 3, 560 steps

Figure 8.27: Lift coe�cient CL. Space-level three, time discretisation with the implic-
it/semi explicit Euler and Crank�Nicolson scheme.

172 The KKT solver in practice

 2.84

 2.845

 2.85

 2.855

 2.86

 0.18 0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22

D
ra

g
co

ef
fic

ie
nt

 C
D

time

Drag, Q
~

1/Q0/IE/SEE and CN, space-level 3

CN, Space-lv. 3, 560 steps
IE, Space-lv. 3, 560 steps

SEE, Space-lv. 3, 560 steps

Figure 8.28: Drag coe�cient CD. Space-level three, time discretisation with the implic-
it/semi explicit Euler and Crank�Nicolson scheme. Zoom to the time interval [0.18, 0.22].

 0.14

 0.142

 0.144

 0.146

 0.148

 0.15

 0.152

 0.154

 0.156

 0.158

 0.15 0.16 0.17 0.18 0.19 0.2 0.21

Li
ft

co
ef

fic
ie

nt
 C

L

time

Lift, Q
~

1/Q0/IE/SEE and CN, space-level 3

CN, Space-lv. 3, 560 steps
IE, Space-lv. 3, 560 steps

SEE, Space-lv. 3, 560 steps

Figure 8.29: Lift coe�cient CL. Space-level three, time discretisation with the implic-
it/semi explicit Euler and Crank�Nicolson scheme. Zoom to the time interval [0.15, 0.21].

8.4. A solver discussion 173

Table 8.11 contains the results in quantitative form. All in all, the semi-explicit Euler
scheme approximates the solution with an accuracy similar to the implicit Euler scheme
for the same number of time intervals � if the time discretisation is �ne enough. This
behaviour is expected, since both schemes are of �rst order and designed in a similar way.
However, the above analysis does not compare solutions for less than 560 time intervals.
The reason is that it was not possible: If a discretisation with less than 560 timesteps based
on the semi-explicit Euler scheme, the solver does not converge in less than 15 iterations
or even diverges. This is due to the CFL condition; a more detailed overview will be given
in the next section.

discr. sp.lv. #int. t(Cmin
D) Cmin

D t(Cmax
L) Cmax

L

Q̃1/Q0/IE 3 560 0.2087500 2.84716 0.1850000 0.15461
Q̃1/Q0/SEE 3 560 0.2093750 2.84512 0.1868750 0.15702
Q̃1/Q0/CN 3 560 0.2084375 2.84625 0.1859375 0.15569
Q̃1/Q0/IE 4 560 0.1775000 2.72476 0.1731250 0.21673
Q̃1/Q0/SEE 4 560 0.1731250 2.72264 0.1756250 0.22126
Q̃1/Q0/CN 4 560 0.1740625 2.72398 0.1740625 0.21876

Table 8.11: Minimum drag and maximum lift coe�cients for di�erent space discretisations.
Implicit and semi-explicit Euler scheme.

8.4. A solver discussion

Building on top of the background of Chapter 7, the following analysis documents the solver
behaviour for Example 8.2. While in Chapter 7, all test examples were of stationary nature,
the convergence results documented here suggest that the proposed solver methodology can
also successfully be applied to fully transient �ow problems. Finally, a comparison between
optimisation and simulation gives insight into the relationship between the CPU time of
the KKT solver and the CPU time of a simulation solver in more practical situations.

Consider Example 8.2 discretised with either Q̃1/Q0 or Q2/P
disc
1 in space and impli-

cit/semi-explicit Euler and Crank�Nicolson scheme in time, respectively. The regularisa-
tion parameters are set to α = 0.02 and γ = 0.0. A hierarchy of space-time �ne grids is
de�ned according to Table 8.12.

Level sp.lv. #NEL #int. k

1 2 520 70 1/200
2 3 2 080 140 1/400
3 4 8 320 280 1/800

Table 8.12: Problem size of di�erent �ne grid meshes in space and time. `sp.lv.' denotes
the space-level, `#int' the number of timesteps.

From each �ne grid, a corresponding multigrid hierarchy is obtained either by simul-
taneous coarsening in space and time (`full space-time multigrid') or by semi-coarsening
in time (`pure time multigrid') until a coarse time mesh with 70 intervals is reached.
The underlying Newton solver reduces the norm of the nonlinear residual by eight digits,
εOptNL = 10−8. The inner multigrid solver reduces the norm of the residual by two digits,
εOptMG = 10−2, using a BiCGStab(FBSimPrec,NSM=4) smoother and a V-cycle.

174 The KKT solver in practice

The implicit Euler and Crank–Nicolson schemes Tables 8.13 and 8.14 document the
convergence properties of the solver for the di�erent mesh levels, once using a full space-
time multigrid for the linear subsystems, once a pure time multigrid. Similar to the results
in Chapter 7, the solver converges in very few steps and independent of the level. The pure
time-multigrid preconditioner needs less iterations, thus being more stable, but still needs
more CPU time due to the larger coarse grid problems.

Discretisation with Q̃1/Q0/IE
Level sp.lv. #int. #NL Σ#MG Topt Tsim

Topt
Tsim

2 3 140 7 18 5 879 303 19.4
3 4 280 6 15 39 193 1 571 24.9

Discretisation with Q̃1/Q0/CN
Level sp.lv. #int. #NL Σ#MG Topt Tsim

Topt
Tsim

2 3 140 7 17 6 849 283 24.2
3 4 280 7 17 50 505 1 324 38.1

Discretisation with Q2/P
disc
1 /CN

Level sp.lv. #int. #NL Σ#MG Topt Tsim
Topt
Tsim

2 3 140 7 12 21 628 5 034 4.2
3 4 280 7 13 200 580 13 655 14.6

Table 8.13: Nonstationary `Flow�Around�Cylinder' control. Convergence statistics of
the nonlinear and linear solver for di�erent space and time discretisations on di�erent
mesh levels. Number of nonlinear (`#NL') and total number of linear (`Σ#MG') space-
time iterations as well as CPU time. Full space-time multigrid. Comparison between
optimisation and simulation.

The CPU time for solving the KKT system (`Topt') increases by a factor of ≈ 8 per
level which is in line with the increase of the problem size. The table also compares the
CPU time for the optimisation with the CPU time of a `corresponding' simulation (`Tsim').
This has been carried out similar to the previous examples: The control computed in the
optimisation is used as right-hand side in a simulation that starts with the same initial
condition on the same level with the same space and time discretisation. The simulation
uses a Newton solver in each timestep that reduces the norm of the initial residual by
eight digits, εOptNL = 10−8. The Newton solver is preconditioned by a multigrid solver
in space that reduces the norm of the residual by two digits per nonlinear iteration, using
a BiCGStab(PSCSmootherDiag,NSM=4) smoother in space. A factor of C ≈ 10�25
between the optimisation and the simulation can be seen, which is similar to the results of
the `Driven�Cavity' example in Section 7.2.3 on page 142�. It is noted that Tsim grows by
a factor < 8 per level which is most likely a consequence of cache e�ects for small problem
sizes on modern computer architectures, cf. [148, 150]. A factor of ≈ 8 is expected for larger
problems which approximately leads to a factor of C ≈ 20�50 between the optimisation
and the simulation.

8.3 Remark. One may recognise the extraordinary high CPU time marked with `(*)' in
Table 8.14. In the pure time-multigrid case, the spatial problems turn out to be harder
on �ner levels. As a consequence, the spatial preconditioner breaks down for many sub-
problems. The solver automatically recalculates these subproblems with a multigrid solver
that applies a PSCSmootherFull based smoother. This `fallback strategy' is more ro-

8.4. A solver discussion 175

Discretisation with Q̃1/Q0/IE
Level sp.lv. #int. #NL Σ#MG Topt Tsim

Topt
Tsim

2 3 140 7 12 5 951 303 19.6
3 4 280 6 11 55 194 1 571 35.1

Discretisation with Q̃1/Q0/CN
Level sp.lv. #int. #NL Σ#MG Topt Tsim

Topt
Tsim

2 3 140 7 12 7 848 283 27.7
3 4 280 6 10 56 644 1 324 42.7

Discretisation with Q2/P
disc
1 /CN

Level sp.lv. #int. #NL Σ#MG Topt Tsim
Topt
Tsim

2 3 140 6 8 46 959 5 034 9.3
3 4 280 6 8 (*) 827 217 13 655 60.5

Table 8.14: Nonstationary `Flow�Around�Cylinder' control. Comparison between optimi-
sation and simulation similar to Table 8.13. Pure time multigrid.

bust but also computationally much more expensive, especially if many subproblems break
down. Thus, the CPU time is much higher, although the number of nonlinear and linear
iterations is the same on all re�nement levels.

The adaptive Newton Table 8.15 demonstrates the e�ciency of the adaptive Newton in
comparison to the standard Newton algorithm. The column `Coars.' denotes the coarsen-
ing strategy, which is either the full space-time coarsening or the pure time coarsening. The
test restricts to a discretisation in space with the Q̃1/Q0 �nite element pair and applies
the implicit Euler as well as the Crank�Nicolson scheme. Similar to the previous chapter,
the number of nonlinear and linear iterations obtained with the two types of solvers are
rather close to each other or even the same, thus the adaptive Newton is a good alternative
to the standard Newton algorithm with manually chosen, semi-optimal stopping criterion
for the linear solver. It is noted that the CPU time for the adaptive Newton is again a bit
higher due to the adaptive choice of the stopping criterion in the coarse grid solver of the
multigrid preconditioner.

The semi-explicit Euler scheme Table 8.16 documents the convergence results of the
solver if the semi-explicit Euler time discretisation scheme is used. The abbreviation `not
conv.' marks stagnation in the nonlinear iteration and entries containing `div' could not be
computed due to divergence. If the solver converges, the results are similar to the implicit
Euler case. Nevertheless, the solver is less stable than if the implicit Euler scheme is used:
For the standard mesh levels 3 and 4 in space with 140 and 280 intervals, respectively, as
they are used for the implicit Euler scheme, the solver does not converge. If the number
of intervals is larger, the convergence behaviour of the solver is better, but still, the solver
fails to converge in many situations: Using pure time multigrid for the preconditioning
of the linear system, the linear solver breaks down. This behaviour is in line with the
expectations from Chapter 4.4 and is the results of a CFL condition which needs to be
satis�ed for not fully-implicit schemes. It is remarked that also a stronger space-time
smoother does not necessarily help. Although not documented in a separate table, the

176 The KKT solver in practice

Discretisation with Q̃1/Q0/IE
standard Newton adaptive Newton

Coars. lv. sp.lv. #int. #NL Σ#MG Topt #NL Σ#MG Topt
full 2 3 140 7 18 5 879 7 19 6 218

space-time 3 4 280 6 15 39 193 6 18 46 517
pure 2 3 140 7 12 5 951 7 12 6 870
time 3 4 280 6 11 55 194 6 11 59 322

Discretisation with Q̃1/Q0/CN
standard Newton adaptive Newton

Coars. lv. sp.lv. #int. #NL Σ#MG Topt #NL Σ#MG Topt
full 2 3 140 7 17 6 849 7 19 7 830

space-time 3 4 280 7 17 50 505 6 16 48 128
pure 2 3 140 7 12 7 848 7 11 8 374
time 3 4 280 6 10 56 644 6 10 63 909

Table 8.15: Nonstationary `Flow�Around�Cylinder' control. Convergence statistics for
the standard Newton and the adaptive Newton.

best proposed smoother from this work has the same `divergence behaviour' as the BiCG-
Stab(FBSimPrec,...) smoother: BiCGStab(FBGsPrec,...) is also not strong enough,
the solver does not converge for 140 or 280 time intervals on space level three and four,
respectively.

Tables 8.17 and 8.18 compare the computational time in the implicit Euler and Crank�
Nicolson cases to those of the semi-explicit Euler case in Table 8.16. Using the semi-explicit
Euler scheme, the solver is up to 30 percent faster than using the implicit Euler or Crank�
Nicolson scheme for the same level and the same number of intervals due to less numerical
work in each interval. In the Crank�Nicolson case on the other hand, the discretisation
needs only 70 to 140 intervals to have an even higher accuracy than if the implicit/semi-
explicit Euler scheme with 560 intervals is used, see Section 8.3.4. Hence, in comparison
to the Crank�Nicolson scheme, the semi-explicit Euler scheme does not pay o�.

In summary, the implicit discretisations should be preferred over the semi-explicit dis-
cretisation. On the same space-time mesh, the semi-explicit Euler scheme is indeed faster
than the implicit Euler scheme and provides the same accuracy. However, the implicit Eu-
ler as well as the Crank�Nicolson method are much more robust, the choice of the number
of time intervals in�uences the stability of the underlying solver to a much smaller extent.
Using the Crank�Nicolson method �nally allows to reduce the number of time intervals
without considerable loss in accuracy to such an extent that there is no bene�t in using
the semi-explicit method � at least in the examples examined here.

Numerical effort with respect to accuracy In a �nal comparison, the numerical e�ort
for solving the underlying KKT systems is analysed with respect to the accuracy of the dis-
cretisation. Table 8.19 illustrates the CPU time of the solver for di�erent re�nement levels
and di�erent space-time discretisations in relation to the relative error in the minimum
drag and maximum lift coe�cients: As a reference, Cref

D and Cref
L denote the minimum

drag and maximum lift coe�cient computed on space-level four with 560 time intervals
using the Q2/P

disc
1 �nite element pair in space and the Crank�Nicolson scheme in time for

8.4. A solver discussion 177

space-time multigrid pure time multigrid
sp.lv. #int. #NL Σ#MG Topt #NL Σ#MG Topt
3 140 div div div not conv. not conv. not conv.
4 140 div div div not conv. not conv. not conv.
3 280 div div div 7 25 18 988
4 280 div div div not conv. not conv. not conv.
3 560 7 18 14 243 7 15 20 945
4 560 6 19 60 974 div div div

Table 8.16: Nonstationary `Flow�Around�Cylinder' control. Convergence results for the
semi-explicit Euler scheme. Full space-time multigrid as well as pure time multigrid pre-
conditioner.

space-time multigrid pure time multigrid
sp.lv. #int. #NL Σ#MG Topt #NL Σ#MG Topt
3 140 7 18 5 879 7 12 5 951
4 280 6 15 39 193 6 11 55 194
3 560 7 18 20 515 7 11 21 565
4 560 7 16 75 024 7 16 137 870

Table 8.17: Nonstationary `Flow�Around�Cylinder' control. Convergence results for the
implicit Euler scheme. Full space-time multigrid as well as pure time multigrid precondi-
tioner.

space-time multigrid pure time multigrid
sp.lv. #int. #NL Σ#MG Topt #NL Σ#MG Topt
3 140 7 17 6 849 7 12 7 848
4 280 7 17 50 505 6 10 56 644
3 560 7 17 24 578 7 7 17 469
4 560 6 13 74 655 6 8 84 611
4 140 6 15 26 793 7 14 45 098

Table 8.18: Nonstationary `Flow�Around�Cylinder' control. Convergence results for the
Crank�Nicolson time discretisation. Full space-time multigrid as well as pure time multi-
grid preconditioner.

178 The KKT solver in practice

Discretisation with Q̃1/Q0/IE
sp.lv. #int. Cmin

D Cmax
L err(Cmin

D) err(Cmax
L) #NL Σ#MG Topt

3 140 2.8499 0.15133 0.1331 0.3778 7 18 5 879
3 560 2.8471 0.15461 0.1320 0.3643 7 18 20 515
4 560 2.7247 0.21673 0.0833 0.1090 7 16 75 024

Discretisation with Q̃1/Q0/CN
sp.lv. #int. Cmin

D Cmax
L err(Cmin

D) err(Cmax
L) #NL Σ#MG Topt

3 140 2.8462 0.15570 0.1316 0.3599 7 17 6 849
3 560 2.8462 0.15569 0.1316 0.3599 7 17 24 578
4 560 2.7239 0.21876 0.0830 0.1006 6 13 74 655
3 70 2.8461 0.15572 0.1316 0.3598 10 (**) 92 3 410
4 70 2.7238 0.21877 0.0829 0.1006 13 (**) 149 24 548

Discretisation with Q2/P
disc
1 /CN

sp.lv. #int. Cmin
D Cmax

L err(Cmin
D) err(Cmax

L) #NL Σ#MG Topt
2 70 2.4138 0.23394 0.0402 0.0382 8 (**) 85 2 964
2 560 2.4139 0.23401 0.0402 0.0379 9 55 80 804

4 560 2.5151 0.24325 reference 7 13 385 370

Table 8.19: CPU time comparison for di�erent discretisations with respect to accuracy.
The results marked with `(**)' have been computed with a one-level solver.

the discretisation (bottommost row in the table, see also Tables 8.8 to 8.10 on page 163�).
The relative errors are de�ned by

err(Cmin
D) :=

|Cmin
D − Cref

D |
Cref
D

, err(Cmax
L) :=

|Cmax
L − Cref

L |
Cref
L

. (8.3)

Comparing the CPU time with respect to the relative error, in this example, more than
95 percent of the CPU time can be saved by a higher order discretisation. In relation to
the reference solution, a discretisation with the Q2/P

disc
1 element pair in space and the

Crank�Nicolson discretisation in time shows best relative errors, even on space level two
with only 70 time intervals. (This is the coarsest time mesh at all, so a one-level solver was
used for solving). With err(·) ≈ 0.04, the errors are even much better than those computed
with the Q̃1/Q0 element pair on level four with 560 time intervals (relerr(·) ≈ 0.10), and
the computation took only �ve percent of the CPU time.

On the other hand, if the space discretisation remains unchanged, a higher order time
discretisation saves about 60�85 percent of the CPU time in this example. This can be
seen, e. g., for a space discretisation with the Q̃1/Q0 �nite element pair on a �xed spatial
level. Using the Crank�Nicolson time discretisation with 70 time intervals, the relative
errors are smaller than if the implicit Euler time discretisation with 560 time intervals is
used. On space level four, this results in a decrease of CPU time from ≈ 20 500 seconds to
≈ 3 500 seconds without loss in the accuracy.

Of course, the above results do not hold for general problems, i. e., the problem must
be smooth enough such that it makes sense to apply higher order schemes. However, for
smooth problems, this example shows the potential of a proper discretisation scheme in
terms of savings in CPU time in the optimal control context.

8.5. Appendix: About stabilisation in optimal control problems for fluid flow 179

8.5. Appendix: About stabilisation in optimal control problems for fluid flow

One crucial point in many simulations is the part of the stabilisation. Whenever a nu-
merical system turns out to be to hard or unstable, the mathematical formulation and/or
discretisation of the underlying PDE is changed by introducing di�erent kinds of stabilisa-
tion terms. Such stabilised formulations are properly de�ned if they simplify the solution
process while keeping the disturbance of the solution as small as possible.

The CFD examples in the previous chapters have been computed without stabilisation.
However, for higher Reynolds numbers, a proper stabilisation is crucial, as a pure Galerkin
discretisation for convection-dominated �ows would introduce numerical oscillations (cf.
[97, 98, 100]). Many common stabilisation terms like Streamline Di�usion (see for example
[142]) work in a nonlinear way, based on local Reynolds numbers or similar. In the optimal
control framework, this introduces a quite annoying e�ect:

Stabilisation in general The general form of a KKT system (2.10) on page 25 can be
written in short as a combination of a primal and dual equation,

H(x)x = Bψ,
DH∗(x)ψ = B̃x.

During the space-time discretisation, all operators are replaced by their discrete counter-
parts, which results in a system of the form

Hσ(xσ)xσ = Bσψσ,
DHσ,∗(xσ)ψσ = B̃σxσ,

for a space-time solution xσ ∈WNLMAX where the superscript σ = (h, k) denotes discreti-
sation in space and time, h the discretisation in space and k the discretisation in time. By
xσ 7→ s(xσ), a general additive stabilisation term is denoted which is added to the primal
equation. The corresponding KKT system changes to

Hσ(xσ)xσ + s(xσ) = Bσψσ(
DHσ,∗(xσ) + (Ds)∗(xσ)

)
ψσ = B̃σxσ

with (Ds)∗(xσ) describing the adjoint of the Fréchet derivative of xσ 7→ s(xσ). At this
point, the implementation becomes tedious: For a general nonlinear, locally de�ned oper-
ator s(·) like the Streamline Di�usion operator, the dual (Ds)∗ of its Fréchet derivative
usually has a complicated form. For an overview about the e�ect of standard stabilisation
techniques in optimal control problems, the interested reader is referred to [2, 40].

Symmetric stabilisation A remedy to this situation is the use of linear symmetric sta-
bilisation techniques. One special representative which gives good results to the author's
experience if applied to the Navier�Stokes equations is the `edge-oriented jump stabilisa-
tion' technique described, e. g., in [124]. This stabilisation is de�ned purely in space. The
underlying �nite element space of the discretisation is in the following denoted by Vh. For
an arbitrary v ∈ Vh, the action Sv of this stabilisation is de�ned by

(Sv,w) =
∑
edge E

max(κ̃ν|E|, κ|E|2)

∫
E

[∇v][∇w] ds (8.4)

180 The KKT solver in practice

for all w ∈ Vh. The constants κ, κ̃ ≥ 0 de�ne stabilisation parameters, ν the viscosity,
|E| the length of the edge E, and [·] the jump of a function over an edge. The above
stabilisation s(xσ) is de�ned by applying S to every velocity component in every timestep.
Setting κ̃ := 0, an even simpler form of the edge-oriented stabilisation is obtained,

(Sv,w) =
∑
edge E

κ|E|2
∫
E

[∇v][∇w] ds, (8.5)

which was also used for numerical simulations in [55] and will be used in the following
numerical tests.

Important features of this stabilisation are symmetry, linearity and consistency. As a
consequence, there is (Ds)∗(xσ) = s, independent of xσ, which simpli�es the KKT system
to

(Hσ(xσ) + s)xσ = Bσψσ

(DHσ,∗(xσ) + s)ψσ = B̃σxσ.

From the implementational point of view, this means adding a symmetric matrix (corre-
sponding to S) to all velocity matrices. The disadvantage of this method is the increased
matrix stencil which increases the computational time and memory consumption, cf. [124].

The stabilised benchmark example The following numerical test demonstrates that
this type of stabilisation is also e�ective in the �eld of the optimal control. Consider
the optimal distributed control of the nonstationary Navier�Stokes equations at Re=100,
Example 8.2. The space discretisation is carried out with Q̃1/Q0 at space-level three and
four. For the time discretisation, the Crank�Nicolson scheme is chosen with 140 intervals on
space level three and 280 intervals on space-level four, respectively.4 To measure the quality
of the solution, the drag and lift coe�cients CD and CL are measured as above. Figures 8.30
and 8.31 show the corresponding plots for the full time interval [0, T], Figures 8.32 and 8.33
for a subinterval. The �gures illustrate on the one hand the unstabilised results, on the
other hand the stabilised counterparts using the edge-oriented jump stabilisation (denoted
by `EOJ(κ)') with a jump stabilisation parameter κ = 0.02. Finally, for reference purposes,
the plots contain the unstabilised solution calculated with Q2/P

disc
1 /CN on level four with

560 timesteps.
In comparison to the unstabilised case, the use of the stabilisation improves the solution.

At space level 3, the plots of the stabilised solutions follow the reference plot, while the
unstabilised counterparts show a much larger di�erence, especially in the drag coe�cient
CD. The point in time at which CD takes its minimum is much later in the unstabilised
case than in the stabilised one. For level 4, the use of the edge-oriented jump stabilisation
improves the drag and lift plots by roughly 1/4 to 1/2 level.

Figures 8.34 to 8.37 visualise the drag and lift coe�cients for a �xed space-time level
and di�erent stabilisation parameters. The �gures depict the drag and lift values over time
for EOJ(0.1), EOJ(0.06) and EOJ(0.02). For reference purposes, the corresponding plots
also contain the results in the unstabilised case, for a discretisation with Q̃1/Q0/CN as well
as with Q2/P

disc
1 /CN. Similar to the results for the simulation [124], the jump stabilisation

is rather stable for a large range of stabilisation parameters (here [0.02, 0.1]). In this
example, higher stabilisation parameters around ≈ 0.1 lead to better approximations of
the drag and the lift.

4 From the previous analysis, it can be expected that 70 intervals should already be enough. The
re�nement strategy chosen here starts with 140 intervals and re�nes in space and time simultaneously; this
is the typical approach to ensure that the global space-time error reduces.

8.5. Appendix: About stabilisation in optimal control problems for fluid flow 181

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

D
ra

g
co

ef
fic

ie
nt

 C
D

time

Drag, influence of EOJ(0.02)

Q
~

1/Q0/CN, Space-lv. 3, 140 steps
Q
~

1/Q0/CN, EOJ, Space-lv. 3, 140 steps
Q
~

1/Q0/CN, Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ, Space-lv. 4, 280 steps
Q2/P1

disc/CN, Space-lv. 4, 560 steps

Figure 8.30: Drag coe�cient CD. In�uence of the EOJ(0.02) stabilisation.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Li
ft

co
ef

fic
ie

nt
 C

L

time

Lift, influence of EOJ(0.02)

Q
~

1/Q0/CN, Space-lv. 3, 140 steps
Q
~

1/Q0/CN, EOJ, Space-lv. 3, 140 steps
Q
~

1/Q0/CN, Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ, Space-lv. 4, 280 steps
Q2/P1

disc/CN, Space-lv. 4, 560 steps

Figure 8.31: Lift coe�cient CL. In�uence of the EOJ(0.02) stabilisation.

182 The KKT solver in practice

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 0.18 0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22

D
ra

g
co

ef
fic

ie
nt

 C
D

time

Drag, influence of EOJ(0.02)

Q
~

1/Q0/CN, Space-lv. 3, 140 steps
Q
~

1/Q0/CN, EOJ, Space-lv. 3, 140 steps
Q
~

1/Q0/CN, Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ, Space-lv. 4, 280 steps
Q2/P1

disc/CN, Space-lv. 4, 560 steps

Figure 8.32: Drag coe�cient CD. In�uence of the EOJ(0.02) stabilisation. Zoom to the
time interval [0.18, 0.22].

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.15 0.16 0.17 0.18 0.19 0.2 0.21

Li
ft

co
ef

fic
ie

nt
 C

L

time

Lift, influence of EOJ(0.02)

Q
~

1/Q0/CN, Space-lv. 3, 140 steps
Q
~

1/Q0/CN, EOJ, Space-lv. 3, 140 steps
Q
~

1/Q0/CN, Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ, Space-lv. 4, 280 steps
Q2/P1

disc/CN, Space-lv. 4, 560 steps

Figure 8.33: Lift coe�cient CL. In�uence of the EOJ(0.02) stabilisation. Zoom to the
time interval [0.15, 0.21].

8.5. Appendix: About stabilisation in optimal control problems for fluid flow 183

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

D
ra

g
co

ef
fic

ie
nt

 C
D

time

Drag, EOJ(κ), Crank-Nicolson in time

Q
~

1/Q0/CN, Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ(0.02), Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ(0.06), Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ(0.10), Space-lv. 4, 280 steps
Q2/P1

disc/CN, Space-lv. 4, 560 steps

Figure 8.34: Drag coe�cient CD. In�uence of the EOJ stabilisation for di�erent stabili-
sation parameters on a �xed mesh.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Li
ft

co
ef

fic
ie

nt
 C

L

time

Lift, EOJ(κ), Crank-Nicolson in time

Q
~

1/Q0/CN, Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ(0.02), Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ(0.06), Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ(0.10), Space-lv. 4, 280 steps
Q2/P1

disc/CN, Space-lv. 4, 560 steps

Figure 8.35: Lift coe�cient CD. In�uence of the EOJ stabilisation for di�erent stabilisa-
tion parameters on a �xed mesh.

184 The KKT solver in practice

 2.5

 2.55

 2.6

 2.65

 2.7

 2.75

 2.8

 2.85

 0.18 0.185 0.19 0.195 0.2 0.205 0.21 0.215 0.22

D
ra

g
co

ef
fic

ie
nt

 C
D

time

Drag, EOJ(κ), Crank-Nicolson in time

Q
~

1/Q0/CN, Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ(0.02), Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ(0.06), Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ(0.10), Space-lv. 4, 280 steps
Q2/P1

disc/CN, Space-lv. 4, 560 steps

Figure 8.36: Drag coe�cient CD. In�uence of the EOJ stabilisation for di�erent stabili-
sation parameters on a �xed mesh. Zoom to the time interval [0.15, 0.21].

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.15 0.16 0.17 0.18 0.19 0.2 0.21

Li
ft

co
ef

fic
ie

nt
 C

L

time

Lift, EOJ(κ), Crank-Nicolson in time

Q
~

1/Q0/CN, Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ(0.02), Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ(0.06), Space-lv. 4, 280 steps
Q
~

1/Q0/CN, EOJ(0.10), Space-lv. 4, 280 steps
Q2/P1

disc/CN, Space-lv. 4, 560 steps

Figure 8.37: Lift coe�cient CD. In�uence of the EOJ stabilisation for di�erent stabilisa-
tion parameters on a �xed mesh. Zoom to the time interval [0.15, 0.21].

8.6. Summary and conclusions 185

Discretisation with Q̃1/Q0/IE, EOJ(0.02)
Level sp.lv. #int. #NL Σ#MG Topt Tsim

Topt
Tsim

2 3 140 6 11 5 099 497 10.2
3 4 280 6 16 72 597 2 571 28.2

Discretisation with Q̃1/Q0/CN, EOJ(0.02)
Level sp.lv. #int. #NL Σ#MG Topt Tsim

Topt
Tsim

2 3 140 6 13 7 246 503 14.4
3 4 280 7 14 75 130 2 499 30.0

Table 8.20: Nonstationary `Flow�Around�Cylinder' control, stabilised with EOJ(0.02).
Convergence statistics of the nonlinear and linear solver for di�erent space and time dis-
cretisations on di�erent mesh levels. Number of nonlinear (`#NL') and total number of
linear (`Σ#MG') space-time iterations as well as CPU time. Full space-time multigrid.
Comparison between optimisation and simulation.

Table 8.20 compares the CPU time for the optimisation with that for a corresponding
simulation. Due to the increased matrix stencils, the computations generally take 1.5�2
times longer than those in the unstabilised case. However, the convergence results are
similar, cf. Table 8.13. The number of nonlinear iterations hardly changes, thus the
nonlinear solver works quite e�ectively. The number of linear iterations even reduces in
most cases in comparison to the unstabilised case.

As a conclusion, the convergence of the proposed KKT solver methodology is main-
tained by the edge-oriented stabilisation and the results show good approximation proper-
ties. However, for a low/medium Re number example like the one presented in this work,
it is possible to calculate accurate results even without any stabilisation. What happens
for higher Re number examples is a completely di�erent topic. Usually, it is not possible to
compute results at all without any suitable stabilisation. For a standard CFD simulation,
the edge-oriented oriented stabilisation technique already showed promising results in this
case, and the results from this section indicate that this stabilisation likely works well for
higher Re numbers in the context of optimal control.

8.6. Summary and conclusions

This chapter completes the numerical analysis of the discretisation and solver strategy
described in Chapter 2 and 3. Together with Chapter 7, an extended analysis has been
carried out to demonstrate the applicability of the methodology also in non-analytical
cases. In this context, the focus of these chapters has been on benchmark examples from
CFD.

The previous chapter has focused on the Stokes and Navier�Stokes examples and il-
lustrated the convergence behaviour of the solver, in the unconstrained as well as in the
constrained case. For test examples of the `Driven�Cavity' type, the computational time
of simulation and optimisation has been compared, and the optimisation has been shown
to be only �ve to twelve times more expensive than a simulation.

This chapter has extended the analysis to a more general example, using a `Flow�
Around�Cylinder' con�guration. Based on the forces acting on the cylinder, the in�uence
of the choice of the regularisation parameters to the solution has been illustrated. Fur-

186 The KKT solver in practice

thermore, a benchmark example for the optimal control of the nonstationary distributed
control of the Navier�Stokes equations has been de�ned, and the solution of the optimal
control problem has only been by a factor 20�50 more expensive than a corresponding
simulation. Furthermore, it has been demonstrated that the choice of the discretisation is
simultaneously re�ected in the accuracy of the solution and the e�ciency of the solver. In
particular, higher order discretisations are highly favourable (if applicable).

In a �nal appendix section, the edge-oriented stabilisation technique has been applied
and analysed w. r. t. accuracy and e�ciency. For the benchmark con�guration de�ned
in the beginning of the chapter, the linear complexity of the solver has been maintained
and the solutions have shown an accuracy similar to the unstabilised case, often even
better. This indicates that the edge-oriented stabilisation is likely applicable to the optimal
distributed control of the Navier�Stokes equations with higher Reynolds numbers, where
stabilisation is usually mandatory.

All in all, it has been illustrated that the proposed solver methodology is well applicable
to nonstationary distributed optimal control problems. Even for the optimal control of a
Re=100 �ow, the costs for the optimisation have been of acceptable size in comparison to
a simulation, and the numerical e�ort grows linearly with the problem size.

9

Further extensions, summary, conclusions and future
work

This chapter is the concluding chapter of the complete work. It is divided into two parts.
Section 9.1 gives a general overview about the methods that have been presented in this
work. The main key points of the described discretisation and solver strategy are sum-
marised and the main results from the numerical discussions are highlighted. Furthermore,
Section 9.2 highlights some possible future extensions. These include on the one hand ex-
tensions to the discretisation and solver components (for example higher order space-time
discretisations or globalisation strategies) and on the other hand, the adaption of the
method to more general model problems (like boundary control and parametrised con-
trol spaces). The chapter closes with a discussion of possible algorithmic enhancements
regarding parallelism, memory management, model reduction and adaptivity.

9.1. General summary and discussion

Optimal control with partial di�erential equations is one of the most advanced topics in
applied mathematics. Many researchers focus on the optimisation of di�erent physical
phenomena, and a lot of fundamental research has been carried out in recent years to
formulate optimality conditions, modelling and discretisation techniques as well as solution
strategies (see for example [5, 7, 11, 43, 69, 92, 92, 94, 112�114, 117, 130]).

The biggest problem in bringing the theory to an application for practically relevant op-
timisation tasks is the size of the underlying discrete optimality system � and the fact that
standard numerical algorithms for the solution of linear and nonlinear systems as well as
general solvers for nonlinear programming scale badly with the problem size. This renders
most problems uncomputable by standard methods, in particular in the time dependent
case. Due to the elliptic character of time-dependent optimality systems, all unknowns
in space and time are strongly coupled, and numerical algorithms must therefore exploit
mathematical structures to be e�cient. This is the point where hierarchical methods come
into play, as such methods are typically e�ective for such problems.

9.1.1. Main key points of the hierarchical solution approach

This work has described a fully hierarchical approach for solving nonstationary optimal
control problems from PDE-constrained optimisation based on the primal and dual vari-
ables. The key point from the mathematical point of view, exploited by the algorithms, has
been the elliptic character of the KKT systems associated with common time dependent,
PDE-constrained optimal control problems. Highly advanced algorithms and discretisa-

187

188 Further extensions, summary, conclusions and future work

tions known from the simulation of the underlying PDE have been combined in a modular
way to provide e�ciency, robustness and �exibility. The approach has been demonstrated
for the optimal distributed control of the heat equation, the Stokes equations and the
Navier�Stokes equations. A comprehensive numerical analysis has been carried out to give
advice to practitioners concerning the applicability of the approach, the choice of the dis-
cretisation, the hierarchy, the di�erent solver components and necessary parameters. It
has been demonstrated that the method is able to solve the underlying KKT system of a
nonstationary optimal control problem problem in such a way that

e�ort for the optimisation
e�ort for the simulation

≤ C

where e�ort for the simulation is measured by the best available numerical methods. The
constant C has had a moderate size of < 30 in most numerical examples, including the
optimal distributed control of the nonstationary Navier�Stokes equations at Re=100.

9.1.2. Discretisation concept and solver design

Chapters 2 and 3 have illustrated the general discretisation concept and presented the solver
approach. Chapter 4 has described the extension to some more general optimal control
problems and discretisation strategies for improved �exibility in the numerical tests.

Chapter 2 has focused on analytical properties of the KKT system. This system stems
from the application of the Lagrange multiplier concept to the optimal control of a
nonstationary partial di�erential equation, in particular, to the distributed control of
the heat equation and the Stokes/Navier�Stokes equations. It has been demonstrated
that the KKT system has an elliptic character in space-time which is the key for the
hierarchical approach.

Next, the discretisation concept from [11] has been applied to discretise the optimal
control problem in space and time simultaneously. This concept is characterised by
the following key points:

� The approach applies the First-Optimise-Then-Discretise strategy. At �rst, the
optimal control problem to be solved is reformulated as a KKT system similar to
the SQP approach. The control u is eliminated. This step is advantageous for
the construction of the proposed smoothers since the resulting KKT systems
consist of exactly two equations of similar type. Furthermore, it reduces the
number of unknowns and o�ers the possibility to solve the KKT system without
a discretisation of the control u.

� The KKT system is discretised in time with a one-step scheme, in space with
the �nite element approach. Both discretisations are independent of each other.
However, the approach applies the discretisation in such a way that the First-
Optimise-Then-Discretise strategy commutes with a particular First-Discretise-
Then-Optimise strategy which ensures the meaningfulness of gradients � and
in consequence, of the dual variable � with respect to a discrete counterpart of
the continuous functional to minimise.

� The special interpretation of the right-hand side (and the pressure) for the gen-
eral one-step θ-scheme induces sparse, three-band block matrices in the time-
discrete and fully discretised system. This form is the essential point exploited

9.1. General summary and discussion 189

by space-time smoothers, and the sparsity allows to perform matrix-vector mul-
tiplications with computational costs proportional to the number of unknowns
in space and time.

Chapter 3 has applied the discretisation strategy from Chapter 2 to a hierarchy of space-
time meshes. A Newton-Multigrid strategy has been applied to solve the system
on the �nest mesh. The nonlinear problem on the space-time cylinder has been
reduced to sequences of local linear problems in space. The general method can be
summarised as follows:

� A space-time Newton solver de�nes an outer iteration for the nonlinearity. This
iteration is carried out on the �nest level of a problem hierarchy.

� During the Newton iteration, linear systems in space and time have to be solved.
For this purpose, a space-time multigrid is applied which exploits the de�ned
problem hierarchy.

� There are di�erent choices possible how to de�ne the hierarchy. The choice of
the hierarchy in�uences the prolongation/restriction operators. For the special
θ-scheme time discretisation used in Chapters 2, appropriate prolongation/re-
striction operators are derived with the concept of discrete abstract functions.

� The block structure of the space-time matrices allows to apply block solver
strategies as smoothers in the space-time multigrid. These reduce the space-time
strategy to local linear systems in space. Finally, these local linear systems are
solved with a `standard' monolithic multigrid approach based on an underlying
�nite element hierarchy.

� The monolithic multigrid solver in space is applicable to general equations and
primal/dual systems. The component responsible for this �exibility is the PSC-
Smoother approach which can be used for smoothing of general linear systems
from partial di�erential equations.

Chapter 4 has been an appendix chapter to Chapters 2 and 3. Some common extensions
to the model problems and the discretisation have been introduced. In particular, the
end time observation, the do-nothing boundary conditions and the case of constraints
in the control have been illustrated in detail. Finally, the semi-explicit time discreti-
sation has been described. All these extensions have provided additional �exibility
in the numerical analysis.

9.1.3. Numerical results

The numerical analysis of the proposed solution strategy has been carried out in Chap-
ters 5 to 8. Basic properties and parameters of the solver components, the choice of the
discretisation and the hierarchy have at �rst been illustrated and veri�ed based on ana-
lytical test examples with the heat equation and and Stokes equations. In a second step,
the analysis has focused on the Stokes and the Navier�Stokes equations, demonstrated the
level-independent convergence behaviour, the robustness regarding changes to the regular-
isation parameters as well as the superlinear convergence of the Newton iteration in the
unconstrained and constrained cases. Finally, a benchmark problem from CFD has been
used to demonstrate the in�uence of the space-time discretisation on the accuracy and
e�ciency of the solver.

190 Further extensions, summary, conclusions and future work

Chapter 5 has carried out the �rst part of the analysis by applying the space-time multi-
grid solver to linear analytic test problems for the heat equation and the Stokes
equations. It has been shown that the solver converges level-independently for linear
and higher order space-time discretisations. However, the Crank�Nicolson scheme
necessitates the correct prolongation/restriction operators. Local problems in space
have been solved inexactly without in�uencing the global convergence. Finally, it has
been demonstrated that the choice of the multigrid cycle and the level hierarchy of
the space-time meshes is crucial for the overall computational costs of the algorithm;
an improper choice leads to a loss of the linear complexity in terms of CPU time.

Chapter 6 has analysed the space-time discretisation. With the help of analytical test
examples based on the heat equation and the Stokes equations, the in�uence of the
space-time mesh to the error in the solution has been illustrated. In particular, the
space discretisation has to be coupled to the time discretisation in order to reduce
the global error. This can be done either by choosing an appropriate re�nement
(higher re�nement level in space or more timesteps in time) or by using a higher
order approach (higher order �nite elements or timestepping scheme). All in all, it
has been veri�ed that the space-time mesh should be chosen such that the space error
and the time error are equilibrated.

Finally, the chapter has focused on the modi�ed Crank�Nicolson scheme. It has been
shown that this scheme provides second order accuracy. Furthermore, the conver-
gence properties of the nonlinear and linear solver are similar, independent of whether
the modi�ed or the `traditional' Crank�Nicolson method is used. Thus, the solver is
stable against this choice.

Chapter 7 has focused on an analysis of the space-time multigrid and Newton solver
based on a linear and a nonlinear `Driven�Cavity' example from CFD. It has been
shown that both solvers are robust with respect to the choice of the regularisation
parameters and that anisotropies in the space-time grid in�uence the e�ciency of the
linear solver. Up to a certain extent, it has been possible to compensate for a loss in
the e�ciency by a proper choice of the coarsening strategy.

A comparison of di�erent strategies for choosing the nonlinear solver has revealed that
both the standard Newton method and the inexact Newton method show a quadratic
convergence behaviour. The inexact Newton has turned out to be the preferable
choice in practice due to the fact that the ratio between convergence speed and CPU
time is nearly optimal without any parameter adjustment. Finally, applying the
semismooth Newton variant as nonlinear solver in the case of constrained control,
the solver has still converged superlinearly.

Chapter 8 has concentrated on the Navier�Stokes equations and de�ned a benchmark
problem based on a stationary Re=20 and a nonstationary Re=100 `Flow�Around�
Cylinder' benchmark known from CFD. The in�uence of the regularisation param-
eters in the KKT system on the solution has been analysed. Furthermore, the ad-
vantage of higher order methods has been shown. These have allowed to reduce
the number of time intervals and the number of unknowns in space without loss in
the accuracy. Finally, the edge-oriented stabilisation has been applied, and it has
been demonstrated that this stabilisation technique works well in the optimal control
context.

9.2. Possible future extensions 191

9.2. Possible future extensions

The proposed solver strategy has been introduced based on a set of distributed control
model problems. The heat equation, the Stokes equations and the Navier�Stokes equations
have been used to demonstrate that methods used for the discretisation and simulation
of the underlying PDE can be adapted to an optimal control setting. This renders the
method �exible in terms of the choice of the space and time discretisation and the design
of underlying preconditioning techniques, and a lot of modi�cations are possible here.
Furthermore, the model problems which have been used for the demonstration of the
method are only basic examples which can be extended in numerous ways, with respect to
the underlying equation as well as with respect to the optimal control problem.

The following section gives an overview of possible extensions to the discretisation,
introduces enhancements to the solver components and sketches the application of the
solver methodology to more general PDEs and optimal control problems. The section (and
the whole work) closes with an introduction about advanced algorithmic issues for really
large size problems. These include the aspects `memory management' and `parallelism'
and are of high importance for industrial applications.

9.2.1. Advanced discretisation and solver components

The proposed solver concept decouples the space discretisation from the time discretisation
and does not apply, e. g., special space-time �nite elements. This leads to a high �exibility
in the choice of both discretisations and allows to incorporate also most recent technologies
actually developed for the underlying equations.

Higher order space discretisations Chapter 6 has demonstrated that the space and
the time discretisation are coupled w. r. t. accuracy. For the considered non-analytical
model problems in Chapter 8 however, the space discretisation has had a stronger in�u-
ence to the overall solution than the time discretisation. Unfortunately, a �ner mesh in
space leads to a tremendous increase of the number of unknowns since this happens in
every time interval. For laminar, smooth problems from CFD, higher order �nite elements
are therefore preferable since they provide much higher accuracy for the same number of
unknowns.

For the Stokes and the Navier�Stokes equations, the highest order �nite element pair
considered in this work has been the Q2/P

disc
1 element pair. Of course, one can even think

of using a Qn/P disc
n−1 approach to achieve even higher accuracy. A possible recent alternative

developed in [109] is for example the Q̃2/P
disc
1 �nite element pair which is based on integral

mean values on the element edges (in 2D) or faces (in 3D). As shown in this article, the Q̃2

element can even be extended to a Q̃n element. In comparison to Qn, the main advantage
of Q̃n is the reduced coupling of the degrees of freedom, which takes only place via the
edges/faces and not via the vertices (as it is the case for Qn). Therefore, the matrix stencils
are smaller, which leads to higher computational e�ciency. The reduced coupling is also a
big advantage in parallel computing (see also below), e. g., in the context of the currently
developed software package Feast [14, 106, 150]. It reduces the amount of communication
on the boundary of subdomains.

Higher order time discretisations The time discretisation in Chapter 2 has been carried
out with a one-step θ-scheme. Chapter 8 has demonstrated that the Crank�Nicolson
scheme has been highly advantageous in comparison to the implicit Euler scheme in terms

192 Further extensions, summary, conclusions and future work

of accuracy. This way, the overall number of time intervals � and in connection, the total
amount of memory as well as the computational time � has been reduced signi�cantly.

If the solution is smooth in time (which is the case for most laminar �ow problems),
a higher order timestepping technique is therefore preferable. The demonstrated discreti-
sation strategy in Chapter 2 is modular enough be used also with other timestepping
techniques. A possible choice for a future extension is for example the Fractional step
θ-scheme [142], which improves the stability of the time stepping. Another alternative
which has recently been developed [96] is the cGP(m) scheme which uses a �nite element
approach also in time, thus allowing a time discretisation with arbitrary order.

However, there are open questions involved in this context. The discretisation scheme
is designed in such a way that the First-Optimise-Then-Discretise approach commutes
with the First-Discretise-Then-Optimise approach, and a discretisation with a di�erent
timestepping technique should respect this design aim as well. Depending on the choice
of the timestepping scheme � and in correspondence, the choice of the time integration
in the discrete functional � a larger coupling of the unknowns in time can be expected,
leading to more `o�-diagonal blocks'. In the case of the cGP(m) scheme, there will even be
subblocks in the space-time matrix corresponding to the di�erent time intervals (since each
time interval contains a set of fully coupled solutions in time). The realisation is therefore
much more complicated. In contrast, the special one-step θ-scheme applied in Chapter 2
resulted in a three-band block matrix.

Finally, the interpretation of the pressure and the right-hand side in time should be
considered, similar to the Crank�Nicolson approach. This in�uences the choice of prolon-
gation/restriction operators in time. It is noted that, having the prolongation at hand,
the restriction in time can be created with the help of the concept of discrete abstract
functions, cf. Section 3.4 on page 53�.

Advanced solver components The solver method in Chapter 3 has been de�ned in a
basic way and allows a couple of extensions to improve e�ciency and robustness. Basically,
it is possible to modify the outer Newton solver, the space-time multigrid solver and/or
the local multigrid solver in space � or some of them in combination, as it has been done
for the inexact Newton algorithm. One can think of the following extensions, some of them
adaptions of well known strategies from the literature:

Newton line search The Newton line search strategy is a globalisation strategy which
aims at improving the robustness of the nonlinear solver. For this purpose, an au-
tomatically chosen damping parameter damps the Newton steps. For an overview
about this method, see Appendix B.

Cascaded linear space-time preconditioners In the proposed solver strategy, the
Newton solver has been preconditioned by a space-time multigrid solver. A common
extension is to embed the space-time multigrid solver as preconditioner in, e. g., a
BiCGStab or GMRES algorithm. This is a similar strategy as it has been used
in Section 3.5.3 on page 69f for cascaded smoothers and can help to improve the
robustness.

Space-time pressure Schur complement techniques The de�nitions of the space-
time smoothers follow the strategy to loop forward and backward in time, solving
a local linear system in each timestep. Similar to the PSCSmoother in space
(Section 3.6 on page 70) one can alternatively think of a pressure Schur complement
solver in space and time. This would have to loop about all cells in space and time,

9.2. Possible future extensions 193

setting up a local linear system which covers the current, previous and next timestep
in each spatial cell.

Patch-based pressure Schur complement techniques For higher robustness of the
spatial multigrid, the PSCSmoother component can be modi�ed to set up local
systems in space which cover a patch of cells. This has been introduced in [132] in
the context of the simulation of the Boussinesq equations. Finally, also the PSC-
Smoother can be embedded as a preconditioner in a BiCGStab or GMRES smoo-
ther to improve robustness.

9.2.2. Further model problems and applications

The solver methodology in this work has been introduced using a set of basic model prob-
lems of distributed control type. However, a couple of further extensions to other equations,
discretisation strategies and optimisation problems are possible which have a structure sim-
ilar to the considered model problems. Thus, the solver methodology can be adapted to
in a straightforward way. Some of these are sketched in the following.

Boundary control In boundary control, the control forces act on the boundary of the
domain. This is often easier to realise in practice: While the distributed control of the heat
equation in a 3D domain, e. g., has to be applied by microwaves in a rather complication
way, boundary control can be applied by simple heating devices. A brief introduction
about this type of control is given in Appendix A.

Parametrised control spaces This type of control is rather common in practice. It
models the situation that the control acting in the domain or on the boundary is given by
only �nitely many parameters, independent on the re�nement of the underlying equation.
Appendix A gives a short overview about the application of the proposed solver strategy
in this case.

Quasi-Newtonian flow problems For Quasi-Newtonian �ow, the di�usion operator in
the Navier�Stokes equations has to be modi�ed in a nonlinear fashion. A typical formula-
tion reads in extension to the Navier�Stokes model in Section 2.1 on page 22f,

yt − div σ + y∇y +∇p = u,

−div y = 0,

with σ = σ(y, p) = 2ν(y, p)D(y) for the deformation tensor D(y) = 1
2(∇y + (∇y)T) and

a nonconstant viscosity ν(y, p). Additional initial/boundary conditions are omitted for
simplicity. The choice of the viscosity in�uences the properties of the �uid. A possible
choice is for example ν(y, p) = ν0ζ

r
2
−1 with constants ν0 > 0, r > 1 and ζ := DΠ(y) =

1
2tr(D

2(y)) the second invariant of the deformation tensor, which represents the Power law
model. For an overview about possible choices, see [124].

This equation is rather similar to the standard Navier�Stokes equations but involves
an additional nonlinearity in the di�usion part. In [124], Ouazzi derived the corresponding
Fréchet derivative. If this equation is used as a constraint in an optimal control problem
similar to Section 2.1, the adjoint of this operator has to be derived in order to formulate
the corresponding continuous KKT system. Moreover, the complete discretisation strategy

194 Further extensions, summary, conclusions and future work

can be applied, so the KKT system can be solved with the proposed hierarchical approach
in the same way as for the Navier�Stokes model problem.

Non-isothermal flow problems Non-isothermal �ow problems couple an additional tem-
perature equation to the standard Navier�Stokes equations. A typical example is the
Boussinesq approximation,

yt − ν∆y + y∇y +∇p+ Gr Θg = 0,

−div y = 0,

Θt −
1

Pr
∆Θ + y∇Θ = u,

with g = (0, 1)T in 2D or g = (0, 0, 1)T in 3D the direction of gravity, Gr the Grashof
number, Pr the Prandl number and Θ : Q → R a temperature variable. Q = (0, T) × Ω
denotes again the usual space-time cylinder. In this form, the equation can be incorporated
as a constraint in a distributed control problem similar to Section 2.1 on page 22�. The
variable u : Q → R in this example de�nes a control acting on the temperature equation.
In this formulation, the �ow can be in�uenced by modifying the temperature, e. g., by
magnetic �elds, heaters or microwaves.

This example has been the guiding equation for the optimal control of semiconductor
melts in [11]. Baerwol� et al. apply the same discretisation scheme as used in Chapter 2
of this work. Thus, the complete solver structure described in Chapter 3 can be applied,
and the problem can be solved in the same hierarchical way. Non-isothermal �ow can also
be coupled to Quasi-Newtonian �ow; for an overview, see for example [46]. The control
can be applied in the context of distributed control as well as boundary control; examples
can be found, e. g., in [1].

Prolongation and restriction for the third equation can be carried out in the same
way as for the primal Navier�Stokes equations. However, the third equation (and its
corresponding dual) induces a structural change in the local systems solved by the spatial
multigrid in each time interval. As a consequence, the PSCSmoother algorithm has to
be changed, which is the main di�erence to the Navier�Stokes based model problem.

Concluding remarks In addition to the above extensions, one can also think about
applying the method, e. g., to �uid-structure interaction problems or compressible �ows.
Compressible �ows are considered for example in [41, 42] where Collis et al. derive adjoint
systems involving the optimal control of the kinetic energy in a subdomain at the �nal time
or the heat transfer or shear stress over a part of the boundary, respectively. Nonstationary
�uid-structure interaction problems have been considered, e. g., in [120] in the context of
the optimal control of the position of a rigid body in a �ow. In both cases, the underlying
KKT equations contain a primal equation forward in time and a dual equation backward
in time, thus, the discretisation and solver approach can be applied. However, due to the
change in the equations, the PSCSmoother component has to be changed appropriately.

Another aspect, which has not been in the close focus of this work, is the extension to
domains Ω ⊂ R3. All considered numerical examples are analysed in two spatial dimen-
sions. Since the discretisation strategy is formulated independent of the dimension, the
whole discretisation and solver strategy can be applied to 3D in the same way as in 2D.
However, this quickly leads back to algorithmic problems which are typical for the context
of optimal control with PDE constraints: The size of the underlying problem.

9.2. Possible future extensions 195

9.2.3. The problem size

Although the proposed solver methodology resolves the problem of e�ciency degeneration
for higher mesh levels, another major problem, the problem size itself, remains. Due to the
ellipticity of the underlying KKT equation, the time acts as an additional dimension that
quickly increases the problem size. The test examples in the chapters about numerical
tests quickly grew larger than 12GB memory already on a medium spatial level due to
a high number of timesteps. For an optimisation in 3D, the situation would even be
more dramatic, as the time introduces a fourth dimension. For smooth problems, using a
higher order �nite element discretisation with a higher order timestepping scheme can be
a preferred way to reduce the total number of unknowns which have to be saved. However,
for real industrial applications, this is usually not enough.

Parallelism and memory management A possible remedy can be seen in the combina-
tion of parallel computing with multigrid schemes. Di�erent approaches can be successful
here:

� For faster preconditioning in space (in case the spatial problems must be computed
on a very �ne mesh), domain decomposition can be used and a distributed multigrid
scheme in space can be applied. One possible approach is the ScaRC concept [106]
which has successfully been implemented in the FEAST project [15, 106, 147, 149,
150].

� For problems with many unknowns in time, the di�erent timesteps can be distributed
onto di�erent processors such that each processor maintains only one or a limited
number of timesteps in its memory. That way, the complete main memory of a cluster
can be used to store all the space-time vectors that appear in the space-time solver.

� In combination with the previous point, it is possible to de�ne distributed solvers.
The FBJacSolver for example is trivially parallelisable, a processor holding a sub-
set of timesteps can apply the underlying solution operator in space to every of its
timesteps in any arbitrary order, the subsets are completely decoupled. A solver like
FBGsSolver or FBSimSolver is harder to parallelise; one can thing of red-black
parallelisation techniques, possibly in combination with additional block-decoupling
strategies: A processor applies the block scheme just to the time intervals which are
present in its main memory. On the one hand this usually leads to some loss in the
convergence speed in practice due to the missing coupling of the time-blocks. On the
other hand, the parallel processing of the blocks speeds up the overall computation.
It is a question of its own how to distribute the solutions in time onto the di�erent
processors to reduce the overall CPU time.

� As an extension to the previous point, one can even think of a ScaRC preconditioner
in time. Each processor contains a number of timesteps and applies a local time-
multigrid scheme to these. The di�erent time-blocks are coupled by the solutions at
their time-endpoints.

If the required memory is too large for all timesteps to be kept in the main memory of
the computer (independent of whether it is a single-processor machine or a cluster), one
has to think about clever memory-management routines, and in particular, `out-of-core'
techniques: The main set of solutions must be saved to disk while the necessary subvectors
have to be read into the main memory. Here, one can use multithreading: One core reads

196 Further extensions, summary, conclusions and future work

solutions from the hard disk while the other assembles the nonlinear spatial systems and
performs the preconditioning. Of course, this necessitates a fast �lesystem to prevent too
much loss of e�ciency due to IO operations. One can also think of keeping the smaller
space-time problems of the hierarchy in the memory while only swapping out the higher
levels to hard disk.

Finally, due to the extreme high computational time necessary for large scale optimi-
sation problems, it is essential to incorporate checkpointing and restart facilities. This
prevents data loss in case the calculation breaks down due to hardware damage or simi-
lar issues. Note that the general structure of the algorithm naturally supports this: The
complete nonlinear solution can be saved, e. g., after each nonlinear iteration and/or after
each linear iteration. Restarting from such a saved solution allows to seamlessly continue
the iteration. With an appropriate design of the algorithm, this aspect can be combined
with the out-of-core techniques from above to save memory.

Model reduction and adaptivity In addition to globally higher order spaces, clever
memory management and parallel processing, one should think about further techniques
to reduce the number of unknowns. One possibility is the use of model reduction methods
like POD (`Proper Orthogonal Decomposition') which have been proven to be useful in
[85]. Another approach, which is typically known from simulation, is adaptivity: Apart
from the p-adaptivity which increases the order of the trial space where needed, but which
is less useful for nonsmooth problems, the following two mesh-based adaption methods are
of interest:

� By the use of h- (and what is called here `k'-) adaptivity, additional unknowns in
space and time are introduced. But where h-adaptivity in space can be hard due to
the complicated handling of hanging nodes in quadrilateral meshes, k-adaptivity in
time should be simpler: Time is a single dimension, so k-adaptivity means imposing
additional time intervals where required and enlarging/removing time intervals where
not required.

� r-adaptivity can be used to `deform' the underlying mesh such that unknowns are
shifted to where they are needed without changing the topological structure. In
space, this was done for example in [63�65], in time this would mean to shift the
location of timesteps, leading to a non-equidistant time-mesh. This would lead to
di�erent weights in front of the mass matrices realising the timestepping scheme but
would in particular not destroy the tridiagonal structure of the space-time matrices.

A dynamic change on the mesh (on the highest level, in space or in time) can be carried
out, e. g., after a speci�c number of nonlinear iterations. Such a change usually leads
to an interpolation of the current (�ne grid) solution and thus, the nonlinear iteration
has to be restarted. The most critical point in using such methods is the creation of
the multigrid operators: All types of adaptivity directly in�uence the de�nition of the
prolongation/restriction operators in the space-time multigrid scheme. But apart from
these technical details, the whole method is expected to work well.

A

Further model problems

To demonstrate discretisation and solver algorithms, the descriptions in Chapters 2 and 3
concentrated on a set of model problems of distributed control type. However, the method
is general enough to be applied to a couple of more general, well known and common
example problems as well. Exemplary, this appendix gives an brief overview about the
application of the discretisation and solver strategy to boundary control (Section A.1)
and parametrised control spaces (Section A.2). These two model problems are highly
relevant in practice: Boundary control allows to in�uence a solution by modifying the
boundary conditions, which is usually easier than controlling volume forces. Furthermore,
parametrised control spaces model the situation that a control is given only by �nitely
many control parameters.

A.1. Boundary control

A related, alternative control strategy is the boundary control approach. This is sketched
here as a �rst example for the generalisation of the proposed discretisation and solution
approach to more general optimisation problems.

Instead of applying a force in the full domain or in parts of it, this strategy controls
a �ow via the boundary or parts of it, e. g., by prescribing a special in�ow. From the
analysis point of view, the boundary control is a much harder problem than the distributed
control. Especially the use of Dirichlet control necessitates the use of non-variational and
hence more elaborate function spaces, leading to the theory of very weak solutions, cf.
[16, 35]. A number of recent papers has been published about this topic, see for example
[51, 78, 86, 92, 111]. However, ignoring the analysis for the moment, the corresponding
KKT systems can formally be written down without too many di�culties.

The following paragraphs give an overview about this type of control strategy to high-
light the di�erences to the distributed control on a special example and to illustrate possible
realisations of this control strategy within the proposed solver methodology. However, as
this work focuses on the distributed control as the central model problem, there is no
further discussion or numerical analysis of the boundary control.

Boundary control of the Navier–Stokes equations As a model problem, the optimal
Dirichlet boundary control of the Navier�Stokes equations is considered, given by

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2L2((0,T)×Γc)

−→ min! (A.1)

197

198 Further model problems

s.t. yt − ν∆y + y∇y +∇p = 0 in Q,
−div y = 0 in Q,
y(0, ·) = y0 in Ω,

y = g at (0, T)× Γd,

y = u at (0, T)× Γc,

ν∂ηy − pη = 0 at (0, T)× Γn,

for y : Q → Rdim and p : Q → R. The parameter ν > 0 de�nes the viscosity which is
assumed to be constant, and η : ∂Ω→ Rdim stands for the outer unit normal vector of the
domain Ω ⊂ Rdim. In this example, the boundary Γ := ∂Ω of the domain is decomposed
into Γ =: Γd∪Γn∪Γc with Γn de�ning the out�ow or Neumann boundary, Γd de�ning the
�xed Dirichlet boundary and Γc denoting the Dirichlet control boundary.

Following [84, 137] and taking into account that λ = 0 on (0, T) × (Γ \ Γn), the
corresponding KKT system reads

yt − ν∆y + y∇y +∇p = 0 in Q,
−div y = 0 in Q,
y(0, ·) = y0 in Ω,

y = g at (0, T)× Γd,

y = u at (0, T)× Γc,

ν∂ηy − pη = 0 at (0, T)× Γn,

−λt − ν∆λ− y∇λ+ (∇y)Tλ+∇ξ = y − z in Q,
−div λ = 0 in Q,

ν∂ηλ− ξη + (yη)λ = 0 at (0, T)× Γn,

λ = 0 at (0, T)× (Γ \ Γn),

λ(T) = 0 in Ω,

u = − 1

α

(
ν∂ηλ− ξη,

)
at (0, T)× Γc.

The control equation can again be eliminated which leads essentially to the following set
of equations,

yt − ν∆y + y∇y +∇p = 0 in Q, (A.2a)

y = g at (0, T)× Γd, (A.2b)

y +
1

α

(
ν∂ηλ− ξη

)
= 0 at (0, T)× Γc, (A.2c)

−λt − ν∆λ− y∇λ+ (∇y)Tλ+∇ξ = y − z in Q, (A.2d)

λ = 0 at (0, T)× (Γc ∪ Γd,) (A.2e)

complemented by initial/end time/natural boundary and incompressibility conditions from
above.

Appendix 199

Differences to distributed control Compared to the distributed control of the Navier�
Stokes equations, this system shows some similarities and some fundamental di�erences
that also in�uence the way the system must be treated by the discretisation and the solver:

a) Similar to the case of the distributed control, the system contains a dual velocity
λ : Q → Rdim and a dual pressure ξ : Q → R. These can be discretised in the same way as
the primal velocity/pressure y and p. Therefore, in every time interval, the basic systems
still have a form of the problems discussed in Section 2.5 on page 31.

b) The boundary conditions (A.2b) and (A.2e) are not critical, since they describe
standard Dirichlet boundary conditions for y and λ.

c) The boundary condition (A.2c) is the most critical one from the implementational
point of view. Its implementation depends on the type of solver which is being used.

� For a standard solver that uses a one-level forward-backward solution strategy, the
computed λ from the last backward sweep can be used as Dirichlet boundary condi-
tions for the next forward sweep,

ynew := − 1

α

(
ν∂ηλ− ξη

)
, at (0, T)× Γc. (A.3)

� However, to apply the fully monolithic nonlinear solver approach developed in this
work, (A.2c) has to be treated as it is, which leads to a nonlinear boundary condition
due to the coupling to λ.

To avoid the explicit evaluation of the control term on the right-hand side in (A.3) on
the boundary, it is advisable to implement the Dirichlet boundary condition (A.2c) in
a weak form using penalised boundary integrals (cf. [13, 101]). This introduces some
numerical di�culties due to the penalty parameter, but the realisation in the pro-
posed solver methodology framework is straightforward since all boundary operators
can be realised as matrix-vector operations.

A.2. Parametrised control spaces — linear combinations of input fields

Consider the case of the optimal distributed control of the heat equation (2.1), the Stokes
equations (2.2) or the Navier�Stokes equations (2.3), see page 22f. In this form, solving
the KKT system aims at computing the best possible right-hand side for the equation:
The dual variable gives the right-hand side of the primal equation and is discretised in the
same way as the primal variable. Increasing the level therefore indirectly leads to a higher
accuracy of the control.

However, in real-life problems, it is often not possible to realise a computed u as
physical quantity in an experiment due to technical reasons: An example is a magnetic
�eld in�uencing the �ow of a liquid in crystal growth (cf. [71]). A generator for such
a magnetic �eld is usually not able to generate arbitrary magnetic �elds. It has only a
limited number of design parameters that allow the user to in�uence the �eld. In such a
situation, the best possible solution u = − 1

αλ is of little help for the user who tries to �nd
the optimal setting for his or her speci�c magnetic �eld generator.

It is possible to model such a situation with a modi�ed distributed control problem only
based on the available design parameters. This leads to a modi�ed KKT system. Based
on the Poisson equation, a small introduction is given in the following to demonstrate the
applicability of the proposed solver approach.

200 Further model problems

Parametrised control for the Poisson equation Consider the optimal distributed con-
trol of the Poisson equation. The set of solutions of the Poisson equation is de�ned in the
space V ⊂ H1(Ω), and U ∈ RM denotes a set of M ∈ N design parameters for the optimal
control problem. Following Example 3.1 in [92], one possibility to formulate the optimal
distributed control of the Poisson equation in this case is

J(y, ~u) :=
1

2
||y − z||2Q +

α

2
|~u|2RM −→ min!

s.t. −∆y = B~u in Ω,

y = g at Γ,

with y : Ω → R, g : Γ → R and the mapping B realising a linear combination of input
�elds, see also [50] and in particular Example 2.1 in [87]. To be more precise, with a set of
M linear independent functions in space ψ1, ..., ψM ∈ L2(Ω), the operator B : RM → V ∗

can be de�ned as

B~u :=
M∑
i=1

uiψi

and maps the design parameters ~u = (u1, ..., uM) to the space V ∗ of right-hand sides, which
is de�ned as the dual space of V . Formally, the corresponding KKT system is essentially
de�ned as

−∆y = B~u in Ω

−∆λ = y − z in Ω

~u = − 1

α
B∗λ

 (A.4)

complemented by initial/end time/boundary conditions, with B∗ : V ∗ → RM denoting the
adjoint operator to B.

The operator B and its adjoint If the system is discretised with �nite elements in space
and if {ψ1, ..., ψM} coincide with the �nite element basis, the mappingB is just the mapping
of the degrees of freedom to the discrete �nite element space. In the more general case
that the support of each ψi is the full domain Ω, i = 1, ...,M , proper projection operators
must be used:

The adjoint B∗ of B can be calculated using the de�nition,

〈~u,B∗w〉 = (B~u,w)Ω

for all u ∈ U , w ∈ V , where 〈·, ·〉 denotes the standard scalar product in RM . A simple
computation reveals

〈~u,B∗w〉 = (B~u,w)Ω =

M∑
i=1

ui(ψi, w)Ω = ~uT ~f,

and thus, there is B∗w = ~f with ~f = (f1, ..., fM) de�ned by fi := (ψi, w)Ω, i = 1, ...,M .

Appendix 201

A.1 Remarks. a) In the special case that V is a �nite element space, w ∈ V has the
representation

w =
N∑
j=1

wjφj

with the coe�cient vector ~w = (w1, ..., wN) for a set φ1, ..., φN of N ∈ N �nite element
basis functions. The adjoint ~f = B∗w is given by

fi =
N∑
j=1

wj(ψi, φj)Ω,

i. e., there is B∗w = WT ~w and W = (Wij) being an L2 projection matrix de�ned by
Wij = (φj , ψi)Ω. Correspondingly, w = B~u is given by ~w = W~u.

b) The extension of a) to the heat equation is straightforward, since the operators B and
B∗ are purely spatial operators; they have to be applied in every timestep. An extension
to the Stokes and Navier�Stokes equations can be done in a similar way by applying the
corresponding B and B∗ operators in every velocity component.

c) The elimination of ~u in (A.4) leads to the system

−∆y = − 1

α
BB∗λ in Ω

−∆λ = y − z in Ω

and for the heat equation and the Stokes/Navier�Stokes equations, the corresponding
equations look similar. In this form, the proposed solver methodology can be applied
directly. On the linear algebra level, the operation BB∗λ is realised by multiplying the
vector with the degrees of freedom of λ to the matrices W and WT. However, it has to be
noted that although the number of design variables is reduced, the �nal size of the system
is not reduced, only a special type of projection is applied to the dual variable λ.

202 Further model problems

B

Globalisation and enhanced robustness

One of the main disadvantages of the Newton algorithm in Section 3.2 on page 51 is that it
is only locally second order convergent with a limited convergence radius. It can frequently
happen that an initial iterate wσ0 leads to a non-convergent iteration. In such a situation,
`globalisation strategies' can be applied to enhance robustness. There are di�erent possi-
bilities known from the literature, and for reference purposes, two variants are documented
below. Section B.1 describes the `adaptive Newton' which uses a couple of nonlinear defect
correction steps before switching to the actual Newton algorithm. Section B.2 gives an
introduction into the `Newton line search' method which realises a step size control for
Newton steps. Both methods can be seen as simple extensions to the proposed algorithms
aiming at global convergence.

B.1. The adaptive Newton algorithm

The nonlinear defect correction loop introduced in Section 3.2 on page 51 can be sum-
marised in two steps,

1.) Solve: C(wσi)gi = di :=
(
fσ −Gσ(wσi)wσi

)
2.) Update: wσi+1 := wσi + gi,

for an initial guess wσ0 ∈WNLMAX and i ∈ N0 denoting the current iteration. One possibil-
ity to maximise the convergence radius while still tying to obtain superlinear convergence
is to combine the �xed point method with the Newton or inexact Newton method; this
variant is called adaptive Newton here, see Algorithm B.1. With rOptNLi , the i-th nonlinear
residual is denoted, nFP refers to a maximum number of �xed point steps (e. g., nFP = 10)
and εOptFP a relative limit for the residual where to switch from the �xed point method
to the (inexact) Newton (e. g., εOptFP = 10−2).

The idea of the algorithm, which has also beed used in a similar form in [124] for
numerical simulations, is to use a weaker (but more stable) �xed point method in the �rst
iterations while switching to the stronger Newton algorithm as soon as the solution reaches
to a region of (stable) convergence. In this context, the intention of the algorithm is not
directly to provide global convergence of the nonlinear iteration � the backtracking line
search algorithm to be introduced in Section B.2 is much better suited for this task, and
the adaptive Newton can even be combined with it. However, from a heuristic point of
view, one step of the �xed point method with the Newton preconditioner C(wσi) := F σ(wσi)
can be seen as being a much harder task for the linear (space-time multigrid) solver than
one step with the standard preconditioner C(wσi) := Gσ(wσi) (which is only a part of the
Newton preconditioner). Thus, this method tries to enhance the robustness by providing
simpler linear subproblems to the linear solver in the �rst couple of steps.

203

204 Globalisation and enhanced robustness

Algorithm B.1 Adaptive Newton algorithm

Prede�ned constant: nFP ∈ N0: maximum number of �xed point steps
Prede�ned constant: εOptFP > 0: limit for the residuals in the �xed point iteration

1: function AdaptiveNewton(wσ0 ,f
σ)

2: i← 0
3: while (not converged) do
4: if (i < nFP) and ||rOptNLi ||l2 > εOptFP||rOptNL0 ||l2 then
5: Calculate wσi+1 by one step of the �xed point iteration (3.9)
6: with the preconditioner C(wσi) := Gσ(wσi).
7: else
8: Calculate wσi+1 by one step of the �xed point iteration (3.9)
9: with the Newton preconditioner C(wσi) := F σ(wσi),
10: eventually solved inexactly.
11: end if
12: i← i+ 1
13: end while
14: return wσi
15: end function

B.2. Newton line-search

A common strategy to enhance the robustness of the Newton algorithm is to introduce an
adaptively chosen damping parameter. The following introduction gives a brief overview
about this method as an extension of the space-time Newton method considered in this
work. More detailed, comprehensive discussions about this topic can be found, e. g., in
[52, 53, 56, 104, 123, 126, 135, 160]).

In many cases, the Newton line-search strategy ensures global convergence of the New-
ton algorithm, independent of the initial iterate. The corresponding algorithm is a modi-
�cation of (3.8) on page 51 with C(wσi) = F (wσi) and can be formulated as follows, using
the notation from Section 3.2,

wσi+1 := wσi + ωiF (wσi)−1
(
fσ −Gσ(wσi)wσi

)
, i ∈ N0, (B.1)

with a sequence of appropriately chosen damping parameters 0 < ωi ≤ 1 and an initial
iterate wσ0 ∈WNLMAX. To be more precise, the algorithm can be formulated in three steps,
starting from an initial iterate wσ0 , see Algorithm B.2. The most important point of this
algorithm is the calculation of the optimal damping parameter in (B.2b). The function
GetOptimalDamping(...) that calculates this parameter can be rather complex, but
a usual choice for this function is a backtracking line search strategy that starts with an
initial guess ωi = 1 and reduces this until a desired step length is found.

The damping parameter ωi is typically computed based on the nonlinear residual in
Rn, n ∈ N denoting the number of degrees of freedom on the space-time cylinder. It has
to be remarked that the system which is solved by the damped Newton has the form

Gσ(wσ)wσ = fσ,

for wσ, fσ ∈ WNLMAX, see (3.1) on page 48. Based on this form, the corresponding

Appendix 205

Algorithm B.2 Damped Newton algorithm with line search

1: function NewtonDamped(wσ0 ,f
σ)

2: i← 0
3: while (wσi not converged) do
4: Solve F (wσi)gi = di :=

(
fσ −Gσ(wσi)wσi

)
(B.2a)

5: ωi ← GetOptimalDamping(...) (B.2b)
6: wσi+1 ← wσi + ωigi (B.2c)
7: i← i+ 1
8: end while
9: return wσi
10: end function

nonlinear residual in Rn is de�ned by means of a function R : WNLMAX → Rn,

dσ := Gσ(wσ)wσ − fσ,

R(wσ) := ~dσ,

with ~dσ ∈ Rn denoting the vector containing the degrees of freedom of dσ. Furthermore, ||·||
denotes the standard Euclidean norm in Rn. With this notation, Algorithm B.3 illustrates
a common variant for such a backtracking strategy. It is motivated by theWolfe conditions
known from nonlinear optimisation, which read as follows, cf. [123, Chapter 3.1].

B.1 De�nition. For a continuously di�erentiable function f : Rn → R, s ∈ Rn is assumed
to be a descent direction in a point x ∈ Rn, i. e., ∇f(x)s < 0. Furthermore, 0 < α1 <
α2 < 1 are two given parameters. A step length parameter 0 ≤ ω ≤ 1 satis�es the Wolfe
conditions, if the point x + ωs on the line between x and x + s ful�ls the following two
conditions:

a) su�cient decrease condition

f(x+ ωs)− f(x) < α1 ω∇f(x)Ts (B.3a)

b) curvature condition

∇f(x+ ωs)Ts ≥ α2∇f(x)Ts. (B.3b)

B.2 Remarks. a) De�ning ξ(ω) := f(x + ωs), there is ξ(0) = f(x) and ξ′(0) = ∇f(x)s,
and ξ is continuously di�erentiable due to the di�erentiability of f . If s is a descent
direction, which corresponds to ξ′(0) < 0, the Wolfe conditions read, written in terms of ξ,

ξ(ω) < ξ(0) + α1ωξ
′(0),

ξ′(ω) ≥ α2ξ
′(0).

Thus, (B.3a) can be interpreted to aim at �nding some ω reducing f enough to guarantee a
certain decrease, relative to a `�attened' linear model. On the other hand, (B.3b) prevents
ω from being reduced too much due to ξ′(ω)→ ξ′(0) for ω → 0.

b) In practice, α1 is usually chosen small (e. g., α1 := 10−4) and α2 large, near at 1
(e. g., α2 := 0.9), cf. [123, Chapter 3.1]

206 Globalisation and enhanced robustness

Backtracking by a quadratic 1D model based on the sufficient decrease condition

Algorithm B.3 de�nes one example for the function GetOptimalDamping(...) and was
proposed, e. g., in [104, Chapter 8]. Starting from ω = 1, ω is reduced until a certain
condition holds; the �nal ω then de�nes the new step length. The condition in line 3
as well as the choice of the formula in line 4 can be motivated by the su�cient decrease
condition as sketched below, see also [52, 105]. It is possible to prove that similar to the
standard Newton solver, this strategy leads to quadratic convergence near the optimum,
cf. [104, Theorem 8.2.1] or [52, Theorem 6.3.4]. Furthermore, under some assumptions,
global convergence is guaranteed, cf. [52, Section 6.3.1].

Algorithm B.3 Calculate optimal damping by a quadratic model of the cost functional
in the su�cient decrease condition

Prede�ned constant: 0 < α < 1: a `minimum descent' parameter, e. g., α = 10−4

1: function GetOptimalDamping_1(wi,gi)
2: ω ← 1
3: while ||R(wi + ωgi)|| ≥ (1− αω)||R(wi)|| do
4: ω ← ωnew := ||R(wi)||2ω2

||R(wi+ωgi)||2+(2ω−1)||R(wi)||2
5: end while
6: return ω
7: end function

Newton algorithm for nonlinear equations A general nonlinear problem in Rn can be
expressed in the form

A(x) = 0, (B.4)

with x ∈ Rn and A : Rn → Rn continuously di�erentiable. By J : Rn → Rn×n, the
Jacobian of A is denoted, and it is assumed that (B.4) has a unique solution x∗ ∈ Rn.

In the following, x0 ∈ Rn is an initial approximation to x∗, i ∈ N0 and xi a current
iterate. The linear model of A in xi reads

Mi(x) = A(xi) + J(xi)(x− xi). (B.5)

The Jacobian J(xi) is assumed to be nonsingular in the following. As a consequence, each
Mi has a unique root which is used to de�ne xi+1 as a new approximate to x∗,

Mi(x) = 0 ⇒ xi+1 := x = xi − J(xi)
−1A(xi).

This iteration de�nes the standard Newton algorithm for nonlinear equations.

Newton steps in the nonlinear optimisation context A target function involving A(x)
can be de�ned by

r(x) := A(x)TA(x) = ||A(x)||2, (B.6)

with || · || denoting the standard Euclidean norm. By de�nition, there is r(x) ≥ 0 for all
x ∈ Rn and r(x) = 0 ⇔ A(x) = 0 ⇔ x = x∗. Thus, �nding a solution to A(x) = 0 is
equivalent to �nding a global minimum of r(·) in Rn.

Appendix 207

The standard Newton algorithm in the nonlinear optimisation context reads as follows,
cf. [105, Section 2.2]. Starting from x0 ∈ Rn, having computed xi ∈ Rn, i ∈ N0, the
function r(x) is approximated by a quadratic model in xi,

ri(x) := r(xi) +∇r(xi)T(x− xi) +
1

2
(x− xi)T∇2r(xi)(x− xi)

= ||A(xi)||2 + 2A(xi)
TJ(xi)(x− xi) +

1

2
(x− xi)T∇2r(xi)(x− xi),

and the next iterate is de�ned by

xi+1 := argmin
x∈Rn

ri(x).

This approach is modi�ed in the following, see [52, Section 6.5]. Using (B.5), an alternative
approximation to r(·) in xi is given by

mi(x) := Mi(x)TMi(x) = ||Mi(x)||2 (B.7)

= ||A(xi)||2 + 2A(xi)
TJ(xi)(x− xi) + ||J(xi)(x− xi)||2,

which matches ri(x) in the �rst two terms. Having computed xi, the next iterate xi+1 is
de�ned by minimising mi,

xi+1 := argmin
x∈Rn

mi(x). (B.8)

Although this does not re�ect the standard Newton method for nonlinear optimisation
anymore, this formula still de�nes a descent algorithm. The iteration aims at minimising
r(·) with special Newton descent steps. This is a well known fact from the literature and
can be veri�ed as follows.

The link between the two algorithms Taking a close look, the above two algorithms
are closely related.

a) There is mi(xi) = r(xi) and ∇mi(xi) = 2A(xi)
TJ(xi) = ∇r(xi), thus mi(·) is a

second order approximation to r(·) in xi.

b) Due to a) there is for all s ∈ Rn:

∇mi(xi)s < 0 ⇔ ∇r(xi)s < 0,

i. e., in xi, all descent directions of mi(·) are descent directions of r(·) and vice versa.
In particular, for xi 6= x∗, the Newton direction

si := xi+1 − xi = −J(xi)
−1A(xi)

is a descent direction of mi(·) and r(·) in xi due to ∇r(xi)si = −||A(xi)||2 < 0.

c) By de�nition, there is mi(x) ≥ 0 for all x ∈ Rn and

mi(x) = 0 ⇔ Mi(x) = 0 ⇔ xi+1 = x = xi − J(xi)
−1A(xi).

Thus,mi(·) reaches its unique minimum in xi+1 which is calculated in the same way as
in the case of nonlinear equations. As a consequence, this special descent algorithm
for minimising the target function r(x) is equivalent to the Newton algorithm for
nonlinear equations if starting from the same x0.

All in all, the Newton iteration for nonlinear equations can be interpreted in the nonlinear
optimisation context as a special descent algorithm with Newton descent directions si. The
damped Newton is therefore a descent algorithm with variable step size ωi, and �nding an
optimal damping parameter corresponds to �nding an optimal step size.

208 Globalisation and enhanced robustness

Sufficient decrease check The Wolfe conditions above specify two restrictions on the
step size. Algorithm B.3 is de�ned based on the su�cient decrease condition, ignoring the
curvature condition. For f := r, x = xi, s = si and 0 ≤ ω ≤ 1 in the su�cient decrease
condition (B.3a), there is

ξ(ω) = r(xi + ωsi) = ||A(xi + ωsi)||2, ξ(0) = ||A(xi)||2, ξ′(0) = −2 ||A(xi)||2.

Thus, ω ful�ls the condition if

ξ(ω) < ξ(0) + αωξ′(0) (B.9)

⇔ ||A(xi + ωsi)||2 < (1− 2αω)||A(xi)||2.

Due to the fact that (1−αω)2 = 1−2αω+O(α2), the last inequality can safely be replaced
for small parameters α by

||A(xi + ωsi)|| < (1− αω)||A(xi)||. (B.10)

With A corresponding to R, xi corresponding wσi and si corresponding to gi, this de�nes
the su�cient decrease check in line 3 of Algorithm B.3.

Calculating a new step size It is assumed that 0 < ω ≤ 1 is a given step length
that does not ful�l condition (B.9). The task is to �nd a new parameter ωnew < ω with
ξ(ωnew) < ξ(ω). This can be obtained, e. g., by the 1D minimisation of a quadratic model
of ξ, see [104, 105]. For λ ∈ R, one de�nes

q(λ) := ξ(0) + ξ′(0)λ+ cλ2 with c := c(ω) :=
ξ(ω)− ξ(0)− ξ′(0)ω

ω2
.

By de�nition, there is q(0) = ξ(0), q′(0) = ξ′(0) and q(ω) = ξ(ω). It can easily be proven

that q has a minimum in λ∗ := − ξ′(0)
2c for 0 ≤ α < 1 if (B.9) is violated, see [105, 123].

Furthermore, the inequality 0 < λ∗ ≤ ω
2(1−α) can be veri�ed directly, thus for 0 ≤ α < 1

2 ,
there is λ∗ < ω. λ∗ de�nes the new step length. There is

ωnew := λ∗ = −ξ
′(0)

2c
=

||A(xi)||2ω2

||A(xi + ωsi)||2 + (2ω − 1)||A(xi)||2
(B.11)

and with A corresponding to R, xi corresponding wσi and si corresponding to gi, this
de�nes the formula in line 4 of Algorithm B.3.

B.3 Remarks. There are a couple of possible extensions of this algorithm. For example,
from i = 1 on, a cubic interpolation for ξ can be used to calculate a more accurate step size
(see for example [104, 105]). Another extension involves satisfying the curvature condition
(see [123, Chapter 3]). A third commonly used modi�cation is to bound the new step
length in relation to the old one, i. e., ωnew is forced to be located in the interval

ωnew ∈ [β1 ω, β2 ω]

in every step, for two constants 0 < β1 < β2 < 1, e. g., β1 = 0.1, β2 = 0.5. This is an
important safeguarding strategy to avoid too small/large steps (see [104, Chapter 8] or
[105, Chapter 3.1]). Note however, in many practical examples, all these modi�cations do
not signi�cantly enhance the robustness, so they are ignored in simple implementations.

C

Alternative solution concepts

To the best of the author's knowledge, the described and analysed solution approach is the
�rst realisation of a complete hierarchical discretisation and solver concept for the optimal
distributed control of nonstationary �uid �ow. However, the method shares similarities
with other solution strategies from the literature, in particular the `Nonlinear multigrid
strategy' and the `Integral equation approach'. In particular the last one was used by
numerous authors (see for example [11, 34, 71, 84, 85, 152]), although barely in a hierar-
chical style. Both concepts have advantages and disadvantages in comparison to the solver
strategy proposed in Chapters 2 and 3. This appendix gives a brief introduction into these
methods including a short discussion about the di�erences.

C.1. The nonlinear multigrid strategy

The general nonlinear multigrid strategy has been proposed, e. g., in [29] or [75, Chapter 9].
The idea of this scheme is to create a hierarchy of nonlinear problems which is exploited
by a multigrid scheme similar to the linear case. However, all defects are created based on
the original nonlinear operator instead of its linearised counterpart.

In [20, 21], Borzì described an adaption of the Full-Approximation-Scheme (`FAS') from
[29] as solver for nonstationary, nonlinear optimal control problems. The model problem
considered in there formally reads in a simpli�ed form as follows. The usual space-time
cylinder is denoted by Q = (0, T) × Ω, with T > 0, Ω ⊂ R2. For a function z : Q → R2,
�nd u : Q → R2 with

J(y, u) :=
1

2
||y − z||2Q +

α

2
||u||2Q −→ min!

s.t. yt −∆y +N(y) = u in Q,
y(0, ·) = y0 in Ω,

for a function y : Q → R2, a parameter α > 0 and an initial condition y0 : Ω → R2.
This form is similar to the heat equation but involves an additional nonlinearity N :
L2(Q) → R2. Similar to Section 2.2 on page 23�, the problem is reformulated with the
usual Lagrange multiplier approach as KKT system. The control u is eliminated which
results in a system of the form

yt −∆y +N(y) = − 1

α
λ in Q,

−λt −∆λ+DN∗(y)λ = y − z in Q,

209

210 Alternative solution concepts

complemented by initial/end time/boundary conditions. This is a nonlinear system of the
form

A(y, λ) = f

for an appropriate operator A and right-hand side f .
Borzì applies the �nite di�erence scheme for the discretisation in space and the implicit

Euler scheme in time on a hierarchy of space-time meshes similar to Section 3.1 on page 48�.
This results in a hierarchy of problems

Al(yl, λl) = fl, l = 1, ...,NLMAX,

or in short
Al(xl) = fl, l = 1, ...,NLMAX,

with Al, yl, λl, fl being discrete counterparts to A, y, λ and f and xl = (yl, λl). The
variable l de�nes a level identi�er and NLMAX ∈ N is the maximum level of the hierarchy.
This hierarchy is the starting point for the FAS scheme, which is basically a modi�cation
of the standard multigrid scheme for linear equations, see in particular [19, 22, 75, 79, 158].

Idea of the FAS scheme The idea of this scheme roughly sketched in the following; a
more detailed description can be found, e. g., in [19]. For a given approximate solution xl
on level l ∈ {2, ...,NLMAX}, there is to �nd an update gl on level l such that

x∗l := xl + gl

solves the nonlinear equation, i. e.,
Al(x

∗
l) = fl (C.1)

This necessitates smoothing and a coarse grid correction. For the coarse grid correction,
equation (C.1) is reformulated as follows,

Al(x
∗
l) = fl,

⇔ Al(x
∗
l)−Al(xl) = fl −Al(xl)︸ ︷︷ ︸

=:dl

.

This equation is formulated on the coarse grid using appropriate restriction/coarse grid
projection operators. On level l− 1, there is a xl−1 which satis�es the coarse grid problem

Al−1(xl−1)−Al−1(Ixl) = Rdl︸︷︷︸
=:dl−1

⇔ Al−1(xl−1) = dl−1 +Al−1(Ixl) (C.2)

Here, R = Rl−1 denotes the restriction from level l to l − 1 and I = I l−1 a coarse grid
projection operator (injection) from level l to level l − 1. Since by de�nition

fl = dl +Al(xl),

the right-hand side of (C.2),

f̃l−1 := dl−1 +Al−1(Ixl),

is an approximation to fl−1. Consequently, xl−1 is an approximation to a solution x∗l−1 on
level l − 1 with

Al−1(x∗l−1) = fl−1.

Appendix 211

This solution can be written in the form

x∗l−1 = Ixl + gl−1 (C.3)

for an appropriate update gl−1 on level l − 1.
With the solution xl−1 of the coarse grid problem (C.2) at hand, motivated by (C.3),

an approximate update on level l − 1 is now de�ned as

gl−1 := xl−1 − Ixl,

and a new nonlinear solution on level l follows using a prolongation P = P l−1 from level
l − 1 to level l by

xnewl := xl + Pgl−1

The prolongation and the coarse grid projection are de�ned as injection, the restriction
as weighted mean in space and time similar to Section 3.4.3 on page 56f. For the smoothing,
a nonlinear modi�cation of the Gauÿ�Seidel method is applied which incorporates in each
timestep the solution of the previous and next timestep. This approach shares the same
idea as the FBGsSmoother algorithm proposed in Section 3.5 on page 65� but focuses
on the scalar case and would have to be formulated in a di�erent way for being applied to
saddle point problems or a space-discretisation with �nite elements.

Discussion Comparing this solution technique to the approach proposed in this work,
some similarities can be observed. Both approaches concentrate on a nonlinear system
involving the primal and dual variables, eliminating the control. Furthermore, similarities
can be seen in the smoothing operators and in the way, prolongation/restriction operators
are de�ned. However, the above modi�cation of the FAS scheme does not apply a Newton
iteration but directly solves the nonlinear system in a multilevel fashion. Thus, superlinear
convergence cannot be expected, but the convergence is still fast and level-independent.
In fact, Borzì proved and illustrated this for the 1D case in [21]. For a comprehensive
overview about the FAS scheme including a numerical comparison to Newton-Multigrid
schemes concerning e�ciency and robustness, the interested reader is referred to [79].

At the end it must be said that a realisation of this method in the context of optimal
control for the nonstationary Navier�Stokes equations is not yet existing. A realisation
and comparison to the proposed discretisation and solver strategy regarding e�ciency and
robustness is beyond the scope of this work.

C.2. The integral equation method

The integral equation method was originally developed by Hackbusch [72�74] for general
elliptic problems. In 1997, Tröltzsch and Goldberg [140] extended the approach to the
optimal control of the heat equation before Büttner [34] proved convergence for a space-
time multigrid method built upon this approach. In the following, a brief overview of this
method is given without going too much into detail. This should highlight the di�erences,
advantages and disadvantages in comparison to the method in this work, as the integral
equation method is frequently used by other authors and can be seen as an alternative.

To brie�y present the integral equation method as analysed, e. g., in [34, 72�74, 140],
for simplicity the optimal distributed control of the heat equation is considered. The

212 Alternative solution concepts

associated KKT system (ignoring boundary conditions and constraints for convenience)
formally reads

yt −∆y = u in Q,
−λt −∆λ = y − z in Q,

u = − 1

α
λ in Q

and has to be interpreted in the weak sense, with y, λ, u : Q → R, all smooth enough. An
operator P representing the left-hand side is de�ned by P : y 7→ (∂∂ty −∆y); the adjoint
P∗ of its Fréchet derivative is given by P∗ : λ 7→ (− ∂

∂tλ−∆λ). The KKT system therefore
reads in a short form

Py = u, (C.4a)

P∗λ = y − z, (C.4b)

u = − 1

α
λ. (C.4c)

Under suitable assumptions (cf. [34, 72, 140]), P and P∗ have inverse operators P−1 and
P−∗, respectively, such that the last equation (C.4c) for the control u can be reformulated
by (C.4a) and (C.4b) to the �xed point equation

u = − 1

α
P−∗

(
P−1u− z

)
(C.5)

=

(
− 1

α
P−∗P−1

)
u−

(
− 1

α
P−∗

)
z

=: Ku+ f.

This equation is an integral equation of Fredholm type (cf. [72, 73, 140]), i. e., the above
equation can be written in the form

u(w) =

∫
Q
k(w, s)u(s)ds+ f(w)

for some kernel function k : Q2 → R with w, s ∈ Q; one can now easily recognise where
the name of the method comes from. In a compact form, this equation reads

(I − K)u = f. (C.6)

Solution algorithms From this integral equation, a �xed point iteration can be derived
directly. Given a starting point u0 : Q → R, either the iteration

un := Kun−1 + f, n ∈ N,

can be applied, similar to [72, 140], or a defect correction scheme for u can be formulated,

un := un−1 + C−1(f − un−1 +Kun−1︸ ︷︷ ︸
=:dn

), (C.7)

with an appropriate preconditioning operator C. Alternatively, on the discrete level, (pre-
conditioned variants of) GMRES, CG (if (I−K) is positive de�nite), BiCGStab or others
can be used, as suggested in [34].

Appendix 213

The �xed point iteration can be used to formulate a two-grid algorithm in space and
time. At �rst, a constant number of iterations with an iterative solver on the space-time
�ne mesh forms a smoother. Afterwards, one iteration with the above �xed point method
follows where the preconditioner C is replaced by a restriction�solution�prolongation op-
erator by means of a coarser space-time grid. On the coarse mesh, an iterative solver can
again be used. Recursively applying this technique for a hierarchy of space-time meshes
results in a space-time multigrid for the control u.

C.1 Remarks. a) The core component of the whole algorithm is the operator K, de�ned as
K = − 1

αP
−∗P−1. That means, for each defect dn = f − (I −K)un−1, one primal equation

forward in time and one dual equation backward in time have to be solved. The philosophy
behind this algorithm is an operator splitting: Similar to the FBSimSmoother smoother,
this approach decouples the solution of the primal equation from the dual equation, which
more or less allows black box simulation solvers to be used for the two time sweeps.

b) For nonlinear equations, the method can be embedded as a linear solver into a
Newton iteration for the control u; this was introduced in [34, Section 6.3].

Discussion Both methods, the integral equation method as well as the space-time multi-
grid approach described in this work, are di�erent solution methods for the same discrete
KKT system. Therefore, computed solutions are the same. But while the integral equa-
tion method can be interpreted as a Schur complement approach (working in the control
space due to the elimination of primal/dual variables), the space-time multigrid approach
described in this work focuses on the `opposite' variables: primal and dual variables are
treated in a monolithic way, the control u is eliminated.

An advantage of the integral equation method is the reduced memory consumption as
proper orthogonal decomposition (`POD') and checkpointing techniques can be applied.
On the other hand, a disadvantage can be seen in the lack of appropriate choices for the
preconditioner in (C.7) which is a crucial point for stability: The construction of a good
preconditioner C as an approximation to (I − K)−1 is far from being trivial. To best of
the author's knowledge, the usual choice is the Richardson preconditioner C := ωI (with
a damping parameter ω > 0) which is known to be weak in many situations.

As indicated above, both methods can be used in a multigrid framework, and in [34],
level-independent convergence of such an approach has been proven for the optimal control
of the heat equation. However, to the best of the author's knowledge, the integral equation
method has not yet been realised in a hierarchical context for the optimal control of the
nonstationary Navier�Stokes equations. A realisation and a fair comparison between both
approaches concerning robustness, memory consumption and convergence speed is still
missing and beyond the scope of this work.

214 Alternative solution concepts

D

Modified Crank–Nicolson discretisations

The time discretisation of the space-time problem in Chapter 2.6 uses a special interpreta-
tion for the pressure and the right-hand side. Formally, the scheme interprets the pressure
at time interval [tn−1, tn] as point value at t = tn−1+θ = (1 − θ)tn−1 + θtn. For θ = 1/2,
pn− 1

2
in the timestepping scheme is therefore interpreted as the pressure p(tn−1+tn

2), i. e.,
in the midpoint of the time interval. This fact is well accepted in the community, but to
the best of the author's knowledge, it has not found its way to the literature. An exact
analytical derivation of bounds for the time error is beyond the scope of this work. How-
ever, the following appendix derives a modi�ed Crank�Nicolson scheme in a formal way to
motivate this interpretation. For the underlying theory, the interested reader is referred to
[8, 96, 131].

Similar to Section 1.7 on page 17, Ω ⊂ Rdim for dim ∈ N is a domain with a boundary
that is smooth enough, T > 0, [0, T] a time interval of interest, Q = (0, T) × Ω a space-
time cylinder and Σ = (0, T) × ∂Ω. The underlying spaces are de�ned as U := L2(Q),
V := H1,1(Q)dim, Z0 := {q ∈ L2(Ω) :

∫
Ω q = 0} and Z := L2(0, T ;Z0). In the literature,

the nonstationary Stokes equations with homogeneous initial and boundary conditions,
which is considered here for simplicity, is usually formulated as

yt −∆y +∇p = f in Q,

−div y = 0 in Q,

y(0, ·) = 0 in Ω,

y = 0 at Σ,

with f ∈ U , y ∈ V and p ∈ Z. This should be understood in the weak sense on the
space-time cylinder, i. e., for y ∈ V0 := V ∩ L2(0, T ;H1

0 (Ω)dim),

(yt, v)Q + (∇y,∇v)Q − (p,div v)Q = (f, v)Q for all v ∈ L2(0, T ;H1
0 (Ω)dim),

(−div y, q)Q = 0 for all q ∈ L2(Q),

y(0, ·) = 0 in Ω.

Following [96, 131], a special Galerkin�Petrov discretisation is applied to this prob-
lem which allows to derive di�erent formulations of the Crank�Nicolson method. For
that purpose, subspaces of piecewise constant step functions are de�ned as follows: An
equidistant time discretisation of [0, T] is chosen with N ∈ N time intervals based on
0 = t0 < t1 < ... < tN = T , k := T/N and tn = nk for n = 0, ..., N . The time intervals
are denoted by I0 := {t0}, In = (tn−1, tn]. Then, subspaces of V0 and Z with piecewise

215

216 Modified Crank–Nicolson discretisations

constant step functions in time are given by

Vk := {w ∈ V0 : w(t, ·) = wn ∈ H1(Ω)dim for almost all t ∈ In} ⊂ V0,

Zk := {q ∈ Z : z(t, ·) = zn ∈ L2(Ω) for almost all t ∈ In} ⊂ Z.

Using these spaces as test spaces, there holds in particular

(yt, v)Q + (∇y,∇v)Q − (p,div v)Q = (f, v)Q for all v ∈ Vk,
(−div y, q)Q = 0 for all q ∈ Zk,

y(0, ·) = 0 in Ω,

or in detail

N∑
i=1

∫
In

(yt, v)Ω dt+

N∑
i=1

∫
In

(∇y,∇v)Ω dt

−
N∑
i=1

∫
In

(p,div v)Ω dt =

N∑
i=1

∫
In

(f, v)Ω dt for all v ∈ Vk,

N∑
i=1

∫
In

(−div y, q)Ω dt = 0 for all q ∈ Zk,

y(0, ·) = 0 in Ω.

Due to the de�nition of the test spaces, there is v(t, ·) = vn ∈ V and q(t, ·) = qn ∈ Z for
almost all t ∈ In. The above sum therefore decomposes into N independent time integrals∫

In

(yt, vn)Ω dt+

∫
In

(∇y,∇vn)Ω dt

−
∫
In

(p,div vn)Ω dt =

∫
In

(f, vn)Ω, dt for all vn ∈ V ,∫
In

(−div y, qn)Ω dt = 0 for all qn ∈ Z,

for n = 1, ..., N . These time integrals are now approximated by using cubature in time.
First, the functions y, f and p are assumed to be more regular in time; in particular,
y ∈ C(0, T ;V), f ∈ C(0, T ;V ∗) and p ∈ C(0, T ;Z) are assumed. Applying the trapezoidal
rule to the velocity integrals, the midpoint rule to the pressure integral and approximating
the time derivative by a central di�erence scheme in time, for all vn ∈ V and qn ∈ Z the
approximation

(yn − yn−1, vn)Ω + k

[
1

2
(∇yn,∇vn)Ω+

1

2
(∇yn−1,∇vn)Ω

]
− k(pn− 1

2
,div vn)Ω = k

[
1

2
(fn, vn)V ∗,V +

1

2
(fn−1, vn)Ω

]
(−div yn, qn)Ω = 0

y0 = 0

is obtained, with yn ∈ V and pn− 1
2
∈ Z corresponding to y(tn) ∈ V and p(tn+tn−1

2) ∈
Z, respectively. It is well accepted that this interpretation approximates the continuous
formulation up to an error O(k2), thus being of second order in time and exact if y and p

Appendix 217

are piecewise linear functions in time (with values in V and Z, respectively). Division by k
and resorting unknown variables to the left-hand side (and ignoring the divergence/initial
condition for simplicity) results in

(yn/k, vn)Ω +
1

2
(∇yn,∇vn)Ω − (pn− 1

2
,div vn)Ω

= (yn−1/k, vn)Ω −
1

2
(∇yn−1,∇vn)Ω +

[
1

2
(fn, vn)Ω +

1

2
(fn−1, vn)V ∗,V

]
.

Formally, the solution sets

(y0, ..., yn) ∈ V N+1, (p 1
2
, ..., pN− 1

2
) ∈ V N

are interpreted as being the weak solutions (w. r. t. space) of the `traditional' Crank�
Nicolson scheme

yn
k
− 1

2
∆yn +∇pn− 1

2
=
yn−1

k
+

1

2
∆yn−1 +

[
1

2
fn +

1

2
fn−1

]
(D.1)

with (y0, ..., yn) approximating (y(t0), ..., y(tN)) and (p 1
2
, ..., pN− 1

2
) approximating (p(t1−t02),

..., p(
tN−tN−1

2)).
Without reducing the order of the time discretisation, the midpoint rule can be used

for the right-hand side as well. This results in

(yn − yn−1, vn)Ω + k

[
1

2
(∇yn,∇vn)Ω +

1

2
(∇yn−1,∇vn)Ω

]
− k(pn− 1

2
,div vn)Ω = k(fn− 1

2
, vn)Ω

or equivalently,

(yn/k, vn)Ω +
1

2
(∇yn,∇vn)Ω − (pn− 1

2
,div vn)Ω

= (yn−1/k, vn)Ω −
1

2
(∇yn−1,∇vn)Ω + (fn− 1

2
, vn)Ω,

which uses the notation fn− 1
2

:= f(tn+tn−1

2). Formally, the solution sets

(y0, ..., yN) ∈ V N+1, (p 1
2
, ..., pN− 1

2
) ∈ V N

are interpreted as the weak solutions (w. r. t. space) of the modi�ed Crank�Nicolson scheme

yn
k
− 1

2
∆yn +∇pn− 1

2
=
yn−1

k
+

1

2
∆yn−1 + fn− 1

2
(D.2)

with (y0, ..., yn) and (p 1
2
, ..., pN− 1

2
) again approximating (y(t0), ..., y(tN)) and (p(t1−t02), ...,

p(
tN−tN−1

2)), respectively.
For both schemes, the approximation of the pressure can be interpreted as being located

in the midpoints of each time interval. The modi�ed scheme which also evaluates the
right-hand side in the midpoints of the time intervals is the key for the Crank�Nicolson
discretisation of the KKT system in Section 2.6, and the numerical examples in Section 6.3
con�rm the second order approximation properties.

Interpreting p and f in the midpoints in time is crucial at di�erent points of the
algorithm if moving on to an optimal control problem on the space-time cylinder. On

218 Modified Crank–Nicolson discretisations

the one hand, this in�uences the way prolongation and restriction operators are set up;
with the correct interpolation, a faster convergence can be expected. On the other hand,
the evaluation of di�erent physical quantities is a�ected: For the evaluation of drag/lift
coe�cients for example, the common strategy is to interpret the pressure as being located
in the endpoints of the time interval, similar to the velocity. Instead, interpreting the
pressure as being located in the midpoints of the time intervals, the evaluation of the
drag/lift coe�cients can be done with a higher accuracy.

E

Parametric and nonparametric finite elements

For the discretisation in space with �nite elements, it is known (see for example [26, 33])
that the choice of the �nite element spaces for the velocity and the pressure is crucial
for the stability. The pair Q1/Q1 is unstable for example and needs special stabilisation
techniques (cf. [60, 95]) to avoid spurious oscillations in the solution. As a remedy, �nite
element spaces of di�erent order for velocity and pressure can be chosen. However, this
often leads to the choice of a nonconforming or discontinuous �nite element space in the
velocity and/or the pressure.

This work uses two common �nite element pairs, which are both partially nonconform-
ing and discontinuous, namely Q̃1/Q0 and Q2/P

disc
1 . The �rst pair, Q̃1/Q0, is a common

choice of a �rst order discretisation (cf. [142]). While the de�nition of the Q0 space for
the pressure is rather straightforward, the de�nition of the Q̃1 space is not unique. In
particular for the nonconforming, integral mean value based variant of this family, which
is preferred in this work and which is known to be the most stable variant (cf. [142�145]),
a clear de�nition is missing in the literature, at least to the best of the author's knowledge.
While in [109] a �rst description of this topic was given, the following chapter gives an
extended introduction.

The other element pair Q2/P
disc
1 , which has been used and analysed concerning its

accuracy in a simulation, e. g., in [124], is chosen as an example for a higher order discreti-
sation. The velocity space is continuous and conforming. However, the pressure space is
discontinuous as it was for the Q̃1/Q0 pair. This pair is expected to show a higher accuracy
for smooth solutions than Q̃1/Q0 pair � at least if the accuracy of the time discretisation
is high enough. The exact de�nition of the P disc

1 space (linear and discontinuous) is also
part of the following appendix.

E.1. General terms and definitions

For describing the approach of parametric and nonparametric elements, �rst, some general
facts and de�nitions about �nite element functions are recalled which can be found, e. g., in
[37, 38]. It is noted that the notation used here slightly di�ers from that used in previous
chapters concerning the indices. The dimension of the underlying space is denoted by
dim ∈ N, e. g., dim = 2 or 3. For an arbitrary geometric element K ∈ Ωh of a mesh
Ωh ⊂ Rdim, a �nite element is given by two sets. On the one hand, a �nite dimensional
space of shape functions on K is needed,

Π(K) = span{m1, ...,mn},

with all mi : Rdim → R being linear independent and usually polynomial or rational.
Furthermore, a set τ := {τ1, ..., τn} of n linear independent, linear and continuous node

219

220 Parametric and nonparametric finite elements

functionals τk : Cs(K) → R is necessary, s ≥ 0. The set has to be unisolvent, i. e., for all
combinations of α1, ..., αn ∈ R there exists a unique function p ∈ Π(K) such that

τk(p) = αk, k = 1, ..., n.

A �nite element function fh : Rdim → R is piecewise de�ned on the element K by

fh|K(x) = p(x)

for a function p(x) =
∑n

i=1 aimi(x) ∈ Π(K), a1, ...,an ∈ R. To calculate the coe�cients
ai for a set of values α1, ..., αn, a linear system for the ai is formed,

τk(p) = τk(

n∑
i=1

aimi) =

n∑
i=1

τk(mi) · ai = αk, k = 1, ..., n.

Obviously, the coe�cients ai are independent of K because of the linearity of the τk.

E.1 Example. For a quadrilateral element K, a1,...,a4 refer to the corner points, e1,...,e4

to the edges, M1,...,M4 to the midpoints of the edges and M to the centre of the element.
Furthermore, f ∈ C(Rdim) is an arbitrary function with f|K ∈ C1(K) for all elements
K ∈ Ωh. The node functionals of the Q1 space are de�ned as

τQ1(f) := {f(a1), f(a2), f(a3), f(a4)}.

The node functionals of the Q̃1 space are de�ned as

τQ̃1
(f) :=

{
1

|e1|

∫
e1

f ds,
1

|e2|

∫
e2

f ds,
1

|e3|

∫
e3

f ds,
1

|e4|

∫
e4

f ds

}
,

and the node functionals of the P disc
1 space as

τPdisc
1

(f) := {f(M), ∂xf(M), ∂yf(M)}.

The element P disc
1 on the other hand is an extension to the Q0 space whose node functional

is de�ned by
τQ0(f) := {f(M)}.

Finally, the Q2 space is de�ned by the node functionals corresponding to the vertices, edge
midpoints M1,...,M4 and the element centre,

τQ2(f) := {f(a1), f(a2), f(a3), f(a4),

f(M1), f(M2), f(M3), f(M4),

f(M)}.

From global to local basis functions

A �nite element function fh is globally de�ned as a linear combination fh =
∑N

i=1 fiϕi(x),
of N ∈ N global basis functions {ϕi}, with {fi} representing the global degrees of freedom.
Every ϕi has a local representation on the element K. There are exactly n functions in
{ϕi} such that supp(ϕi) ∩K = K. Without loss of generality,

supp(ϕi) ∩K = K for i = 1, ..., n

Appendix 221

can be assumed. Every ϕi is locally a linear combination of the shape functions,

ϕi|K =
n∑
j=1

aijmj(x) =: pi ∈ Π(K),

and therefore, for x ∈ K, there is

fh|K(x) =
N∑
i=1

fiϕi|K(x) =
n∑
i=1

fiϕi|K(x) =
n∑
i=1

fipi(x). (E.1)

The pi are called a `local basis functions'. They are uniquely de�ned by the relationship

τk(pi) = δki, k, i = 1, ..., n.

with δij denoting the Kronecker delta. The di�erence between parametric and nonpara-
metric elements is in the de�nition of the shape functions.

E.2. Parametric elements

For parametric �nite elements the shape functions are de�ned by means of a reference
element and a proper mapping from the reference element K̂ ⊂ Rdim to the real element
K. With {m̂i : Rdim → R, i = 1, ..., n}, a set of n ∈ N linear independent (and usually
polynomial) shape functions is de�ned on K̂. A bijective mapping σ = σK : K̂ → K maps
from the reference to the real element K. The shape functions on the real element are
de�ned as

mi(x) := m̂i ◦ σ−1(x) = m̂i(x̂), i = 1, ..., n

with x̂ = σ−1
K (x). It is remarked that in general due to the mapping, these are rational.

Furthermore, the existence of a set τ̂ := {τ̂1, ..., τ̂n} of d linear independent, linear and
continuous node functionals τ̂k : Cs(K̂)→ R is assumed, s ≥ 0, which is unisolvent on K̂.
The corresponding node functionals for an arbitrary element K are de�ned by means of
the mapping σ,

τk(p) := τ̂k(p ◦ σ−1), p ∈ Cs(Rdim), k = 1, ..., n.

Figure E.1: Mapping σ from a reference to a real quadrilateral element.

222 Parametric and nonparametric finite elements

E.2 Example. As an example, the reference quadrilateral in 2D is considered, K̂ :=
[−1, 1]2, see Figure E.1. For z = (z1, z2)T ∈ K̂, the Q1-element is given by the four shape
functions

m̂0(z) = 1, m̂1(z) = z1, m̂2(z) = z2, m̂3(z) = z1z2.

For an arbitrary element K ∈ Ωh of the mesh, there exists a bilinear mapping σ : R2 → R2,

σ(z) = σK(z) =

(
s0 + s1z1 + s2z2 + s3z1z2

t0 + t1z1 + t2z2 + t3z1z2

)
which, on under mild conditions on the cell, bijectively maps the corners of K̂ to the
corners of K, sj , tj ∈ R. The shape functions on the real element are then de�ned as

mi(x) := m̂i(x̂), i = 1, ..., 4.

with x̂ = σ−1(x), x ∈ R2.

Definition of local basis functions for parametric elements

As stated above, the set of local basis functions for an element K is uniquely de�ned by
the relationship

τk(pi) = δki, k, i = 1, ..., n.

Because of the linearity, this leads to

δki = τk(pi) =

n∑
j=1

aijτk(mj) =

n∑
j=1

aij τ̂k(m̂j) = τ̂k(p̂i)

for the local basis functions p̂i : K̂ → R, p̂i(x̂) :=
∑n

j=1 aijm̂j(x̂) on the reference element

K̂. These local basis functions are obviously independent of the mesh. The {aij} can be
computed once in advance and used for all elements K. For x̂ ∈ K̂ and x = σ(x̂) there
holds

pi(x) = pi ◦ σ(x̂) = p̂i(x̂).

As soon as the coe�cients are known, (E.1) can be rewritten in terms of x̂,

fh|K(x) =
n∑
i=1

fipi(x) =
n∑
i=1

fip̂i(x̂).

For calculating derivatives and integrals (e. g., in the assembly of matrices and vectors),
x̂ = σ−1(x) in combination with the chain rule has to be used. The evaluation of p̂i(x̂) is
particularly cheap if x̂ is known in advance; e. g., during in the assembly of matrices and
vectors, x̂ represents coordinates of cubature points on the reference element which are
often the same for all K.

All �nite elements built upon this approach are called parametric elements as the
mapping σ maps the parameter space K̂ to the space of real world coordinates. Typical
properties of parametric elements are, e. g., their clear and straightforward de�nition and
the high e�ciency in the assembly of matrices and vectors as the local basis functions can
be computed in advance on a reference element.

Appendix 223

E.3. Nonparametric elements

Nonparametric elements are harder to �nd in the literature (see for example [142�145])
and often, a clear de�nition is missing. The following paragraphs give a closer introduction
about what nonparametric elements are and how they are de�ned.

Again, K̂ denotes a reference element, K ∈ Ωh an arbitrary element of a mesh Ωh,
{m̂i : Rdim → R, i = 1, ..., n} a set of shape functions on K̂ and σ : K̂ → K a bijective
mapping from the reference to the real element. For very high angles in the real element
K (up to nonconvex elements), the mapping σ can degenerate (see for example [162]). As
a consequence, the underlying �nite element space loses the property of being unisolvent
and therefore, linear systems cannot be computed anymore.

Another restriction is crucial in particular for CFD applications: The possible loss of
approximation properties on perturbed meshes. For example, an e�cient low order approx-
imation of the velocity and pressure in CFD is the Q̃1 �nite element space for the velocity
and the Q0 space for the pressure. This element pair is based on rectangular elements and
ful�ls the discrete LBB condition. In [145], Turek et al. analysed the in�uence of the shape
of the underlying quadrilaterals to the approximation properties of the discretisation. If
the parametric variant of Q̃1 was used, it was shown that the approximation order su�ers if
the elements do not ful�l a special `uniformity condition'. For strongly perturbed meshes,
the element pair loses its approximation properties, thus rendering it unsuitable for being
used on general meshes obtained, e. g., by certain mesh adaption methods.

To cope with these problems, shape functions are directly de�ned on the real element
instead of on the reference element. Finite elements de�ned by this approach are called
nonparametric elements as they use real world coordinates for being de�ned. There are
di�erent methods available how to de�ne local polynomials in the real world space, and
in the following, a quadrilateral 2D mesh is used to illustrate how such elements can be
de�ned. The approach is of course much more general, it can be adapted to 2D triangular
meshes as well as to 3D tetrahedral or hexahedral meshes and others. Usually, each para-
metric element can be converted to a nonparametric element by using the corresponding
steps.

E.3.1. Local coordinate systems

Nonparametric elements are in most cases de�ned by using a 'local' coordinate system
for each element K ∈ Ωh upon which shape functions are de�ned. For that purpose, a
de�nition of local coordinate vectors is needed. Usually, this is carried out by connecting
opposite midpoints (of edges in 2D or face midpoints in 3D) which leads to a set of vectors
~v1, ..., ~vd, ~vi = ~vi(K) for the element K (see Figure E.2), i = 1, ..., dim. The most common
approach to de�ne a local coordinate system based on these vectors is by a linear mapping
as follows.

The linear mapping approach

In the linear mapping approach, a linear mapping from the real world coordinate system
to an intermediate reference element is used. A pure a�ne linear mapping σ : K̂ → Rdim

is de�ned by

σ(z) = Az + b, z ∈ K̂, (E.2)

for A ∈ Rdim×dim and b ∈ Rdim. From this de�nition follows σ−1(x) = A−1(x − b), i. e.,
the inverse σ−1 if σ is linear and explicitly known. The mapping σ : K̂ → Rdim can be

224 Parametric and nonparametric finite elements

Figure E.2: De�nition of a local coordinate system on an arbitrary element.

formulated using the vectors {~vi} and the midpoint M of the element K:

σ(z) = Az + b :=
1

2

 v1
1 v1

2 ...
v2

1 v2
2 ...

...
...

. . .

 z +M.

It is noted that, e. g., for dim = 2, A is a 2 × 2 system, so A−1 can easily be computed.
Furthermore, the mapping σ does not map K̂ to K; instead, σ(K̂) is a parallelogram where
the midpoint of the reference element and its edge midpoints (or face midpoints in 3D,
resp.) are mapped onto the element/edge(/face) midpoints of K (see Figure E.3). The
image K̃ := σ−1(K) is a deformed reference element (see Figure E.4).

The representations of the shape functions in the coordinates of the real element K are
then de�ned as

mi(x) := mi(K,x) := m̂i ◦ σ−1(x).

Figure E.3: Mapping of the quadrilateral reference element K̂ (left). Right: σ(K̂). Ex-

ample for v1 =

(
1

1/4

)
and v2 =

(
1/4
3/4

)
.

Appendix 225

Figure E.4: E�ect of the inverse mapping. Left: An arbitrary quadrilateral element in 2D
with centre in (0, 0). Right: σ−1(K) and the reference element.

E.3.2. Definition of local basis functions for nonparametric elements

As stated above, the set of local basis functions for an element K is uniquely de�ned by
the relationship

τk(pi) = δki, k, i = 1, ..., n.

Because of the linearity, this leads to the linear system

δki = τk(pi) =

n∑
j=1

aijτk(mj).

In contrast to parametric �nite elements, it is not possible to precompute the coe�cients
{aij} in advance, they are usually di�erent for every K. Therefore at this point, a small
local matrix has to be inverted to compute these coe�cients, which follows from

V A = I ⇔ A = V −1

with I being the identity matrix and

V =

 τ1(m1) τ1(m2) ...
τ2(m1) τ2(m2) ...

... ...
. . .

 , A =

 a11 a21 ...
a12 a22 ...

... ...
. . .

 .

By calculating A = V −1, the coe�cients aij of the local basis functions are obtained, and
using the fi from above, the representation (E.1) can be written as

fh|K(x) =
n∑
i=1

fipi(x) =

n∑
i=1

fi

n∑
j=1

aijmj(x).

The functions mj(·) in this sum can usually explicitly be calculated using their de�nition
and the fact that σ−1 is linear.

E.3 Example. a) For the integral mean value based variant of the Q̃1 in 2D, the shape
functions in the new coordinate systems on the reference element are given by

m̂1(z) = 1, m̂2(z) = z1, m̂3(z) = z2, m̂4(z) = z2
1 − z2

2

226 Parametric and nonparametric finite elements

for z = (z1, z2)T ∈ K̂. Using the linear mapping approach and assuming ai =: (axi , a
y
i) for

the corner points of the element gives

σ(z) =
1

4

(
ax2 + ax3 − ax4 − ax1 ax3 + ax4 − ax1 − ax2
ay2 + ay3 − a

y
4 − a

y
1 ay3 + ay4 − a

y
1 − a

y
2

)(
z1

z2

)
+

1

4

(
ax1 + ax2 + ax3 + ax4
ay1 + ay2 + ay3 + ay4

)
= Bz + b,

and for x ∈ R2, z = z(x) = B−1(x− b) can directly be evaluated. The shape functions on
the real element follow as

m1(x) = 1, m2(x) = z1(x),

m3(x) = z2(x), m4(x) = z1(x)2 − z2(x)2.

After computing the matrix A = V −1 (where, e. g., the 2-point Gauss formula is applied
for the boundary integrals on the element edges to compute the τk(mj) in real-world
coordinates for V), the values of the four basis functions in x on the real element are
computable by pi(x) =

∑4
j=1 aijmj(x), i = 1, ..., 4.

b) In case of the midpoint-based variant Q̃MP
1 of Q̃1 in combination with the linear-

mapping approach, the cost intensive computation of the matrix A = V −1 can be avoided.
This variant of Q̃1 uses the node functionals

τ(f) := τQ̃MP
1

(f) := {f(M1), f(M2), f(M3), f(M4)}

with {Mi} denoting again the midpoints of the edges e1,...,e4 of an element K. The shape
functions are again

m̂1(z) = 1, m̂2(z) = z1, m̂3(z) = z2, m̂4(z) = z2
1 − z2

2 .

A linear mapping σ : K̂ → K, σ(z) = Az + b as in (E.2) maps the edge midpoints of the
reference element to {Mi}, i. e.,

σ(0,−1) = M1, σ(1, 0) = M2,

σ(0, 1) = M3, σ(−1, 0) = M4.

Therefore, σ−1(Mi) and m̂k(σ
−1(Mj)) are known in advance, independent of the actual

element. This leads to the basis functions

τj(pi) = pi(Mj) =

4∑
k=1

aikmk(Mj) =

4∑
k=1

aikm̂k(σ
−1(Mj)),

⇒ A =


1 1 1 1
0 1 0 −1
−1 0 1 0
−1 1 −1 1


−1

=
1

4


1 0 −2 −1
1 2 0 1
1 0 2 −1
1 −2 0 −1

 ,

p1(x) =
1

4
(m1(x)− 2m3(x)−m4(x)) =

1

4
(1− 2m̂3 − m̂4) ◦ σ−1(x),

p2(x) =
1

4
(m1(x) + 2m2(x) +m4(x)) =

1

4
(1 + 2m̂2 + m̂4) ◦ σ−1(x),

p3(x) =
1

4
(m1(x) + 2m3(x)−m4(x)) =

1

4
(1 + 2m̂3 − m̂4) ◦ σ−1(x),

p4(x) =
1

4
(m1(x)− 2m2(x) +m4(x)) =

1

4
(1− 2m̂2 + m̂4) ◦ σ−1(x).

F

List of Symbols

General notations:

IE Implicit Euler time discretisation scheme

CN Crank�Nicolson time discretisation scheme

R Set of real numbers

N Natural numbers

N0 Natural numbers including zero

δij = 1 if i = j, = 0 otherwise; Kronecker delta

dim = 2, or = 3, dimension of the underlying space

Ω Domain, bounded open set in Rdim, dim = 2 or = 3

Γ = ∂Ω, domain boundary

Γd Part of the domain boundary corresponding to Dirichlet
boundary conditions

Γn Part of the domain boundary corresponding to do-nothing
boundary conditions

η Outer unit normal vector of Ω

T Maximum time on a time interval [0, T]

Q = (0, T)× Ω, space-time cylinder

Σ = (0, T)× Γ, boundary of the space cylinder in time

O(·) Landau symbol, asymptotic bound

(·, ·) Scalar product

|| · || Norm

X∗ Dual space of a Hilbert space X

(·, ·)X∗,X Dual pairing in a Hilbert space X

C(Ω) Space of continuous functions on Ω

L2(Ω) Space of square integrable functions on Ω

(·, ·)Ω = (·, ·)L2(Ω), L
2 scalar product, (v, w)Ω =

∫
Ω vw dx

|| · ||Ω = || · ||L2(Ω), Norm associated with (·, ·)Ω.

227

228 List of Symbols

H1(Ω) Space of square integrable functions with �rst weakly
derivatives

H1
0 (Ω) Subspace of H1(Ω) with weak zero boundary conditions

L2(0, T ;X) Standard space of abstract functions v : (0, T)→ X,
square-integrable in time

H1(0, T ;X) = {y ∈ L2(0, T ;X) | yt ∈ L2(0, T ;X)}.
L2(Q) Space of square integrable functions on Ω

H1,1(Q) = L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω))

H1,1
0 (Q) = H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω))

L2(Q)n = L2(0, T ; (L2(Ω))n)

H1,1(Q)n = L2(0, T ; (H1(Ω))n) ∩H1(0, T ; (L2(Ω))n)

H1,1
0 (Q)n = H1(0, T ; (L2(Ω))n) ∩ L2(0, T ; (H1

0 (Ω))n)

(·, ·)L2(Q) Scalar product in L2(Q)

|| · ||L2(Q) Norm in L2(Q)

(·, ·)(L2(Q))n Scalar product in (L2(Q))n

|| · ||(L2(Q))n Norm in (L2(Q))n

(·, ·)Q = (u, v)L2(Q) or = (u, v)(L2(Q))n , depending on the context

(·, ·)Q Norm associated with (·, ·)Q

∇y = (∂x1y, ∂x2y, ...)
T, gradient of a scalar function;

for functions on Q: applied to the spatial component

∆y = ∇ · (∇y) = ∂2
x1
y + ∂2

x2
y + ..., Laplacian of a scalar function;

for vector valued functions: applied to every component;

for functions on Q: applied to the spatial component

div y = ∂x1y1 + ∂x2y2 + ..., divergence of a vector function;

for functions on Q: applied to the spatial component

(·)T Transpose (of a matrix, a vector,...)

∇2(·) Hessian of an operator

∂t Time derivative; also denoted with subscript t, e. g., yt = ∂ty

∂tt Second time derivative; also denoted with subscript tt, e. g.,
ytt = ∂tty

Notations regarding continuous KKT systems:

V = H1,1(Ω) in case of the heat equation,

= H1,1(Ω)dim in case of the Stokes/Navier�Stokes equations

V0 = V ∩ L2(0, T ;H1
0 (Ω)) in case of the heat equation,

= V ∩ L2(0, T ;H1
0 (Ω)dim) in case of the Stokes/Navier�Stokes

equations

Z0 = {q ∈ L2(Ω) :
∫

Ω q = 0}
Z = L2(0, T ;Z0)

Appendix 229

y0 Initial condition

y Primal velocity or temperature

λ Dual velocity or temperature

p Primal pressure

ξ Dual pressure

ν > 0, viscosity constant

J(·) Target functional, to be minimised

H Operator representing the continuous primal equation

X ∗ Adjoint of an operator X , (x,Xy) = (X ∗x, y)

DH Fréchet derivative of H
DH∗ Operator representing the continuous dual equation

L(·) Lagrange functional associated with J(·)

Notations regarding a time discretisation:

N Number of time intervals

k = 1/N , length of each time interval

f = (f1, f2, ...) Space-time right-hand side vector

A Laplace or Stokes operator, Av = −∆v or Av = −ν∆v

I Identity operator, Iv = v

G = ∇ Gradient operator, Gq = ∇q
D = −div Divergence operator, Dv = −div v

Notations regarding a time discretisation with the implicit Euler scheme:

xn n-th component of a vector x

x Discrete primal solution,

= (y0, y1, ..., yN) for the heat equation,

= (y0, p0, y1, p1, ..., yN , pN) for the Stokes/Navier�Stokes
equations

ψ Discrete dual solution,

= (λ0, λ1, ..., λN) for the heat equation,

= (λ0, ξ0, λ1, ξ1, ..., λN , ξN) for the Stokes/Navier�Stokes
equations

y = (y0, y1, ..., yN), discrete primal temperature/velocity

λ = (λ0, λ1, ..., λN), discrete dual temperature/velocity

p = (p0, p1, ..., pN), discrete primal pressure

ξ = (ξ0, ξ1, ..., ξN), discrete dual pressure

w = (w1, w2, ...) Space-time solution vector,

wn = (yn, λn) for the heat equation,

230 List of Symbols

wn = (yn, λn, pn, ξn) for the Stokes/Navier�Stokes equations

Xk = (V × Z)N+1

Kn = (yn∇(·)), convection operator

Kn = ((·)∇)yn, second convection operator

Cn = A+K(yn)

= −ν∆(·) + (yn∇(·))
Nn = A+K(yn) +K(yn)

= −ν∆(·) + (yn∇(·)) + ((·)∇yn)

Hk = Hk(x) Space-time matrix, primal equation; discrete counterpart to H
DHk = DHk(x) Space-time matrix; discrete counterpart to DH

DHk,∗ = DHk,∗(x) Space-time matrix, dual equation; discrete counterpart to DH∗

G = G(w) Space-time matrix that combines primal and dual equation

F = F(w) Fréchet derivative matrix of G

Gn n-th diagonal matrix of G

Fn n-th diagonal matrix of F

Ĭn First lower o�diagonal in F and G, row n

În First upper o�diagonal in F and G, row n

Notations regarding a time discretisation with the Crank�Nicolson scheme:

tn−1+θ = θtn + (1− θ)tn−1

xn−1+θ n-th component of a space-vector x using a time discretisation
with the one-step θ-scheme; interpreted as being located at
tn−1+θ

x Discrete primal solution;

= (y0, y1, ..., yN) for the heat equation,

= (y0, p−1+θ, y1, pθ, ..., yN , pN−1+θ) for the
Stokes/Navier�Stokes equations

ψ Discrete dual solution,

= (λ−1+θ, λθ, ..., λN−1+θ) for the heat equation,

= (λ−1+θ, ξ0, λθ, ξ1, ..., λN−1+θ, ξN) for the
Stokes/Navier�Stokes equations

y = (y0, y1, ..., yN), discrete primal temperature/velocity

λ = (λ−1+θ, λθ, ..., λN−1+θ), discrete dual temperature/velocity

p = (p−1+θ, pθ, ..., pN−1+θ), discrete primal pressure

ξ = (ξ0, ξ1, ..., ξN), discrete dual pressure

w = (w1, w2, ...) Space-time solution vector,

wn = (yn, λn−1+θ) for the heat equation,

wn = (yn, λn−1+θ, pn−1+θ, ξn) for the Stokes/Navier�Stokes
equations

Appendix 231

Xk = (V × Z)N+1

Aτ = −τ∆(·)
K∗(yn) = (∇y)T(·)
Cτn = τ(A+K(yn))

N τ
n = N τ (yn) = τ(A+K(yn) +K(yn))

N τ,∗
n = N τ,∗(yn) = τ(A−K(yn) +K∗(yn))

Rτn = Rτ (λn−1+θ) = τ
(
− ((·)∇)λn−1+θ + (∇(·))Tλn−1+θ

)
Hk = Hkθ (x) Space-time matrix, primal equation; discrete counterpart to H

DHk = DHkθ (x) Space-time matrix; discrete counterpart to DH
DHk,∗ = DHk,∗θ (x) Space-time matrix, dual equation; discrete counterpart to DH∗

G = Gθ(w) Space-time matrix that combines primal and dual equation

F = Fθ(w) Fréchet derivative matrix of G
Gn n-th diagonal matrix of G

Fn n-th diagonal matrix of F

Ĭn First lower o�diagonal in G, row n

În First upper o�diagonal in G, row n

J̆n First lower o�diagonal in F, row n

Ĵn First upper o�diagonal in F, row n

Notations regarding a discretisation in space:

Ωh Triangulation of the domain Ω

Vh Finite element space for a velocity/temperature

Zh Finite element space for a pressure

Vh = Vh × Vh for the heat equation,

= Vh × Vh × Zh × Zh for the Stokes/Navier�Stokes equations

#dof Number of degrees of freedom

Ih,Ah,Dh, ... Discrete counterparts of I, H, D,... in space

σ = (h, k)

wσ = (wh0 , w
h
1 , ...) ∈ V

N+1
h , discrete solution vector

fσ = (fh0 , f
h
1 , ...) ∈ (V∗h)N+1, discrete right-hand side vector

Gσ(wσ) Discrete counterpart to G(w), implicit Euler time
discretisation

Gθ,σ(wσ) Discrete counterpart to G(w), Crank�Nicolson time
discretisation

Gn n-th diagonal block of Gσ

Fn n-th diagonal block of F σ

M̆n First lower o�diagonal in Gσ, row n

232 List of Symbols

M̂n First upper o�diagonal in Gσ, row n

X ∗h ∼= Xh Isomorphic association of the dual space X ∗h of a discrete space
Xh via the dual pairing (·, ·)X ∗h ,Xh

Notations regarding the construction of hierarchies:

L Number of levels in a spatial hierarchy

Ωl Mesh at level l of a spatial hierarchy

V l Finite element space at level l of the spatial hierarchy

V l,∗ = (V l)∗, corresponding dual space / space f right hand sides

M Number of levels in a temporal hierarchy

Tm Decomposition of [0, T], time level m; implicit Euler time
discretisation

N = Nm Number of time intervals of Tm

Tmθ Decomposition of [0, T], time level m; Crank�Nicolson time
discretisation

W l,m = (V l)Nm+1

NLMAX Number of levels in a space-time hierarchy

WNLMAX = WL,M

W 1,W 2, ...,WNLMAX Hierarchy created from WNLMAX by coarsening

(W l,m)× =
(
(V l)∗

)Nm+1
, space of discrete right-hand sides

(W l,m)× ∼= (V l)Nm+1 Isomorphic association via the dual pairing (·, ·)V∗h,Vh in space,
applied to every component in time;

(W l,m)× =
(
(V l)∗

)Nm+1 ∼= (V l)Nm+1

wlm Discrete solution vector at space level l and time level m

f lm Discrete right-hand vector at space level l and time level m

Glm Space-time system matrix at space level l and time level m

W l = W l,l, simpli�ed notation

wl Discrete solution vector corresponding to W l, simpli�ed
notation

f l Discrete right-hand vector corresponding to W l, simpli�ed
notation

Gl Space-time system matrix corresponding to W l, simpli�ed
notation

(W l)× = (W l,l)×, space of discrete right-hand sides, simpli�ed
notation

Notations regarding nonlinear solvers:

di i-th nonlinear residual

Appendix 233

gi i-th nonlinear correction

wi i-th nonlinear iterate

C(wσi) Preconditioner for the nonlinear defect,

= Gσ(wσi) or = F σ(wσi)

Notations regarding linear solvers:

dl = (dl0, ..., d
l
N), space-time defect vector at level l

gl = (gl0, ..., g
l
N), space-time correction vector at level l

P l Space-time prolongation operator from level l to level l + 1

Rl Space-time restriction operator from level l + 1 to level l

S(·) Smoothing operator

NSMpre Number of presmoothing steps

NSMpost Number of postsmoothing steps

ω > 0, damping parameter

~v ∼= v Vector ~v containing the degrees of freedom corresponding to a
�nite element function v

A ∼= C A discrete matrix A ∈ Rn×n corresponding to an operator C
in the �nite element space

A−1 Inverse of a matrix A; in a multigrid setting: Coarse grid
solver

x, b ∈ Rn, vectors
x∗ ∈ Rn, solution of a linear system Ax = b

Notations regarding prolongation/restriction/coarse grid operators:

Pspace = Pmspace Prolongation operator in space from space level m to m+ 1

Rspace = Rmspace Restriction operator in space from space level m+ 1 to m

Ispace = Imspace Interpolation operator in space from space level m+ 1 to m

Ptime = P ltime Prolongation operator in time from time level l to l + 1

Rtime = Rltime Restriction operator in time from time level l + 1 to l

Itime = I ltime Interpolation operator in time from time level l + 1 to l

Ξ = {ξ0 < ξ1 < ... < ξN | 0 ≤ ξn ≤ T, n = 0, ..., N}
X A �nite dimensional Hilbert space

Y0 = Y0(Ξ, X) All functions v : Ξ→ X with v(t) = 0 for t ∈ Ξ

Y (Ξ, X) = {v : [0, T]→ X}
/
Y0 ,

space of discrete abstract functions from Ξ to X

v̄ = (v(ξ0), ..., v(ξN))T for a function v ∈ Y (Ξ, X)

(·, ·)Ξ Scalar product for elements in Y (Ξ, X)

|| · ||Ξ Norm induced by (·, ·)Ξ

〈·, ·〉 Dual pairing in Y (Ξ, X)

Y (Ξ, X)∗ Dual space of Y (Ξ, X)

234 List of Symbols

Y (Ξ, X)∗ ∼= Y (Ξ, X) Identi�cation of Y (Ξ, X)∗ and Y (Ξ, X) via the dual pairing

Y (T l, V m) ∼= W l,m Identi�cation via the components in time;

v ∈ Y (T l, V m) ⇔ v̄ ∈W l,m

(W l,m)× ∼= Y (T l, V m)∗ Identi�cation via the components in time;

(W l,m)× ∼= (V l)Nm+1 ∼= Y (T l, V m) ∼= Y (T l, V m)∗

wpi For w = (w0, ..., wN):

`Time-primal' part of wi, all components of wi located

at the endpoints of time interval i (usually y and ξ)

wdi `Time-dual' part of wi, all components of wi located

in-between the endpoints of time interval i (usually λ and p)

wp = (wp0, ..., w
p
N) for w = (w0, ..., wN)

wd = (wd0 , ..., w
d
N) for w = (w0, ..., wN)

fpi For a right-hand side/defect vector f = (f0, ..., fN):

`Time-primal' part of fi, all components of fi located

in-between the endpoints of time interval i (usually fλ and fp)

fdi `Time-dual' part of fi, all components of fi located

at the endpoints of time interval i (usually fy and fξ)

Notations regarding smoothing operators in space:

K ∈ Ωh, an element of a mesh

I(K) Index set with all degrees of freedom corresponding to a �nite
element function on element K

xI(K) Vector containing the degrees of freedom of x corresponding to
I(K)

AI(K) Matrix containing the rows I(K) of a matrix A

AI(K),I(K) Matrix containing the rows and columns I(K) of a matrix A

diag(A) The elements on the diagonal of a matrix A

Notations regarding stopping criteria and residuals:

εOptNL Relative stopping criterion for the nonlinear space-time solver

εOptMG Relative stopping criterion for the linear space-time solver

εCoarseMG Relative stopping criterion for the space-time coarse grid solver

εSpaceMG Relative stopping criterion for the linear solver in space

εSimNL Relative stopping criterion for the nonlinear solver in a time
interval during a simulation

εSimMG Relative stopping criterion for the linear solver

during the nonlinear iteration of a simulation

rOptNLm m-th nonlinear residual

rOptMG
m m-th linear residual

rCoarseMG
m m-th linear residual in the space-time coarse grid solver

235

rSimNLm m-th nonlinear residual in the simulation solver in a time
interval during a simulation

rSimMG
m m-th linear residual in the simulation solver during the

nonlinear iteration of a simulation

236 List of Symbols

237

Bibliography

[1] F. Abergel and R. Temam. On some control problems in �uid mechanics. Theoretical
and Computational Fluid Dynamics, 1:303�325, 1990.

[2] F. Abraham, M. Behr, and M. Heinkenschloss. The e�ect of stabilization in �nite
element methods for the optimal boundary control of the Oseen equations. Finite
Elem. Anal. Des., 41:229�251, 2004.

[3] G. V. Alekseyev and V. V. Malikin. Numerical analysis of optimal boundary control
problems for the stationary Navier-Stokes equations. Comput. Fluid Dyn. J., 3(1):
1�26, 1994.

[4] I. Altrogge, T. Preusser, T. Kröger, Ch. Büskens, P. L. Pereira, D. Schmidt, and
H. Peitgen. Multi-scale optimization of the probe placement for radio-frequency
ablation. Preprint SPP1253-06-01, SPP1253, 2007.

[5] H. Antil, R. H. W. Hoppe, and Ch. Linsenmann. Optimal design of stationary
�ow problems by path-following interior-point methods. Preprint SPP1253-18-03,
SPP1253, 2007.

[6] Th. Apel. Anisotropic �nite elements: Local estimates and applications. Advances
in Numerical Mathematics. Teubner, 1999. ISBN 3-519-02744-5.

[7] Th. Apel, D. Sirch, and G. Winkler. Error estimates for control constrained optimal
control problems: Discretization with anisotropic �nite element meshes. Preprint
SPP1253-02-06, SPP1253, 2008.

[8] A. K. Aziz and P. Monk. Continuous �nite elements in space and time for the heat
equation. Math. Comput., 53(186):255�274, 1989.

[9] R. E. Bank and T. F. Dupond. An optimal order process for solving �nite element
equations. Math. Comput., 36(153):35�51, 1981.

[10] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, Ch. Romine, and H. Van der Vorst. Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, 1994.

[11] G. Bärwol� and M. Hinze. Optimization of semiconductor melts. ZAMM, 86:423�437,
2006.

[12] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming. Theory
and Algorithms. Wiley-Interscience, 2006. 3rd edition, ISBN 0471486000.

238 Bibliography

[13] Y. Bazilevs and Th. J. R. Hughes. Weak imposition of Dirichlet boun-
dary conditions in �uids mechanics. Comp. Fluids, 36:12�26, 2007. doi:
10.1016/j.comp�uid.2005.07.012.

[14] Ch. Becker. Strategien und Methoden zur Ausnutzung der High-Performance-
Ressourcen moderner Rechnerarchitekturen für Finite-Element-Simulationen und
ihre Realisierung in FEAST (Finite Element Analysis & Solution Tools). PhD thesis,
Universität Dortmund, Logos Verlag, Berlin, 2007. http://www.logos-verlag.de/
cgi-bin/buch?isbn=1637, ISBN 978-3-8325-1637-6.

[15] Ch. Becker, S. H. M. Buijssen, S. Kilian, and S. Turek. High performance FEM sim-
ulation via FEAST and application to parallel CFD via FEATFLOW. In H. Rollnik
and D. Wolf, editors, NIC Symposium 2001, Volume 9 of NIC-Serie, pages 493�502.
Forschungszentrum Jülich, 2002. Forschungszentrum Jülich, 2001.

[16] M. Berggren. Approximations of very weak solutions to boundary-value problems.
SIAM J. Num. Anal., 42(2):860�877, 2004.

[17] J. T. Betts. Practical Methods for Optimal Control Using Nonlinear Programming.
SIAM, 2001. ISBN 0898714885.

[18] L. T. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waanders. Large-
scale PDE-constrained optimization. In Lecture Notes in Computational Science and
Engineering. Springer, Berlin, 2003.

[19] A. Borzi. Introduction to multilevel methods. Technical report, Oxford University
Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, 1994.
Lecture Notes in Mathematics.

[20] A. Borzi. Fast multigrid methods for parabolic optimal control problems, 2002.
Proceedings of the 18th GAMM-Seminar.

[21] A. Borzi. Multigrid methods for parabolic distributed optimal control problems. J.
Comp. Appl. Math., 157:365�382, 2003.

[22] A. Borzi. Multigrid Methods for Optimality Systems. Habilitation thesis, University
of Graz, 2003.

[23] A. Borzi and R. Griesse. Experiences with a space-time multigrid method for the
optimal control of a chemical turbulence model. Int. J. Numer. Meth. Fluids, 47:
879�885, 2005.

[24] A. Borzi and V. Schulz. Multigrid methods for PDE optimization. SIAM Review, 51
(2):361�395, 2009.

[25] N. Botkin, K. Ho�mann, and V. Turova. Stable solutions of Hamilton�Jacobi equa-
tions. application to control of freezing processes. Preprint SPP1253-080, SPP1253,
2009.

[26] D. Braess. Finite Elements. Cambridge University Press, 2nd edition, 2001. ISBN
0-521-01195-7.

[27] Ch. Brandenburg, F. Lindemann, M. Ulbrich, and S. Ulbrich. A continuous adjoint
approach to shape optimization for Navier Stokes �ow. Preprint SPP1253-14-01,
SPP1253, 2008.

http:/ / www.logos-verlag.de/ cgi-bin/ buch?isbn=1637,
http:/ / www.logos-verlag.de/ cgi-bin/ buch?isbn=1637,

239

[28] Ch. Brandenburg, F. Lindemann, M. Ulbrich, and S. Ulbrich. Advanced numerical
methods for PDE constrained optimization with application to optimal design in
Navier Stokes �ow. In S. Engell, A. Griewank, M. Hinze, G. Leugering, R. Rannacher,
and V. Schulz, editors, Constrained Optimization and Optimal Control for Partial
Di�erential Equation. Birkhäuser, 2010.

[29] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math. Com-
put., 31:333�390, 1977.

[30] A. L. Braslow. A history of suction-type laminar-�ow control with emphasis on �ight
research. Monographs in Aerospace History 13, American Institute of Aeronautics
and Astronautics, Washington, D.C., 1999.

[31] Brenner. A nonconforming multigrid method for the stationary Stokes equations.
Math. Comput., 55(192):411�137, 1990.

[32] S. C. Brenner. An optimal-order multigrid method for P1 nonconforming �nite ele-
ments. Math. Comput., 52(185):1�15, 1989.

[33] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems
arising from Lagrangian multipliers. RAIRO, 8(R-2):129�151, 1974.

[34] G. Büttner. Ein Mehrgitterverfahren zur optimalen Steuerung parabolischer Prob-
leme. PhD thesis, Fakultät II � Mathematik und Naturwissenschaften der Technis-
chen Universität Berlin, 2004. http://edocs.tu-berlin.de/diss/2004/buettner_
guido.pdf.

[35] E. Casas. Error estimates for the numerical approximation of Dirichlet boundary
control for semilinear elliptic equations. SIAM J. Control Opt., 45(5):1586�1611,
2006.

[36] Texas Advanced Computing Center. GotoBLAS library, 2010. http://www.tacc.

utexas.edu/tacc-projects.

[37] Ph. G. Ciarlet. The �nite element method for elliptic problems. Studies in mathe-
matics and its applications, Vol. 4. North-Holland Publishing Company, Amsterdam,
New-York, Oxford, 1978. ISBN 0444850287.

[38] Ph. G. Ciarlet and J. L. Lions. Finite Element Methods (Part 1), Volume II of
Handbook of Numerical Analysis. Elsevier, 1991.

[39] F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley-Interscience, 1983.

[40] S. S. Collis and M. Heinkenschloss. Analysis of the Streamline Upwind/Petrov
Galerkin method applied to the solution of optimal control problems. Technical
Report TR02-01, Department of Computational and Applied Mathematics, Rice
University, 2002. http://www.caam.rice.edu/.

[41] S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich, and S. Ulbrich. Numerical
solution of optimal control problems governed by the compressible Navier�Stokes
equations. In Optimal Control of Complex Structures, Volume 139 of International
Series of Numerical Mathematics, pages 43�55. Birkhäuser, 2001.

http:/ / edocs.tu-berlin.de/ diss/ 2004/ buettner_guido.pdf
http:/ / edocs.tu-berlin.de/ diss/ 2004/ buettner_guido.pdf
http:/ / www.tacc.utexas.edu/ tacc-projects
http:/ / www.tacc.utexas.edu/ tacc-projects
http:/ / www.caam.rice.edu/

240 Bibliography

[42] S. S. Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich, and S. Ulbrich. Optimal
control of unsteady compressible viscous �ows. Int. J. Numer. Meth. Fluids, 40:
1401�1429, 2002. doi:10.1002/d.420.

[43] R. M. Colombo, G. Guerra, M. Herty, and V. Sachers. Modeling and optimal control
of networks of pipes and canals. Preprint SPP1253-19-02, SPP1253, 2008.

[44] S. Conti, H. Held, M. Pach, M. Rumpf, and R. Schultz. Shape optimization under un-
certainty � a stochastic programming perspective. Preprint SPP1253-074, SPP1253,
2009.

[45] R. Cools, D. P. Laurie, and L. Pluym. Algorithm 764: Cubpack++. a C++ pack-
age for automatic two-dimensional cubature. ACM Transactions on Mathematical
Software, 23(1):1�15, 1997.

[46] H. Damanik, J. Hron, A. Ouazzi, and S. Turek. Monolithic Newton-multigrid solution
techniques for incompressible nonlinear �ow models. Ergebnisberichte des Instituts
für Angewandte Mathematik, Nr. 426, Fakultät für Mathematik, TU Dortmund,
2011.

[47] P. A. Davidson. An Introduction to Magnetohydrodynamics. Cambridge University
Press, 2001.

[48] D. Davis. UMFPACK. Mathematic library, University of Florida, http://www.cise.
ufl.edu/research/sparse/umfpack/, 2004.

[49] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic Press,
New York, 2nd edition, 1984.

[50] K. Deckelnick and M. Hinze. Variational discretization of parabolic control problems
in the presence of pointwise state constraints. Preprint SPP1253-08-08, SPP1253,
2009.

[51] K. Deckelnick, A. Günther, and M. Hinze. Finite element approximation of Dirichlet
boundary control for elliptic PDE`s on two and three-dimensional curved domains.
SIAM J. Control Opt., 48(4):2789�2819, 2009.

[52] J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for unconstrained Opti-
mization and Nonlinear Equations. Number 16 in Classics In Applied Mathematics.
SIAM, 1996. ISBN 0898713641.

[53] P. Deu�hard. Newton methods for Nonlinear Problems. A�ne Invariances and Adap-
tive Algorithms. Springer, Berlin, 2004. ISBN 3540210997.

[54] P. Dhar and R. Dhar. Optimal control for bio-heat equation due to induced mi-
crowave. Appl. Math. Mech., 31(4):529�534, 2010.

[55] J. Douglas and T. F. Dupond. Interiour penalty procedures for elliptic and parabolic
Galerkin methods. In Computing methods in applied sciences (2nd International Sym-
posium, Versailles, 1975), Volume 58 of Lecture Note in Physics. Springer, Berlin,
1976.

[56] S. C. Eisenstat and H. F. Walker. Globally convergent inexact Newton methods.
SIAM J. Optim., 4(2):393�422, 1994.

http:/ / www.cise.ufl.edu/ research/ sparse/ umfpack/
http:/ / www.cise.ufl.edu/ research/ sparse/ umfpack/

241

[57] E. Emmrich. Gewöhnliche und Operator-Di�erentialgleichungen. Vieweg, 2004. ISBN
3528032138.

[58] L. C. Evans. Partial Di�erential Equations, Volume 19 of Graduate Studies in Math-
ematics. American Mathematical Society, 1998. ISBN 0821807722.

[59] Th. Flaig. Crank-Nicolson schemes for optimal control problems with evolution
equations. Preprint SPP1253-113, SPP1253, 2010.

[60] L. P. Franca and Th. J. R. Hughes. A new �nite element formulation for compu-
tational �uid dynamics: VII. The Stokes-problem with various well-posed boundary
conditions: Symmetric formulations that converge for all velocity/pressure spaces.
Comput. Meth. Appl. Mech. Eng., 65:85�96, 1987.

[61] R. Glowinski. Finite element methods for the numerical simulation of incompressible
viscous �ow. introduction to the control of the Navier�Stokes equations. In Vortex
Dynamics and Vortex Methods, Volume 28 of Lectures in Applied Mathematics, pages
219�301. American Mathematical Society, 1991.

[62] M. S. Gockenbach. Understanding and Implementing the Finite Element Method.
SIAM, 2006. ISBN 0898716144.

[63] M. Grajewski. A new fast and accurate grid deformation method for r-adaptivity
in the context of high performance computing. Logos Verlag, Berlin, 2008. http:

//www.logos-verlag.de/cgi-bin/buch?isbn=1903, ISBN 978-3-8325-1903-2.

[64] M. Grajewski, M. Köster, and S. Turek. Mathematical and numerical analysis of a
robust and e�cient grid deformation method in the �nite element context. SIAM J.
Sci. Comput., 31(2):1539�1557, 2008.

[65] M. Grajewski, M. Köster, and S. Turek. Numerical analysis and implementational
aspects of a new multilevel grid deformation method. Appl. Num. Math., 60(8):
767�781, 2010. doi:10.1016/j.apnum.2010.03.017.

[66] P. M. Gresho and R. L. Sani. Resume and remarks on the open boundary condition
minisymposium. Int. J. Numer. Meth. Fluids, 18:983�1008, 1994.

[67] R. Griesse and K. Kunisch. Optimal control for a stationary MHD system in velocity-
current formulation. SIAM J. Control Opt., 45(5):1822�1845, 2006.

[68] FEAT Group. Feat�ow - high performance �nite element analysis tool, 1989. http:
//www.featflow.de.

[69] M. D. Gunzburger. Perspectives in Flow Control and Optimization. SIAM, 2003.
ISBN 089871527X.

[70] M. D. Gunzburger and S. Manservisi. Analysis and approximation of the velocity
tracking problem for Navier�Stokes �ows with distributed control. SIAM J. Num.
Anal., 37(5):1481�1512, 2000.

[71] M. D. Gunzburger, E. Ozugurlu, J. Turner, and H. Zhang. Controlling transport
phenomena in the Czochralski crystal growth process. J. Crystal Growth, 234:47�62,
2002.

http:/ / www.logos-verlag.de/ cgi-bin/ buch?isbn=1903
http:/ / www.logos-verlag.de/ cgi-bin/ buch?isbn=1903
http:/ / www.featflow.de
http:/ / www.featflow.de

242 Bibliography

[72] W. Hackbusch. Fast solution of elliptic control problems. J. Opt. Theory and Appl.,
31(4):565�581, 1980.

[73] W. Hackbusch. Die schnelle Au�ösung der Fredholmschen Integralgleichung zweiter
Art. Beiträge zur numerischen Mathematik, 9, 1981.

[74] W. Hackbusch. Numerical solution of linear and nonlinear parabolic optimal control
problems. Lecture Notes in Control and Information Science, 30, 1981.

[75] W. Hackbusch. Multi-Grid Methods and Applications. Springer Series in Computa-
tional Mathematics. Springer, Berlin, 1985. ISBN 3-540-12761-5.

[76] W. Hackbusch. Multigrid methods for FEM and BEM applications. In E. Stein,
R. de Borst, and Th. J. R. Hughes, editors, Encyclopedia of Computational Mecha-
nics, chapter 20. John Wiley & Sons Ltd., 2004.

[77] A. Hamdi and A. Griewank. Reduced quasi-Newton method for simultaneous design
and optimization. Preprint SPP1253-11-02, SPP1253, 2008.

[78] M. Heinkenschloss. Formulation and analysis of a sequential quadratic programming
method for the optimal Dirichlet control of Navier�Stokes �ow. In W. W. Hager and
P. M. Pardalos, editors, Optimal Control � Theory, Algorithms and Applications,
pages 178�203. Kluwer, 1998.

[79] V. E. Henson. Multigrid methods for nonlinear problems: An overview. Preprint
UCRL-JC-150259, Lawrence Livermore National Laboratory, 2002.

[80] R. Herzog and K. Kunisch. Algorithms for PDE-constrained optimization. In
GAMM-Mitteilungen, Volume 33, pages 163�176. Wiley-Interscience, 2010.

[81] J. Heywood, R. Rannacher, and S. Turek. Arti�cial boundaries and �ux and pressure
conditions for the incompressible Navier�Stokes equations. Int. J. Num. Meth. Fluids,
22(5):325�352, 1996.

[82] E. Hille and R. S. Phillips. Functional Analysis and Semi-Groups, Volume 31 of Col-
loquium Publications. American Mathematical Society, revised edition, 1996. ISBN
0821810316.

[83] M. Hintermüller and M. Hinze. A SQP-semi-smooth Newton-type algorithm applied
to control of the instationary Navier�Stokes system subject to control constraints.
SIAM J. Optim., 16:1177�1200, 2006.

[84] M. Hinze. Optimal and instantaneous control of the instationary Navier�Stokes equa-
tions. Habilitation thesis, Institut für Numerische Mathematik, Technische Univer-
sität Dresden, 2000.

[85] M. Hinze and K. Kunisch. Three control methods for time-dependent �uid �ow.
Flow Turbulence Combust., 68:273�298, 2000.

[86] M. Hinze and K. Kunisch. Second order methods for boundary control of the insta-
tionary Navier�Stokes system. ZAMM, 84(3):171�187, 2004.

[87] M. Hinze and F. Tröltzsch. Discrete concepts versus error analysis in PDE-
constrained optimization. InGAMM-Mitteilungen, Volume 33, pages 148�162. Wiley-
Interscience, 2010.

243

[88] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Lecture notes of the autumn
school modelling and simulation with partial di�erential equations, 2005. Hamburg,
September 26-30.

[89] M. Hinze, M. Köster, and S. Turek. A hierarchical space-time solver for distributed
control of the Stokes equation. Preprint SPP1253-16-01, SPP1253, 2008.

[90] M. Hinze, M. Köster, and S. Turek. A space-time multigrid solver for distribu-
ted control of the time-dependent Navier�Stokes system. Preprint SPP1253-16-02,
SPP1253, 2008.

[91] M. Hinze, M. Köster, and S. Turek. A hierarchical space-time solver for optimal
distributed control of �uid �ow, 2009. Proceedings of the Conference on Modeling,
Simulation and Optimization of Complex Processes, Heidelberg, July 21-25, 2008,
accepted.

[92] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Con-
straints, Volume 23 of Mathematical Modelling: Theory and Applications. Springer,
Berlin, 2009. ISBN 9781402088384.

[93] M. Hinze, M. Köster, and S. Turek. A space-time multigrid method for optimal �ow
control. In Themenband I, Optimization with Partial Di�erential Equations (DFG
SPP 1253), ISNM-Series. Birkhäuser, 2011. accepted, to appear.

[94] K. Ho�mann and N. Botkin. Optimal control in cryopreservation of cells and tissues.
Preprint SPP1253-17-03, SPP1253, 2008.

[95] Th. J. R. Hughes, L. P. Franca, and M. Balestra. A new �nite element formulation for
computational �uid dynamics: V. Circumventing the Babuska-Brezzi condition. A
stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order
interpolations. Comput. Meth. Appl. Mech. Eng., 59(1):85�99, 1986.

[96] S. Hussain, F. Schieweck, and S. Turek. Higher order Galerkin time discretizations
and fast multigrid solvers for the heat equation. J. Num. Math., 19(1):41�61, 2011.
DOI 10.1515/ JNUM.2011.003.

[97] V. John and P. Knobloch. On spurious oscillations at layers diminishing (SOLD)
methods for convection-di�usion equations part I � a review. Comput. Meth. Appl.
Mech. Engrg., 196:2197�2215, 2007.

[98] V. John and P. Knobloch. On spurious oscillations at layers diminishing (SOLD)
methods for convection-di�usion equations part II - analysis for P1 and Q1 �nite
elements. Comput. Meth. Appl. Mech. Engrg., 197:1997�2014, 2008.

[99] V. John and G. Matthies. Higher order �nite element discretizations in a benchmark
problem for incompressible �ows. Preprint, Otto-von-Guericke-Universität Magde-
burg, Institut für Analysis und Numerik, 2001.

[100] V. John and E. Schmeyer. Finite element methods for time-dependent convection-
di�usion-reaction equations with small di�usion. Comput. Meth. Appl. Mech. Engrg.,
198:475�494, 2008.

[101] M. Juntunen and R. Stenberg. Nitsche's method for general boundary conditions.
Math. Comput., 78(267):1353�1374, 2009.

244 Bibliography

[102] D. Kahaner, C. Moler, and S. G. Nash. Numerical Methods and Software. Prentice
Hall, 1989. ISBN 0136272584.

[103] S. Kameswaran and L. T. Biegler. Advantages of nonlinear-programming-based
methodologies for inequality path-constrained optimal control problems � a numeri-
cal study. SIAM J. Sci. Comput., 30(2):957�981, 2008.

[104] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, 1995.

[105] C. T. Kelley. Iterative Methods for Optimization. Frontiers in Applied Mathematics
18. SIAM, 1999. ISBN 0898714338.

[106] S. Kilian. ScaRC als verallgemeinerter Mehrgitter- und Gebietszerlegungsansatz
für parallele Rechnerplattformen. Logos Verlag, Berlin, 2002. http://www.

logos-verlag.de/cgi-bin/buch?isbn=0092, ISBN 978-3-8325-0092-8.

[107] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New
perspectives on some classical and modern methods. SIAM Review, 45(3):385�482,
2003.

[108] M. Köster. Robuste Mehrgitter-Krylowraum-Techniken für FEM-Verfahren. Diplo-
marbeit, TU Dortmund, Fakultät für Mathematik, Lehrstuhl 3 für Angewandte
Mathematik und Numerik, Diploma thesis, 2004.

[109] M. Köster, A. Ouazzi, F. Schieweck, S. Turek, and P. Zajac. New robust noncon-
forming �nite elements of higher order. Appl. Num. Math., 2011. submitted.

[110] C. Kratzenstein and Th. Slawig. Oneshot parameter identi�cation � simultaneous
model spin-up and parameter optimization in a box model of the north atlantic
thermohaline circulation. Preprint SPP1253-082, SPP1253, 2009.

[111] K. Kunisch and B. Vexler. Constrained Dirichlet boundary control in L2 for a class
of evolution equations. SIAM J. Control Opt., 46(5):1726�1753, 2007.

[112] J. L. Lions. Optimal Control of Systems Governed by Partial Di�erential Equations.
Springer, Berlin, 1971.

[113] H. Maurer and H. D. Mittelmann. Optimization techniques for solving elliptic control
problems with control and state constraints. I: Boundary control. J. Comp. Appl.
Math., 16:29�55, 2000.

[114] H. Maurer and H. D. Mittelmann. Optimization techniques for solving elliptic control
problems with control and state constraints. II: Distributed control. J. Comp. Appl.
Math., 18:141�160, 2001.

[115] D. Meidner and B. Vexler. A priori estimates for space-time �nite element dis-
cretisations of parabolic optimal control problems. part I: Problems without control
constraints. SIAM J. Control Opt., 47(3):1150�1177, 2008.

[116] D. Meidner and B. Vexler. A priori estimates for space-time �nite element dis-
cretisations of parabolic optimal control problems. part II: Problems with control
constraints. SIAM J. Control Opt., 47(3):1301�1329, 2008.

[117] D. Meidner, R. Rannacher, and B. Vexler. A priori error estimates for �nite element
discretizations of parabolic optimization problems with pointwise state constraints
in time. Preprint SPP1253-098, SPP1253, 2010.

http:/ / www.logos-verlag.de/ cgi-bin/ buch?isbn=0092
http:/ / www.logos-verlag.de/ cgi-bin/ buch?isbn=0092

245

[118] A. Meister. Numerik linearer Gleichungssysteme. Vieweg, 1999. ISBN 3528031352.

[119] K. W. Morton and D. F. Mayers. Numerical solution of partial di�erential equations.
Cambridge University Press, 2005. ISBN 0521607930.

[120] M. Moubachir and J. Zolesio. Optimal control of �uid-structure interaction systems:
The case of a rigid solid. Report 4611, INRIA - Institut National de Recherche en
Informatique et en Automatique, 2002.

[121] I. Neitzel, U. Prüfert, and Th. Slawig. A smooth regularization of the projection
formula for constrained parabolic optimal control problems. Preprint TU 05-2009,
Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften,
2009.

[122] NETLIB. LAPACK � Linear Algebra PACKage, 1992. http://www.netlib.org/

lapack/.

[123] J. Nocedal and S. Wright. Numerical Optimization. Springer, Berlin, 1999.

[124] A. Ouazzi. Finite element simulation of nonlinear �uids with application to granular
material and powder. Phd thesis, TU Dortmund, Fakultät für Mathematik, Lehrstuhl
3 für Angewandte Mathematik und Numerik, 2005.

[125] E. Özkaya and N. R. Gauger. Single-step one-shot aerodynamic shape optimization.
Preprint SPP1253-10-04, SPP1253, 2008.

[126] R. P. Pawlowski, J. N. Shadid, J. P. Simonis, and H. F. Walker. Globalization
techniques for Newton�Krylov methods and applications to the fully-coupled solution
of the Navier�Stokes equations. SIAM Review, 48(4):700�721, 2006.

[127] M. Probst, M. Lülfesmann, M. Nicolai, M. Bücker, D. Behr, and Ch. Bischof. Sensi-
tivities of optimal shapes of arti�cial grafts with respect to �ow parameters. Preprint
SPP1253-04-04, SPP1253, 2009.

[128] R. Rannacher, M. Schäfer, and S. Turek. Evaluation of a CFD benchmark for laminar
�ows. Preprints SFB 359, Nr. 98�23, Universität Heidelberg, 1998.

[129] Wolfram Research. Mathematica, 2011. http://www.wolfram.com/mathematica/.

[130] A. Schiela and A. Günther. Interior point methods in function space for state con-
straints � inexact Newton and adaptivity. Preprint SPP1253-08-06, SPP1253, 2009.

[131] F. Schieweck. A-stable discontinuous Galerkin�Petrov time discretization of higher
order. J. Num. Math., 18(1):25�57, 2010.

[132] R. Schmachtel. Robuste lineare und nichtlineare Lösungsverfahren für die inkom-
pressiblen Navier�Stokes-Gleichungen. Phd thesis, Universität Dortmund, Fakultät
für Mathematik, Lehrstuhl 3 für Angewandte Mathematik und Numerik, 2003.

[133] S. Schmidt and V. Schulz. Impulse response approximations of discrete shape Hes-
sians with application in CFD. Preprint SPP1253-10-02, SPP1253, 2008.

[134] S. Schmidt, C. Ilic, N. R. Gauger, and V. Schulz. Shape gradients and their
smoothness for practical aerodynamic design optimization. Preprint SPP1253-10-
03, SPP1253, 2008.

http:/ / www.netlib.org/ lapack/
http:/ / www.netlib.org/ lapack/
http:/ / www.wolfram.com/ mathematica/

246 Bibliography

[135] J. N. Shadid, Ray. Tuminaro, and H. F. Walker. An inexact Newton method for
fully coupled solution of the Navier�Stokes equations with heat and mass transport.
J. Comput. Phys., 137(1):155�185, 1997.

[136] M. H. Shojaefard, A. R. Noorpoor, A. Avanesians, and M. Gha�arpour. Numerical
investigation of �ow control by suction and injection on a subsonic airfoil. Am. J.
Appl. Sci., 2(10):1474�1480, 2005.

[137] Th. Slawig. PDE-constrained control using COMSOL multiphysics - control of the
Navier�Stokes equations, 2006. Proceedings of the COMSOL Users Conference 2006,
Frankfurt, Page 181�183.

[138] R. T. Trimbitas. Adaptive cubatures on triangle. Result. Math., 53:453�462, 2009.
doi: 10.1007/s00025-008-0357-6.

[139] F. Tröltzsch. Optimal Control of Partial Di�erential Equations. American Mathe-
matical Society, 2010. ISBN 0821849042.

[140] F. Tröltzsch and H. Goldberg. On a SQP-multigrid technique for nonlinear parabolic
boundary control problems. Preprint, Fakultät für Mathematik, Technische Univer-
sität Chemnitz, 1997. http://www.mathematik.tu-chemnitz.de/preprint/1997/

PREPRINT_11.html.

[141] U. Trottenberg, Cornelis. W. Oosterlee, and A. Schüller. Multigrid. Academic Press,
New York, 2001. ISBN 012701070X.

[142] S. Turek. E�cient Solvers for Incompressible Flow Problems: An Algorithmic and
Computational Approach. Springer, Berlin, 1999. ISBN 3-540-65433-X.

[143] S. Turek and H. Oswald. A parallel multigrid algorithm for solving the incompressible
Navier�Stokes equations with nonconforming �nite elements in three dimensions. In
Proc. Parallel CFD 1996, Capri/Italy, 1996.

[144] S. Turek and A. Ouazzi. Uni�ed edge-oriented stabilization of nonconforming FEM
for incompressible �ow problems: Numerical investigations. J. Num. Math., 15(4):
299�322, 2007.

[145] S. Turek and R. Rannacher. A simple nonconforming quadrilateral stokes element.
Num. Meth. Part. D. E., 8(2):97�111, 1992.

[146] S. Turek and M. Schäfer. Benchmark computations of laminar �ow around cylin-
der. In E.H. Hirschel, editor, Flow Simulation with High-Performance Computers II,
Volume 52 of Notes on Numerical Fluid Mechanics, pages 547�566. Vieweg, 1996.

[147] S. Turek, Ch. Becker, and S. Kilian. Some concepts of the software package FEAST.
In J. M. Palma, J. J. Dongarra, and V. Hernandes, editors, Vector and Parallel
Processing � VECPAR 1998, Volume 1573 of Lecture Notes in Computer Science,
pages 271�284. Springer, Berlin, 1999. doi:10.1007/10703040_22.

[148] S. Turek, Ch. Becker, and S. Kilian. Hardware-oriented numerics and con-
cepts for PDE software. Future Generat. Comput. Syst., 22(1�2):217�238, 2006.
doi:10.1016/j.future.2003.09.007.

http:/ / www.mathematik.tu-chemnitz.de/ preprint/ 1997/ PREPRINT_11.html
http:/ / www.mathematik.tu-chemnitz.de/ preprint/ 1997/ PREPRINT_11.html

247

[149] S. Turek, D. Göddeke, Ch. Becker, S. H. M. Buijssen, and H. Wobker.
UCHPC: unconventional high-performance computing for �nite element simulations,
2008. Winner of the �rst PRACE award; http://www.prace-project.eu/news/
prace-award-presented-to-young-scientist-at-isc201908.

[150] S. Turek, D. Göddeke, Ch. Becker, S. H. M. Buijssen, and H. Wobker. FEAST �
realisation of hardware-oriented numerics for HPC simulations with �nite elements.
Concurrency and Computation: Practice and Experience, 6:2247�2265, 2010. Special
Issue Proceedings of ISC 2008. doi:10.1002/cpe.1584.

[151] M. Ulbrich. Semismooth Newton methods for the operator equations in function
spaces. SIAM J. Optim., 3:805�841, 2003.

[152] M. Ulbrich. Constrained control of Navier�Stokes �ow by semismooth Newton meth-
ods. Syst. Contr. Lett., 48:297�311, 2003.

[153] B. van Bloemen Waanders, R. Bartlett, P. Boggs, K. Long, and A. Salinger. Large
scale non-linear programming for PDE constrained optimization. Technical Report
SAND2002-3198, Sandia National Laboratories, 2002. http://endo.sandia.gov/

DAKOTA/papers/pdeco_ldrd_finalreport.pdf.

[154] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13(2):
631�644, 1992.

[155] S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive
variables. J. Comput. Phys., 65:138�158, 1986.

[156] W. Vogt. Adaptive Verfahren zur numerischen Quadratur und Kubatur. Preprint M
1/06, Technische Universität Ilmenau, Institut für Mathematik, 2006.

[157] D. Wachsmuth. Optimal control of the unsteady Navier�Stokes equations. Phd thesis,
Fakultät II - Mathematik und Naturwissenschaften, Technische Universität Berlin,
2006.

[158] P. Wesseling. An Introduction to Multigrid Methods. John Wiley & Sons Ltd., 1992.
http://www.mgnet.org/mgnet-books-wesseling.html.

[159] H. Wobker and S. Turek. Numerical studies of Vanka-type smoothers in computa-
tional solid mechanics. Adv. Appl. Math. Mech., 1(1):29�55, 2009.

[160] P. Wriggers. Nonlinear Finite Element Methods. Springer, Berlin, 2008. ISBN
9783540710004.

[161] H. Yserentant. Old and new convergence proofs for multigrid methods. Acta Nume-
rica, pages 1�44, 1992.

[162] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method. McGraw Hill,
fourth edition, 1994.

http:/ / www.prace-project.eu/ news/ prace-award-presented-to-young-scientist-at-isc201908
http:/ / www.prace-project.eu/ news/ prace-award-presented-to-young-scientist-at-isc201908
http:/ / endo.sandia.gov/ DAKOTA/ papers/ pdeco_ldrd_finalreport.pdf
http:/ / endo.sandia.gov/ DAKOTA/ papers/ pdeco_ldrd_finalreport.pdf
http:/ / www.mgnet.org/ mgnet-books-wesseling.html

	1 Introduction
	1.1 Why is optimisation so much more complicated than simulation?
	1.2 The SQP approach — a remedy up to a certain extent
	1.3 The story about hierarchical solution concepts
	1.4 Thesis contribution
	1.5 Thesis outline
	1.6 Publications of the author
	1.7 General terms and definitions

	2 Problem formulation and discretisation
	2.1 Model problems
	2.2 The First-Optimise-Then-Discretise calculus – step one
	2.3 The KKT systems in detail
	2.4 Ellipticity of the KKT system
	2.5 Time discretisation with the implicit Euler scheme
	2.5.1 The Navier–Stokes equations
	2.5.2 The Newton system in the implicit Euler case
	2.5.3 The heat equation

	2.6 Time discretisation with a general one-step -scheme
	2.6.1 The Navier–Stokes equations
	2.6.2 The Newton system in the Crank–Nicolson case
	2.6.3 The heat equation

	2.7 Discretisation in space — the fully discretised problem
	2.8 The First-Discretise-Then-Optimise strategy
	2.9 Summary and conclusions

	3 The multigrid and the Newton solvers
	3.1 Definition of hierarchies
	3.1.1 Hierarchies in space and in time
	3.1.2 Space-time hierarchies created by coarsening strategies
	3.1.3 Problem hierarchies

	3.2 The outer defect correction loop
	3.3 The inner multigrid solver
	3.4 Prolongation/Restriction/Coarse grid preconditioning operators
	3.4.1 Preliminaries
	3.4.2 Discrete abstract functions
	3.4.3 The implicit Euler case
	3.4.4 The general -scheme case
	3.4.5 Coarse grid preconditioning operators

	3.5 Smoothing operators and the coarse grid solver
	3.5.1 Standard block smoothers
	3.5.2 Forward-Backward simulation smoother
	3.5.3 Extensions: Smoothers, preconditioners and one-level solvers

	3.6 Coupled multigrid solvers in space
	3.7 Stopping criteria and the inexact Newton algorithm
	3.7.1 Basic stopping criteria
	3.7.2 The inexact Newton algorithm

	3.8 Summary and conclusions

	4 Extended systems and additional discretisation strategies
	4.1 The end time observation
	4.1.1 End time observation for the implicit Euler scheme
	4.1.2 End time observation for the general -scheme

	4.2 Constrained Control
	4.2.1 The projection operator
	4.2.2 Discretisation in time
	4.2.3 The semismooth Newton method
	4.2.4 Discretisation in space

	4.3 Do-nothing and outflow boundary conditions
	4.4 Semi-explicit time discretisation

	5 Basic numerical analysis of the solver: Heat equation and Stokes equations
	5.1 Basic solver analysis for the heat equation and the Stokes equations
	5.1.1 Basic single grid solver analysis
	5.1.2 Basic two grid solver analysis
	5.1.3 Basic multigrid solver analysis
	5.1.4 Basic analysis: Inexact solvers in space

	5.2 Higher order discretisations: Q2 and the Crank–Nicolson scheme
	5.2.1 Basic multigrid solver analysis
	5.2.2 Prolongation/restriction operators for the Crank–Nicolson scheme

	5.3 From the heat equation to the Stokes equations
	5.4 The choice of the multigrid cycle
	5.4.1 Multigrid cycle analysis – in theory
	5.4.2 Multigrid cycle analysis – in practice

	5.5 Summary and conclusions

	6 Numerical analysis of the discretisation: Heat equation and Stokes equations
	6.1 Notations and additional test examples
	6.2 Coupling of the space and the time discretisation
	6.2.1 Space-time error for the heat equation
	6.2.2 Space-time error for the Stokes equations
	6.2.3 Concluding remarks

	6.3 The traditional -scheme time discretisation
	6.3.1 Heat equation
	6.3.2 Stokes equations

	6.4 Summary and conclusions

	7 Numerical analysis of the solver: Stokes and Navier–Stokes equations
	7.1 Analysis of the multigrid solver
	7.1.1 Basic multigrid performance
	7.1.2 Influence of the regularisation parameters
	7.1.3 Anisotropic space-time meshes and coarsening strategies

	7.2 Basic analysis of the nonlinear solver
	7.2.1 Nonlinear solver comparison
	7.2.2 Influence of the regularisation parameters
	7.2.3 Optimisation and simulation

	7.3 Constrained Control
	7.4 Summary and conclusions

	8 The KKT solver in practice
	8.1 Basic test configurations
	8.2 Influence of the regularisation parameters
	8.3 A nonstationary benchmark problem
	8.3.1 Reference calculation
	8.3.2 Influence of the time discretisation
	8.3.3 Influence of the space discretisation
	8.3.4 Semi-explicit time discretisation

	8.4 A solver discussion
	8.5 Appendix: About stabilisation in optimal control problems for fluid flow
	8.6 Summary and conclusions

	9 Further extensions, summary, conclusions and future work
	9.1 General summary and discussion
	9.1.1 Main key points of the hierarchical solution approach
	9.1.2 Discretisation concept and solver design
	9.1.3 Numerical results

	9.2 Possible future extensions
	9.2.1 Advanced discretisation and solver components
	9.2.2 Further model problems and applications
	9.2.3 The problem size

	A Further model problems
	A.1 Boundary control
	A.2 Parametrised control spaces — linear combinations of input fields

	B Globalisation and enhanced robustness
	B.1 The adaptive Newton algorithm
	B.2 Newton line-search

	C Alternative solution concepts
	C.1 The nonlinear multigrid strategy
	C.2 The integral equation method

	D Modified Crank–Nicolson discretisations
	E Parametric and nonparametric finite elements
	E.1 General terms and definitions
	E.2 Parametric elements
	E.3 Nonparametric elements
	E.3.1 Local coordinate systems
	E.3.2 Definition of local basis functions for nonparametric elements

	F List of Symbols
	Bibliography

