384 research outputs found

    New Symbolic Tools for Differential Geometry, Gravitation, and Field Theory

    Get PDF
    DifferentialGeometry is a Maple software package which symbolically performs fundamental operations of calculus on manifolds, differential geometry, tensor calculus, Lie algebras, Lie groups, transformation groups, jet spaces, and the variational calculus. These capabilities, combined with dramatic recent improvements in symbolic approaches to solving algebraic and differential equations, have allowed for development of powerful new tools for solving research problems in gravitation and field theory. The purpose of this paper is to describe some of these new tools and present some advanced applications involving: Killing vector fields and isometry groups, Killing tensors and other tensorial invariants, algebraic classification of curvature, and symmetry reduction of field equations.Comment: 42 page

    Associated consistency and values for TU games

    Get PDF
    In the framework of the solution theory for cooperative transferable utility games, Hamiache axiomatized the well-known Shapley value as the unique one-point solution verifying the inessential game property, continuity, and associated consistency. The purpose of this paper is to extend Hamiache's axiomatization to the class of efficient, symmetric, and linear values, of which the Shapley value is the most important representative. For this enlarged class of values, explicit relationships to the Shapley value are exploited in order to axiomatize such values with reference to a slightly adapted inessential game property, continuity, and a similar associated consistency. The latter axiom requires that the solutions of the initial game and its associated game (with the same player set, but a different characteristic function) coincide

    Minimal Proof Search for Modal Logic K Model Checking

    Full text link
    Most modal logics such as S5, LTL, or ATL are extensions of Modal Logic K. While the model checking problems for LTL and to a lesser extent ATL have been very active research areas for the past decades, the model checking problem for the more basic Multi-agent Modal Logic K (MMLK) has important applications as a formal framework for perfect information multi-player games on its own. We present Minimal Proof Search (MPS), an effort number based algorithm solving the model checking problem for MMLK. We prove two important properties for MPS beyond its correctness. The (dis)proof exhibited by MPS is of minimal cost for a general definition of cost, and MPS is an optimal algorithm for finding (dis)proofs of minimal cost. Optimality means that any comparable algorithm either needs to explore a bigger or equal state space than MPS, or is not guaranteed to find a (dis)proof of minimal cost on every input. As such, our work relates to A* and AO* in heuristic search, to Proof Number Search and DFPN+ in two-player games, and to counterexample minimization in software model checking.Comment: Extended version of the JELIA 2012 paper with the same titl

    Automaton theory approach for solving modified PNS problems

    Get PDF
    In this paper a modified version of the Process Network Synthesis (PNS) problem is studied. By using an automaton theoretical approach, a procedure for finding an optimal solution of this modified PNS problem is presented

    Theory of Initialization-Free Decoherence-Free Subspaces and Subsystems

    Full text link
    We introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization. We derive a new set of conditions for the existence of DFSs within this generalized framework. By relaxing the initialization requirement we show that a DFS can tolerate arbitrarily large preparation errors. This has potentially significant implications for experiments involving DFSs, in particular for the experimental implementation, over DFSs, of the large class of quantum algorithms which can function with arbitrary input states

    How to assign volunteers to tasks compatibly ? A graph theoretic and parameterized approach

    Full text link
    In this paper we study a resource allocation problem that encodes correlation between items in terms of \conflict and maximizes the minimum utility of the agents under a conflict free allocation. Admittedly, the problem is computationally hard even under stringent restrictions because it encodes a variant of the {\sc Maximum Weight Independent Set} problem which is one of the canonical hard problems in both classical and parameterized complexity. Recently, this subject was explored by Chiarelli et al.~[Algorithmica'22] from the classical complexity perspective to draw the boundary between {\sf NP}-hardness and tractability for a constant number of agents. The problem was shown to be hard even for small constant number of agents and various other restrictions on the underlying graph. Notwithstanding this computational barrier, we notice that there are several parameters that are worth studying: number of agents, number of items, combinatorial structure that defines the conflict among the items, all of which could well be small under specific circumstancs. Our search rules out several parameters (even when taken together) and takes us towards a characterization of families of input instances that are amenable to polynomial time algorithms when the parameters are constant. In addition to this we give a superior 2^{m}|I|^{\Co{O}(1)} algorithm for our problem where mm denotes the number of items that significantly beats the exhaustive \Oh(m^{m}) algorithm by cleverly using ideas from FFT based fast polynomial multiplication; and we identify simple graph classes relevant to our problem's motivation that admit efficient algorithms
    corecore