6,451 research outputs found

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Selective Harmonic Mitigation Technique for Cascaded H-Bridge Converters With Nonequal DC Link Voltages

    Get PDF
    Multilevel converters have received increased interest recently as a result of their ability to generate high quality output waveforms with a low switching frequency. This makes them very attractive for high power applications. A Cascaded HBridge converter is a multilevel topology which is formed from the series connection of H-Bridge cells. Optimized pulse width modulation techniques such as Selective Harmonic Elimination (SHE-PWM) or Selective Harmonic Mitigation (SHM-PWM) are capable of pre-programming the harmonic profile of the output waveform over a range of modulation indices. Such modulation methods may however not perform optimally if the DC links of the Cascaded H-Bridge Converter are not balanced. This paper presents a new SHM-PWM control strategy which is capable of meeting grid codes even under non-equal DC link voltages. The method is based on the interpolation of different sets of angles obtained for specific situations of imbalance. Both simulation and experimental results are presented to validate the proposed control method

    A three-phase to single-phase matrix converter for high-frequency induction heating

    Get PDF
    The paper describes a new three-phase to single-phase matrix converter featuring unity input power factor, very low input total harmonic distortion, and soft-switching over the full power range, for high frequency induction heating applications. A variable output pulse density modulation scheme has been proposed for stable operation of the converter, with the notable feature of requiring no on-line calculations for the synthesis of three-phase input current system. Practical issues in realising the converter, viz. line frequency synchronisation and output current circulation, are described. Good agreement between simulation and experimental results confirm the benefits of the proposed converter

    Comparison of single-phase matrix converter and H-bridge converter for radio frequency induction heating

    Get PDF
    This paper compares the newly developed single-phase matrix converter and the more conventional H- bridge converter for radio frequency induction heating. Both the converters exhibit unity power factor, very low total harmonic distortion at the utility supply interface, good controllability under soft switching condition for a wide range of power, and high efficiencies, whilst still having simple structures. A novel switching control pattern has been proposed for the matrix converter in order to maintain the comparable performance to the H-bridge converter. Simulation and experimental results for both converters are presented. Comparisons between two converters have confirmed the excellent performance of the proposed matrix converter

    Single phase matrix converter for radio frequency induction heating

    Get PDF
    Conventional converters for radio frequency induction heating usually follow an AC-DC-AC structure, which can exhibit non-unity power factor and introduce large harmonic currents into the utility supply. The need for a direct converter for radio frequency induction heating, featuring unity power factor, and sinusoidal input current, has motivated the development of a single phase matrix converter as an induction heater. A novel commutation strategy is therefore required to ensure smooth operation of the converter whilst creating a high frequency output under soft switching conditions. The operating principle and features of the proposed converter are described here, and experimentally verifie

    Five-level selective harmonic elimination PWM strategies and multicarrier phase-shifted sinusoidal PWM: A comparison

    Get PDF
    The multicarrier phase-shifted sinusoidal pulse-width modulation (MPS-SPWM) technique is well-known for its important advantage of offering an increased overall bandwidth as the number of carriers multiplied with their equal frequency directly controls the location of the dominant harmonics. In this paper, a five-level (line-to-neutral) multilevel selective harmonic elimination PWM (MSHE-PWM) strategy based on an equal number of switching transitions when compared against the previously mentioned technique is proposed. It is assumed that the four triangular carriers of the MPS-SPWM method have nine per unit frequency resulting in seventeen switching transitions for every quarter period. Requesting the same number of transitions from the MSHE-PWM allows the control of sixteen non-triplen harmonics. It is confirmed that the proposed MSHE-PWM offers significantly higher converter bandwidth along with higher modulation operating range. Selected results are presented to confirm the effectiveness of the proposed technique

    Conventional Space-Vector Modulation Techniques versus the Single-Phase Modulator for Multilevel Converters

    Get PDF
    Space-vector modulation is a well-suited technique to be applied to multilevel converters and is an important research focus in the last 25 years. Recently, a single-phase multilevel modulator has been introduced showing its conceptual simplicity and its very low computational cost. In this paper, some of the most conventional multilevel space-vector modulation techniques have been chosen to compare their results with those obtained with single-phase multilevel modulators. The obtained results demonstrate that the single-phase multilevel modulators applied to each phase are equivalent with the chosen wellknown multilevel space-vector modulation techniques. In this way, single-phase multilevel modulators can be applied to a converter with any number of levels and phases avoiding the use of conceptually and mathematically complex space-vector modulation strategies. Analytical calculations and experimental results are shown validating the proposed concepts

    Self-precharge in single-leg flying capacitor converters

    Get PDF
    Flying Capacitor (FC) multilevel pulse width modulated (PWM) converters are an attractive choice due to the natural voltage balance property. During start-up of the converter, care has to be taken that the power switches are not exposed to voltage overstress due to uncharged capacitors. A flying capacitor self-precharge technique is proposed which, by making use of natural balancing and a DC-bus rate control, makes the capacitors balance with a zero average load current. The DC-bus rate control depends on the capacitor voltage balance dynamics. The regular PWM natural balancing technique gives good results for even-level single-leg converter self-precharge, for odd-level converters a special switching pattern is necessary

    Direct usage of photovoltaic solar panels to supply a freezer motor with variable DC input voltage

    Get PDF
    In this paper, a single-phase photovoltaic (PV) inverter fed by a boost converter to supply a freezer motor with variable DC input is investigated. The proposed circuit has two stages. Firstly, the DC output of the PV panel that varies between 150 and 300 V will be applied to the boost converter. The boost converter will boost the input voltage to a fixed 300 V DC. Next, this voltage is supplied to the single-phase full-bridge inverter to obtain 230 V AC. In the end, The output of the inverter will feed a freezer motor. The PV panels can be stand-alone or grid-connected. The grid-connected PV is divided into two categories, such as with a transformer and without a transformer, a transformer type has galvanic isolation resulting in increasing the security and also provides no further DC current toward the grid, but it is expensive, heavy and bulky. The transformerless type holds high efficiency and it is cheaper, but it suffers from leakage current between PV and the grid. This paper proposes a stand-alone direct use of PV to supply a freezer; therefore, no grid connection will result in no leakage current between the PV and Grid. The proposed circuit has some features such as no filtering circuit at the output of the inverter, no battery in the system, DC-link instead of AC link that reduces no-loads, having a higher efficiency, and holding enough energy in the DC-link capacitor to get the motor started. The circuit uses no transformers, thus, it is cheaper and has a smaller size. In addition, the system does not require a complex pulse width modulation (PWM) technique, because the motor can operate with a pulsed waveform. The control strategy uses the PWM signal with the desired timing. With this type of square wave, the harmonics (5th and 7th) of the voltage are reduced. The experimental and simulation results are presented to verify the feasibility of the proposed strategy
    • 

    corecore