5 research outputs found

    Geodetic monitoring of complex shaped infrastructures using Ground-Based InSAR

    Get PDF
    In the context of climate change, alternatives to fossil energies need to be used as much as possible to produce electricity. Hydroelectric power generation through the utilisation of dams stands out as an exemplar of highly effective methodologies in this endeavour. Various monitoring sensors can be installed with different characteristics w.r.t. spatial resolution, temporal resolution and accuracy to assess their safe usage. Among the array of techniques available, it is noteworthy that ground-based synthetic aperture radar (GB-SAR) has not yet been widely adopted for this purpose. Despite its remarkable equilibrium between the aforementioned attributes, its sensitivity to atmospheric disruptions, specific acquisition geometry, and the requisite for phase unwrapping collectively contribute to constraining its usage. Several processing strategies are developed in this thesis to capitalise on all the opportunities of GB-SAR systems, such as continuous, flexible and autonomous observation combined with high resolutions and accuracy. The first challenge that needs to be solved is to accurately localise and estimate the azimuth of the GB-SAR to improve the geocoding of the image in the subsequent step. A ray tracing algorithm and tomographic techniques are used to recover these external parameters of the sensors. The introduction of corner reflectors for validation purposes confirms a significant error reduction. However, for the subsequent geocoding, challenges persist in scenarios involving vertical structures due to foreshortening and layover, which notably compromise the geocoding quality of the observed points. These issues arise when multiple points at varying elevations are encapsulated within a singular resolution cell, posing difficulties in pinpointing the precise location of the scattering point responsible for signal return. To surmount these hurdles, a Bayesian approach grounded in intensity models is formulated, offering a tool to enhance the accuracy of the geocoding process. The validation is assessed on a dam in the black forest in Germany, characterised by a very specific structure. The second part of this thesis is focused on the feasibility of using GB-SAR systems for long-term geodetic monitoring of large structures. A first assessment is made by testing large temporal baselines between acquisitions for epoch-wise monitoring. Due to large displacements, the phase unwrapping can not recover all the information. An improvement is made by adapting the geometry of the signal processing with the principal component analysis. The main case study consists of several campaigns from different stations at Enguri Dam in Georgia. The consistency of the estimated displacement map is assessed by comparing it to a numerical model calibrated on the plumblines data. It exhibits a strong agreement between the two results and comforts the usage of GB-SAR for epoch-wise monitoring, as it can measure several thousand points on the dam. It also exhibits the possibility of detecting local anomalies in the numerical model. Finally, the instrument has been installed for continuous monitoring for over two years at Enguri Dam. An adequate flowchart is developed to eliminate the drift happening with classical interferometric algorithms to achieve the accuracy required for geodetic monitoring. The analysis of the obtained time series confirms a very plausible result with classical parametric models of dam deformations. Moreover, the results of this processing strategy are also confronted with the numerical model and demonstrate a high consistency. The final comforting result is the comparison of the GB-SAR time series with the output from four GNSS stations installed on the dam crest. The developed algorithms and methods increase the capabilities of the GB-SAR for dam monitoring in different configurations. It can be a valuable and precious supplement to other classical sensors for long-term geodetic observation purposes as well as short-term monitoring in cases of particular dam operations

    Very High Resolution Tomographic SAR Inversion for Urban Infrastructure Monitoring — A Sparse and Nonlinear Tour

    Get PDF
    The topic of this thesis is very high resolution (VHR) tomographic SAR inversion for urban infrastructure monitoring. To this end, SAR tomography and differential SAR tomography are demonstrated using TerraSAR-X spotlight data for providing 3-D and 4-D (spatial-temporal) maps of an entire high rise city area including layover separation and estimation of deformation of the buildings. A compressive sensing based estimator (SL1MMER) tailored to VHR SAR data is developed for tomographic SAR inversion by exploiting the sparsity of the signal. A systematic performance assessment of the algorithm is performed regarding elevation estimation accuracy, super-resolution and robustness. A generalized time warp method is proposed which enables differential SAR tomography to estimate multi-component nonlinear motion. All developed methods are validated with both simulated and extensive processing of large volumes of real data from TerraSAR-X

    Bistatic SAR for Building Wall Material Characterisation

    Get PDF
    © Cranfield University 2020. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright ownerThis thesis addresses the problem of using radar to extract interpretable information concerning both the structure and electrical properties of a wall, and the environment behind it. This is broken down into two subproblems: how to determine the thickness and electromagnetic properties of the wall without being in direct contact with it, and how to obtain the most accurate images of what lies beyond the wall. Existing research in the area is evaluated and a theoretical study is presented on the use of monostatic, bistatic, and multistatic Synthetic Aperture Radar (SAR) in both one and two dimensional apertures. New methods of determining the wall properties are evaluated by both computer simulation and with laboratory radar measurements, where a wall of concrete blocks is constructed. The robustness of the asymmetric SAR geometry approach is evaluated with the addition of complex objects placed behind the wall. The uncertainty associated with estimating the wall properties is evaluated and consequential improvements to image quality are discussed. It was found that an asymmetric bistatic SAR geometry accurately extracts the refractive index and thickness of a wall. The method is applicable to both cluttered environments and non-parallel wall trajectories without loss of accuracy. Applying a compensation for refraction in the SAR imagery results in better positional accuracy but does not necessarily result in better image focusing. Volumetric multistatic image formation benefits from applied refraction compensation. SAR image formation, and in particular volumetric image formation, can be significantly accelerated via a spatially variant basebanding technique followed by zero padding. Spatially variant basebanding is sub optimal when applied to a Through-Wall radar scenario where there is a visible wall signature in the image. Keywords: Through-Wall radar, Multistatic radar, Multidimensional signal processing, Electromagnetic propagation, Radar imagi

    Radar Backscatter Modeling Based on Global TanDEM-X Mission Data

    Get PDF
    Radarrückstreuung bezeichnet den Teil eines ausgesendeten elektromagnetischen Signals, der von einem Ziel am Boden wieder zurück zur Antenne gerichtet ist. Die Eigenschaften des zurückgestreuten Signals ändern sich in Abhängigkeit von Frequenz und Polarisation des Radarsignals, der Aufnahmegeometrie, sowie vom Zustand des Erdbodens und der Art der Bodenbedeckung. Informationen über das Radarrückstreuverhalten sind von höchster Wichtigkeit für die Auslegung von SAR-Missionen und werden verbreitet zur Entwicklung wissenschaftlicher Modelle genutzt, beispielsweise bei der Erforschung der Biosphäre und Kryosphäre. Hauptziel dieser Arbeit ist die Auswertung und Nutzung des globalen TanDEM-X-Datensatzes zur Modellierung der Radarrückstreuung im X-Band unter Berücksichtigung unterschiedlicher Aufnahmeparameter und Landnutzungsarten, sowie die Bereitstellung einer Reihe von globalen Rückstreumodellen, die auf aktuellen Daten basieren, für die wissenschaftliche Gemeinschaft. Es wurde ein neuer Ansatz zur statistischen Modellierung der Rückstreuinformation entwickelt, der die Qualität der zugrunde liegenden Messungen berücksichtigt. Daraus ergeben sich gewichtete polynomiale Modelle für die verschiedenen Landnutzungsarten, wie sie in der GlobCover-Karte der ESA definiert sind. Darüber hinaus wird ein eigener Validierungsansatz vorgestellt, mit zusätzlicher Betrachtung der saisonalen Variation der Rückstreuung und einer separaten Analyse des Rückstreuverhaltens des Tropischen Regenwaldes. Der nächste Schwerpunkt ist die Betrachtung des Grönländischen Eisschildes, das gekennzeichnet ist durch das Vorhandensein verschiedener Arten von Schneebedeckung, die von trockenem bis hin zu sehr feuchtem Schnee variiert. Der begrenzte Detailgrad, den die GlobCover Karte in Grönland aufweist (nur eine Klasse für das gesamte Eisschild), erlaubt dort keine verlässliche Modellierung der Rückstreuung. Diese Schwierigkeit lieferte die Motivation für die Entwicklung eines neuen Ansatzes zur Analyse des Informationsgehalts der interferometrischen TanDEM-X-Daten mit dem Ziel, unterschiedliche Schnee-Fazien mit Hilfe des sog. C-Means Fuzzy Clustering Algorithmus zu lokalisieren. Aus dieser Untersuchung konnte die Existenz von vier unterschiedlichen Klassen von Schnee-Fazien abgeleitet werden, deren Eigenschaften anschließend mit Hilfe externer Referenzdaten interpretiert wurden. Die daraus entstandene Karte wurde zur Erstellung eines einfallswinkelabhängigen Rückstreumodells genutzt, separat für jede der vier Klassen, wobei eine modifizierte Version des entwickelten Algorithmus zur Generierung globaler Rückstreumodelle eingesetzt wurde. Darüber hinaus wurde als Nebenprodukt zusätzlich die Eindringtiefe von TanDEM-X in die Eisschicht geschätzt, durch Inversion des von Weber Hoen und Zebker vorgeschlagenen "Ein-chicht Volumendekorrelationsmodells". Die Ergebnisse wurden mit dem Höhenunterschied zwischen dem globalen TanDEM-X-DEM und ICESat-Messungen verglichen. Abschließend wird ein neu entwickelter Algorithmus zur Generierung von Rückstreukarten großer Gebiete vorgestellt. Dieser erlaubt unter Verwendung von Rückstreumodellen das Angleichen der erstellten Karten anhand eines Referenzeinfallswinkels, was dann das Füllen verbleibender Lücken ermöglicht, die aufgrund fehlender Eingangsdaten vorhanden sind
    corecore