122,992 research outputs found

    A similarity-based cooperative co-evolutionary algorithm for dynamic interval multi-objective optimization problems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dynamic interval multi-objective optimization problems (DI-MOPs) are very common in real-world applications. However, there are few evolutionary algorithms that are suitable for tackling DI-MOPs up to date. A framework of dynamic interval multi-objective cooperative co-evolutionary optimization based on the interval similarity is presented in this paper to handle DI-MOPs. In the framework, a strategy for decomposing decision variables is first proposed, through which all the decision variables are divided into two groups according to the interval similarity between each decision variable and interval parameters. Following that, two sub-populations are utilized to cooperatively optimize decision variables in the two groups. Furthermore, two response strategies, rgb0.00,0.00,0.00i.e., a strategy based on the change intensity and a random mutation strategy, are employed to rapidly track the changing Pareto front of the optimization problem. The proposed algorithm is applied to eight benchmark optimization instances rgb0.00,0.00,0.00as well as a multi-period portfolio selection problem and compared with five state-of-the-art evolutionary algorithms. The experimental results reveal that the proposed algorithm is very competitive on most optimization instances

    A Parallel Divide-and-Conquer based Evolutionary Algorithm for Large-scale Optimization

    Full text link
    Large-scale optimization problems that involve thousands of decision variables have extensively arisen from various industrial areas. As a powerful optimization tool for many real-world applications, evolutionary algorithms (EAs) fail to solve the emerging large-scale problems both effectively and efficiently. In this paper, we propose a novel Divide-and-Conquer (DC) based EA that can not only produce high-quality solution by solving sub-problems separately, but also highly utilizes the power of parallel computing by solving the sub-problems simultaneously. Existing DC-based EAs that were deemed to enjoy the same advantages of the proposed algorithm, are shown to be practically incompatible with the parallel computing scheme, unless some trade-offs are made by compromising the solution quality.Comment: 12 pages, 0 figure

    Efficient heuristic algorithms for location of charging stations in electric vehicle routing problems

    Get PDF
    Indexación: Scopus.This work has been partially supported by CONICYT FONDECYT by grant 11150370, FONDEF IT17M10012 and the “Grupo de Logística y Transporte” at the Universidad del Bío-Bío.. This support is gratefully acknowledged.Eco-responsible transportation contributes at making a difference for companies devoted to product delivery operations. Two specific problems related to operations are the location of charging stations and the routing of electric vehicles. The first one involves locating new facilities on potential sites to minimise an objective function related to fixed and operational opening costs. The other one, electric vehicle routing problem, involves the consolidation of an electric-type fleet in order to meet a particular demand and some guidelines to optimise costs. It is determined by the distance travelled, considering the limited autonomy of the fleet, and can be restored by recharging its battery. The literature provides several solutions for locating and routing problems and contemplates restrictions that are closer to reality. However, there is an evident lack of techniques that addresses both issues simultaneously. The present article offers four solution strategies for the location of charging stations and a heuristic solution for fleet routing. The best results were obtained by applying the location strategy at the site of the client (relaxation of the VRP) to address the routing problem, but it must be considered that there are no displacements towards the recharges. Of all the other three proposals, K-means showed the best performance when locating the charging stations at the centroid of the cluster. © 2012-2018. National Institute for R and D in Informatics.https://sic.ici.ro/wp-content/uploads/2018/03/Art.-8-Issue-1-2018-SIC.pd

    A Planning-based Approach for Music Composition

    Get PDF
    . Automatic music composition is a fascinating field within computational creativity. While different Artificial Intelligence techniques have been used for tackling this task, Planning – an approach for solving complex combinatorial problems which can count on a large number of high-performance systems and an expressive language for describing problems – has never been exploited. In this paper, we propose two different techniques that rely on automated planning for generating musical structures. The structures are then filled from the bottom with “raw” musical materials, and turned into melodies. Music experts evaluated the creative output of the system, acknowledging an overall human-enjoyable trait of the melodies produced, which showed a solid hierarchical structure and a strong musical directionality. The techniques proposed not only have high relevance for the musical domain, but also suggest unexplored ways of using planning for dealing with non-deterministic creative domains
    • …
    corecore