449 research outputs found

    A Newton-bracketing method for a simple conic optimization problem

    Full text link
    For the Lagrangian-DNN relaxation of quadratic optimization problems (QOPs), we propose a Newton-bracketing method to improve the performance of the bisection-projection method implemented in BBCPOP [to appear in ACM Tran. Softw., 2019]. The relaxation problem is converted into the problem of finding the largest zero yy^* of a continuously differentiable (except at yy^*) convex function g:RRg : \mathbb{R} \rightarrow \mathbb{R} such that g(y)=0g(y) = 0 if yyy \leq y^* and g(y)>0g(y) > 0 otherwise. In theory, the method generates lower and upper bounds of yy^* both converging to yy^*. Their convergence is quadratic if the right derivative of gg at yy^* is positive. Accurate computation of g(y)g'(y) is necessary for the robustness of the method, but it is difficult to achieve in practice. As an alternative, we present a secant-bracketing method. We demonstrate that the method improves the quality of the lower bounds obtained by BBCPOP and SDPNAL+ for binary QOP instances from BIQMAC. Moreover, new lower bounds for the unknown optimal values of large scale QAP instances from QAPLIB are reported.Comment: 19 pages, 2 figure

    Global Approaches for Facility Layout and VLSI Floorplanning

    Get PDF
    This paper summarizes recent advances in the global solution of several relevant facility layout problems

    Global Approaches for Facility Layout and VLSI Floorplanning

    Get PDF
    This paper summarizes recent advances in the global solution of several relevant facility layout problems

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274

    On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)

    Get PDF
    AMS classification: 90C22, 20Cxx, 70-08
    corecore