20,305 research outputs found

    Predictive Second Order Sliding Control of Constrained Linear Systems with Application to Automotive Control Systems

    Full text link
    This paper presents a new predictive second order sliding controller (PSSC) formulation for setpoint tracking of constrained linear systems. The PSSC scheme is developed by combining the concepts of model predictive control (MPC) and second order discrete sliding mode control. In order to guarantee the feasibility of the PSSC during setpoint changes, a virtual reference variable is added to the PSSC cost function to calculate the closest admissible set point. The states of the system are then driven asymptotically to this admissible setpoint by the control action of the PSSC. The performance of the proposed PSSC is evaluated for an advanced automotive engine case study, where a high fidelity physics-based model of a reactivity controlled compression ignition (RCCI) engine is utilized to serve as the virtual test-bed for the simulations. Considering the hard physical constraints on the RCCI engine states and control inputs, simultaneous tracking of engine load and optimal combustion phasing is a challenging objective to achieve. The simulation results of testing the proposed PSSC on the high fidelity RCCI model show that the developed predictive controller is able to track desired engine load and combustion phasing setpoints, with minimum steady state error, and no overshoot. Moreover, the simulation results confirm the robust tracking performance of the PSSC during transient operations, in the presence of engine cyclic variability.Comment: 6 pages, 5 figures, 2018 American Control Conferance (ACC), June 27-29, 2018, Milwaukee, WI, USA. [Accepted in Jan. 2018

    Sliding modes in constrained systems control

    Get PDF
    Abstract—In this paper, a sliding-mode-based design framework for fully actuated mechanical multibody system is discussed. The framework is based on the possibility to represent complex motion as a collection of tasks and to find effective mapping of the system coordinates that allows decoupling task and constraint control so one is able to enforce concurrently, or in certain time succession, the task and the constraints. The approach seems naturally encompassing the control of motion systems in interaction, and it allows application to bilateral control, multilateral control, etc. Such an approach leads to a more natural interpretation of the system tasks, simpler controller design, and easier establishment of the systems hierarchy. It allows a unified mathematical treatment of task control in the presence of constraints required to be satisfied by the system coordinates. In order to show the applicability of the proposed techniques, simulation and experimental results for high-precision systems in microsystem assembly tasks and bilateral control systems are presented

    Motion control - A SMC approach

    Get PDF
    Motion control involves many diversified control problems of complex nonlinear systems. In this paper we will be addressing the SMC approach for multi-body mechanical systems control. The main feature of the SMC is constraint of the system motion into manifold in system state space. It will be shown that usage of the SMC methods is a natural way of addressing problems in motion control including constrained systems, redundant systems and functionally related systems to name some. The consistent application of the SMC methods leads to natural decomposition of system motion for redundant tasks and allows simple, straight forward dynamical decoupling of the multiple tasks

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Sliding modes in electrical drives and motion control

    Get PDF
    In this paper application of Sliding Mode Control (SMC) to electrical drives and motion control systems is discussed. It is shown that in these applications simplicity in implementation makes concepts of SMC a very attractive design alternative. Application in electrical drives control is discussed for supply via different topologies of the supply converters. Motion control is discussed for single degree of freedom motion control systems as an extension of the control of mechanical coordinates in electrical drives. Extension to multi-body systems is discussed very briefly

    Function based control for bilateral systems in tele-micromanipulation

    Get PDF
    Design of a motion control system should take into account (a) unconstrained motion performed without interaction with environment or any other system, and (b) constrained motion with system in contact with environment or other systems. Control in both cases can be formulated in terms of maintaining desired system configuration what makes essentially the same structure for common tasks: trajectory tracking, interaction force control, compliance control etc. The same design approach can be used to formulate control in bilateral systems aimed to maintain desired functional relations between human and environment through master and slave motion systems. Implementation of the methodology is currently being pursued with a custom built Tele-micromanipulation setup and preliminary results concerning force/position tracking and transparency between master and slave are clearly demonstrated

    Application of MPC and sliding mode control to IFAC benchmark models

    Get PDF
    The comparison of Model Predictive Control (MPC) and Sliding Mode Control (SMC) are presented in this paper. This paper investigates the performance of each controller as the navigation system for IFAC benchmark ship models (cargo vessel and oil tanker). In this investigation the navigation system regulates the heading angle of the two types of marine vessel with reference to a desired heading trajectory. In this investigation, the result obtained from MPC is compared with a well-established control methodology, namely Sliding Mode control theory. Wave disturbances and actuator limits are implemented to provide a more realistic evaluation and comparison for the proposed control structure
    corecore