474 research outputs found

    An efficient and private RFID authentication protocol supporting ownership transfer

    Get PDF
    Radio Frequency IDentification (RFID) systems are getting pervasively deployed in many daily life applications. But this increased usage of RFID systems brings some serious problems together, security and privacy. In some applications, ownership transfer of RFID labels is sine qua non need. Specifically, the owner of RFID tag might be required to change several times during its lifetime. Besides, after ownership transfer, the authentication protocol should also prevent the old owner to trace the tags and disallow the new owner to trace old transactions of the tags. On the other hand, while achieving privacy and security concerns, the computation complexity should be considered. In order to resolve these issues, numerous authentication protocols have been proposed in the literature. Many of them failed and their computation load on the server side is very high. Motivated by this need, we propose an RFID mutual authentication protocol to provide ownership transfer. In our protocol, the server needs only a constant-time complexity for identification when the tag and server are synchronized. In case of ownership transfer, our protocol preserves both old and new owners’ privacy. Our protocol is backward untraceable against a strong adversary who compromise tag, and also forward untraceable under an assumption

    A Cloud-based RFID Authentication Protocol with Insecure Communication Channels

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Radio Frequency Identification (RFID) has becomea widespread technology to automatically identify objects and withthe development of cloud computing, cloud-based RFID systemsattract more research these days. Several cloud-based RFIDauthentication protocols have been proposed to address privacyand security properties in the environment where the cloudprovider is untrusted therefore the tag’s data are encrypted andanonymously stored in the cloud database. However, most of thecloud-based RFID authentication protocols assume securecommunication channels between the reader and the cloud server.To protect data transmission between the reader and the cloudserver without any help from a third party, this paper proposes acloud-based RFID authentication protocol with insecurecommunication channels (cloud-RAPIC) between the reader and the cloud server. The cloud-RAPIC protocol preserves tag privacyeven when the tag does not update its identification. The cloudRAPIC protocol has been analyzed using the UPriv model andAVISPA verification tool which have proved that the protocolpreserves tag privacy and protects data secrecy

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    Tag Ownership Transfer in Radio Frequency Identification Systems: A Survey of Existing Protocols and Open Challenges

    Get PDF
    Radio frequency identification (RFID) is a modern approach to identify and track several assets at once in a supply chain environment. In many RFID applications, tagged items are frequently transferred from one owner to another. Thus, there is a need for secure ownership transfer (OT) protocols that can perform the transfer while, at the same time, protect the privacy of owners. Several protocols have been proposed in an attempt to fulfill this requirement. In this paper, we provide a comprehensive and systematic review of the RFID OT protocols that appeared over the years of 2005-2018. In addition, we compare these protocols based on the security goals which involve their support of OT properties and their resistance to attacks. From the presented comparison, we draw attention to the open issues in this field and provide suggestions for the direction that future research should follow. Furthermore, we suggest a set of guidelines to be considered in the design of new protocols. To the best of our knowledge, this is the first comprehensive survey that reviews the available OT protocols from the early start up to the current state of the art

    Smart cards: State-of-the-art to future directions

    Get PDF
    The evolution of smart card technology provides an interesting case study of the relationship and interactions between security and business requirements. This paper maps out the milestones for smart card technology, discussing at each step the opportunities and challenges. The paper reviews recently proposed innovative ownership/management models and the security challenges associated with them. The paper concludes with a discussion of possible future directions for the technology, and the challenges these present

    SLEC: A Novel Serverless RFID Authentication Protocol Based on Elliptic Curve Cryptography

    Get PDF
    Radio Frequency Identification (RFID) is one of the leading technologies in the Internet of Things (IoT) to create an efficient and reliable system to securely identify objects in many environments such as business, health, and manufacturing areas. Since the RFID server, reader, and tag communicate via insecure channels, mutual authentication between the reader and the tag is necessary for secure communication. The central database server supports the authentication of the reader and the tag by storing and managing the network data. Recent lightweight RFID authentication protocols have been proposed to satisfy the security features of RFID communication. A serverless RFID system is a new promising solution to alternate the central database for mobile RFID models. In this model, the reader and the tag perform the mutual authentication without the support of the central database server. However, many security challenges arise from implementing the lightweight RFID authentication protocols in the serverless RFID network. We propose a new robust serverless RFID authentication protocol based on the Elliptic Curve Cryptography (ECC) to prevent the security attacks on the network and maintain the confidentiality and the privacy of the authentication messages and tag information and location. While most of the current protocols assume a secure channel in the setup phase to transmit the communication data, we consider in our protocol an insecure setup phase between the server, reader, and tag to ensure that the data can be renewed from any checkpoint server along with the route of the mobile RFID network. Thus, we implemented the elliptic curve cryptography in the setup phase (renewal phase) to transmit and store the data and the public key of the server to any reader or tag so that the latter can perform the mutual authentication successfully. The proposed model is compared under the classification of the serverless model in term of computation cost and security resistance

    A New Secure and Efficient Ownership Transfer Protocol based on Quadric Residue and Homomorphic Encryption

    Get PDF
    In systems equipped with radio frequency identification (RFID) technology, several security concerns may arise when the ownership of a tag should be transferred from one owner to another, e.g., the confidentiality of information related to the old owner or the new owner. Therefore, this transfer is usually done via a security protocol called the ownership transfer protocol. If the ownership of several things together transmitted from one owner to another during a single session, the protocol is referred to as the group ownership transfer protocol. Lee et al. recently proposed a new group ownership transfer protocol by using cloud server, as a trusted third-party, and based on homomorphic encryption and quadratic residue. In this paper, at first, we explain some important security attacks against this recently proposed RFID group ownership transfer protocol. The success probability of any attack that is presented in this paper is 11 and the complexity is just a run of the protocol. Zhu et al. also in order to provide simultaneous transfer of group of tags in multi-owner environment proposed a lightweight anonymous group ownership transfer protocol. In this paper, we show that it suffers from desynchronization attack. The success probability of this attack is 1 and its complexity is only five runs of group ownership transfer protocol. In addition, to overcome the Lee \textit{et al.} protocol security weaknesses, we present a new group ownership transfer protocol which is resistant against all known active and passive attacks, including the attacks presented in this paper. The provided security proof through informal methods and also formal methods such as Barrows-Abadi-Needham logic and Scyther tool show the proposed protocol\u27s security correctness
    corecore