128 research outputs found

    Buffer management and cell switching management in wireless packet communications

    Get PDF
    The buffer management and the cell switching (e.g., packet handoff) management using buffer management scheme are studied in Wireless Packet Communications. First, a throughput improvement method for multi-class services is proposed in Wireless Packet System. Efficient traffic management schemes should be developed to provide seamless access to the wireless network. Specially, it is proposed to regulate the buffer by the Selective- Delay Push-In (SDPI) scheme, which is applicable to scheduling delay-tolerant non-real time traffic and delay-sensitive real time traffic. Simulation results show that the performance observed by real time traffics are improved as compared to existing buffer priority scheme in term of packet loss probability. Second, the performance of the proposed SDPI scheme is analyzed in a single CBR server. The arrival process is derived from the superposition of two types of traffics, each in turn results from the superposition of homogeneous ON-OFF sources that can be approximated by means of a two-state Markov Modulated Poisson Process (MMPP). The buffer mechanism enables the ATM layer to adapt the quality of the cell transfer to the QoS requirements and to improve the utilization of network resources. This is achieved by selective-delaying and pushing-in cells according to the class they belong to. Analytical expressions for various performance parameters and numerical results are obtained. Simulation results in term of cell loss probability conform with our numerical analysis. Finally, a novel cell-switching scheme based on TDMA protocol is proposed to support QoS guarantee for the downlink. The new packets and handoff packets for each type of traffic are defined and a new cutoff prioritization scheme is devised at the buffer of the base station. A procedure to find the optimal thresholds satisfying the QoS requirements is presented. Using the ON-OFF approximation for aggregate traffic, the packet loss probability and the average packet delay are computed. The performance of the proposed scheme is evaluated by simulation and numerical analysis in terms of packet loss probability and average packet delay

    Providing Emergency Services in Public Cellular Networks

    Get PDF

    Modelling and performance evaluation of wireless and mobile communication systems in heterogeneous environments

    Get PDF
    It is widely expected that next generation wireless communication systems will be heterogeneous, integrating a wide variety of wireless access networks. Of particular interest recently is the integration of cellular networks (GSM, GPRS, UMTS, EDGE and LTE) and wireless local area networks (WLANs) to provide complementary features in terms of coverage, capacity and mobility support. These different networks will work together using vertical handover techniques and hence understanding how well these mechanisms perform is a significant issue. In this thesis, these networks are modelled to yield performance results such as mean queue lengths and blocking probabilities over a range of different conditions. The results are then analysed using network constraints to yield operational graphs based on handover probabilities to different networks. Firstly, individual networks with horizontal handover are analysed using performability techniques. The thesis moves on to look at vertical handovers between cellular networks using pure performance models. Then the integration of cellular networks and WLAN is considered. While analysing these results it became clear that the common models that were being used were subjected to handover hysteresis resulting from feedback loops in the model. A new analytical model was developed which addressed this issue but was shown to be problematic in developing state probabilities for more complicated scenarios. Guard channels analysis, which is normally used to give priority to handover traffic in mobile networks, was employed as a practical solution to the observed handover hysteresis. Overall, using different analytical techniques as well as simulation, the results of this work form an important part in the design and development of future mobile systems

    Impact of Mobility and Wireless Channel on the Performance of Wireless Networks

    Get PDF
    This thesis studies the impact of mobility and wireless channel characteristics, i. e. , variability and high bit-error-rate, on the performance of integrated voice and data wireless systems from network, transport protocol and application perspectives. From the network perspective, we study the impact of user mobility on radio resource allocation. The goal is to design resource allocation mechanisms that provide seamless mobility for voice calls while being fair to data calls. In particular, we develop a distributed admission control for a general integrated voice and data wireless system. We model the number of active calls in a cell of the network as a Gaussian process with time-dependent mean and variance. The Gaussian model is updated periodically using the information obtained from neighboring cells about their load conditions. We show that the proposed scheme guarantees a prespecified dropping probability for voice calls while being fair to data calls. Furthermore, the scheme is stable, insensitive to user mobility process and robust to load variations. From the transport protocol perspective, we study the impact of wireless channel variations and rate scheduling on the performance of elastic data traffic carried by TCP. We explore cross-layer optimization of the rate adaptation feature of cellular networks to optimize TCP throughput. We propose a TCP-aware scheduler that switches between two rates as a function of TCP sending rate. We develop a fluid model of the steady-state TCP behavior for such a system and derive analytical expressions for TCP throughput that explicitly account for rate variability as well as the dependency between the scheduler and TCP. The model is used to choose RF layer parameters that, in conjunction with the TCP-aware scheduler, improve long-term TCP throughput in wireless networks. A distinctive feature of our model is its ability to capture variability of round-trip-time, channel rate and packet error probability inherent to wireless communications. From the application perspective, we study the performance of wireless messaging systems. Two popular wireless applications, the short messaging service and multimedia messaging service are considered. We develop a mathematical model to evaluate the performance of these systems taking into consideration the fact that each message tolerates only a limited amount of waiting time in the system. Using the model, closed-form expressions for critical performance parameters such as message loss, message delay and expiry probability are derived. Furthermore, a simple algorithm is presented to find the optimal temporary storage size that minimizes message delay for a given set of system parameters

    Queueing Networks for Vertical Handover

    Get PDF
    PhDIt is widely expected that next-generation wireless communication systems will be heterogeneous, integrating a wide variety of wireless access networks. Of particular interest recently is a mix of cellular networks (GSM/GPRS and WCDMA) and wireless local area networks (WLANs) to provide complementary features in terms of coverage, capacity and mobility support. If cellular/ WLAN interworking is to be the basis for a heterogeneous network then the analysis of complex handover traffic rates in the system (especially vertical handover) is one of the most essential issues to be considered. This thesis describes the application of queueing-network theory to the modelling of this heterogeneous wireless overlay system. A network of queues (or queueing network) is a powerful mathematical tool in the performance evaluation of many large-scale engineering systems. It has been used in the modelling of hierarchically structured cellular wireless networks with much success, including queueing network modelling in the study of cellular/ WLAN interworking systems. In the process of queueing network modelling, obtaining the network topology of a system is usually the first step in the construction of a good model, but this topology analysis has never before been used in the handover traffic study in heterogeneous overlay wireless networks. In this thesis, a new topology scheme to facilitate the analysis of handover traffic is proposed. The structural similarity between hierarchical cellular structure and heterogeneous wireless overlay networks is also compared. By replacing the microcells with WLANs in a hierarchical structure, the interworking system is modelled as an open network of Erlang loss systems and with the new topology, the performance measures of blocking probabilities and dropping probabilities can be determined. Both homogeneous and non-homogeneous traffic have been considered, circuit switched and packet-switched. Example scenarios have been used to validate the models, the numerical results showing clear agreement with the known validation scenarios

    Efficient resource allocation and call admission control in high capacity wireless networks

    Get PDF
    Resource Allocation (RA) and Call Admission Control (CAC) in wireless networks are processes that control the allocation of the limited radio resources to mobile stations (MS) in order to maximize the utilization efficiency of radio resources and guarantee the Quality of Service (QoS) requirements of mobile users. In this dissertation, several distributed, adaptive and efficient RA/CAC schemes are proposed and analyzed, in order to improve the system utilization while maintaining the required QoS. Since the most salient feature of the mobile wireless network is that users are moving, a Mobility Based Channel Reservation (MBCR) scheme is proposed which takes the user mobility into consideration. The MBCR scheme is further developed into PMBBR scheme by using the user location information in the reservation making process. Through traffic composition analysis, the commonly used assumption is challenged in this dissertation, and a New Call Bounding (NCB) scheme, which uses the number of channels that are currently occupied by new calls as a decision variable for the CAC, is proposed. This dissertation also investigates the pricing as another dimension for RA/CAC. It is proven that for a given wireless network there exists a new call arrival rate which can maximize the total utility of users, while maintaining the required QoS. Based on this conclusion, an integrated pricing and CAC scheme is proposed to alleviate the system congestion
    corecore