452 research outputs found

    RMD-QOSM: The NSIS Quality-of-Service Model for Resource Management in Diffserv

    Get PDF
    This document describes a Next Steps in Signaling (NSIS) Quality-of- Service (QoS) Model for networks that use the Resource Management in Diffserv (RMD) concept. RMD is a technique for adding admission control and preemption function to Differentiated Services (Diffserv) networks. The RMD QoS Model allows devices external to the RMD network to signal reservation requests to Edge nodes in the RMD network. The RMD Ingress Edge nodes classify the incoming flows into traffic classes and signals resource requests for the corresponding traffic class along the data path to the Egress Edge nodes for each flow. Egress nodes reconstitute the original requests and continue forwarding them along the data path towards the final destination. In addition, RMD defines notification functions to indicate overload situations within the domain to the Edge nodes

    Squatting and kicking model evaluation for prioritized sliced resource management

    Get PDF
    © Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Effective management and allocation of resources remains a challenging paradigm for future large-scale networks such as 5G, especially under a network slicing scenario where the different services will be characterized by differing Quality of Service (QoS) requirements. This makes the task of guaranteeing the QoS levels and maximizing the resource utilization across such networks a complicated task. Moreover, the existing allocation strategies with link sharing tend to suffer from inefficient network resource usage. Therefore, we focused on prioritized sliced resource management in this work and the contributions of this paper can be summarized as formally defining and evaluating a self-provisioned resource management scheme through a smart Squatting and Kicking model (SKM) for multi-class networks. SKM provides the ability to dynamically allocate network resources such as bandwidth, Label Switched Paths (LSP), fiber, slots among others to different user priority classes. Also, SKM can guarantee the correct level of QoS (especially for the higher priority classes) while optimizing the resource utilization across networks. Moreover, given the network slicing scenarios, the proposed scheme can be employed for admission control. Simulation results show that our model achieves 100% resource utilization in bandwidth-constrained environments while guaranteeing higher admission ratio for higher priority classes. From the results, SKM provided 100% acceptance ratio for highest priority class under different input traffic volumes, which, as we articulate, cannot be sufficiently achieved by other existing schemes such as AllocTC-Sharing model due to priority constraints.Peer ReviewedPostprint (author's final draft

    The Squatting and Kicking strategies for self-provisioned, bandwidth resource sharing in multiclass networks

    Get PDF
    English: This article proposes a self-provisioned, Squatting and Kicking bandwidth resource sharing strategy for multiclass networks where differentiated services are not natively built. Moreover, this article provides a summary of the bandwidth constraints models and shows how the squatting and kicking strategies can be adapted to be the basis for a new bandwidth constraint model, which widens the range of techniques available to operators for bandwidth resource management in multiclass networks.Castellano: Este artículo propone unas estrategias para compartir ancho de banda en redes multi-clase de manera auto-gestionada, donde los servicios diferenciados no se soportan de manera nativa. Además, se provee una comparación de los modelos de ancho de banda limitado y cómo las estrategias "squat" y "kick" se pueden constituir como nuevo modelo. Dicho model ampliará el número de técnicas que los operadores tienen disponibles para la gestión de tráfico en redes multi-clase.Català: Aquest article proposa unes estratègies per a compartir l'amplada de banda en xarxes multi-classe de manera auto-gestionada, a on els serveis diferenciats no se suporten de manera nadiua. A més a més, se proveeix una comparació dels models d'amplada de banda limitat i com les estratègies "squat" i "kick" es poden constituir com a nou model. Aquest nou model ampliarà el nombre de tècniques de que disposen els operadors de xarxes multi-classe per a la gestió del tràfic

    Multiservice QoS-Enabled MAC for Optical Burst Switching

    Get PDF
    The emergence of a broad range of network-driven applications (e.g., multimedia, online gaming) brings in the need for a network environment able to provide multiservice capabilities with diverse quality-of-service (QoS) guarantees. In this paper, a medium access control protocol is proposed to support multiple services and QoS levels in optical burst-switched mesh networks without wavelength conversion. The protocol provides two different access mechanisms, queue-arbitrated and prearbitrated for connectionless and connection-oriented burst transport, respectively. It has been evaluated through extensive simulations and its simplistic form makes it very promising for implementation and deployment. Results indicate that the protocol can clearly provide a relative quality differentiation for connectionless traffic and guarantee null (or negligible, and thus acceptable) burst loss probability for a wide range of network (or offered) load while ensuring low access delay for the higher-priority traffic. Furthermore, in the multiservice scenario mixing connectionless and connection-oriented burst transmissions, three different prearbitrated slot scheduling algorithms are evaluated, each one providing a different performance in terms of connection blocking probability. The overall results demonstrate the suitability of this architecture for future integrated multiservice optical networks

    Bandwidth constraint models: a performance study

    Get PDF
    Paper presented at IEEE GLOBECOM 2006 - 2006 Global Telecommunications Conference. San Francisco, CA: pp. 4150664.Bandwidth constraint models have been a topic of intense discussions at the IETF meetings. Three conventional methods have been described in informational IETF RFCs and their performance on a single link has been analyzed and discussed in the literature. In this article, we take a further step into analyzing their performance and optimal bandwidth constraint setting for a real network scenario. A new model is proposed and compared to existing ones when failure events may cause preemption of traffic trunks in a network. Our simulations results provide great insight on the benefits of the methods

    Dynamic bandwidth allocation with SLA awareness for QoS in ethernet passive optical networks

    Get PDF
    Quality-of-service (QoS) support in Ethernet passive optical networks is a crucial concern. We propose a new dynamic bandwidth allocation (DBA) algorithm for service differentiation that meets the service-level agreements (SLAs) of the users. The proposed delay-aware (DA) online DBA algorithm provides constant and predictable average packet delay and reduced delay variation for the high-and medium-priority traffic while keeping the packet loss rate under check. We prove the effectiveness of the proposed algorithm by exhaustive simulations

    An Introduction to Open-Source IaaS Cloud Middleware

    Full text link
    • …
    corecore