198,154 research outputs found

    The Serums Tool-Chain:Ensuring Security and Privacy of Medical Data in Smart Patient-Centric Healthcare Systems

    Get PDF
    Digital technology is permeating all aspects of human society and life. This leads to humans becoming highly dependent on digital devices, including upon digital: assistance, intelligence, and decisions. A major concern of this digital dependence is the lack of human oversight or intervention in many of the ways humans use this technology. This dependence and reliance on digital technology raises concerns in how humans trust such systems, and how to ensure digital technology behaves appropriately. This works considers recent developments and projects that combine digital technology and artificial intelligence with human society. The focus is on critical scenarios where failure of digital technology can lead to significant harm or even death. We explore how to build trust for users of digital technology in such scenarios and considering many different challenges for digital technology. The approaches applied and proposed here address user trust along many dimensions and aim to build collaborative and empowering use of digital technologies in critical aspects of human society

    Adding X-security to Carrel: security for agent-based healthcare applications

    Get PDF
    The high growth of Multi-Agent Systems (MAS) in Open Networks with initiatives such as Agentcities1 requires development in many different areas such as scalable and secure agent platforms, location services, directory services, and systems management. In our case we have focused our effort on security for agent systems. The driving force of this paper is provide a practical vision of how security mechanisms could be introduced for multi-agent applications. Our case study for this experiment is Carrel [9]: an Agent-based application in the Organ and Tissue transplant domain. The selection of this application is due to its characteristics as a real scenario and use of high-risk data for example, a study of the 21 most visited health-related web sites on the Internet discovered that personal information provided at many of the sites was being inadvertently leaked for unauthorized persons. These factors indicate to us that Carrel would be a suitable environment in order to test existing security safeguards. Furthermore, we believe that the experience gathered will be useful for other MAS. In order to achieve our purpose we describe the design, architecture and implementation of security elements on MAS for the Carrel System.Postprint (published version

    Security in online learning assessment towards an effective trustworthiness approach to support e-learning teams

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This paper proposes a trustworthiness model for the design of secure learning assessment in on-line collaborative learning groups. Although computer supported collaborative learning has been widely adopted in many educational institutions over the last decade, there exist still drawbacks which limit their potential in collaborative learning activities. Among these limitations, we investigate information security requirements in on-line assessment, (e-assessment), which can be developed in collaborative learning contexts. Despite information security enhancements have been developed in recent years, to the best of our knowledge, integrated and holistic security models have not been completely carried out yet. Even when security advanced methodologies and technologies are deployed in Learning Management Systems, too many types of vulnerabilities still remain opened and unsolved. Therefore, new models such as trustworthiness approaches can overcome these lacks and support e-assessment requirements for e-Learning. To this end, a trustworthiness model is designed in order to conduct the guidelines of a holistic security model for on-line collaborative learning through effective trustworthiness approaches. In addition, since users' trustworthiness analysis involves large amounts of ill-structured data, a parallel processing paradigm is proposed to build relevant information modeling trustworthiness levels for e-Learning.Peer ReviewedPostprint (author's final draft
    corecore