91,093 research outputs found

    Datalog extension for nested relations

    Get PDF
    AbstractThe nested relational model allows relations that are not in first normal form. This paper gives an extension of Datalog rules for nested relations. In our approach, nested Datalog is a natural extension of Datalog introduced for the relational data model. A nested Datalog program has a hierarchical structure of rules and subprograms to manipulate relation values of nested relations. We introduce a new category of predicate symbols, the variable predicate symbols to refer to tuples of subrelations. The notion of soundness, safety and consistency is defined to avoid undesirable nested Datalog programs. The evaluation of nested Datalog is given in terms of the nested relational algebra. Finally, we relate the expressive power of nonrecursive nested Datalog to the power of nested relational algebra and safe nested tuple relational calculus

    On Link Homology Theories from Extended Cobordisms

    Full text link
    This paper is devoted to the study of algebraic structures leading to link homology theories. The originally used structures of Frobenius algebra and/or TQFT are modified in two directions. First, we refine 2-dimensional cobordisms by taking into account their embedding into the three space. Secondly, we extend the underlying cobordism category to a 2-category, where the usual relations hold up to 2-isomorphisms. The corresponding abelian 2-functor is called an extended quantum field theory (EQFT). We show that the Khovanov homology, the nested Khovanov homology, extracted by Stroppel and Webster from Seidel-Smith construction, and the odd Khovanov homology fit into this setting. Moreover, we prove that any EQFT based on a Z_2-extension of the embedded cobordism category which coincides with Khovanov after reducing the coefficients modulo 2, gives rise to a link invariant homology theory isomorphic to those of Khovanov.Comment: Lots of figure

    Chow rings of toric varieties defined by atomic lattices

    Full text link
    We study a graded algebra D=D(L,G) defined by a finite lattice L and a subset G in L, a so-called building set. This algebra is a generalization of the cohomology algebras of hyperplane arrangement compactifications found in work of De Concini and Procesi. Our main result is a representation of D, for an arbitrary atomic lattice L, as the Chow ring of a smooth toric variety that we construct from L and G. We describe this variety both by its fan and geometrically by a series of blowups and orbit removal. Also we find a Groebner basis of the relation ideal of D and a monomial basis of D over Z.Comment: 23 pages, 7 figures, final revision with minor changes, to appear in Invent. Mat

    XML document design via GN-DTD

    Get PDF
    Designing a well-structured XML document is important for the sake of readability and maintainability. More importantly, this will avoid data redundancies and update anomalies when maintaining a large quantity of XML based documents. In this paper, we propose a method to improve XML structural design by adopting graphical notations for Document Type Definitions (GN-DTD), which is used to describe the structure of an XML document at the schema level. Multiples levels of normal forms for GN-DTD are proposed on the basis of conceptual model approaches and theories of normalization. The normalization rules are applied to transform a poorly designed XML document into a well-designed based on normalized GN-DTD, which is illustrated through examples

    Context-Free Path Queries on RDF Graphs

    Full text link
    Navigational graph queries are an important class of queries that canextract implicit binary relations over the nodes of input graphs. Most of the navigational query languages used in the RDF community, e.g. property paths in W3C SPARQL 1.1 and nested regular expressions in nSPARQL, are based on the regular expressions. It is known that regular expressions have limited expressivity; for instance, some natural queries, like same generation-queries, are not expressible with regular expressions. To overcome this limitation, in this paper, we present cfSPARQL, an extension of SPARQL query language equipped with context-free grammars. The cfSPARQL language is strictly more expressive than property paths and nested expressions. The additional expressivity can be used for modelling graph similarities, graph summarization and ontology alignment. Despite the increasing expressivity, we show that cfSPARQL still enjoys a low computational complexity and can be evaluated efficiently.Comment: 25 page
    • …
    corecore