4,441 research outputs found

    Design Optimization Utilizing Dynamic Substructuring and Artificial Intelligence Techniques

    Get PDF
    In mechanical and structural systems, resonance may cause large strains and stresses which can lead to the failure of the system. Since it is often not possible to change the frequency content of the external load excitation, the phenomenon can only be avoided by updating the design of the structure. In this paper, a design optimization strategy based on the integration of the Component Mode Synthesis (CMS) method with numerical optimization techniques is presented. For reasons of numerical efficiency, a Finite Element (FE) model is represented by a surrogate model which is a function of the design parameters. The surrogate model is obtained in four steps: First, the reduced FE models of the components are derived using the CMS method. Then the components are aassembled to obtain the entire structural response. Afterwards the dynamic behavior is determined for a number of design parameter settings. Finally, the surrogate model representing the dynamic behavior is obtained. In this research, the surrogate model is determined using the Backpropagation Neural Networks which is then optimized using the Genetic Algorithms and Sequential Quadratic Programming method. The application of the introduced techniques is demonstrated on a simple test problem

    An optimization method for dynamics of structures with repetitive component patterns

    Get PDF
    The occurrence of dynamic problems during the operation of machinery may have devastating effects on a product. Therefore, design optimization of these products becomes essential in order to meet safety criteria. In this research, a hybrid design optimization method is proposed where attention is focused on structures having repeating patterns in their geometries. In the proposed method, the analysis is decomposed but the optimization problem itself is treated as a whole. The model of an entire structure is obtained without modeling all the repetitive components using the merits of the Component Mode Synthesis method. Backpropagation Neural Networks are used for surrogate modeling. The optimization is performed using two techniques: Genetic Algorithms (GAs) and Sequential Quadratic Programming (SQP). GAs are utilized to increase the chance of finding the location of the global optimum and since this optimum may not be exact, SQP is employed afterwards to improve the solution. A theoretical test problem is used to demonstrate the method

    Generalised cellular neural networks (GCNNs) constructed using particle swarm optimisation for spatio-temporal evolutionary pattern identification

    Get PDF
    Particle swarm optimization (PSO) is introduced to implement a new constructive learning algorithm for training generalized cellular neural networks (GCNNs) for the identification of spatio-temporal evolutionary (STE) systems. The basic idea of the new PSO-based learning algorithm is to successively approximate the desired signal by progressively pursuing relevant orthogonal projections. This new algorithm will thus be referred to as the orthogonal projection pursuit (OPP) algorithm, which is in mechanism similar to the conventional projection pursuit approach. A novel two-stage hybrid training scheme is proposed for constructing a parsimonious GCNN model. In the first stage, the orthogonal projection pursuit algorithm is applied to adaptively and successively augment the network, where adjustable parameters of the associated units are optimized using a particle swarm optimizer. The resultant network model produced at the first stage may be redundant. In the second stage, a forward orthogonal regression (FOR) algorithm, aided by mutual information estimation, is applied to re. ne and improve the initially trained network. The effectiveness and performance of the proposed method is validated by applying the new modeling framework to a spatio-temporal evolutionary system identification problem

    Gaussian Process Model Predictive Control of An Unmanned Quadrotor

    Full text link
    The Model Predictive Control (MPC) trajectory tracking problem of an unmanned quadrotor with input and output constraints is addressed. In this article, the dynamic models of the quadrotor are obtained purely from operational data in the form of probabilistic Gaussian Process (GP) models. This is different from conventional models obtained through Newtonian analysis. A hierarchical control scheme is used to handle the trajectory tracking problem with the translational subsystem in the outer loop and the rotational subsystem in the inner loop. Constrained GP based MPC are formulated separately for both subsystems. The resulting MPC problems are typically nonlinear and non-convex. We derived 15 a GP based local dynamical model that allows these optimization problems to be relaxed to convex ones which can be efficiently solved with a simple active-set algorithm. The performance of the proposed approach is compared with an existing unconstrained Nonlinear Model Predictive Control (NMPC). Simulation results show that the two approaches exhibit similar trajectory tracking performance. However, our approach has the advantage of incorporating constraints on the control inputs. In addition, our approach only requires 20% of the computational time for NMPC.Comment: arXiv admin note: text overlap with arXiv:1612.0121
    corecore