6,802 research outputs found

    A new model for selfish routing

    Get PDF
    AbstractIn this work, we introduce and study a new, potentially rich model for selfish routing over non-cooperative networks, as an interesting hybridization of the two prevailing such models, namely the KPmodel [E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: G. Meinel, S. Tison (Eds.), Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, in: Lecture Notes in Computer Science, vol. 1563, Springer-Verlag, 1999, pp. 404–413] and the Wmodel [J.G. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the of the Institute of Civil Engineers 1 (Pt. II) (1952) 325–378].In the hybrid model, each of n users is using a mixed strategy to ship its unsplittable traffic over a network consisting of m parallel links. In a Nash equilibrium, no user can unilaterally improve its Expected Individual Cost. To evaluate Nash equilibria, we introduce Quadratic Social Cost as the sum of the expectations of the latencies, incurred by the squares of the accumulated traffic. This modeling is unlike the KP model, where Social Cost [E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: G. Meinel, S. Tison (Eds.), Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, in: Lecture Notes in Computer Science, vol. 1563, Springer-Verlag, 1999, pp. 404–413] is the expectation of the maximum latency incurred by the accumulated traffic; but it is like the W model since the Quadratic Social Cost can be expressed as a weighted sum of Expected Individual Costs. We use the Quadratic Social Cost to define Quadratic Coordination Ratio. Here are our main findings: •Quadratic Social Cost can be computed in polynomial time. This is unlike the #P-completeness [D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, P. Spirakis, The structure and complexity of Nash equilibria for a selfish routing game, in: P. Widmayer, F. Triguero, R. Morales, M. Hennessy, S. Eidenbenz, R. Conejo (Eds.), Proceedings of the 29th International Colloquium on Automata, Languages and Programming, in: Lecture Notes in Computer Science, vol. 2380, Springer-Verlag, 2002, pp. 123–134] of computing Social Cost for the KP model.•For the case of identical users and identical links, the fully mixed Nash equilibrium [M. Mavronicolas, P. Spirakis, The price of selfish routing, Algorithmica 48 (1) (2007) 91–126], where each user assigns positive probability to every link, maximizes Quadratic Social Cost.•As our main result, we present a comprehensive collection of tight, constant (that is, independent of m and n), strictly less than 2, lower and upper bounds on the Quadratic Coordination Ratio for several, interesting special cases. Some of the bounds stand in contrast to corresponding super-constant bounds on the Coordination Ratio previously shown in [A. Czumaj, B. Vöcking, Tight bounds for worst-case equilibria, ACM Transactions on Algorithms 3 (1) (2007); E. Koutsoupias, M. Mavronicolas, P. Spirakis, Approximate equilibria and ball fusion, Theory of Computing Systems 36 (6) (2003) 683–693; E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: G. Meinel, S. Tison (Eds.), Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, in: Lecture Notes in Computer Science, vol. 1563, Springer-Verlag, 1999, pp. 404–413; M. Mavronicolas, P. Spirakis, The price of selfish routing, Algorithmica 48 (1) (2007) 91–126] for the KP model

    A Study of Problems Modelled as Network Equilibrium Flows

    Get PDF
    This thesis presents an investigation into selfish routing games from three main perspectives. These three areas are tied together by a common thread that runs through the main text of this thesis, namely selfish routing games and network equilibrium flows. First, it investigates methods and models for nonatomic selfish routing and then develops algorithms for solving atomic selfish routing games. A number of algorithms are introduced for the atomic selfish routing problem, including dynamic programming for a parallel network and a metaheuristic tabu search. A piece-wise mixed-integer linear programming problem is also presented which allows standard solvers to solve the atomic selfish routing problem. The connection between the atomic selfish routing problem, mixed-integer linear programming and the multicommodity flow problem is explored when constrained by unsplittable flows or flows that are restricted to a number of paths. Additionally, some novel probabilistic online learning algorithms are presented and compared with the equilibrium solution given by the potential function of the nonatomic selfish routing game. Second, it considers multi-criteria extensions of selfish routing and the inefficiency of the equilibrium solutions when compared with social cost. Models are presented that allow exploration of the Pareto set of solutions for a weighted sum model (akin to the social cost) and the equilibrium solution. A means by which these solutions can be measured based on the Price of Anarchy for selfish routing games is also presented. Third, it considers the importance and criticality of components of the network (edges, vertices or a collection of both) within a selfish routing game and the impact of their removal. Existing network science measures and demand-based measures are analysed to assess the change in total travel time and issues highlighted. A new measure which solves these issues is presented and the need for such a measure is evaluated. Most of the new findings have been disseminated through conference talks and journal articles, while others represent the subject of papers currently in preparation

    A Multi-Objective Routing Algorithm Based on Auction Game for Space Information Network

    Get PDF
    This paper aims to create a resource-saving method for the routing problem in space information network. To this end, a multi-objective routing algorithm was created based on game theory for space information network. Specifically, the auction game was introduced to solve the routing problem using the delay-tolerating network (DTN) protocol. Considering the topological periodicity of low earth orbit (LEO) satellite network, a typical space information network, the dynamic topological structure was divided into relatively static time slots. Then, the routing problem was solved through the auction game in these slots. The proposed algorithm can minimize the number of selfish nodes in the network and avoid network congestion resulted from excessive resource consumption of individual nodes. Finally, the proposed algorithm was compared with other well-known routing models like the epidemic routing model (Epidemic) and the first contact routing model (FC). The results show that the proposed algorithm outperformed the contrastive models in both average delay and network overhead ratio. The research findings shed important new light on the routing of space information network

    Unilateral Altruism in Network Routing Games with Atomic Players

    Full text link
    We study a routing game in which one of the players unilaterally acts altruistically by taking into consideration the latency cost of other players as well as his own. By not playing selfishly, a player can not only improve the other players' equilibrium utility but also improve his own equilibrium utility. To quantify the effect, we define a metric called the Value of Unilateral Altruism (VoU) to be the ratio of the equilibrium utility of the altruistic user to the equilibrium utility he would have received in Nash equilibrium if he were selfish. We show by example that the VoU, in a game with nonlinear latency functions and atomic players, can be arbitrarily large. Since the Nash equilibrium social welfare of this example is arbitrarily far from social optimum, this example also has a Price of Anarchy (PoA) that is unbounded. The example is driven by there being a small number of players since the same example with non-atomic players yields a Nash equilibrium that is fully efficient

    Selfish Routing on Dynamic Flows

    Get PDF
    Selfish routing on dynamic flows over time is used to model scenarios that vary with time in which individual agents act in their best interest. In this paper we provide a survey of a particular dynamic model, the deterministic queuing model, and discuss how the model can be adjusted and applied to different real-life scenarios. We then examine how these adjustments affect the computability, optimality, and existence of selfish routings.Comment: Oberlin College Computer Science Honors Thesis. Supervisor: Alexa Sharp, Oberlin Colleg

    Observation-based Cooperation Enforcement in Ad Hoc Networks

    Full text link
    Ad hoc networks rely on the cooperation of the nodes participating in the network to forward packets for each other. A node may decide not to cooperate to save its resources while still using the network to relay its traffic. If too many nodes exhibit this behavior, network performance degrades and cooperating nodes may find themselves unfairly loaded. Most previous efforts to counter this behavior have relied on further cooperation between nodes to exchange reputation information about other nodes. If a node observes another node not participating correctly, it reports this observation to other nodes who then take action to avoid being affected and potentially punish the bad node by refusing to forward its traffic. Unfortunately, such second-hand reputation information is subject to false accusations and requires maintaining trust relationships with other nodes. The objective of OCEAN is to avoid this trust-management machinery and see how far we can get simply by using direct first-hand observations of other nodes' behavior. We find that, in many scenarios, OCEAN can do as well as, or even better than, schemes requiring second-hand reputation exchanges. This encouraging result could possibly help obviate solutions requiring trust-management for some contexts.Comment: 10 pages, 7 figure
    corecore