35,616 research outputs found

    Is it possible to formulate least action principle for dissipative systems?

    Full text link
    A longstanding open question in classical mechanics is to formulate the least action principle for dissipative systems. In this work, we give a general formulation of this principle by considering a whole conservative system including the damped moving body and its environment receiving the dissipated energy. This composite system has the conservative Hamiltonian H=K1+V1+H2H=K_1+V_1+H_2 where K1K_1 is the kinetic energy of the moving body, V1V_1 its potential energy and H2H_2 the energy of the environment. The Lagrangian can be derived by using the usual Legendre transformation L=2K1+2K2HL=2K_1+2K_2-H where K2K_2 is the total kinetic energy of the environment. An equivalent expression of this Lagrangian is L=K1V1EdL=K_1-V_1-E_d where EdE_d is the energy dissipated by the friction from the moving body into the environment from the beginning of the motion. The usual variation calculus of least action leads to the correct equation of the damped motion. We also show that this general formulation is a natural consequence of the virtual work principle.Comment: 11 pages, no figur

    Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia

    Get PDF
    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue, that the second law of thermodynamics should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over the period of the heat wave.Comment: 12 pages, 7 figure

    Generalized Lagrangians and spinning particles

    Get PDF
    The use of generalized Lagrangians for describing elementary particles was already claimed by Ostrogradskii. It is shown how the spin structure of elementary particles arises if one allows the Lagrangian to depend on higher order derivatives. One part is related to the rotation of the particle and the other, which is coming from the dependence of the Lagrangian on the acceleration, is known as the zitterbewegung part of spin.Comment: Contribution to special issue in the 200th Ostrogradskii anniversary by the Journal of Ukrainian Mathematical Societ

    The "Symplectic Camel Principle" and Semiclassical Mechanics

    Full text link
    Gromov's nonsqueezing theorem, aka the property of the symplectic camel, leads to a very simple semiclassical quantiuzation scheme by imposing that the only "physically admissible" semiclassical phase space states are those whose symplectic capacity (in a sense to be precised) is nh + (1/2)h where h is Planck's constant. We the construct semiclassical waveforms on Lagrangian submanifolds using the properties of the Leray-Maslov index, which allows us to define the argument of the square root of a de Rham form.Comment: no figures. to appear in J. Phys. Math A. (2002
    corecore