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Validity of local equilibrium has been questioned for non-equilibrium systems which are charac-
terized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the
assumption of local equilibrium leads to negative values of the entropy production, which is in
contradiction with the second law of thermodynamics. In this paper, we address this question by
suggesting a variational formulation of irreversible evolution of a system with non-zero thermody-
namic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the
so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the
Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going
beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics
in non-equilibrium should be understood as a consequence of the variational procedure and the
property of local equilibrium. For systems with instantaneous response this leads to the standard
requirement of the local instantaneous entropy production being always positive. However, if a system
is characterized by delayed response, the formulation of the second law of thermodynamics should
be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy
production, but the entropy production averaged over a proper time interval. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4933431]

I. INTRODUCTION

In classical irreversible thermodynamics (CIT), heat
propagation is described by Fourier’s law, which states that
the heat flux is proportional to the temperature gradient,
J = −λ∇T , where λ > 0. This relation is in agreement with
the second law of thermodynamics. Indeed, in case of heat
conduction, the entropy production is proportional to the
product of the heat flux and minus the gradient of the
temperature.1 Thus, the entropy production is always positive
(zero in equilibrium), which is one of the statements of the
second law of thermodynamics.

However, Fourier’s law of heat conduction is not the only
known constitutive relation.2,3 In particular, some systems can
exhibit delayed response4 or even wave behavior.5 A common
extension of Fourier’s law of heat conduction is the so-called
Maxwell-Cattaneo-Vernotte (MCV) equation,6–8

τ J̇ + J = −λ∇T, (1)

where τ is a positive parameter with the dimensionality of time,
and dot above a variable indicates the partial time derivative.
The modification with respect to the standard Fourier equation
is the term τ J̇. It can be viewed as the first term in the Taylor
expansion of the flux J(t + τ) around J(t), so the entire left
hand side of Eq. (1) represents the delayed response of the
system at the time t + τ to the perturbation at the time t.
Delayed response implies that the system has some sort of
thermodynamic inertia, and the parameter τ is a measure of
this inertia.

Existence of an additional term proportional to the
temporal derivative in the evolution equation changes the
nature of the temperature evolution. The system is no longer
purely relaxing. In particular, if τ is large enough, the second
term on the left hand side of Eq. (1) may be neglected and we
will obtain a wave equation. For not very large but non-zero
values of τ, the system behaves similarly to a damped harmonic
oscillator.10 In particular, it relaxes towards equilibrium and,
depending on the values of the parameters τ and λ, may also
exhibit oscillating behavior. Another important consequence
of existence of the first term in Eq. (1) is the restriction on the
speed of heat propagation. In a system described by Fourier’s
law, a thermal perturbation propagates with infinite speed,
which is one of the major critics of CIT. However, in the system
described by Eq. (1) this speed is finite and is proportional to
1/
√
τ. The speed of heat propagation diverges in the limit of

vanishing τ and becomes infinite for the system described by
Fourier’s law.

In addition to practical applicability, a proper evolution
equation must be compatible with the second law of thermo-
dynamics, the fundamental principle which reflects the nature
of irreversible evolution. The statement of the second law is
unambiguous for an (irreversible) change of the system be-
tween two equilibrium states; however, it is not clear, whether
it must hold at every moment during its evolution.9 This
problem has two aspects. First, the non-equilibrium entropy is
not strictly defined: the entropy is defined unambiguously for
equilibrium only, and there are several ways to extend it to non-
equilibrium. Second, there is no rigorous a priori statement
about how the entropy (however, it has been defined) should
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evolve in non-equilibrium. The standard approach to these
problems is to assume a particular formulation for the entropy
and the second law of thermodynamics in non-equilibrium,
which is (i) internally consistent; (ii) compatible with the
equilibrium formulation. The particular choice is then judged
on the basis of the obtained results.

From the practical point of view it is important to have
a “differential” form of the second law of thermodynamics,
which relates the properties of the system continuously in
time and space. All differential formulations of the second
law retain the original “integral” form of Clausius, stating
that the local and instantaneous entropy production is always
positive during irreversible evolution of the system (and zero
in equilibrium). In this paper, we argue that the differential
form of the second law of thermodynamics does not have
to coincide with its original formulation. We will show that
instantaneous entropy production may oscillate (in particular,
in a heat wave), but the properly averaged (over the period of
the heat wave) entropy production would still increase.

It is a common understanding that Eq. (1), being treated
in the context of CIT, leads to violation of the second law of
thermodynamics.10 It can be shown that the classical specific
entropy oscillates with the course of time, if a closed system
is described by Eq. (1). In particular, classical specific entropy
can decrease with time, which contradicts to the requirement
of the entropy production being always positive. To overcome
this issue, there have been developed a theory known under the
name “extended irreversible thermodynamics” (EIT).11 The
key difference of EIT with respect to CIT is the relation
to the local equilibrium hypothesis. It is assumed in CIT
that the thermodynamic relations formulated for equilibrium
macroscopic systems are also valid in non-equilibrium, if
applied locally in space and time. In other words, every small
sub-volume of a system for a given moment of time is assumed
to reach it’s equilibrium, such that there exist local equilibrium.
Mathematically, this is formulated such that the specific
entropy is a function of the local values of the state variables
(e.g., the local densities) only. In contrast, EIT assumes that in
non-equilibrium the specific entropy may in addition depend
on the fluxes as independent variables. Therefore, the local
thermodynamic relations in non-equilibrium are not the same
as in equilibrium, and the system is said to be not in local
equilibrium. The important consequence of considering the
specific entropy to be dependent on both, the state variables
and the fluxes, is that the entropy production is always positive.
In addition, dependence of specific entropy production on the
fluxes leads to the equation of MCV type (1). Thus, consistency
with the second law of thermodynamics is restored.

In the earlier work,12 we have shown that the second law of
thermodynamics can be viewed not as an independent law, but
as a consequence of a variational procedure, which minimizes
a certain thermodynamic “action.” The important part of that
procedure was the assumption of local equilibrium. It was
possible to derive the classical force-flux relations, one of
which had the form of Fourier’s law of heat conduction. In
view of that, it is interesting to realize, whether a similar
procedure can result in a force-flux relation of MCV type
(1). Furthermore, it is interesting to understand whether local
equilibrium is sufficient to describe the systems, which are

governed by Eq. (1). In this paper, we will address these
questions. We will show that the property of local equilibrium
is, in fact, sufficient for the system to exhibit a MCV-like
behavior. We will also address the issue of contradiction
between the local equilibrium hypothesis and the second
law of thermodynamics. In particular, we will show that the
formulation of the second law of thermodynamics, being
considered as a consequence of the variational procedure,
should be modified.

Variational methods in irreversible thermodynamics have
mostly been considered for restricted sets of conditions.12,13

In particular, they have mostly been formulated either for the
constant values of the transport coefficients or for stationary
conditions. The celebrated principle of minimum total entropy
production (Ref. 1, p. 45) formulated by Prigogine, states
that in stationary states the evolution of the system with
constant transport coefficients is such that the total entropy
production is minimum. There have been other variational
formulations of irreversible thermodynamics with various
restrictions.12,14 Not much work has been done for the
systems, which possess thermodynamic inertia. The systems
of heat wave propagation, which are purely reversible, allow a
standard variational formulation.15 The MCV-like systems can
be viewed as waves with dissipation, and the dissipation can
be included by introducing an exponentially decaying factor
in the Lagrangian.16 Such variational description cannot be
considered general enough, since the Lagrangian explicitly
contains a particular solution. In addition, it is not symmetric
with respect to time reversal, and therefore is not compatible
with microscopic time reversibility.

In our earlier work12 we formulated a variational proce-
dure, which allows one to derive the force-flux relations and
the second law of thermodynamics for the systems without
thermodynamic inertia. We suggested the Lagrangian which
is symmetric with respect to time reversal and does not contain
explicitly neither the solutions nor the evolution equations. The
variational principle is formulated for the so-called extended
system, which consists of the normal system, the so-called
mirror-image system, and the equilibrium system. Evolution
of the normal system is characterized by the normal second
law of thermodynamics, which states that during the evolution
the entropy production is always positive, σ > 0. In contrast,
evolution of the mirror-image system is characterized by the
negative entropy production, σ∗ < 0, which can be viewed
as the mirror-image second law of thermodynamics. Finally,
the equilibrium system is required as a reference system for
the other two. The description of the irreversible evolution of
such system is completely equivalent to the one, given by the
standard CIT.1 In this paper, we extend this analysis to the
systems with non-zero thermodynamic inertia.

The paper is organized as follows. In Sec. II we briefly
mention the important steps of the variational procedure for the
system governed by CIT. In this way, we also introduce the
notation and the important principles. In Sec. III we extend
the variational procedure to the systems with thermodynamic
inertia. We present the Lagrangian, which leads to MCV-
like equations of evolution. We also present a conserved
quantity, which is an analogue of the Hamiltonian in classical
mechanics. Conservation of this Hamiltonian during evolution
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is important for understanding the entropy transformations in
the system. In Sec. IV, we consider the specific case of the
MCV-like system, the thermal wave propagation. Such system
has no dissipation but still has thermodynamic inertia. It is
therefore convenient to view such system as a reference system
for our analysis. In Sec. V we introduce the coordinates, in
which evolution of the system has a simpler form and is easier
to analyze. We discuss the entropy transformation in the system
with both non-zero thermodynamic inertia and dissipation
in Sec. VI. In particular, we give a new formulation of the
second law of thermodynamics, which does not contradict
to local equilibrium. Finally, in Sec. VII we discuss the
similarities between the presented theory and the known and
developed fields of physics, in particular, classical mechanics
and electrical engineering.

II. CLASSICAL IRREVERSIBLE THERMODYNAMICS

Irreversible evolution of the system, which is described by
the Fourier-like law between the thermodynamic force and the
thermodynamic flux is derived from the principle of stationary
action, with the Lagrangian given by

LCIT = −ℓ(ϕeq)∇ϕ · ∇ϕ∗ − 1
2
(ϕρ̇∗ − ϕ∗ ρ̇) . (2)

Here and further the quantities with the tilde  will denote
the properties related to the extended system, i.e., to the all
three systems together, the normal one, the mirror-image one
and the equilibrium one. The Lagrangian of the extended
system depends on the potential ϕ and the material density
ρ, which are related by an equation of state ρ = ρEOS(ϕ). In
the case of heat conduction, the potential is 1/T , where T
is the temperature, while the density is the internal energy
density. In the case of diffusion, the potential is −µ/T , where
µ is the chemical potential, while the density is the density
of the component. In the case of electric conduction, the
potential is −φ/T , where φ is the electric potential, while the
density is the charge density. The coefficient ℓ is the ordinary
phenomenological coefficient.1 It is positive and even function
with respect to time reversal. According to the Green-Kubo
relations, it is equal to the equilibrium time-correlation func-
tion of corresponding microscopic fluxes, which justifies its
dependence on the equilibrium potential ϕeq in the Lagrangian.

The important property of Lagrangian (2) is that it is
symmetric in time. The actual evolution of the system, which
makes the irreversible action


L dr dt to reach its extremum,

is described by the solution of the Euler-Lagrange equations.
The Euler-Lagrange equations represent the pair of the force-
flux relations, in the normal system and in the mirror-image
system:

J = ℓ(ϕ)∇ϕ,
J∗ = −ℓ(ϕ∗)∇ϕ∗. (3)

The actual evolution of the system obeys the property
of local equilibrium. This, in particular, means that non-
equilibrium equation of state has the same form as in
equilibrium, ρ(r, t) = ρEOS(ϕ(r, t)) and ρ∗(r, t) = ρEOS(ϕ∗(r, t)),
where the function ρEOS is defined by the equilibrium relation
ρeq = ρEOS(ϕeq). Because of this, we can write that

∂ρ∗(r, t)
∂ϕ∗(r, t) =

∂ρeq

∂ϕeq =
∂ρ(r, t)
∂ϕ(r, t) ≡ −χ, (4)

where for further convenience we introduced a positive quan-
tity χ, which we will call a capacity. Indeed, in the case of heat
conduction the potential ϕ ≡ 1/T and the material density ρ
≡ u is the internal energy density. The derivative ∂u/∂(1/T)
= −T2 C, where C is the heat capacity. The heat capacity is
positive, which makes χ to be positive and proportional to the
ordinary heat capacity. Similar identifications can be made in
the case of diffusion and electric conduction. Furthermore,
similar arguments are applicable to the coefficient ℓ as a
function of the potential ϕ. Since the actual evolution of the
system obeys the property of local equilibrium, we can write
in the case of linear response

ℓ(ϕ) = ℓ(ϕeq) = ℓ(ϕ∗). (5)

We should emphasize that we require the property of local
equilibrium to hold only for the actual evolution trajectory,
i.e., the one, which satisfies the Euler-Lagrange equations.
This means that Eqs. (4) and (5) are correct only for the
solution of the Euler-Lagrange equations, but not for any other
evolution trajectory. In other words, assignments (4) and (5)
should not be made directly in the Lagrangian, but only in the
resulting Euler-Lagrange equations, i.e., after the variation of
the Lagrangian is performed. Because of this ℓ and χ may have
any dependence on the equilibrium state functions (e.g., the
temperature), and do not have to be constants.

We have also shown that the above procedure allows one
to derive the second law of thermodynamics. The variational
principle implies that in the course of evolution there exists a
quantity W , which is the analogue of the Hamiltonian density
in classical mechanics: its integral over the volume of the
system is conserved with the time,

d
dt


V

W dV = 0. (6)

The Hamiltonian density for Lagrangian (2) has the formWCIT = ℓ(ϕeq)∇ϕ · ∇ϕ∗, (7)

which implies that the entropy productions in the normal and
the mirror-image systems have opposite signs. Indeed, their
product is negative,σσ∗ = −W2

CIT, and the entropy production
of the normal system is always positive, σ > 0.

III. MAXWELL-CATTANEO-VERNOTTE EQUATION

Let us consider the following Lagrangian

LMCV = m(ϕeq) ρ̇ ρ̇∗ − ℓ(ϕeq)∇ϕ · ∇ϕ∗ − 1
2
(ϕρ̇∗ − ϕ∗ ρ̇) . (8)

It differs fromLCIT by an additional term, which is proportional
to the product of the time rates of change of the material
densities of in the normal and the mirror-image systems. As we
will see further, the proportionality coefficient m is a measure
of the thermodynamic inertia of the system. Just like the
coefficient ℓ, m is positive and is an even function with respect
to time reversal, and also is independent of either ϕ or ϕ∗.
Lagrangian (8) is symmetric in time, just like Lagrangian (2).
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Just like for the classical irreversible thermodynamics,
we assume that the actual evolution of the system obeys the
property of local equilibrium. This means that Eqs. (4) and (5)
are still true for the trajectory, which makes the irreversible
action

 LMCV dr dt to be extremal. In addition, we require
for the extremal trajectory not far from equilibrium that the
inertial function m satisfies

m(ϕ) = m(ϕeq) = m(ϕ∗). (9)

Lagrangian (8) depends on the first-order spatial and
temporal derivatives of the state functions. The Euler-Lagrange
equations have therefore the following form:

∂LMCV

∂ϕ
− ∂

∂t
∂LMCV

∂ϕ̇
− ∇ · ∂

LMCV

∂∇ϕ
= 0

∂LMCV

∂ϕ∗
− ∂

∂t
∂LMCV

∂ϕ̇∗
− ∇ · ∂

LMCV

∂∇ϕ∗
= 0.

(10)

Evaluating the partial derivatives and taking into account
Eqs. (4), (5), and (9) we obtain the evolution equations in
the normal and the mirror-image systems

τ ρ̈ + ρ̇ + ∇ · (ℓ ∇ϕ) = 0,
τ ρ̈∗ − ρ̇∗ + ∇ · (ℓ ∇ϕ∗) = 0,

(11)

where we introduced

τ(ϕeq) ≡ χ m. (12)

The parameter τ is positive and has dimensionality of time.
The terms τ ρ̈ and τ ρ̈∗ represent delayed responses of the
material densities to the perturbations ∇ϕ and ∇ϕ∗. Thus,
the parameter τ may be identified with the delay time of
the system’s response, which is a consequence of non-zero
thermodynamic inertia. The delay time is proportional to
the inertial parameter m and characterizes thermodynamic
inertia of the system. In particular, when the inertial parameter
m = 0, the system has no inertia, and the evolution equations
become equivalent to the force-flux relations of the classical
irreversible thermodynamics.

We next combine Eq. (11) with the balance equations
for the normal and the mirror image convection-free systems.
There the sum of the divergence of the material flux and the
time rate of change of the material density is equal to zero for
both, the normal system, ∇J + ρ̇ = 0, and the mirror-image
system, ∇J∗ + ρ̇∗ = 0. It follows therefore that

τ J̇ + J − ℓ ∇ϕ = 0,
τ J̇∗ − J∗ − ℓ ∇ϕ∗ = 0.

(13)

Eq. (13) are the force-flux relations for an irreversible system
with non-zero thermodynamic inertia. For heat conduction the
potential ϕ ≡ 1/T and it is easy to see that the first of Eq. (13)
is MCV equation (1) with the thermal conductivity related to
the phenomenological coefficient in a standard way, λ = ℓ/T2.

It follows therefore that evolution of the inertial system,
which is described by the MCV-like equation, can be derived
from the variational principle. The important step in the
derivation is the property of local equilibrium, which allows
one to apply Eqs. (4), (5), and (9) for the extremal evolution
trajectory. The variational procedure for the inertial system
is the same as the one for the inertia-less system, introduced

in Ref. 12 and outlined in Sec. II. The difference between
the evolution of the inertial and inertia-less system is due to
the additional term m ρ̇ ρ̇∗ in the Lagrangian LMCV compared
to the Lagrangian LCIT. We shall call this term the kinetic
entropy production. When the inertial parameter m = 0, the
Lagrangian LMCV becomes equivalent to the Lagrangian LCIT,
and the evolution of the system follows the classical Fourier-
like equation of heat conduction.

As in the case of inertia-less system, the variational
procedure for the inertial system implies that in the course of
evolution there exists a Hamiltonian density WMCV, integral
of which over the volume of the system is conserved with
time, so that Eq. (6) holds for WMCV. The Hamiltonian
density is W ≡ −L + ϕ̇(∂L/∂ϕ̇) + ϕ̇∗(∂L/∂ϕ̇∗). In the case
of Lagrangian (8), this results in the following expression:

WMCV = ℓ(ϕeq)∇ϕ · ∇ϕ∗ + m(ϕeq) ρ̇ ρ̇∗. (14)

The Hamiltonian density for the inertial system differs from the
Hamiltonian density for the inertia-less system by the kinetic
entropy production. The conserved quantity in the inertial
system, the volume integral over the Hamiltonian density,
contains therefore a kinetic contribution.

IV. RESISTLESS EVOLUTION

Depending on the values of the parameters τ and ℓ, the
system may exhibit specific behavior. In particular, when τ
is very large, the second term in Eq. (13) may be neglected,
and we obtain two wave equations. Wave propagation is a
conservative process, so the limit of large τ corresponds to a
system without dissipation, i.e., resistless system. However,
the parameter τ characterizes delayed response of the system
to external perturbation, which seems to be unrelated to
the dissipative properties of the system and it might be not
convenient to use τ as a measure of dissipation in the system.
To formalize this observation, we shall view the resistless
system from a different perspective.

In particular, let us introduce the resistivity r(ϕeq) ≡ 1/ℓ.
Furthermore , let us introduce the heat wave factor w(ϕeq) and
the heat wave speed c(ϕeq),

w2 ≡ ℓ

m
=

1
χ

ℓ

τ
,

c2 ≡ w2

χ2 =
1
χ3

ℓ

τ
.

(15)

As wave propagation is a conservative process, its speed may
not depend on the irreversible characteristics, in particular, the
phenomenological transfer coefficient ℓ. We may expect there-
fore m to be proportional to ℓ. Furthermore, we may expect
that it is w (or c) that reflects the “true” inertial characteristics
of the system, while m is a combination of the irreversible
characteristic ℓ and the inertial characteristic w (or c).

With new quantities Lagrangian (8) can be written as

LMCV

= ℓ(ϕeq)


1
w2 ρ̇ ρ̇∗ − ∇ϕ · ∇ϕ∗− 1

2
r(ϕeq) (ϕρ̇∗ − ϕ∗ ρ̇)


.

(16)
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It leads to same irreversible evolution Equations (11) and
results in same MCV-type Equation (13). The wave equation
is obtained when r = 0. Indeed, in this case, the Lagrangian
becomes

Lw = ℓ(ϕeq)


1
w2 ρ̇ ρ̇∗ − ∇ϕ · ∇ϕ∗


. (17)

If the coefficients are constant, minimizing the Lagrangian
Lw results in the following wave equations, which have the
same form for both, the normal system and the mirror-image
system:

ϕ̈ = c2∇2ϕ,

ϕ̈∗ = c2∇2ϕ∗.
(18)

In other words, the resistless evolution corresponds to the wave
propagation. We can see that considering a system with a large
relaxation time τ is equivalent to considering a system with
a small resistivity r . In particular, when r = 0, τ is infinitely
large.

The Hamiltonian density Ww for the resistless system has
the same form as for an ordinary MCV-like system, Eq. (14),Ww = m(ϕeq) ρ̇ ρ̇∗ + ℓ(ϕeq)∇ϕ · ∇ϕ∗. (19)

This means, in particular, that if a resistless system has the
same initial and boundary conditions as the corresponding
MCV-like system, then the conserved Hamiltonian has the
same value in both systems.

It is interesting to observe that the same wave equations
can be obtained from the Lagrangians, which involve the state
variables from only one system, either the normal one or
the mirror-image one. Indeed, consider the following single-
system Lagrangians:

Lw =
ℓ(ϕeq)

2


1

w2 | ρ̇|2 − |∇ϕ|2

,

L∗w =
ℓ(ϕeq)

2


1

w2 | ρ̇∗|2 − |∇ϕ∗|2

.

(20)

The Lagrangian Lw describes evolution of the normal system
only. Similarly, the Lagrangian L∗w describes evolution of
the mirror-image system only. Performing the variational
procedure for each of this Lagrangians independently results in
the wave equation. In case of the constant coefficients they have
the form of Eq. (18). As expected, they have the same form
in both, the normal system and the mirror-image system. One
can conclude that evolution of the extended resistless system is
equivalent to the combined evolution of the normal resistless
system and the mirror-image resistless system. In particular,
the Lagrangian Lw + L∗w describes the same resistless system
as the Lagrangian Lw.

The single-system Hamiltonian densities for the normal
and the mirror image systems have the following form:

Ww =
m(ϕeq)

2
| ρ̇|2 + ℓ(ϕeq)

2
|∇ϕ|2,

W∗
w =

m(ϕeq)
2

| ρ̇∗|2 + ℓ(ϕeq)
2

|∇ϕ∗|2.
(21)

As Ww, they satisfy conservation Equation (6). It follows, in
particular, thatWw +W∗

w =
Ww.

We see that evolution of the extended system, which is
resistless, can be considered as a joint evolution of the normal
and the mirror-image system, which evolve independently. In
other words, resistless system is decoupled into the normal
one and the mirror-image one. It follows therefore that the
resistivity r is a measure of coupling between the normal
system and the mirror-image system. When r = 0 these two
systems are completely decoupled, and each of them represents
a conservative system with wave propagation. Nonzero r
introduces coupling between these system, which makes each
of them irreversible. In particular, the volume integrals of
Ww andW∗

w are no longer conserved. However, the extended
system with nonzero resistivity still has a conserved quantity,
the volume integral of Ww.

V. COMPLEX COORDINATES

To understand the structure of, in particular, entropy
transformation in the dissipative system with thermodynamic
inertia, it is convenient to perform the analysis in complex
space. We shall do that in this section.

A. The generalized force

A thermodynamic force, which drives the system away
from equilibrium, is usually identified as X ≡ ∇ϕ. In particular,
for heat conduction it is ∇(1/T), for diffusion at constant
temperature it is −∇(µ/T), for electric conduction at constant
temperature it is −∇(φ/T). Let us consider a complex force,
which is a generalization of the standard thermodynamic force.
In particular, we introduce

Ξ ≡ ∇ϕ + i eϕ
1
w

ρ̇ (22)

where i ≡
√
−1 is the imaginary unit and eϕ is the unit vector

in the direction of the gradient of ϕ. Together with Ξ we
can consider the complex-conjugate force Ξ, the mirror-image
conjugate force Ξ∗, and their combination Ξ

∗
,

Ξ ≡ ∇ϕ − i eϕ
1
w

ρ̇,

Ξ
∗ ≡ ∇ϕ∗ − i eϕ∗

1
w

ρ̇∗,

Ξ
∗
= ∇ϕ∗ + i eϕ∗

1
w

ρ̇∗.

(23)

Using this notation, the Hamiltonian density for the MCV-like
system can be written as

WMCV =
ℓ

2


Ξ · Ξ∗ + Ξ · Ξ∗


. (24)

Furthermore for the resistless system,

Ww =
ℓ

2


Ξ · Ξ∗ + Ξ · Ξ∗


(25)

and

Ww =
ℓ

2
Ξ · Ξ,

W∗
w =

ℓ

2
Ξ
∗ · Ξ∗,

(26)

while for the inertia-less system
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WCIT = ℓ Ξ · Ξ∗. (27)

Let us mention first the inertia-less system. Evolution of
such system was studied in Ref. 12 and outlined in the second
section of this paper. The generalized forces in this case are
real, i.e., Ξ = Ξ and Ξ∗ = Ξ

∗
. The conserved quantity is Ξ · Ξ∗.

Let us consider now the resistless system. As we saw
in Sec. IV, evolution of the normal system and the mirror-
image system is decoupled. Individual evolution of the
normal system can be represented by a trajectory in the two-
dimensional complex plane with the coordinates |∇ϕ| and ρ̇.
Conservation of Ww means that the absolute value |Ξ|2 of
the generalized force is constant during evolution. Thus, the
evolution trajectory of the normal system is a circle, and its
evolution can be represented as rotation of the vector Ξ in the
complex plane. The same arguments are valid for the mirror-
image system as well. We have therefore

ρ̇

w|∇ϕ| = tan(ωt),
ρ̇∗

w|∇ϕ∗| = − tan(ωt),
(28)

where ω is the frequency and the sign of the right hand side
is determined by the initial condition. On the other hand,
evolution of the extended system, which contains the normal
one and the mirror-image one, is represented by a trajectory
in the four-dimensional complex space with the coordinates
|∇ϕ|, |∇ϕ∗| and ρ̇, ρ̇∗. Since the normal and the mirror-image
systems are decoupled, evolution trajectory of the extended
system is represented by two two-dimensional circles in the
four-dimensional complex space, see Fig. 1(a). Each of this
circle is a two-dimensional cross section of the evolution
trajectory of the extended system, which corresponds to the
pair of coordinates either (|∇ϕ|; ρ̇) or (|∇ϕ∗|; ρ̇∗). The radii of
these circles are constant and equal to |Ξ| and |Ξ∗|, respectively.
Note that for the resistless evolution Ww =Ww +W∗

w. This
means that for the resistless evolution Ξ∗ = Ξ and Ξ = Ξ

∗
.

Finally, let us consider the extended system with non-zero
resistivity and non-zero inertia. The normal and the mirror-
image systems are coupled, which means that both |Ξ| and |Ξ∗|
change. The two-dimensional cross section of the evolution
trajectory is now not circles, but spirals. The specific shape of
the evolution trajectory depends on the relationships between
the parameters of the system and the boundary conditions.
In particular, in the case of a relaxation process, Eq. (11)

has a form of the equation for a damped oscillator with
the damping ratio of the order χ c r . When χ c r . 1 the
normal system experiences decay with oscillations, while the
mirror-image system expands with oscillations, see Fig. 1(b).
When χ c r & 1 the corresponding relaxation and tightening
processes happen without oscillations. In general, the vector of
the generalized force changes such that the volume integral of
the expression Ξ · Ξ∗ + Ξ · Ξ∗ remains constant. Also, Ξ∗ , Ξ
and Ξ , Ξ

∗
, as well as Ξ , Ξ and Ξ∗ , Ξ

∗
. This means that

in general WMCV ,Ww +W∗
w and, in particular, the value,

the volume integral of which remains constant, is neither
|Ξ|2 + |Ξ∗|2 nor Ξ · Ξ∗.

The situations described above can also be illustrated
by the diagrams in Fig. 2. The resistless system (Fig. 2(c))
allows independent wave propagation in both the normal and
the mirror-image systems. The inertia-less system (Fig. 2(b))
implies coupling between the normal system and the mirror-
image one, as well as between their complex-conjugates. The
full dissipative system with inertia (Fig. 2(a)) allows both
coupling between the normal system and the mirror-image
one, as well as wave propagation in either of them. The full
system may not be decoupled in pairs like the resistless one or
the inertia-less one.

B. Impedance and force-flux relations

Let us apply Laplace transform to MCV-like Equa-
tion (13). The Laplace transform of a function f (t) is defined
as f (κ,ω) ≡  ∞

0 exp(−ϖt) f (t) dt. Similarly, the Laplace
transport of the mirror-image function f ∗(t) is defined
as f ∗(κ,ω) ≡  −∞

0 exp(ϖt) f ∗(t) dt =
 ∞

0 exp(−ϖt) f ∗(−t) dt.
Here ϖ ≡ κ + iω is a complex frequency, where κ is the
relaxation parameter and ω is the wave frequency. The
complex frequency characterizes the boundary (external)
conditions, applied to the system (i.e., the temperature
difference on the boundary, or the flux across the boundary). In
particular, if the system is subjected to a steady-state boundary
conditions which are periodic in time with the period 2π/ω,
then ϖ = iω is purely imaginary. In contrast, if the system
is subjected to a steady-state fixed boundary conditions, then
ϖ = κ is purely real. A transient or a relaxation process is
characterized by a complex frequency, with neither κ nor ω
are equal to zero. The Laplace transform of Eq. (13) has the
following form:

(a) (b)

FIG. 1. Evolution trajectory in the
complex space. (a) Resistless system.
(b) Dissipative system.
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(a) (b) (c)

FIG. 2. Interactions between the generalized forces in the (a) full system; (b) dissipative system; (c) resistless system.

J(1 + τ ϖ) + τ J(0) = ℓ ∇ϕ,
−J∗(1 + τ ϖ) + τ J∗(0) = ℓ ∇ϕ∗. (29)

The complex impedance is defined as a ratio of the Laplace
transform of the force and the Laplace transform of the flux,
when the initial values of the flux is taken to be equal to zero.
We have therefore

Z(κ,ω) = (1 + τ κ) r + iω τ r,

Z∗(κ,ω) = −(1 + τ κ) r − iω τ r.
(30)

The complex impedance for each of the system consists
of the real and imaginary parts. The real part determines
the active resistance and characterizes dissipation in the
system. In the limit κ = 0, the active resistance of the normal
system is equal to r , which indicates exponential decay of a
perturbation. In contrast, the active resistance of the mirror-
image system is equal to −r , which indicates exponential
growth of a perturbation. The imaginary part of the complex
impedance determines the reactive resistance. It does not lead
to dissipation or accumulation but characterizes conservative
transformations of the entropy in a heat wave. The reactive
resistance is the same for both, the normal and the mirror-
image systems.

Ignoring the initial condition, Eq. (29) can be written as

∇ϕ = Z(κ,ω) J,
∇ϕ∗ = Z∗(κ,ω) J∗, (31)

which is the force-flux relation for the irreversible system with
thermodynamic inertia.

VI. LOCAL EQUILIBRIUM
AND THE ENTROPY PRODUCTION

The derivations in this paper rely on the property of local
equilibrium. The property of local equilibrium is also crucial
for classical irreversible thermodynamics. In particular, it is
used when the Gibbs equation is formulated. This leads to the
following expression for the local entropy production (which
has the same form both for the normal and the mirror-image
system):

σ(r, t) = J · ∇ϕ,
σ∗(r, t) = J∗ · ∇ϕ∗.

(32)

If the system is inertia-less, the force-flux relations can be
derived from the principle of stationary action12 and are given
by Eq. (3). Substituting these relations in Eq. (32) leads to
σ(r, t) ≥ 0 and σ∗(r, t) ≤ 0. The first of these relations is the
statement of the second law of thermodynamics: the entropy
production in the normal system is always positive and reaches
zero in equilibrium.

If the system has non-zero thermodynamic inertia τ, the
force-flux relations can still be derived from the principle of
stationary action, which is the subject of this paper. These
relations are given by Eq. (13) instead of Eq. (3). Still, the
derivation of Eq. (13) implies the property of local equilibrium.
Substituting Eq. (13) in Eq. (32) results in the entropy
production, which cannot, in general, be represented as either a
positive or a negative quantity. This leads to apparent violation
of the second law of thermodynamics for the system with
thermodynamic inertia.

There are two different conclusions which can be made
on the basis of this observation: either the second law of
thermodynamics should be reformulated or the property of
local equilibrium should be questioned. The latter conclusion
is employed by extended irreversible thermodynamics.10 In
particular, the non-equilibrium Gibbs relation is modified such
that the non-equilibrium local entropy depends not only on the
state variables but also on the irreversible fluxes. This results
in the expression for the entropy production, which is always
positive in non-equilibrium.

The alternative conclusion, which requires revisiting the
second law of thermodynamics, may sound unreasonable.
Still, the analysis in this paper shows that MCV-like force-
flux Equations (13) can be derived rigorously within the
assumption of local equilibrium. The property of local
equilibrium is sufficient for deriving the MCV-like force-flux
equations. In other words, there is no need to go beyond
local equilibrium and assume additional relationships. This
suggests that the second law of thermodynamics should be
reformulated, such that evolution of an irreversible system with
non-zero thermodynamic inertia would be in agreement with it.

Eq. (32) describes the entropy production, which is local
not only in space but also in time, i.e., instantaneous. For
the inertia-less system, the instantaneous entropy production
is a measure of instantaneous dissipation. However, for the
system with thermodynamic inertia, the system response
to a perturbation is not instantaneous. In particular, the
instantaneous flux depends not on the instantaneous force but
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on the force at time τ earlier. This leads to the observation
that the instantaneous entropy production is not very practical
quantity to characterize dissipation in the system.

To illustrate this, let us consider the resistless system,
described in Sec. IV. The evolution of the resistless system is
a propagation of a heat wave. As every wave propagation,
it is conservative. Still, this system obeys the property of
local equilibrium, and the instantaneous entropy production
for this system is given by Eq. (32). For the process of
wave propagation, the instantaneous entropy production of the
normal system oscillates around zero, taking both the positive
and the negative values. Obviously, the instantaneous entropy
production does not satisfy the second law of thermodynamics.
Furthermore, according to the standard understanding of the
entropy production, the wave propagation should be a process
with alternating energy dissipation and energy gain. However,
it is neither of these two: wave propagation is a conserva-
tive process. It follows therefore that instantaneous entropy
production has no practical meaning for the resistless system.

For the resistless system one can distinguish two kinds
of terms, which contribute to Hamiltonian (21). They have
the dimensionality of the entropy production, so we will refer
to them as such. Namely, one can speak of the kinetic en-
tropy production m | ρ̇|2/2 and m | ρ̇∗|2/2 and the potential
entropy production ℓ |∇ϕ|2/2 and ℓ |∇ϕ∗|2/2. The kinetic
entropy production exists due to the system’s inertia m , 0,
while potential entropy production exists due to system’s inho-
mogeneity ∇ϕ , 0. During the process of wave propagation
the entropy is transferred from the kinetic term to the potential
term and vise versa, keeping the Hamiltonians


Ww dV and

W∗
w dV constant. Instantaneous entropy productions (32)

also oscillate. This process is the same in both, the normal
system and the mirror-image one.

In contrast, the dissipative inertia-less system does not
have the kinetic term. Furthermore, the potential entropy
production has the form of ℓ ∇ϕ · ∇ϕ∗, i.e., represents coupling
between inhomogeneities in the normal and the mirror-image
systems. In other words, the potential entropy production is
shared between the normal and the mirror-image systems.
Still, the Hamiltonian of the extended system

 WCIT dV
is conserved. This makes the entropy to be transferred from
the mirror-image system to the normal system. This process
is irreversible, in contrast with the entropy transfer in the
resistless system.

The extended system with non-zero inertia and non-zero
resistance exhibits both processes of the entropy production
transfer: reversible transfer between the kinetic and the poten-
tial terms, as well as irreversible transfer between the mirror-
image and the normal systems—such that the Hamiltonian of
the extended system

 WMCV dV is conserved. It is clear that
the oscillatory part of the instantaneous entropy production
is reversible and therefore does not contribute to dissipative
behavior.

In order to separate wave propagation from dissipation,
we should consider the entropy production, which is averaged
over the wave period τw,

⟨σ(r, t)⟩w ≡
1
τw

 t+τw

t

σ(r, t ′) dt ′, (33)

and ⟨σ∗(r, t)⟩w is introduced in the same way. Note that the
wave period τw is different from the delay time τ. It depends
on the system’s size, as well as the speed of heat wave c.
The statement of the second law of thermodynamics should
then read, that the quantity which is positive in the course
of evolution is the time-averaged entropy production of the
normal system. Correspondingly, the time-averaged entropy
production of the mirror-image system is negative,

⟨σ(r, t)⟩w ≥ 0,
⟨σ∗(r, t)⟩w ≤ 0.

(34)

Substituting Eq. (13) in Eq. (33), we obtain the following
expressions for the time-averaged local entropy productions:

⟨σ⟩w = r
�
∆w(J2) + ⟨J2⟩� ,

⟨σ∗⟩w = r

∆w(J∗2) − ⟨J∗2⟩ , (35)

where ∆w f (t) ≡ f (t + τw) − f (t). It is convenient to examine
the validity of Eq. (34) for partial solutions. For the resistless
system r = 0 and both ⟨σ⟩w = 0 and ⟨σ∗⟩w = 0. For the
steady heat wave caused by the oscillating external force or
boundary conditions J ∝ exp(iωt), and therefore ∆w(J2) = 0.
This leads to ⟨σ⟩w = r ⟨J2⟩ > 0. Similarly, for the mirror-
image system ⟨σ∗⟩w = −r ⟨J∗2⟩ < 0. For the stationary process
J is independent of time, and therefore ∆w(J2) = 0, which
also leads to ⟨σ⟩w > 0. Similarly, for the mirror-image system
⟨σ∗⟩w < 0. Finally, for the relaxation process, which is the
result of overdamping in the oscillatory system, J ∝ exp(−κt)
and ⟨σ⟩w ∝ 1 − κτ. In order for the time-averaged entropy
production to be positive, we should have κτ < 1. However,
this is exactly the condition of overdamping, which is true
for the considered relaxation process by definition. Similarly,
J∗ ∝ exp(κt) and ⟨σ∗⟩w ∝ −1 + κτ < 0.

We note that one should not confuse the instantaneous
entropy production, which is used in this paper in the context
of mesoscopic continuous description, with the instantaneous
entropy production which is formulated with the help of micro-
scopic distribution function. Correspondingly, one should not
confuse time averaging over the period of the heat wave with
time averaging over the time of molecular equilibration. The
analysis of this paper is performed withing the assumption of
local equilibrium, which means that the system has already
reached equilibrium locally, for a given position r in space
and a given moment t in time. In particular, it is assumed that
the time scale of molecular equilibration is much less than the
period of the heat wave, so that molecular fluctuations have
already been averaged at every moment t in time.

Classical irreversible thermodynamics distinguishes be-
tween two types of entropy change.1 The first one, deS
= δQ/T , is the equilibrium entropy change due to reversible
interaction with the environment. The second one, diS
=


σ dV , is the production of entropy due to irreversible pro-
cesses in the system. These transformations can be illustrated
by Fig. 3, where we can see the entropy transformations in the
systems, consisting of two thermal baths and the environment.
The baths are in equilibrium with environment, but not in
equilibrium with each other. Such system is open, i.e., not
conservative, as the entropy is produced in the course of
evolution.
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FIG. 3. Conventional view on entropy transfers.

The above analysis shows that the entropy transformations
in the irreversible system with non-zero thermodynamic inertia
are different from those mentioned above. In particular, we
can distinguish between three types of entropy change in the
normal system and three types of the entropy change in the
mirror-image system:

dS = deS + diS + dmS,

dS∗ = deS∗ + diS∗ + dmS∗.
(36)

The terms deS and diS in the entropy change of the
normal system are the standard terms of classical irreversible
thermodynamics. The third term, dmS, is present due to
non-zero thermodynamic inertia of the system. This term is
reversible and accounts for the entropy transfer in the heat
wave. Similarly, we can speak of the “classical” terms deS∗

and diS∗ in the mirror-image system. deS∗ is responsible for
reversible exchange with environment, while diS∗ represent
irreversible entropy destruction. In addition, there exists the
third term dmS∗, which has the similar nature as dmS. In
particular, it is reversible and responsible for the entropy
transfer in the heat wave in the mirror-image system. These
entropy transformations can be illustrated in Fig. 4. The
extended system is closed. Indeed, the entropy transfer caused
by the thermodynamic inertia is reversible and confined within
each of the two subsystems, either the normal one or the mirror-
image one. The irreversible entropy transfer happens from the
mirror-image system to the normal system, i.e., not produced
or destroyed anywhere beyond the extended system itself.

VII. DISCUSSION

In this paper, we considered evolution of the irreversible
system with non-zero thermodynamic inertia. Behavior of such
system has many analogies to the behavior of the systems,
studied within well-established areas of physics, where inertia
is important. In particular, these areas are classical mechanics
and electrical engineering.

A. Classical mechanics

The analogy with classical mechanics can be evident from
the terminology used in the paper. Thus, for the resistless
system the inertial entropy production m ρ̇2/2 is the direct

FIG. 4. Entropy transfers in the extended system.

analogy of the kinetic energy mẋ/2 of a body with mass m and
position x, while the potential entropy production ℓ|∇ϕ|2/2
is the direct analogy of the potential energy k(∆x)2/2 of
the body at the position ∆x away from equilibrium with the
force constant k. The potential energy of a body in classical
mechanics is a function of its position only and is independent
of the velocity. Similarly, the potential entropy production
is a function of the thermodynamic potential ϕ only and is
independent of the its “speed” ρ̇ or the flux J. Thus, the
property of local equilibrium in irreversible thermodynamics
is naturally satisfied in classical mechanics. The sum of the
potential energy and the kinetic energy of an isolated mechan-
ical system is conserved. Similarly, the sum of the potential
and kinetic entropy productions of a resistless thermodynamic
system is conserved, which is illustrated, in particular, in
Fig. 1(a). Furthermore, the analogy of the heat wave factor
w in classical mechanics is the eigenfrequency ω. The wave
factor does not have dimensionality of the inverse second,
because we consider here a continuous system, which implies
wave propagation, rather than oscillation of a single body. The
typical characteristics of such system are the speed of wave
propagation, c, which in our case is the speed of heat wave.

The thermodynamic system with non-zero resistivity is
analogous to the mechanical system with non-zero friction.
Conventional Hamiltonian formalism in mechanics is not
applicable for such systems. However, it is still possible to
account for friction by introducing the mirror-image system
for a mechanical system as well.15 The mirror-image system
gains the energy dissipated from the normal system. Similarly,
in irreversible thermodynamics, the mirror-image system gains
the entropy, which is produced in the normal system, Indeed,
the variational approach, which is applied in this paper, implies
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existence of a quantity, which has a minimum for the actual
evolution, the action. For a thermodynamic system it has
dimensionality of the entropy generation, and it is natural
to understand the action as a kind of entropy generation of
the extended system (which consists of both, the normal one
and the mirror-image one). The variational formalism implies
the property, which can be formulated as following: the total
entropy generation of the extended system during evolution
reaches its minimum. For the resistless system this leads to the
conservation of the normal entropy, while for the dissipative
system this leads to the entropy transfer from the mirror-image
system to the normal system. The important consequence of
this is that the normal and the mirror-image systems should be
considered together and some of their properties may be shared
within the extended system. The obvious example of the shared
property is the Hamiltonian. Furthermore, we can speak of the
potential entropy generation ℓ∇ϕ∇ϕ∗ and the kinetic entropy
generation m ρ̇ ρ̇∗, sum of which is equal to the Hamiltonian.
Thus, these terms may also be viewed as analogies to the
potential and kinetic energies in classical mechanics.

The analogy between the mechanical and the thermody-
namic quantities leads to analogy between the behavior of the
mechanical and thermodynamic systems. A body with zero
mass, which moves in media with friction, will eventually
stop. If the body is attached to a spring and perturbed from
its equilibrium position, it will stop in the spring equilibrium
position, which corresponds to the minimum potential energy
of the spring. This is a consequence of the so-called principle of
minimum potential energy. Similarly, an irreversible thermo-
dynamic system perturbed from equilibrium will experience
relaxation. Eventually it will reach the equilibrium state,
which corresponds to the state with maximum entropy. This
process is formulated as the second law of thermodynamics.
If follows therefore, that the second law of thermodynamics
is the thermodynamic analogy of the mechanical principle of
minimum potential energy.

The principle of minimum potential energy is violated
for systems with non-zero mass. Indeed, if the body has
non-zero kinetic energy, its potential energy may increase.
For the system without friction this leads to the decrease
of the kinetic energy, such that the total energy remains the
same. For the system with friction, the kinetic energy still
can be transformed to the potential energy. The total energy,
however, is not conserved, and the total energy averaged over
the period of oscillations, decreases with time. Both systems,
with and without friction, can be described by the variational
formalism such that the energy is transferred between the
kinetic form and the potential form as well as between the
normal and the mirror-image systems. Clearly, the principle
of minimum potential energy is not directly applicable for the
mechanical system with non-zero mass. Instead, one should
use the principle of stationary action, either for a frictionless
system or for a system with friction.

Similarly, the second law of thermodynamics is not
directly applicable for a thermodynamic system with non-
zero inertia. Instead, one should use the principle of stationary
action, which has been formulated in this paper. This principle
leads to conservation of the total entropy generation in the
extended system.

B. Electrical engineering

The analogy with the electrical engineering is evident
from the fact that MVC equation has the form of the
telegrapher’s equation for an electrical transmission line. In
particular, the pair of equation for the voltage V and the current
I on the line, consisting the resistance R, the inductance L, and
the capacitance C is

∇V = −Lİ − RI,

∇I = −CV̇ .
(37)

The first of these equations is the analogy of MCV equation (1)
with 1/R being the thermal conductivity λ and L/R being the
inertial parameter τ, while the second of these equations is the
analogy of the energy balance equation, with C being the heat
capacity. Furthermore, the analogy of the current I is the flux
J, while the analogy of the voltage V is the temperature T .
The current propagation in such systems has been extensively
studied elsewhere. In particular, the inertial properties of the
circuit are associated with a non-zero inductance L. Because of
it the sinusoidal voltage and sinusoidal current have a different
phase: the AC voltage leads the AC current. If there is no
external electromotive force, the current decays with time.
The active resistance is the source of energy dissipation, while
the presence of inductor and capacitor introduces the reactive
resistance. It does not lead to dissipation of energy but allows
the elements to gain and release the energy in a reversible way.

The analysis above is directly applicable to such system.
Since the temperature of the electrical circuit is considered to
be constant and equal to the temperature of the environment,
energy dissipation is proportional to the entropy dissipation.
All the above relations and conclusions remain valid if we
simply replace the word “entropy” with “energy.” In particular,
we should be able to distinguish between the kinetic energy
and potential energy of the circuit. Furthermore, the impedance
introduced in Sec. V is the electrical impedance, and the
complex force-flux relations are the relations between the
complex current and the complex voltage.

The power of the electric circuit is equal to the product
of the current and the voltage. For the inertia-less circuit all
power is positive and active, i.e., released on the resistor. For
the circuit with non-zero inertia the instantaneous power does
not have much physical meaning. Because the current and
the voltage are not in phase, the instantaneous power does
not have definitive sign and oscillates. One can distinguish
between the active power, which is released on the resistor,
and the reactive power, which characterizes the oscillations of
the electric current. To discard the power oscillations during
one period of AC, it is useful to consider the power, which is
averaged over the period of AC. The averaged power indicates
the losses on the resistor only and therefore is always positive.

Comparing the behavior of the electric circuit and the
inertial irreversible system, we can observe that the electric
power is the analogy of the entropy production. For DC current
or for an inertia-less circuit the instantaneous electric power is
always positive, which is the statement of the second law of
thermodynamics. In contrast, for AC current in the circuit with
inertia it is only the time-averaged power which is positive,
while the instantaneous power does not have definitive sign.
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The same applies to the entropy production in the electric
circuit and in the irreversible system with inertia in general.

C. Concluding remarks

Let us summarize the findings presented in this paper. We
have shown that irreversible evolution of a thermodynamic
system can be derived from a variational principle of stationary
action. In order to formulate this principle we need to consider
the extended system, which consists of the normal system and
the mirror-image system. The action which is being minimized
has the dimensionality of entropy and can be viewed as the
entropy generation of the extended system. Thus, the principle
of stationary action states that evolution of the extended system
minimizes the generated entropy of the extended system.

The Lagrangian introduced in this paper describes general
evolution of an irreversible system. It can also describe the
specific cases: resistless evolution of the system with non-
zero inertia, which leads to wave propagation; as well as
dissipative evolution of inertia-less system, which leads to
relaxation. The evolution equations or the force-flux relations
are derived from the variational procedure. They represent the
Euler-Lagrange equations for the corresponding Lagrangian.
The important part of the analysis is the property of local
equilibrium, which states that the non-equilibrium relation
between the material density and the potential has the same
form as in equilibrium. It appears that the property of local
equilibrium is sufficient for derivation of the experimentally
verified evolution equations. Thus, no additional relations
which characterize non-equilibrium evolution are needed.

Earlier it has been shown that dissipative evolution of
inertia-less system results in the second law of thermody-
namics. It states that instantaneous entropy production of the
non-equilibrium normal system is always positive. Here, we

have shown that this formulation is no longer valid for the
dissipative system with non-zero inertia. However, one can
modify the statement of the second law of thermodynamics
in non-equilibrium. In particular, it should read: for the
irreversible evolution of the system, the averaged over the
period of the heat wave entropy production is always positive.
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