228 research outputs found

    Signal Processing Methods for Heart Rate Detection Using the Seismocardiogram

    Get PDF
    Cardiac diseases are one of the major causes of death. Heart monitoring/diagnostic techniques have been developed over decades to address this concern. Monitoring a vital sign such as heart rate is a powerful technique for heart abnormalities detection (e.g., arrhythmia). The novelty of this work is that offers new heart rate detection methods which are both robust and adaptive compared to existing heart rate detec- tion methods. Utilized data sets in this research have been provided from two sources of PhysioNet and a research group. In this work, utilized methods for heart rate detection include Signal Energy Thresholding (SET), Empirical Mode Decomposition (EMD) and Empirical Wavelet Transform (EWT). To the best of the author’s knowledge, this work is the first to use EMD and EWT for heart rate detection from Seismocardiogram (SCG) signal. Obtained result from applying SET to ECG signal is selected as our ground truth. Then, all three methods are used for heart rate detection from the SCG signal. The average error of SET method, EWT and EMD respectively 13.9 ms, 13.8 ms and 16 ms. Based on the obtained results, EMD and EWT are promising techniques for heart rate detection and interpretation from the SCG signal. Another contribution of this work is arrhythmia detection using EWT. EWT provides us with the instantaneous frequency changes of the corresponding modes to ECG signal. Based on the estimated power spectral density of each mode, power spectral density of arrhythmia affected ECG is higher (≥ 50dB) compared to the power spectral density of a normal ECG (≤ 20dB). This provides the potential for arrhythmia detection using EWT

    Signal Processing Methods for Heart Rate Detection Using the Seismocardiogram

    Get PDF
    Cardiac diseases are one of the major causes of death. Heart monitoring/diagnostic techniques have been developed over decades to address this concern. Monitoring a vital sign such as heart rate is a powerful technique for heart abnormalities detection (e.g., arrhythmia). The novelty of this work is that offers new heart rate detection methods which are both robust and adaptive compared to existing heart rate detec- tion methods. Utilized data sets in this research have been provided from two sources of PhysioNet and a research group. In this work, utilized methods for heart rate detection include Signal Energy Thresholding (SET), Empirical Mode Decomposition (EMD) and Empirical Wavelet Transform (EWT). To the best of the author’s knowledge, this work is the first to use EMD and EWT for heart rate detection from Seismocardiogram (SCG) signal. Obtained result from applying SET to ECG signal is selected as our ground truth. Then, all three methods are used for heart rate detection from the SCG signal. The average error of SET method, EWT and EMD respectively 13.9 ms, 13.8 ms and 16 ms. Based on the obtained results, EMD and EWT are promising techniques for heart rate detection and interpretation from the SCG signal. Another contribution of this work is arrhythmia detection using EWT. EWT provides us with the instantaneous frequency changes of the corresponding modes to ECG signal. Based on the estimated power spectral density of each mode, power spectral density of arrhythmia affected ECG is higher (≥ 50dB) compared to the power spectral density of a normal ECG (≤ 20dB). This provides the potential for arrhythmia detection using EWT

    Automated Classification for Electrophysiological Data: Machine Learning Approaches for Disease Detection and Emotion Recognition

    Get PDF
    Smart healthcare is a health service system that utilizes technologies, e.g., artificial intelligence and big data, to alleviate the pressures on healthcare systems. Much recent research has focused on the automatic disease diagnosis and recognition and, typically, our research pays attention on automatic classifications for electrophysiological signals, which are measurements of the electrical activity. Specifically, for electrocardiogram (ECG) and electroencephalogram (EEG) data, we develop a series of algorithms for automatic cardiovascular disease (CVD) classification, emotion recognition and seizure detection. With the ECG signals obtained from wearable devices, the candidate developed novel signal processing and machine learning method for continuous monitoring of heart conditions. Compared to the traditional methods based on the devices at clinical settings, the developed method in this thesis is much more convenient to use. To identify arrhythmia patterns from the noisy ECG signals obtained through the wearable devices, CNN and LSTM are used, and a wavelet-based CNN is proposed to enhance the performance. An emotion recognition method with a single channel ECG is developed, where a novel exploitative and explorative GWO-SVM algorithm is proposed to achieve high performance emotion classification. The attractive part is that the proposed algorithm has the capability to learn the SVM hyperparameters automatically, and it can prevent the algorithm from falling into local solutions, thereby achieving better performance than existing algorithms. A novel EEG-signal based seizure detector is developed, where the EEG signals are transformed to the spectral-temporal domain, so that the dimension of the input features to the CNN can be significantly reduced, while the detector can still achieve superior detection performance

    Estimation of Surrogate Respiration and Detection of Sleep Apnea Events from Dynamic Data Mining of Multiple Cardiorespiratory Sensors

    Get PDF
    This research investigates an approach to derive respiration waveform from heart sound signals, and compare the waveform signal obtained thus with those obtained from alternative methods for deriving respiration waveforms from measured ECG signals. The investigations indicate that HSR can lead to a cost effective alternative to the use of respiratory vests to analyze cardiorespiratory dynamics for clinical diagnostics and wellness assessments. The derived respiratory rate was further used to classify Type III sleep apnea periods using recurrence analysis. Detection of patterns causing sleep apnea could open up opportunities to researchers to better understand and predict symptoms leading to disorders linked with sleep apnea like hypertension, sudden infant death syndrome, high blood pressure and a risk of heart attack. Surrogate respiratory signals derived from heart sounds (HSR) are found to have 32% and 36% correlation with the actual respiratory signals recorded at upright and supine positions, respectively, as compared to EMD derived respiration signals (EDR) that have (18% and 26%) correlation with the respiration waveforms measured in upright and supine positions, respectively. Wavelet-derived respiration (WDR) signals show a higher wave-to-wave correlation (55% and 55%) than HSR and EDR waveforms, but the respiratory sinus arrhythmia (RSA), zero crossing intervals, and respiratory rates of the HSR correlate better with the measured values, compared with those from EDR and WDR signals. Three models were implemented using recurrence analysis to classify sleep apnea events and were compared with a vectorized time series derived model. Advanced predictive modeling tools like decision trees, neural networks and regression models were used to classify sleep apnea events form non-apneic events. Model comparison within preliminary analysis model consisting of nasal respiration as well as its time lagged components and heart rate when compared with recurrence models shows that the preliminary analysis model(vectorized time series) has a lower misclassification rate (10%) than the recurrence models( Model 1: 20% Model 2: 14%, Model 3: 12%).Industrial Engineering & Managemen

    A Smart Service Platform for Cost Efficient Cardiac Health Monitoring

    Get PDF
    Aim: In this study we have investigated the problem of cost effective wireless heart health monitoring from a service design perspective. Subject and Methods: There is a great medical and economic need to support the diagnosis of a wide range of debilitating and indeed fatal non-communicable diseases, like Cardiovascular Disease (CVD), Atrial Fibrillation (AF), diabetes, and sleep disorders. To address this need, we put forward the idea that the combination of Heart Rate (HR) measurements, Internet of Things (IoT), and advanced Artificial Intelligence (AI), forms a Heart Health Monitoring Service Platform (HHMSP). This service platform can be used for multi-disease monitoring, where a distinct service meets the needs of patients having a specific disease. The service functionality is realized by combining common and distinct modules. This forms the technological basis which facilitates a hybrid diagnosis process where machines and practitioners work cooperatively to improve outcomes for patients. Results: Human checks and balances on independent machine decisions maintain safety and reliability of the diagnosis. Cost efficiency comes from efficient signal processing and replacing manual analysis with AI based machine classification. To show the practicality of the proposed service platform, we have implemented an AF monitoring service. Conclusion: Having common modules allows us to harvest the economies of scale. That is an advantage, because the fixed cost for the infrastructure is shared among a large group of customers. Distinct modules define which AI models are used and how the communication with practitioners, caregivers and patients is handled. That makes the proposed HHMSP agile enough to address safety, reliability and functionality needs from healthcare providers

    The Application of Computer Techniques to ECG Interpretation

    Get PDF
    This book presents some of the latest available information on automated ECG analysis written by many of the leading researchers in the field. It contains a historical introduction, an outline of the latest international standards for signal processing and communications and then an exciting variety of studies on electrophysiological modelling, ECG Imaging, artificial intelligence applied to resting and ambulatory ECGs, body surface mapping, big data in ECG based prediction, enhanced reliability of patient monitoring, and atrial abnormalities on the ECG. It provides an extremely valuable contribution to the field

    A Framework for Remote Patient Monitoring to Diagnose the Cardiac Disorders

    Get PDF
    Electrocardiogram (ECG) is an efficient diagnostic tool to monitor the electrical activity of heart. One of the most vital benefit of using telecommunication technologies in medical field is to provide cardiac health care at a distance. Telecardiology is the most efficient way to provide faster and affordable health care for the cardiac patients located at rural areas. Early detection of cardiac disorders can minimize cardiac death rates. In real time monitoring process, ECG data from a patient usually takes large storage space in the order of gigabytes (GB). Hence, compression of bulky ECG signal is a common requirement for faster transmission of cardiac signals using wireless technologies. Several techniques such as the Fourier transform based methods, wavelet transform based methods, etc., have been reported for compression of ECG data. Though Fourier transform is suitable for analyzing the stationary signals. An improved version, the wavelet transform allows the analysis of non-stationary signal. It provides a uniform resolution for all the scales, however, wavelet transform faces difficulties like uniformly poor resolution due to limited size of the basic wavelet function and it is nonadaptive in nature. A data adaptive method to analyse non-stationary signal is based on empirical mode decomposition (EMD), where the bases are derived from the multivariate data which are nonlinear and non-stationary. A new ECG signal compression technique based on EMD is proposed, in which first EMD technique is applied to decompose the ECG signal into several intrinsic mode functions (IMFs). Next, downsampling, discrete cosine transform (DCT), window filtering and Huffman encoding processes are used sequentially to compress the ECG signal. The compressed ECG is then transmitted as short messageservice (SMS) message using a global system for mobile communications (GSM) modem. First the AT-command ‘+CMGF’ is used to set the SMS to text mode. Next, the GSM modem uses the AT-command ‘+CMGS’ to send a SMS message. The received text SMS messages are transferred to a personal computer (PC) using blue-tooth. All text SMS messages are combined in PC as per the received sequence and fed as data input to decompress the compressed ECG data. The decompression method which is used to reconstruct the original ECG signal consists of Huffman decoding, inverse discrete cosine transform (IDCT) and spline interpolation. The performance of the compression and decompression techniques are evaluated in terms of compression ratio (CR) and percent root mean square difference (PRD) respectively by using both European ST-T database and Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database. The average values of CR and PRD for selected ECG records of European ST-T database are found to be 23.5:1 and 1.38 respectively. All 48 ECG records of MIT-BIH arrhythmia database are used for comparison purpose and the average values of CR and PRD are found to be 23.74:1 and 1.49 respectively. The reconstructed ECG signal is then used for detection of cardiac disorders like bradycardia, tachycardia and ischemia. The preprocessing stage of the detection technique filters the normalized signal to reduce noise components and detects the QRS-complexes. Next, ECG feature extraction, ischemic beat classification and ischemic episode detection processes are applied sequentially to the filtered ECG by using rule based medical knowledge. The ST-segment and T-wave are the two features generally used for ischemic beat classification. As per the recommendation of ESC (European Society of cardiology) the ischemic episode detection procedure considers minimum 30s duration of signal. The performance of the ischemic episode detection technique is evaluated in terms of sensitivity (Se) and positive predictive accuracy (PPA) by using European ST-T database. This technique achieves an average Se and PPA of 83.08% and 92.42% respectively

    The electronic stethoscope

    Get PDF
    corecore