8 research outputs found

    A decision-level fusion strategy for multimodal ocular biometric in visible spectrum based on posterior probability

    Full text link
    © 2017 IEEE. In this work, we propose a posterior probability-based decision-level fusion strategy for multimodal ocular biometric in the visible spectrum employing iris, sclera and peri-ocular trait. To best of our knowledge this is the first attempt to design a multimodal ocular biometrics using all three ocular traits. Employing all these traits in combination can help to increase the reliability and universality of the system. For instance in some scenarios, the sclera and iris can be highly occluded or for completely closed eyes scenario, the peri-ocular trait can be relied on for the decision. The proposed system is constituted of three independent traits and their combinations. The classification output of the trait which produces highest posterior probability is to consider as the final decision. An appreciable reliability and universal applicability of ocular trait are achieved in experiments conducted employing the proposed scheme

    Advancing the technology of sclera recognition

    Get PDF
    PhD ThesisEmerging biometric traits have been suggested recently to overcome some challenges and issues related to utilising traditional human biometric traits such as the face, iris, and fingerprint. In particu- lar, iris recognition has achieved high accuracy rates under Near- InfraRed (NIR) spectrum and it is employed in many applications for security and identification purposes. However, as modern imaging devices operate in the visible spectrum capturing colour images, iris recognition has faced challenges when applied to coloured images especially with eye images which have a dark pigmentation. Other issues with iris recognition under NIR spectrum are the constraints on the capturing process resulting in failure-to-enrol, and degradation in system accuracy and performance. As a result, the research commu- nity investigated using other traits to support the iris biometric in the visible spectrum such as the sclera. The sclera which is commonly known as the white part of the eye includes a complex network of blood vessels and veins surrounding the eye. The vascular pattern within the sclera has different formations and layers providing powerful features for human identification. In addition, these blood vessels can be acquired in the visible spectrum and thus can be applied using ubiquitous camera-based devices. As a consequence, recent research has focused on developing sclera recog- nition. However, sclera recognition as any biometric system has issues and challenges which need to be addressed. These issues are mainly related to sclera segmentation, blood vessel enhancement, feature ex- traction, template registration, matching and decision methods. In addition, employing the sclera biometric in the wild where relaxed imaging constraints are utilised has introduced more challenges such as illumination variation, specular reflections, non-cooperative user capturing, sclera blocked region due to glasses and eyelashes, variation in capturing distance, multiple gaze directions, and eye rotation. The aim of this thesis is to address such sclera biometric challenges and highlight the potential of this trait. This also might inspire further research on tackling sclera recognition system issues. To overcome the vii above-mentioned issues and challenges, three major contributions are made which can be summarised as 1) designing an efficient sclera recognition system under constrained imaging conditions which in- clude new sclera segmentation, blood vessel enhancement, vascular binary network mapping and feature extraction, and template registra- tion techniques; 2) introducing a novel sclera recognition system under relaxed imaging constraints which exploits novel sclera segmentation, sclera template rotation alignment and distance scaling methods, and complex sclera features; 3) presenting solutions to tackle issues related to applying sclera recognition in a real-time application such as eye localisation, eye corner and gaze detection, together with a novel image quality metric. The evaluation of the proposed contributions is achieved using five databases having different properties representing various challenges and issues. These databases are the UBIRIS.v1, UBIRIS.v2, UTIRIS, MICHE, and an in-house database. The results in terms of segmen- tation accuracy, Equal Error Rate (EER), and processing time show significant improvement in the proposed systems compared to state- of-the-art methods.Ministry of Higher Education and Scientific Research in Iraq and the Iraqi Cultural Attach´e in Londo

    DEEP LEARNING METHODS FOR BIOMETRIC RECOGNITION BASED ON EYE INFORMATION

    Get PDF
    The accuracy of ocular biometric systems is critically dependent on the image acquisition conditions and segmentation methods. To minimize recognition error robust segmentation algorithms are required. Among all ocular traits, iris got the most attention due to high recognition accuracy. New modalities such as sclera blood vessels and periocular region were also proposed as autonomous (or iris-complementary) modalities. In this work we tackle ocular segmentation and recognition problems using deep learning methods, which represent state-of-the-art in many computer vision related tasks. We individually evaluate three recognition pipelines based on different ocular modalities (sclera blood vessels, periocular region, iris). The pipelines are then fused into a single biometric system and its performance is evaluated. The main focus is sclera recognition in the scope of which we i) create a new dataset named SBVPI, ii) propose and evaluate segmentation approaches, which won the first place on SS(ER)BC competitions, and iii) develop and evaluate the rest of the sclera-based recognition pipeline. The next contribution of this work is multi-class eye segmentation technique, which gives promising results. We also propose and evaluate deep learning pipeline for periocular recognition. For iris recognition we use an existing pipeline and evaluate it on our dataset. With deep learning we achieve promising recognition results for each individual modality. We further improve recognition accuracy with multi-modal fusion of all three modalities

    Deep learning methods for biometric recognition based on eye information

    Get PDF
    The accuracy of ocular biometric systems is critically dependent on the image acquisition conditions and segmentation methods. To minimize recognition error robust segmentation algorithms are required. Among all ocular traits, iris got the most attention due to high recognition accuracy. New modalities such as sclera blood vessels and periocular region were also proposed as autonomous (or iris-complementary) modalities. In this work we tackle ocular segmentation and recognition problems using deep learning methods, which represent state-of-the-art in many computer vision related tasks. We individually evaluate three recognition pipelines based on different ocular modalities (sclera blood vessels, periocular region, iris). The pipelines are then fused into a single biometric system and its performance is evaluated. The main focus is sclera recognition in the scope of which we i) create a new dataset named SBVPI, ii) propose and evaluate segmentation approaches, which won the first place on SS(ER)BC competitions, and iii) develop and evaluate the rest of the sclera-based recognition pipeline. The next contribution of this work is multi-class eye segmentation technique, which gives promising results. We also propose and evaluate deep learning pipeline for periocular recognition. For iris recognition we use an existing pipeline and evaluate it on our dataset. With deep learning we achieve promising recognition results for each individual modality. We further improve recognition accuracy with multi-modal fusion of all three modalities

    DEEP LEARNING METHODS FOR BIOMETRIC RECOGNITION BASED ON EYE INFORMATION

    Get PDF
    The accuracy of ocular biometric systems is critically dependent on the image acquisition conditions and segmentation methods. To minimize recognition error robust segmentation algorithms are required. Among all ocular traits, iris got the most attention due to high recognition accuracy. New modalities such as sclera blood vessels and periocular region were also proposed as autonomous (or iris-complementary) modalities. In this work we tackle ocular segmentation and recognition problems using deep learning methods, which represent state-of-the-art in many computer vision related tasks. We individually evaluate three recognition pipelines based on different ocular modalities (sclera blood vessels, periocular region, iris). The pipelines are then fused into a single biometric system and its performance is evaluated. The main focus is sclera recognition in the scope of which we i) create a new dataset named SBVPI, ii) propose and evaluate segmentation approaches, which won the first place on SS(ER)BC competitions, and iii) develop and evaluate the rest of the sclera-based recognition pipeline. The next contribution of this work is multi-class eye segmentation technique, which gives promising results. We also propose and evaluate deep learning pipeline for periocular recognition. For iris recognition we use an existing pipeline and evaluate it on our dataset. With deep learning we achieve promising recognition results for each individual modality. We further improve recognition accuracy with multi-modal fusion of all three modalities

    Handbook of Vascular Biometrics

    Get PDF

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    A new method for sclera vessel recognition using OLBP

    Full text link
    This paper proposes a new sclera vessel recognition technique. The vessel patterns of sclera are unique for each individual and this can be utilized to identify a person uniquely. In this research we have used a time adaptive active contour-based region growing technique for sclera segmentation. Prior to that, we have made some tonal and illumination correction to get a clearer sclera area without the distributing vessel structure. This is because the presence of complex vessel structures occasionally affects the region-growing process. The sclera vessels are not prominent in the images, so in order to make them clearly visible, a local image enhancement process using a Haar high pass filter is incorporated. To get the total orientation of the vessels, we have used Orientated Local Binary Pattern (OLBP). The OLBP images of each class are used for template matching for classification by calculating the minimum Hamming Distance. We have used the UBIRIS version 1 dataset for the experimentation of our research. The proposed approach has achieved high recognition accuracy employing the above-mentioned dataset. © Springer International Publishing 2013
    corecore