4,400 research outputs found

    Incorporating the Basic Elements of a First-degree Fuzzy Logic and Certain Elments of Temporal Logic for Dynamic Management Applications

    Get PDF
    The approximate reasoning is perceived as a derivation of new formulas with the corresponding temporal attributes, within a fuzzy theory defined by the fuzzy set of special axioms. For dynamic management applications, the reasoning is evolutionary because of unexpected events which may change the state of the expert system. In this kind of situations it is necessary to elaborate certain mechanisms in order to maintain the coherence of the obtained conclusions, to figure out their degree of reliability and the time domain for which these are true. These last aspects stand as possible further directions of development at a basic logic level. The purpose of this paper is to characterise an extended fuzzy logic system with modal operators, attained by incorporating the basic elements of a first-degree fuzzy logic and certain elements of temporal logic.Dynamic Management Applications, Fuzzy Reasoning, Formalization, Time Restrictions, Modal Operators, Real-Time Expert Decision System (RTEDS)

    Fuzzy expert systems in civil engineering

    Get PDF
    Imperial Users onl

    Reasoning with uncertainty using Nilsson's probabilistic logic and the maximum entropy formalism

    Get PDF
    An expert system must reason with certain and uncertain information. This thesis is concerned with the process of Reasoning with Uncertainty. Nilsson's elegant model of "Probabilistic Logic" has been chosen as the framework for this investigation, and the information theoretical aspect of the maximum entropy formalism as the inference engine. These two formalisms, although semantically compelling, offer major complexity problems to the implementor. Probabilistic Logic models the complete uncertainty space, and the maximum entropy formalism finds the least commitment probability distribution within the uncertainty space. The main finding in this thesis is that Nilsson's Probabilistic Logic can be successfully developed beyond the structure proposed by Nilsson. Some deficiencies in Nilsson's model have been uncovered in the area of probabilistic representation, making Probabilistic Logic less powerful than Bayesian Inference techniques. These deficiencies are examined and a new model of entailment is presented which overcomes these problems, allowing Probabilistic Logic the full representational power of Bayesian Inferencing. The new model also preserves an important extension which Nilsson's Probabilistic Logic has over Bayesian Inference: the ability to use uncertain evidence. Traditionally, the probabilistic, solution proposed by the maximum entropy formalism is arrived at by solving non-linear simultaneous equations for the aggregate factors of the non- linear terms. In the new model the maximum entropy algorithms are shown to have the highly desirable property of tractability. Although these problems have been solved for probabilistic entailment the problems of complexity are still prevalent in large databases of expert rules. This thesis also considers the use of heuristics and meta level reasoning in a complex knowledge base. Finally, a description of an expert system using these techniques is given

    Configurational Explanations

    Get PDF

    Interpretation of Natural-language Robot Instructions: Probabilistic Knowledge Representation, Learning, and Reasoning

    Get PDF
    A robot that can be simply told in natural language what to do -- this has been one of the ultimate long-standing goals in both Artificial Intelligence and Robotics research. In near-future applications, robotic assistants and companions will have to understand and perform commands such as set the table for dinner'', make pancakes for breakfast'', or cut the pizza into 8 pieces.'' Although such instructions are only vaguely formulated, complex sequences of sophisticated and accurate manipulation activities need to be carried out in order to accomplish the respective tasks. The acquisition of knowledge about how to perform these activities from huge collections of natural-language instructions from the Internet has garnered a lot of attention within the last decade. However, natural language is typically massively unspecific, incomplete, ambiguous and vague and thus requires powerful means for interpretation. This work presents PRAC -- Probabilistic Action Cores -- an interpreter for natural-language instructions which is able to resolve vagueness and ambiguity in natural language and infer missing information pieces that are required to render an instruction executable by a robot. To this end, PRAC formulates the problem of instruction interpretation as a reasoning problem in first-order probabilistic knowledge bases. In particular, the system uses Markov logic networks as a carrier formalism for encoding uncertain knowledge. A novel framework for reasoning about unmodeled symbolic concepts is introduced, which incorporates ontological knowledge from taxonomies and exploits semantically similar relational structures in a domain of discourse. The resulting reasoning framework thus enables more compact representations of knowledge and exhibits strong generalization performance when being learnt from very sparse data. Furthermore, a novel approach for completing directives is presented, which applies semantic analogical reasoning to transfer knowledge collected from thousands of natural-language instruction sheets to new situations. In addition, a cohesive processing pipeline is described that transforms vague and incomplete task formulations into sequences of formally specified robot plans. The system is connected to a plan executive that is able to execute the computed plans in a simulator. Experiments conducted in a publicly accessible, browser-based web interface showcase that PRAC is capable of closing the loop from natural-language instructions to their execution by a robot

    Information Extraction, Data Integration, and Uncertain Data Management: The State of The Art

    Get PDF
    Information Extraction, data Integration, and uncertain data management are different areas of research that got vast focus in the last two decades. Many researches tackled those areas of research individually. However, information extraction systems should have integrated with data integration methods to make use of the extracted information. Handling uncertainty in extraction and integration process is an important issue to enhance the quality of the data in such integrated systems. This article presents the state of the art of the mentioned areas of research and shows the common grounds and how to integrate information extraction and data integration under uncertainty management cover
    • 

    corecore