H E N W
UNIVERSITY OF BREMEN 0\
INSTITUTE FOR '

(v A 4
ARTIFICIAL INTELLIGENCE \

Interpretation of Natural-language
Robot Instructions

Probabilistic Knowledge Representation,

Learning, and Reasoning

Daniel Nyga

Vollstandiger Abdruck der vom Fachbereich 3 (Mathematik und Informatik) der Universitit
Bremen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Carsten Lutz
Universitdt Bremen

1. Priifer: Prof. Michael Beetz, PhD
Universitdt Bremen

2. Priifer: Prof. Anthony G. Cohn, PhD
University of Leeds

Beisitzerin: Prof. Dr. Tanja Schultz
Universitdt Bremen

Die Dissertation wurde am 10.04.2017 bei der Universitit Bremen eingereicht und durch
den Priifungsausschuss am 02.05.2017 angenommen.

Abstract

A robot that can be simply told in natural language what to do — this has been
one of the ultimate long-standing goals in both Artificial Intelligence and Robotics
research. In near-future applications, robotic assistants and companions will have
to understand and perform commands such as “set the table for dinner”, “make
pancakes for breakfast”, or “cut the pizza into 8 pieces.” Although such instructions
are only vaguely formulated, complex sequences of sophisticated and accurate ma-
nipulation activities need to be carried out in order to accomplish the respective
tasks. The acquisition of knowledge about how to perform these activities from huge
collections of natural-language instructions from the Internet has garnered a lot of
attention within the last decade. However, natural language is typically massively
unspecific, incomplete, ambiguous and vague and thus requires powerful means for
interpretation.

This work presents PRAC — Probabilistic Action Cores — an interpreter for natural-
language instructions which is able to resolve vagueness and ambiguity in natural
language and infer missing information pieces that are required to render an instruc-
tion executable by a robot. To this end, PRAC formulates the problem of instruction
interpretation as a reasoning problem in first-order probabilistic knowledge bases.
In particular, the system uses Markov logic networks as a carrier formalism for en-
coding uncertain knowledge. A novel framework for reasoning about unmodeled
symbolic concepts is introduced, which incorporates ontological knowledge from
taxonomies and exploits semantically similar relational structures in a domain of
discourse. The resulting reasoning framework thus enables more compact representa-
tions of knowledge and exhibits strong generalization performance when being learnt
from very sparse data. Furthermore, a novel approach for completing directives
is presented, which applies semantic analogical reasoning to transfer knowledge
collected from thousands of natural-language instruction sheets to new situations.
In addition, a cohesive processing pipeline is described that transforms vague and
incomplete task formulations into sequences of formally specified robot plans. The
system is connected to a plan executive that is able to execute the computed plans

in a simulator. Experiments conducted in a publicly accessible, browser-based web
interface showcase that PRAC is capable of closing the loop from natural-language
instructions to their execution by a robot.

Zusammenfassung

Ein Roboter, dem man einfach sagt, was zu tun ist — das ist seit jeher eines der
hochsten Ziele der Forschung sowohl in Kiinstlicher Intelligenz als auch in Robotik.
In naher Zukunft schon werden Roboter als unsere Assistenten und Begleiter An-
wendung finden, und Befehle wie ,Decke den Tisch zum Abendessen®, ,,Mache
Pfannkuchen zum Friihstiick” oder ,,Schneide die Pizza in 8 Stiicke” verstehen und
ausfithren miissen. Obwohl solche Instruktionen nur sehr vage formuliert sind, bedarf
es der Ausfiihrung komplizierter Folgen anspruchsvoller und filigraner Manipulation-
saktionen, um die entsprechenden Aufgaben zu bewéltigen. Innerhalb der letzten
10 Jahre hat der Erwerb von Wissen dariiber, wie solche Aktivitidten auszufiihren
sind, mit Hilfe von natiirlichsprachlichen Instruktionen aus dem Internet stark an
Aufmerksamkeit gewonnen. Allerdings ist natiirliche Sprache extrem vage, unprazise,
unvollstindig und mehrdeutig und erfordert daher leistungsstarke Methoden fiir ihre
Interpretation.

Diese Dissertation beschreibt PRAC — Probabilistic Action Cores — einen Interpreter
fiir natiirlichsprachliche Instruktionen, der in der Lage ist, sprachliche Vagheit und
Mehrdeutigkeit aufzulésen und Wissen zu erschliel3en, das zur Ausfiihrbarkeit der In-
struktion durch einen Roboter fehlt. Hierfiir wird die Interpretation einer Instruktion
als Inferenzaufgabe in probabilistischen relationalen Wissensbasen formuliert. Im
Besonderen werden Markov-Logik-Netzwerke als Formalismus zur Resprasentation
von unsicherem Wissen betrachtet. Es wird ein neues Verfahren zum Schliel3en aus
unmodellierten Konzepten vorgestellt, welches ontologisches Wissen {iber Konzept-
taxonomien bertiicksichtigt und semantisch dhnliche relationale Strukturen von
Konzepten der Anwendungsdoméne nutzt. Das damit entwickelte Grundgeriist fiir
probabilistisches SchlieBen erméglicht kompakte Reprasentationen von Wissen und
zeichnet sich durch starke Abstraktions- und Generalisierungsfahigkeit aus, insbeson-
dere, wenn nur sehr wenige Daten zum Lernen verfiigbar sind. Desweiteren wird ein
neuer Ansatz zur Vervollstindigung von Instruktionen vorgestellt, der auf dem Prinzip
des semantischen Analogie-Schlief3ens beruht und den Wissenstransfer in neue Situa-
tionen ermoglicht. Aullerdem wird ein in Algorithmus vorgestellt, der unvollstandige

Aufgabenbeschreibungen in Folgen von formal vollstdndig spezifizierten Roboterplé-
nen abbildet. PRAC ist an ein Planausfiihrungssystem angebunden, welches in der
Lage ist, die erstellten Roboterplédne in Simulation auszufiihren. Experimente, die in
einer Offentlich zugdnglichen Web-Anwendung durchgefiihrt werden, zeigen, dass
das PRAC System den vollstindigen Inferenzprozess von der natiirlichen Sprache bis
hin zur Ausfithrung von Roboterpldnen ermdglicht.

Acknowledgments

During the six years of research for my PhD, I greatly enjoyed meeting a number of
amazing people whom I was very lucky to work with. They have helped and inspired
me in exciting collaborations and lively discussions. These people have effectively
contributed directly or indirectly to the contents of this thesis and thus deserve my
highest acknowledgments, which I want to express at this point.

First and foremost, I want to thank my supervisor, Michael Beetz, who has con-
tinuously supported me already since my undergraduate studies at TUM and who
has given me the opportunity to do my PhD in his lab. His outstanding expertise,
visionary ideas and widespread support have motivated and helped me a lot in
writing this thesis, but also in becoming a computer scientist, programmer, researcher,
and lecturer. Not least, his unlimited optimism has had me never give up despite
miscellaneous setbacks. I also want to thank Tony Cohn, Tanja Schultz, and Carsten
Lutz, who kindly consented to serve in my thesis committee.

I would like to thank all of my colleagues from the former Intelligent Autonomous
Systems Group at the Technical University of Munich and from the Institute for
Artificial Intelligence at the University of Bremen, who have been forming a very
inspiring environment it is a great honor to be a part of. My special thanks go to
Moritz Tenorth, Dominik Jain, Lorenz Mosenlechner and Uli Klank from TUM, and
to Mareike Picklum, Ferenc Balint-Benczédi, Gheorghe Lisca, Mihai Pomarlan and
Andrei Haidu, whom it was not only a lot of fun to collaborate with, but who have
also spent with me a couple of enjoyable hours outside the lab.

Considerable parts of the work presented in this thesis would not have been possible
without the help of my students, who contributed a lot in programming, data acquisi-
tion, model design and conducting experiments. Many thanks to Mareike Picklum,
Sebastian Koralewski, Marc Niehaus, Florian Meyer, Susanne Knoop, Stephan Epping,

Valentine Chiwome, Nicholas Kirk, Ilija Dianov, and Dominik Vollmer.

My parents, Annette and Gerd Nyga, have provided me with their unconditional
support and encouragement throughout my life, exciting my curiosity and thirst of
knowledge, and nurturing my aptitude, for which I am very grateful. Not least I want

to thank my girlfriend Mareike for her great support and patience while I was writing
this thesis.

April 2017,
Daniel Nyga

This work has received funding from the CoTeSys (Cognition for Technical Systems)
cluster of excellence of the German Research Foundation (DFG) and from the Euro-
pean Union Seventh Framework Programme FP7 projects ROBOHOW (grant number
288533) and AcCAT (grant number 600578).

Contents

Contents

1

Introduction 1
1.1 Interpretation of Natural-language Instructions 5
1.1.1 Key Concepts: Uncertainty and Similarity 7
1.1.2 Exemplary Scenariost 9
1.1.3 Challenges & Opportunities 11
1.2 Contributions e e e e 14
1.3 Outline e 16
1.4 Notation ot i 17
Probabilistic Knowledge Representation 19
2.1 Logic o e e e 20
2.1.1 Propositional Logic 20
2.1.2 First-order Logic 23
2.1.3 Prolog & Datalog, 24
2.1.4 DescriptionLogic oo oL, 25
2.1.5 Relational Algebra 28
2.2 Probabilistic Graphical Models 29
2.2.1 Probability Theory 30
2.2.2 Bayesian Networks 34
2.2.3 MarkovRandom Fields 37
2.3 Probabilistic Relational Models 41
2.3.1 Markov Logic Networks 42

Contents

2.4

Uncertainty versus Vaguenesso v oo .

241 Summary e

3 Probabilistic Knowledge Bases for Instruction Interpretation

3.1

3.2
3.3

3.4

3.5

3.6

3.7

3.8

Probabilistic Action Cores
3.1.1 Definition
3.1.2 Alternative Approaches,
Everyday Rationality
How much Knowledge does a Robot Need?
3.3.1 How Many Actions Are There?
3.3.2 How Much Variation Is There?
Conceptual Framework
3.4.1 ReasoningTasks
3.4.2 System Architecture
3.4.3 PRACInstructions
3.4.4 PrRACDictionary
3.4.5 PrRACKnowledgeBase
3.46 PRACHowtoLibrary
3.4.7 ThePracPlanLibrary
Learning and Reasoning in PRAC
3.5.1 ReasoningPipeline
Knowledge Acquisition,
3.6.1 One-shot Learning from Natural Language
3.6.2 Data Acquisition with Mechanical Turk
Coreference Resolution
3.7.1 Probabilistic Coreference Resolution
3.7.2 Experiments.
Instruction Completion,
3.8.1 Probabilistic Completion & Refinement

3.8.2 Reasoning by Analogy

Contents

3.8.3 Analogical Completion & Refinement 112
3.8.4 Similarityof Frames 113
3.8.5 Action Role Completion 114
3.8.6 PlanExpansion 116
3.8.7 PlanAdaptation. 117
3.9 Execution in Simulation 0., 120
3.10 Related Work e 122
Reasoning in Large Taxonomies 127
4.1 Motivationo e e e e e e e 128
4.1.1 RunningExample 129
4.1.2 Semantic Similarity Lo 130
4.1.3 Fuzzylogic e 132
4.2 Fuzzy Markov Logic Networks 133
4.2.1 Definition 134
4.2.2 Semanticso e e e e e e 134
4.2.3 Knowledge Representation. 135
424 Example 136
4.3 Evaluation 142
4.4 RelatedWork 145
4.5 Discussion e e e e e e e e 147
Probabilistic Knowledge Bases for Robot Perception 153
5.1 EnsembleLearning 154
5.1.1 Overview i e 154
5.1.2 Processing Pipeline 156
5.1.3 Ensemble Learning, 159
5.1.4 ExperimentsandResults 162
5.1.5 Discussion & Related Work 168
5.2 Interpretation of NL Object Descriptions 171
5.2.1 Semantic Models for Robot Perception 173

iii

Contents

5.2.2
5.2.3
5.24
5.2.5
5.2.6

The ROBOSHERLOCK Perception Framework
Identifying Objects from Descriptions
Semantic Similarity Measures
Experiments

Related Work o

5.3 Conclusions v i e e e e e

6 Evaluation

6.1 Open-source Software

6.2 Comparison to Related Systems

6.3 RobOt DEmoOnStrators . . . v v v v v v e e e e e e e e e e e

6.3.1

Chemical Laboratory

6.3.2 Assistive Household

6.3.3

7 Conclusions

SEatiStiCS & v v v v v e e e e e e e e e e e e e e

A Prior Publications

B WordNet Concepts

Glossary

Bibliography

189
190
192
195
195
198
201

205

209

213

220

222

List of Figures

List of Figures

1.1 PR2 Reasoning About and Performing a Neutralization Task 5
1.2 Semantic Network Representation of a Neutralization Task 6
1.3 TUM-Rosie and PR2 Performing Everyday Activities 9
2.1 Exemplary Kitchen Ontology 27
2.2 Exemplary Bayesian Network Structures 35
2.3 Exemplary Markov Random Field 38
2.4 Exemplary Fuzzy Set 50
3.1 PR2 Performing Two Different Filling Activities 56
3.2 Screenshot of the wikihow.comWebPage 62
3.3 Taxonomy of Different Flipping Actions 65
3.4 Refinement and Parameterization of a Neutralization Instruction. . . 68

3.5 Posterior Distribution over a Class Taxonomy Conditioned on a Neu-

tralization Action 72
3.6 Architecture of the PRAC Framework 74
3.7 Excerpt of the WordNet Upper Ontology 77
3.8 Relational Data Model of the PRAC Howto Library 82
3.9 Posterior Distributions over a Class Taxonomy Conditioned on a Sea-

soning Action e 86
3.10 Inference Tree of an Italian Dinner Example 87
3.11 Mechanical Turk: Example of a Generated HIT 97
3.12 Exemplary Coreferences in PRAC 99
3.13 Illustration of Probabilistic Role Completion 105

List of Figures

Vi

3.14 Analogical Reasoning using Large Amounts of Documents 109
3.15 Exemplary Action Role Completion Using Analogical Reasoning . . . 111
3.16 Two Worlds in the Gazebo-based Robot Simulator. 121
3.17 Architecture of the Execution in Simulation 122
4.1 Excerpt of the WordNet Taxonomy 129
4.2 Visualization of the WUP Similarity 132
4.3 Posterior Distributions for Semantic Role Labeling 140
4.4 Posterior Distributions for Word-sense Disambiguation 141
4.5 Cross-validation Results for Word-sense Disambiguation 143
4.6 Interpolation in the Probability Density Function based on Semantic
Distance o 150
5.1 PR2 Looking at a Breakfast Table 154
5.2 Probabilistic Processing Pipeline for Object Classification 156
5.3 Object Classification Tasks in a Household Scenario 169
5.4 Pipeline for Detecting Objects from Natural Language 171
5.5 Taxonomy of Perceptual Attribute Types 173
5.6 Exemplary Annotations by Perception Experts 174
5.7 High-level Architecture of the Object Recognition System 176
5.8 Taxonomy of Custom Similarities 180
5.9 Symbolic Colors in HSV Color Space 182
5.10 Taxonomy of Shape Concepts 183
5.11 Results for Object Detection from Natural-language Descriptions . . . 185
5.12 Table-top Scene with Objects Detected from Natural-language 186
6.1 Screenshots of the PRAC Web Application. 190
6.2 Screenshot of the PRACMLN Web Application 191
6.3 Completion of a Neutralizing Instruction 195
6.4 Simulated Execution of Plans generated by PRAC from different natural-
language instructionso 197
6.5 Completion of a Flipping Instruction 198

List of Tables

List of Tables

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2

5.1
5.2
5.3

5.4
5.5
5.6

6.1
6.2

Most Frequent Action Verbs in the wikihow.com Dataset and their

Number of Occurrences. o v v v v v i i i e e 64
Cluster Sizes of Prepositional Relations 66
Selection of Syntactic Relations 75
Selection of Different Word Meanings in WordNet 78
FrameNet Role Definitions for the Action Concept MovingInPlace . . . 80
Experimental Results of the Coreference Resolution Experiments. . . 103
Probability Distribution over the AchievedBy Predicate 107
Exemplary Queries for Semantically Most Similar Frames 120
Semantic Representation of Two Natural-language Instructions . . . 130
Cross-validation Results for Word-sense Disambiguation 144
Annotators Available in ROBOSHERLOCK 157
Class-specific Error Measures o v v v v v v v v v v v 163

Confusion Matrix for Object Detection with the Whole Ensemble of

ANNOtators o i . e e e e e e e 164
Confusion Matrices for Object Detection with Isolated Annotators . . 165
Evaluation of Annotators in Isolation 166
Distribution over Perceptual Cues per Object Class. 167
Overview of the Sizes of the PRAC Knowledge Bases 202
Runtime Analysis of Five Natural-language Instructions 203

Vii

List of Algorithms

List of Algorithms

1 MCMC . . . e e e e e e 45
2 PRAC-QUERY i i i i i e e e e e e e e e e e e e e e 89
3 NEXT-MODULE . .+ v v v v e 90
4 PRAC-TELL . . . o i i e e e e e e e e e e e e e e e e e 93

ix

Chapter

Introduction

Roadmaps for research and technology identify robotic (co-)workers, assistants,
and companions as promising targets for near-future robotic applications. Their
forecasts anticipate robotics technology becoming dominant in the coming decade and
significantly influencing every aspect of work and home (SPARC, 2014b). Until now,
the mainstay of robotics applications has been restricted to factories and production
lines, where mainly stationary robots perform the same preprogrammed motions
repeatedly over long periods of time, unaware of their environment and of what
they are doing. However, economists and technologists consent that the advent of a
fourth disruptive transformation of manufacturing technologies will be largely driven
by autonomization of manufacturing machinery, and a pervasive communication
infrastructure of interconnected physical devices. The development of mobile robots
with increased sensory capabilities and situation-, context- and environment-aware
control routines allows robots to be applicable not only within safety cages in factories
but safely, reconcilably and cooperatively interacting with humans in our everyday
lives. Potential applications are being envisioned in numerous domains, such as the
manufacturing, health care, agriculture, civil engineering, logistics and transport as
well as consumer and entertainment sectors, among many others.

But not only will manufacturing and physically demanding jobs undergo a disruptive
change by information and communication technologies, also knowledge intensive
work will be increasingly taken over by computer and information systems, perform-
ing activities that so far have been deemed impossible to achieve without human
intelligence. Such tasks include complex analyses of huge amounts of data, subtle
judgments and interpretations thereof and creative problem solving and decision

Chapter 1. Introduction

making (Manyika et al., 2013). Both most prominent and most impressive is perhaps
the IBM Watson system (Ferrucci et al., 2010b), which has set new standards in
knowledge acquisition and reasoning from big, unstructured data and already today
assists in medical diagnosing and financial forecasting. We are also seeing more and
more products with Artificial Intelligence (AI) technology entering the consumer
market, for example in the form of personal assistants in mobile phones, smart home
appliances or self-driving vehicles.

Indeed, in recent years, we have seen tremendous progress in the mechatronics, sens-
ing, and computational infrastructure, enabling robots to act faster, more strongly
and more accurately than humans can ever do. Researchers have implemented
robots that autonomously perform challenging manipulation tasks, such as making
pancakes (Beetz et al., 2011) and pizza (Beetz et al., 2016), folding clothes (Sri-
vastava et al., 2015), baking cookies (Bollini et al., 2011) and conducting chemical
experiments (Lisca et al., 2015). Furthermore, the robotics community has become
increasingly active in pushing robots’ capabilities in perception, planning and manip-
ulation towards more and more challenging scenarios (Wurman and Romano, 2015;
Pratt and Manzo, 2013). However, albeit such impressive advances in manipulation
skills, these robots are still far away from the desired generality and adaptability to
bring about robust, autonomous, intelligent behavior.

It is the declared goal of the emerging field of artificial cognitive robotics to

“build systems that can act on their own to achieve goals: perceiving their environ-
ment, anticipating the need to act, learning from experience, and adapting to changing

circumstances.” — (Vernon, 2014)

As a research direction intersecting computer science, Al, robotics, developmental
psychology, and cognitive neuroscience,

“cognition is the system-wide process that provides an agent with the ability to understand,
given only partial knowledge, how things might possibly be, not just now but at some point

in the future, and to use this understanding to influence action” — (SPARC, 2014a)

Cognition brings together the advances in computational intelligence and physically
embodied systems to allow a robot to act reliably and safely, to learn, to adapt, and
to improve.

The above-mentioned examples and application domains have in common that au-
tonomous robots have to act in open worlds: They must perform complete jobs

including a variety of human-scale activities, allow human interaction as naturally
as possible, operate with high accuracy over extended periods of time without inter-
vention, and autonomously extend their repertoire of high-level skills in unknown
environments. A household robot, for example, will be tasked with instructions stated

7

in natural language (NL) as vaguely as “clean up the kitchen,” “prepare pancakes
for breakfast,” or “serve pizza and wine for dinner.” They have to perform what is
commonly referred to as everyday activity. While humans are able to perform such

activities with great ease, they still remain challenging for most of our today’s robots.

One of the biggest challenges in implementing artificial cognitive systems is undoubt-
edly the ubiquity of severe incompleteness, ambiguity, vagueness, and uncertainty.
These phenomena come in different manifestations. Consider, for example, a robotic
assistant in a chemical laboratory, which is to “extract the DNA” from a given sample
or to “determine the pH-value” of a substance, for instance. Such instructions are
characterized by extreme vagueness and high abstraction on the one hand, but on
the other hand performing them involves the execution of (sequences of) complex
actions requiring sophisticated manipulation of objects. As part of a DNA extraction
procedure, for instance, a robot may be instructed to “neutralize 75 ml of hydrochlo-
ric acid.” The robot has to know that it needs an appropriate alkaline counterpart
for the neutralization, namely sodium hydroxide (NaOH). It must decide that the
appropriate amount of NaOH needs to be added to the acid. And, depending on the
amount, it also needs to choose an action to take. If the quantity of the substance
is small and precisely specified, a pipette might be a suitable utensil, but when the
amount is larger, a pouring action using a measuring cup might be more appropriate.

Endowing robots with the ability to infer detailed and plausible formal specifications
of executable action plans from vague and incomplete data is therefore a necessity for
pushing the manipulation skills and hence the autonomy and universal applicability
of today’s service robots to more advanced levels. In other words, incomplete and
vague instructions need to be made executable.

A promising direction for tackling this is to equip robots with comprehensive general
domain knowledge they can use to answer queries like the aforementioned (Tenorth,
2011). The human brain is a remarkably performant knowledge base (KB) that
allows reasoning of this kind. Researchers from the cognitive sciences view the brain
as an information processing unit where reasoning typically involves the inference
of new information from information that has been put in from the senses, prior
knowledge and other sources (Chater et al., 2006). Researchers in Bayesian cognition
(Griffiths et al., 2008) consider probability theory a powerful mathematical apparatus
for explaining and implementing theories of cognition:

p=>!

Everyday
Activity

(IS>y

Computational
Rationality

Chapter 1. Introduction

“How does abstract knowledge guide inference from incomplete data? Abstract knowledge
is encoded in a probabilistic generative model, a Rind of mental model that describes the
causal processes in the world giving rise to the learner’s observations as well as unobserved
or latent variables that support effective prediction and action if the learner can infer their
hidden state. Generative models must be probabilistic to handle the learner’s uncertainty
about the true states of latent variables and the true causal processes at work. A generative
model is abstract in two senses: It describes not only the specific situation at hand, but
also a broader class of situations over which learning should generalize, and it captures
in parsimonious form the essential world structure that causes learners’ observations and

makes generalization possible.” — (Tenenbaum et al., 2011)

Probabilistic methods have their greatest appeal perhaps in their generality and
universality. However, more general formalisms incur higher computational costs
for learning and reasoning. As most of the computational problems related to prob-
abilistic methods require exponential time or space, these formalisms suffer from
the high dimensionality that universality implies. As a consequence, the practical
applicability of universal generative models still remains challenging in many cases,
which is why probability theory has for a long time been deemed too limited in
scope and scalability to be of practical use in cognitive science and has only lately
moved into its research focus. These restrictions in probabilistic models have been
significantly reduced by substantial technical progress in the mathematics and com-
puter science of probabilistic models that enable the modeling of knowledge and
beliefs of cognitive agents on the one hand. On the other hand researchers have
moved away from the target of building rational agents that act optimally on a
global scope, but agents that are aware of their limited computational resources and
therefore have to balance deliberation effort and utility (Gershman et al., 2015). In
addition, recent implementations of outstandingly successful Al systems appear to
gain their performance from specialization rather than generalization. Examples of
such systems are IBM Watson (Ferrucci et al., 2010a) and Google’s AlphaGo (Silver
et al., 2016), which, for the first time in history, have significantly outperformed the
world’s human champions in the quiz show Jeopardy!” and the board game ‘Go’,
respectively. As a consequence, Bayesian cognition and the ‘Bayesian brain’ (Doya
et al., 2007; Knill and Pouget, 2004) have become a recently emerging and promising
target in cognitive science that is increasingly garnering attention.

1.1. Interpretation of Natural-language Instructions

é/\“vqlv g B y k
ActionCoreda: o

. 1 g Substancelia: sl

dr 'Elrl Id_:i:. FI Substance2<a- =13 [Heutralize
Destination<a. di | 7oml of e

c: =l: s2: o sroce Feow drochloric

Sourceia: SPC
PurFoseia: Fi: acid.
Buantitoda: =«

T—

Guantitoda: Milliliter:

ActionCoreda. PiFrstlinel

TestTubel §

Destinationta.

Figure 1.1: The PR2 robot reasoning about and performing a neutralization action by
operating a pipette. The task of interpreting the natural-language instruction is phrased
as a probabilistic maximum a-posteriori inference. (By courtesy of Nadine Freye)

11 Interpretation of Natural-language Instructions

This work largely follows the argumentation of Tenenbaum et al. (2011) and advo-
cates the acquisition and use of probabilistic generative KBs to implement models
of human cognition. More specifically, it investigates the representation, learning
and reasoning in first-order probabilistic KBs for the interpretation and completion
of vague, ambiguous, and under-determined instructions stated in natural language.

The primary working hypothesis for this work is that the understanding and inter- €1

pretation of natural-language (NL) instructions for robots can be formulated as and
solved through reasoning problems in probabilistic relational models. Figure 1.1
illustrates a maximum a-posteriori (MAP) query to a probabilistic KB in form of a
conditional probability, which, in its query part, retrieves a formal specification of an
action a given the unstructured NL string “Neutralize 75 ml of hydrochloric acid” as
evidence. Ultimately, the goal of the query is to determine the most probable type of
action ¢ to conduct as well as its formal, symbolic arguments, such as what kind of
substances s; and sy to use, what the source and destination containers src and d are,
and how much ¢ of the substances to use. A possible response to this arg-max query
is visualized by the red annotations of the objects in the image, which indicate that
the robot believes the neutralization of the hydrochloric acid (HCI) can be achieved

Working
Hypothesis

Chapter 1. Introduction

Neutralize - of hydrochloric acid.
ActionCore AcidSubstance

chemical.n.01 <-———— acid.n.01 metric_unit.n.01

is-a

hcl.n.01
AcidSubstance Group Quantity Destination Quantity
Neutralize M» Neutralizing | AchievedBy) Adding m» Pipetting
AlkalineWMember %

chemical.n.01 PR base.n.11 DR — naoh.n.01

Figure 1.2: Exemplary instantiation of action cores and their action roles for the neutraliza-
tion example. The colored nodes are given as evidence from the NL instruction, whereas
the gray nodes and the role assignments need to be inferred.

by pipetting from a bottle holding the sodium hydroxide (NaOH) into the test tube
with the HCIL.

A more technical account to the rationale behind this kind of reasoning is depicted
in Figure 1.2. It shows a fragment of a first-order representation of knowledge that
explicates the reasoning process in a graph of entities and relations in between.
There are symbols referring to actions, such as Neutralizing, Adding and Pipetting,
which we call action cores, as well as symbols denoting object types like hcl.n.01,
naoh.n.01 or milliliter.n.01. Attached to the action cores there are edges assigning
action roles to objects, such as the AcidSubstance and the AlkalineSubstance of the
Neutralizing action core. The action roles thus can be considered abstract, semantic
features of an action core. In addition, all object-related symbols are grounded in
a class hierarchy of ontological concepts by the is-a relation. The hcl.n.01 concept,
for example, is-a kind of acid.n.01, which in turn is-a chemical.n.01. Moreover, the
action cores in this example are sequentially connected via the AchievedBy relation,
indicating that one action specification can be substituted by the respective other.
Accordingly, the neutralization of 75 milliliters of HCl can be AchievedBy adding
75 milliliters of NaOH, which in turn can be AchievedBy pipetting of the respective
substances. Contrasting the information pieces that have been given by the original
NL instruction, highlighted in colors, against the whole network, it becomes obvious
that the unstructured bits and pieces from the instruction merely serve as little
evidence in a more complex semantic network of actions, objects, and relations. In

1.1. Interpretation of Natural-language Instructions

order to successfully accomplish the task of neutralization, the network as a whole
needs to be fully instantiated, i.e. the gray nodes as well as the relational propositions
need to be inferred from what has been given by an instruction.

111 Key Concepts: Uncertainty and Similarity

In order to account for the inherent uncertainty, ambiguity and underspecification in
the reasoning from vague instructions to formal, unambiguous semantic representa-
tions like the one in the previous example, probabilistic first-order representations
lend themselves to learn joint probability distributions over semantic networks of
the kind shown in Figure 1.2. Joint probability distributions are of particular im-
portance in the context of language interpretation as they allow to query a KB for
any arbitrary aspect Q given any arbitrary aspect E as evidence. This is an important
feature since one cannot make any commitment in advance which of the variables
will be given in an NL statement and which ones need to be inferred. Most notably,
the ultimate strength of probabilistic relational models (PRMs) is their capability
to reason about all aspects simultaneously taking into account also the interactions
among entities and thus to compute a posterior belief P (Q | E) that is guaranteed to
be probabilistically sound and globally consistent.

Following these considerations, an action core can be informally defined as a concep-
tualization of one or more action verbs and represents an abstract event type defined
over the set of inter- and intra-conceptual semantic relations. The relations assign to
every entity that is affected by the respective action a role from a set of action roles,
which is attached to and specific to an action core. Action roles thus can be regarded
as abstract symbolic action parameters assigning action-related semantics to objects.
Knowledge about all roles of a particular action in turn is required to fully specify the
action under consideration. The primary idea of Probabilistic Action Cores (PRAC) is
to represent a joint probability distribution over the action roles such that evidence
given by an NL instruction can be used to infer the missing roles that are required for
fully specifying the action (cf. Nyga and Beetz, 2012).

Besides uncertainty, the notion of semantic similarity is another key concept used in
this work. In the PRAC framework, symbols referring to objects are grounded in the
WordNet (Fellbaum, 1998) lexical database. WordNet is a digital dictionary of the
English language, which associates words to so-called synsets that are hierarchically
structured and thus form an upper ontology of terms. The incorporation of a deep
taxonomy of concepts allows to represent knowledge about action cores at an ap-

2l

Action Cores
and Roles

il

Probabilistic
Action Cores

Chapter 1. Introduction

propriate level of abstraction, such that it can be transferred to a large number of
scenarios of similar types. Being able to abstract away from single instances of events
to more general patterns is crucial in understanding NL. As an example, consider the
two specific instructions “Fillactioncore @ POtpestination With waterrheme” and “Fillactioncore
a glasspestination With milkypeme,” Where Theme and Destination denote the roles of
the action core Filling. Employing a taxonomy of the action roles arguments allows
to generalize the two examples of Filling activities to a more generic pattern like
“Fill octionCore @ cONtaINET pestination With a liquidrpeme.” Being queried for an unknown
object, e.g. ‘juice,” the knowledge about Filling acquired from the two examples can
be transferred to the new concept by exploiting its similarity in the taxonomy:.

PRACs therefore implement a mechanism that learns and represents events in ev-
eryday activity as stereotyped, generic event patterns from very few examples and
thereby is an attempt to reproduce the remarkably efficient and effective ability to
acquire language in humans (cf. Bailey, 1997). At its core, PRAC is also inspired by
and closely related to Minsky’s frame structures:

“When one encounters a new situation (or makes a substantial change in one’s view of the
present problem) one selects from memory a structure called a Frame. This is a remembered
framework to be adapted to fit reality by changing details as necessary. A frame is a data-
structure for representing a stereotyped situation, like being in a certain Rind of living room,
or going to a child’s birthday party. Attached to each frame are several Rinds of information.
Some of this information is about how to use the frame. Some is about what one can expect

to happen next.” — (MinsRy, 1974)

Although the frame theory incorporates a notion of expectations about the slots of a
frame, it does not explicitly commit to the use of probabilistic models. It is a rather
informal, deterministic representation of everyday knowledge with correspondences
in semantic networks (Simmons, 1963) and default logic (Reiter, 1980). The FrameNet
project (Baker et al., 1998) is an initiative to implement the idea of frame semantics
and provides a comprehensive set of frame definitions and also annotated data, but
it offers neither computational models nor algorithms to learn or reason about the
frames. However, the frame definitions from FrameNet are typically taken as a basis
for the design of action cores.

1.1. Interpretation of Natural-language Instructions

(a) The robot ‘TUM-Rosie’ preparing pan- (b) The robot ‘PR2’ performing a pipetting
cakes in a Ritchen environment. action in a chemical laboratory.

Figure 1.3: TUM-Rosie and the PR2 performing everyday activities in human-scale environ-
ments.

11.2 Exemplary Scenarios

In recent experiments, the feasibility of robotic assistants performing sophisticated
manipulation of objects has been shown in principle by executing plans for making
pancakes in a kitchen environment (Beetz et al., 2011) and performing selected steps
of a DNA extraction procedure in a chemical laboratory setup (Lisca et al., 2015) on
the robotic platforms TUM-Rosie and a PR2 robot, which are illustrated in Figure 1.3.
Throughout this thesis, I will refer to selected activities from these two different
scenarios, in context of which most of the work presented has been conducted. For
several reasons I consider a kitchen and a chemical laboratory very well suited as
demonstrators for near-future robotic applications, which I will briefly depict in the
following.

Assistive Household Leading technology scouting agencies and think tanks anticipate
that, “within a decade, our living spaces will be enhanced by a host of new devices
and technologies, performing a range of household functions and redefining what it
means to feel at home.” (Coumau et al., 2017) Such ‘homebots’ may, for instance,
assist elderly people at home, take over household chores and thereby help them
prolonging their independence of elder care and enabling them to stay at home
for a longer time (Schaal, 2007). Imagine a robotic assistant that is placed in a
human household. Robots acting in human environments must be able to proficiently
perform a wide range of complete jobs in unfamiliar environments that they have
not been preprogrammed for. Such activities range from very simple actions to
complex procedures involving multiple steps to be conducted in a sequence or even

Chapter 1. Introduction

in parallel. On the one hand, for example, a single action might be to just transport
one object from one place and to put it down somewhere else. A severely complex
task, on the other hand, would be to prepare a whole meal, such as making a pancake
or preparing dinner. The kitchen in a human household is, though very common
for most of us, a highly complex environment for a robot. A lot of sophisticated
manipulation skills and knowledge about objects and actions involved is required to
perform the tasks typically done in a kitchen.

Chemical Laboratory Consider a robot, which is placed in a chemical laboratory and
is supposed to conduct a simple chemical experiment involving different containers,
instruments and substances (e.g. liquids). The experiment is written in form of an
instruction sheet comprising the single steps of the experiment. Also in this case,
the robot needs powerful means for inferring missing information. For instance, an
instruction such as “Add 5 drops of substance X to substance Y,” implies that a pipette
has to be used as an instrument, or “Add a pinch of Y” implies that a scoopula has to
be used, whereas an action “Add 500ml of water” implies using a measuring cup, a
scale or the tap. The robot then at each step has to infer information it needs in order
to perform the particular action successfully, but that is left out in the NL instruction.
The example of “neutralize the hydrochloric acid” has already been discussed above.
The robot might have to search for an alternative action parameterization (than the
original specified in the instructions) because one particular object is not available
in the lab, for instance. An example of a more complex task is conducting a pH-
value test for a given substance or performing a DNA extraction procedure. In a
biological and medical laboratory, there are many activities that are highly repetitive
and monotonous. For example, the precisely same amount of substance needs to
be pipetted into many small test tubes. At the same time, the activities must be
performed repeatedly with the same high accuracy so results are not being biased.
Hence, activities of this kind are salient candidates for being taken over by robots. In
addition, lab automation and the ‘robot scientist’ is already today on the agenda of
researchers and technology companies (Williams et al., 2015; King et al., 2004).

10

1.1. Interpretation of Natural-language Instructions

11.3 Challenges & Opportunities

Reasoning about vaguely and incompletely specified task descriptions has been
identified as an essential capability of robotic agents that has great potential to
become a powerful complement to action planning, and the retrieval of high-level
action sequences from natural-language recipes has increasingly gained attention
in the research community (Beetz et al., 2015b). These so-called howtos can be
found in abundance on the web, for example on pages like wikihow.com. Howtos
provide rough and sketchy sequences of actions that need to be executed in order
to accomplish a task. Three minimalistic (and made up, but still representative)
examples of such howtos are

How to make an How to make a pizza How to serve a drink
Italian dinner
1. Spread tomato sauce 1. Take a glass from

1. Set the table. over the rolled dough. the cupboard.
2. Prepare a pizza. 2. Sprinkle with salami. 2. Fill it with the drink.
3. Cut the pizza 3. Sprinkle with cheese. 3. Put the glass

and serve. 4. Put the pizza in the on the table.
4. Serve some wine. oven and bake at 250°.

5. Season the pizza

with oregano.

The biggest challenge is that these instructions are written by humans and are
intended for human use. Humans tend to omit important information that is necessary
for performing a particular action, such that understanding and executing them
requires appropriate interpretation. In the following, I will provide an exemplary,
informal and incomplete list of reasoning tasks that need to be considered in order
to enable automatic interpretation of NL instructions.

Ambiguity & Underspecification Ambiguity and incompleteness have already been
mentioned as characteristics of NL instructions. In classical machine reading and
translation, ambiguity can often be retained since queries and the respective an-
swers typically have similar levels of abstraction. Instruction execution, however,
requires to resolve those ambiguities in every detail and to fill in missing information
pieces (Nyga and Beetz, 2015b). An example of ambiguous meanings of words is
given by the two instructions “add a cup of salt” and “fill a cup with salt” and the
meanings of the word ‘cup’ therein. In the first instruction, cup refers to an abstract

11

Chapter 1. Introduction

unit of measure, whereas in the second example, it denotes a physical container.
Distinguishing between and correctly recognizing the two is crucial for the successful
interpretation.

Multi-step Instructions Most of the high-level instructions must be resolved by and
refined to finer-grained instructions that typically consist of multiple instruction steps,
which also can cross-reference one another. In the above examples, the “Italian
dinner” howto contains, for instance, a reference to the “pizza preparation” howto
and to the “serve drink” howto. The vagueness in such instructions can be resolved
by looking up the single instruction steps in other howtos that contain more specific
commands for how to perform a certain action.

Coreference Tightly coupled to instructions consisting of multiple steps is the co-
referencing of words across multiple sentences. Instead of repeating a term referenced
in multiple subsequent instructions, the respective word is just replaced and referred
to by means of a pronoun as in the instruction “Fill it with the drink.” The most
extreme case of coreference is on hand in Step 3 of the “prepare dinner” example.
Here, just the action verb ‘serve’ is given without any further information about what
should be served.

Action Refinement Rarely are instructions stated in NL directly executable. They
rather refer to actions that need to be performed in very different ways depending
on the current context. An example is the instruction “cut the pizza and serve.”
Depending on what kind of object needs to be cut, different cutting implements need
to be used and different motions are required. Cutting a pizza, for instance, can be
done with a cutting wheel, whereas cutting bread should be done with a knife or a
slicing machine.

Object Substitution In the case that an object required to perform an action is not
available or an agent lacks the physical capabilities to manipulate it, an appropriate
substitute should be determined. This can be done by choosing an alternative that
has either already worked before in the same context, or is likely to work because it
has worked in a similar context.

Knowledge Transfer Related to the ability of substituting the parameterization of an
object is the ability to transfer whole howtos to new situations. A howto written in
NL should therefore be adaptable to new scenarios that an agent has not necessarily
encountered before. An example is given by the “serve drink” howto that needs to be
adapted to be applicable to the “serve some wine” instruction.

12

1.1. Interpretation of Natural-language Instructions

One-shot Learning Data-driven learning techniques play a predominant role for auto-
matic knowledge acquisition in various areas in Al. However, for ‘open-world’ sce-
narios, comprehensive data sets for training are often unavailable or, if so, only
for selected, very specific subproblems. In addition, learning is often critical with
respect to the number of instances required to induce a sufficient bias to a model.
It is, for example, unacceptable for a robot to let milk perish multiple times before
it gains the knowledge that the refrigerator is a more appropriate storage place
for milk than a normal cupboard. The knowledge must instead be acquired and
permanently available after telling the robot once to “always store perishable items
in the fridge.” Consequently, autonomous service robots will have to “acquire new
knowledge quickly, on the fly, during task performance. Hence, we need to augment
data-driven methods with other methods that allow for online learning from possibly
only a few exemplars.” (Krause et al., 2014)

Object Properties Besides action-specific information, it is also crucial for a robotic
agent to have an account to the semantics of NL descriptions of objects and their
visual attributes. Instructions like “add drops of NaOH until the indicator turns purple”
or “form the dough into small, elongated rolls” contains important information about
how to perform the respective actions.

Opportunities The above-mentioned characteristics of vague and under-determined
instructions are often considered difficulties that impede easy and flexible knowledge
acquisition from NL. Vague descriptions of tasks and activities are, however, not only
demanding key challenges for robotic agents but they are also an opportunity for
more flexibility, generality, and robustness of plans. The massive lack of information
thus can be considered free parameters in action specifications, which need to be
adjusted to fit the needs of the agent’s current situation, environment and knowledge
and therefore needs to be regarded helpful and even necessary in automated decision
making.

13

e

Representation

18>

Reasoning

Chapter 1. Introduction

1.2 Contributions

Technical Contributions In this thesis, I will present PRAC (Probabilistic Action Cores),

an interpreter for natural-language, which phrases the problem of instruction un-

derstanding as a reasoning problem in probabilistic first-order knowledge bases in

the fashion laid out in Section 1.1 and which addresses the challenges described

in Section 1.1.3. More specifically, the main contributions of this work can be

roughly dedicated to the areas of probabilistic knowledge representation, reasoning

and learning:

14

e Twill introduce the concept of Probabilistic Action Cores (PRAC) for representing

action-specific knowledge for everyday activity, formalize PRAC and the compu-
tational problem of inferring the most probable executable action specification
from vague instructions, and show how PRACs can be realized as Markov logic
knowledge bases and learned from very few examples. An analysis of the
kitchen and household domain with respect to the NL instructions that can be
found on the wikihow.com web page. Based on this study I will hypothesize and
give estimations for the amount of knowledge that robots might need for the
proficient performance of envisioned tasks, how this knowledge can be repre-
sented, acquired and used. PRAC is able to solve the challenging and ubiquitous
problems of vagueness, ambiguity, and incompleteness in natural language
(NL) in a unifying probabilistic representational and inferential framework.

I will introduce a representation and reasoning method for semantically storing
and querying a large body of natural-language instruction sheets in a document-
based database, which provides associative access to many similar instructions,
which can be used to effectively and efficiently transfer and adapt existing
knowledge about instructions to new situations and to infer missing information
pieces.

I will present a reasoning algorithm that comprehensively transforms vaguely
stated natural-language commands into a sequence of robot plans, and demon-
strate their executability by a proof-of-concept connection to the CRAM (Mdsen-
lechner, 2016) plan executive.

I will present a novel approach for reasoning about unknown concepts in
a taxonomy by exploiting semantic similarity to known concepts in Markov
logic, which typically impedes a compact representation of classes that are
hierarchically organized in a taxonomy, which I call fuzzy Markov logic network

1.2. Contributions

(Fuzzy-MLN). Fuzzy-MLN enables inference in presence of vague evidence,
which allows the very compact representation of knowledge in MLNs and
learning from very sparse data.

I will present an approach for learning Markov logic KBs for combining arbi-
trary, complementary perception algorithms to form an ensemble of experts,
which combines the strengths of all algorithms while compensating for their
weaknesses. The probabilistic KBs also take into account co-occurrences of
objects of daily use, whose correlations can be exploited to significantly boost
the performance of state-of-the-art perception systems.

I will introduce the notion of knowledge-based attributes in object perception —
attributes that are symbols grounded in a rich taxonomy of concepts assigning
them symbolic meaning, which can be used by a robot to identify objects just

by NL descriptions of their appearances.

Publications The work conducted in context of this thesis has led to several publica-

tions in international conferences. The most relevant are

Daniel Nyga, Michael Beetz,“Cloud-based Probabilistic Knowledge Services for In-
struction Interpretation,” In International Symposium of Robotics Research (ISRR),
Sestri Levante (Genoa), Italy, 2015.

Daniel Nyga, Mareike Picklum, Sebastian Koralewski, Michael Beetz,“Instruction
Completion through Instance-based Learning and Semantic Analogical Reason-
ing,” In International Conference on Robotics and Automation (ICRA), Singapore,
2017. Accepted for publication

Daniel Nyga, Michael Beetz,“Everything Robots Always Wanted to Know about
Housework (But were afraid to ask),” In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, 2012.

Daniel Nyga, Michael Beetz,“Reasoning about Unmodelled Concepts — Incorpo-
rating Class Taxonomies in Probabilistic Relational Models,” In Arxiv.org, 2015.
Preprint

Daniel Nyga, Mareike Picklum, Michael Beetz,“What No Robot Has Seen Before —
Probabilistic Interpretation of Natural-language Object Descriptions,” In Interna-
tional Conference on Robotics and Automation (ICRA), Singapore, 2017. Accepted
for publication

15

gl

Learning

Chapter 1. Introduction

Daniel Nyga, Ferenc Balint-Benczedi, Michael Beetz,“PR2 Looking at Things:
Ensemble Learning for Unstructured Information Processing with Markov Logic
Networks,” In IEEE International Conference on Robotics and Automation (ICRA),
Hong Kong, China, 2014.

A complete list of my prior publications can be found in the Annex “Prior Publications”
of this work.

Open-source Software Tools Large parts of the work have been released as open-
source software under the BSD license (Open Source Initiative, 2017) and are
actively used by partners from academia and industry.

Besides the PRAC system!, PRACMLN? has been released as the learning and reasoning
engine in PRAC, which is also available as a standalone toolbox for statistical rela-
tional learning and reasoning in Markov logic networks, implemented in the Python
programming language. PRACMLN has started as a fork of the PROBCOG toolbox by
Dominik Jain and has been extended by the developments in learning and reasoning
presented in this thesis, such as the Fuzzy-MLN reasoning mechanism.

Both PrRAC and PRACMLN have their own project web pages and come with browser-
based web applications for showcasing their performances, which have been devel-
oped in collaboration with Mareike Picklum.

1.3 Outline

Although this thesis is intended to be read in a linear fashion, I took care that the
single chapters are as self-contained as possible such that they can also be read
individually. The remainder of this thesis is organized as follows.

Chapter 2 briefly revisits the fundamental formalisms in (probabilistic) knowledge
representation, learning and reasoning. It starts with a review of representation
languages based on propositional and first-order logic, and explicates their limitations
in settings that are subject to uncertainty. Some fundamentals in probability theory
and probabilistic graphical models, in particular Bayesian and Markov networks are
discussed. Finally, probabilistic relational models, specifically Markov logic networks,
are introduced.

lhttp: //www.actioncores.org
2http: //www.pracmln.org

16

1.4. Notation

Chapter 3 presents the PRAC learning and reasoning framework for the interpretation
of NL robot instructions. It starts with an analysis of the human household domain
and a discussion of the role of knowledge in intelligent autonomous decision making.
It presents the main architectural components of the PRAC system and its probabilistic
knowledge representation, and proposes a novel approach for the completion of
under-determined NL instructions from large corpora of text found on the Web. The
prior publications related to this chapter are Nyga and Beetz (2012, 2015b); Nyga
et al. (2017b); Beetz et al. (2015b); Lisca et al. (2015) and Pomarlan et al. (2017).

Chapter 4 addresses the task of deep transfer of knowledge learnt from very sparse
data. It introduces the concept of Fuzzy-MLNs, a novel framework of performing
reasoning in large taxonomies like WordNet by exploiting the taxonomic structure
and semantic similarity of reasoning problems. Related prior publications are Nyga
and Beetz (2015a).

Chapter 5 proposes an approach to use Markov logic networks for learning and
combining ensembles of experts consisting of multiple diverse perception algorithms
into one consistent and sound probabilistic model. In addition, a novel approach for
perceiving objects only from textual descriptions is presented, which is implemented
in PRAC. The major results presented in this chapter have been published in Nyga
et al. (2014, 2017a).

Chapter 6 gives a synopsis of the latest state of the presented PRAC system and reports
on experiments and public demonstrations, in which the methods developed in this
work have been successfully applied.

1.4 Notation

It is likely that I was not able to consequently stick to a consistent nomenclature of
mathematical symbols throughout this thesis. However, I still tried to comply with
some common notational conventions to keep confusion as little as possible.

Following the convention in logic programming and probability theory, variable
names are typically written uppercase, such as X. In some cases, X refers to a single
variable and to a vector of variables in others. Which one applies should be clear
from the context in most cases. Constant symbols or values of a variables are written
lowercase, such as x.

17

Chapter 1. Introduction

The symbols T and L refer to the Boolean values true and false. In context of upper
ontologies, T also denotes the most abstract concept or the set of all concepts.

Probability distributions are denoted by P (-), conditional distributions by P (Q | E),
where the Q part is referred to as the query and the E part is referred to as the evidence

or observation.

Symbols of the form X.Y.Z refer to word senses in the WordNet ontology, where X
is a lemmatized, human-readable concept designator, Y € {n, v, q,r} is an identifier
referring to a part of speech (noun, verb, adjective, adverb), and Z is a two-digit
number denoting the index of the sense. An example is cup.n.03, which refers to
the third sense of the noun ‘cup’. Concept names of this form follow the naming
conventions of the NLTK toolbox (Loper and Bird, 2002), which is used in the
implementation. A selection of word senses from the WordNet ontology can be found
in Appendix B.

18

Chapter

Probabilistic Knowledge
Representation and -Acquisition

As described in Chapter 1, the meaning of a natural-language instruction encom-
passes many more constituents than the original instruction refers to. Consequently,
representation languages are needed, which allow to represent what is said and
what is meant, and to infer what is meant from what is said. Formalisms based
on logic have a long tradition in the fields of natural-language understanding and
Artificial Intelligence (AI) as they provide intuitive representation languages and
formally sound and complete calculi. However, purely logical rules do only apply to
deterministic worlds. Thus the practical applicability to applications subject to strong
ambiguity and uncertainty, such as interpretation of human language, is limited.

The field of statistical relational learning (SRL), more specifically probabilistic re-
lational models (PRMs), is a subfield of Al and statistics that intersects knowledge
representation, logical reasoning, and machine learning. The field of SRL investigates
combinations of probability theory, inductive statistical reasoning and first-order
relational models, such as first-order logic (FOL). The ultimate goal of SRL is to
bring together the benefits of two worlds: On the one hand, FOL provides a for-
malism that allows the compact representation of very complex and comprehensive
knowledge. However, knowledge bases (KBs) in FOL collapse in case inconsistency.
They are therefore largely inapplicable to domains subject to uncertainty. On the
other hand, probabilistic (graphical) models can very well deal with inconsistency
and uncertainty, but are typically defined over a fixed number of random variables.

Chapter 2. Probabilistic Knowledge Representation

Their propositional nature thus constrains their applicability to open domains due to
limited expressiveness.

In this chapter, I give a brief introduction to different techniques in the field of (prob-
abilistic) knowledge processing and PRMs. In particular, I motivate the use of Markov
logic networks (MLNs) for encoding uncertain knowledge in technical cognitive
systems, one of the perhaps best-known and most-widely used formalisms in the
domain of PRMs. I begin with a brief review of classical logic-based representations
and basic probability theory. Then, I motivate and introduce the combination of FOL
and probabilistic graphical models (PGMs) in PRMs. The explications in this chapter
are far away from being complete. Excellent and more comprehensive treatments
of probabilistic relational models (PRMs) and PGMs can be found in Jain (2012);
Getoor (2007a) and Koller and Friedman (2009).

21 Knowledge Representation with Logic

Logical languages have been intensively studied as a tool for describing the syntax and
semantics of natural languages. As a mathematical apparatus providing expressive
representation languages and sound and complete calculi, logic has become the
predominant tool to represent common human knowledge in consistent formal
theories, which allow the deduction of new provably correct knowledge from existing
knowledge by means of systematic, syntactic manipulations of logical propositions.
However, as I will review in this section, in case of inconsistency, their practical
applicability is limited. Two of the most prominent variants of logics are propositional
logic (PL) and first-order logic (FOL), which I will introduce in the following.

214 Propositional Logic

Propositional logic (PL) is one of the most basic formalisms in logic-based knowledge
representation (cf. Russell and Norvig, 2003). In PL, logical statements can be made
in the form of atomic propositions from an alphabet of symbols ¥, whose truth values
are being determined by a function 7 : ¥ — B, where B is the set of Boolean truth
values B = {T, L} (where T =‘true’ and L =‘false’). I is called an interpretation or
possible world, which assigns a truth value to every atomic proposition. More complex
logical propositions can be constructed by combining sentences using logical junctors

20

2.1. Logic

as follows. If ¢ and ¢ are sentences in propositional logic, then new sentences can be
constructed by

* negation: —¢

* conjunction: ¢ Ay

disjunction: ¢ vV ¢

implication: ¢ —> ¢y = -~p V¢

* bi-implication (also known as equivalence): ¢ & ¢y = (¢ =) A (Y — @),

which are again sentences themselves. Every atom in X is also a sentence. A literal
denotes an atom or its negation, disjunctions of literals are called clauses. Atomic
and complex sentences are also called logical formulae. In this work I use the terms
formula, sentence and proposition interchangeably.

An interpretation 7 of a sentence ¢ is called a model of ¢, if the sentence is true
under the interpretation 7, in symbols 7 [¢. A conjunction is true under 7 iff! all
its constituents are true under 7, a negation inverts the truth value of its argument
sentence in 7 and a disjunction is true under 7 iff at least one of its constituents
is true under 7. A conjunction of sentences that is not a constituent of any other
sentence under consideration is called a knowledge base (KB), i.e. a set of formulae
all of which must be true. A KB thus can be regarded as a conjunction of formulae
constituting the knowledge about the particular domain of discourse.

The are a few fundamental properties of KBs in PL I will briefly revisit in the following.
All of these properties can be defined in terms of the models of a sentence. Let
therefore M(¢) denote the set of models of a sentence ¢. Obviously, the number
of models of a sentence is upper-bounded by the number of possible worlds, i.e.
IM(9)] < 2.

Satisfiability A sentence ¢ in PL is called satisfiable, iff there is at least one interpre-
tation 7 under which ¢ is true, i.e. [M(¢)| > 0. Otherwise, the sentence is called
unsatisfiable.

Falsifiability A sentence ¢ is called falsifiable, iff there is at least one interpretation 7
under which ¢ is false, i.e. [M(¢)| < 2.

Validity A sentence ¢ is called valid, iff ¢ is true in all possible worlds, i.e. under all
interpretations, i.e. [M(¢$)| = 2/*I. Valid sentences are also called tautologies.

14if and only if”

21

18>

Deduction
Theorem

e

Contradiction
Theorem

Chapter 2. Probabilistic Knowledge Representation

Entailment A sentence ¢ entails another sentence ¢, in symbols ¢ E ¢, if every model
of ¢ is also a model of ¢, i.e. M(§) € M(y). Intuitively, entailment refers to the
deducibility of one sentence from another, so if ¢ | i/, one can be sure to recover ¥
whenever ¢ is observed. ¢ thus logically ‘follows’ from ¢.

Some of the properties are mutually exclusive, some others imply one another.
Obviously, any valid sentence is also satisfiable. More interestingly, if a sentence ¢ is
valid, then its negation —¢ is unsatisfiable and vice versa. There is, however, a more
fundamental property of sentences in PL exposed by the deduction theorem, which
states that a sentence ¢ entails another sentence ¢ if and only if the implication
¢ — ¢ is valid, i.e.

PEY = ¢ — ¢ isvalid.

Considering the propositions ¢ that are entailed by a knowledge base KB, we find
that

KBEYy <= KB — y isvalid. 2.1
< -(KB — ¢) is unsatisfiable.
< =(=-KBV y) is unsatisfiable.

<= KB A —y is unsatisfiable. (2.2)

Equation (2.2) is also known as the contradiction theorem. Note that in (2.2), the
sentence KB A = can be regarded as a new knowledge base KB’, which originates
from KB by adding a negated variant of ¢ to it. These considerations yield two
fundamental insights of KBs in propositional logic: First, in order to prove that a
proposition ¢ logically follows from a KB, = can simply be appended to KB. The
resulting new KB’ in turn must be proven unsatisfiable, as is done by, for instance,
the resolution algorithm. Second, if a KB is unsatisfiable since the very beginning,
i.e. KB E L, then the right-hand side of (2.1) is constantly true. Practically speaking,
this means that if a KB is inconsistent (unsatisfiable), any arbitrary proposition can
be deduced, i.e. Vi. KB k ¢/, which is, obviously undesirable for any KB. One can see
that the deduction theorem imposes a heavy constraint on any logical KB: To be of
practical use, a KB must be consistent.

22

2.1. Logic

21.2 First-order Logic

A more powerful logical formalism is first-order logic (FOL), which allows more
general statements about the application domain under consideration and thus gets
closer to the expressiveness of natural languages.

In PL, all atomic propositions are represented in the alphabet >. Every atom A € 3
hence corresponds to a fact in the real world that can be either true or false. For
practical applications, knowledge representation with PL, however, can be quite
cumbersome because of its limited ability to express knowledge about many entities
at a time. Suppose one is to create a KB entailing that all dairy products are
perishable. Given the fact that Milk is a dairy product, the KB is to entail that Milk is
also perishable. In PL, this can expressed by two atomic propositions “Milk is a dairy
product” and “Milk is perishable” and the sentence “Milk is a dairy product”’—“Milk
is perishable”. If the fact “Milk is a dairy product” now is true, it follows that “Milk is
perishable”. However, this does not reflect the original intention to model the fact
that all dairy items are perishable. If the domain of discourse now gets extended by
another product, for instance, the KB does not generalize the knowledge to the new
item.

FOL extends propositional logic by the following aspects. According to Schoning
(1987), the basic elements of the FOL syntax are constant symbols, predicate symbols,
function symbols and variable symbols. Constant symbols refer to entities or attributes
in the world. Predicates refer to relations between these entities and are used to form
atomic propositions. A term denotes a syntactic expression that refers to an entity.
Every constant symbol and every variable is a term. A function can be applied to a
tuple of terms, which again forms a term. A term that does not contain any variable
is called a ground term. An atomic sentence that does not contain any variable is
called a ground atom and a sentence/formula consisting only of ground atoms is

called a ground formula.

Atomic propositions can be made in FOL by applying the predicate symbol to a
tuple of terms, e.g. dairy(milk). The most powerful element of FOL is perhaps the
possibility to quantify propositions to hold for either all entities or for at least one
entity in the domain.

The universal quantifier V followed by variable symbol and a sentence is used to
extend the validity of the sentence to hold for all substitutions of the respective
variable in the sentence. For example, Vx. (dairy(x) — perishable(x)) expresses the
knowledge that all dairy items are perishable.

The existential quantifier 9 is used to ascertain the existence of at least one entity

23

Chapter 2. Probabilistic Knowledge Representation

for which a specific sentence holds. The sentence Jx. (perishable(x)) states that there
must be at least one substitution of x from the constant symbols for which the relation
perishable holds.

The so-called Herbrandt expansion Hs of a set of clauses S is the set of all ground
terms that can be constructed from all function symbols (if any) and the constant
symbols (if none, the constant symbol A) by substituting all variables in S by elements
from Hs. It is easy to see that, in principle, inferences about entailment of sentences
in FOL can be done by finding substitutions of variables from the Herbrandt universe
that generate grounded constituents of formulae that make logical expressions look
identical. For example, applying the substitution of x by milk in the above formula,
in symbols (dairy(x) — perishable(x))[x/mik] yields the propositionalized sentence
dairy(milk) — perishable(milk), which can be used to deduce perishable(milk) given
dairy(milk). The unification algorithm is a method that computes substitutions for
any pair of sentences in FOL to make them look identical such that inference rules
such as the resolution rule can be applied. However, since there are infinitely many
substitutions induced by the Herbrandt universe (e.g. by recursion of functions),
the problem of entailment in FOL is semi-decidable in the general case. This means
that inference algorithms can determine whether a KB entails a sentence in a finite
number of steps, but will not terminate in in case the sentence is not entailed.

As FOL is only semi-decidable in the general case, restricted variants of FOL have
been developed, which restore full decidability. Some of these logics allow inference
even in polynomial time.

21.3 Prolog & Datalog

Restricted subsets, which are intended to be used in the same fashion as FOL is the
family of Datalog and Prolog programming languages, in which KBs consist of rules
and facts. Facts are required to be atomic, i.e. they must not contain any variables.
Rules are required to be definite clauses, i.e. clauses with exactly one literal having
positive polarity. By definition, such clauses with precisely one literal of positive
polarity and all others being negated are effectively implications whose antecedent is
given by all negative literals and the consequence given by the positive one, e.g.

AANBANC—>D ©-AV-Bv-CVD.

implication definite clause

24

2.1. Logic

In addition to the restriction on the shape of rules in its KBs, Prolog does not support
function symbols. Prolog makes use of a very efficient inference algorithm called
Backward-chaining, which sequentially tries to prove definite clauses in a KB in the
sequence they are declared in a Prolog program.

In such languages, inference can be done fairly efficiently, even in polynomial time.
This increase in speed, however, comes at the cost of limited expressiveness.

24.4 Description Logic

Description logic (DL) is another subset of FOL, which has been mainly developed to
facilitate the representation of aspects of the real world in terms of upper ontologies
of concepts and instances thereof. DL is a decidable fragment of FOL, which has been
designed to formally yet intuitively describe different aspects of the world, the objects
and relations among them. It has evolved to the prevalent logic in the semantic
web, and researchers have also recently developed powerful knowledge processing
systems for robots, which are based on the DL formalism. An example of such a
knowledge processing framework is, for instance, the KnowRob system (Tenorth,

2011). A KB in DL, also called an ontology, consists of two principle types of axioms, &1

namely terminological and assertional axioms.

Terminological Axioms The terminological axioms, also called the TBox of an ontology,
define which categories of objects there are in the respective domain, which relations
(e.g. specialization and generalization) between these categories hold, and what
kinds of properties the objects may have. The TBox thus defines the building blocks
on a conceptual level, which can be used to construct specific instances of a world.
The notation of DL is slightly oriented at set calculus. If A and B are concepts, then
new concepts can be defined using operators for

* concept definition: A = B, i.e. all entities of type A are also entities of type B
and vice versa,

* concept intersection: AMB, i.e. entities of concepts A and concept B at the same
time,

* concept union: AU B, i.e. entities of type A or type B,

* concept complement: —A, i.e. entities of all types but A

25

Ontology

Chapter 2. Probabilistic Knowledge Representation

* concept inclusion: A C B, i.e. all entities of type A are also of type B, but the
opposite direction is not necessarily true.

Using these operators, new concepts can be defined relatively to previously defined
concepts. The concept inclusion (C) induces a hierarchical taxonomy relation on
concepts, which allows to ‘inherit’ properties of more general concepts to more
specific ones. Relations, in context of DL called roles are binary predicates that put
two entities in relation to each other. In addition, cardinality and type constraints
on relations can be expressed using the ¥ and 1 quantifiers. Constraints on the
arguments of a role can be made in form of AR.C and VYR.C, if R is a role and C some
concept. A sentence of the form 3R.C states that for any entity e that is an instance
of the concept under consideration, there must exist at least one entity e’ for which
the proposition R(e, e’) holds and whose type is C. Analogously, an expression of the
form VR.C states that all entities e’, for which R(e, e”) holds must be of the type C. As
an example of a TBox in DL, consider the following concept definitions of terms in a
rudimentary kitchen ontology:

PhysicalThing = - AbstractThing
UnitOfMeasure T AbstractThing
ProperPhysicalThing © PhysicalThing
Stuff = - ProperPhysicalThing n PhysicalThing
Liquid T Stuff
Container = ProperPhysicalThing r 3 holds.Stuff
MY capacity. UnitOfMeasure
Cup = Container 1 3 holds.Liquid r A has.Handle

A graphical representation of this ontology is depicted in Figure 2.1, where T denotes
the set of all concepts in C, i.e. the most abstract concept subsuming all other
concepts. This example models a dichotomization of all concepts into AbstractThings
and PhysicalThings, which are mutually exclusive terms. The set of all PhysicalThings
themselves decompose into countable ProperPhysicalThings and uncountable Stuff. A
Container is defined as a ProperPhysicalThing that holds some Stuff and its capacity is
determined by a UnitOfMeasure, which is an AbstractThing. A Cup is a specialization
of a Container that holds Liquids and has a Handle.

Assertional Axioms Whilst the TBox defines the terminological building blocks for
describing entities in the world, the ABox contains the assertional axioms describ-
ing a “specific state of affairs of an application domain in terms of concepts and

26

2.1. Logic

is-a

AbstractThing I\/I PhysicalThing |

4 disjoint A
is-a L
disjoint is-a
; 4 —a -

- | Stuff | | ProperPhysicalThing |)
f is-a‘wS f is-a ‘Q
UnitOfMeasure | | Liquid | | Container | | Handle
A
capacity is-a
has
holds Cup

Figure 2.1: Graphical representation of the exemplary Ritchen ontology

roles” (Baader and Nutt, 2003) from the TBox. Instances of concepts from the TBox
are also called individuals and can be asserted in the form of a unary concept assertion
of the form C(a), where C is a concept symbol and a is a constant symbol identifying
the individual. A second type of assertions are binary role assertions of the form
R(b,c), where R is a role of the individual b that is filled by another individual c.
Using the two types of assertions, a specific world can be specified by an ABox such
as

Cup(cup-01) has(cup-01,handle-01)
Handle(handle-01) holds(cup-01,milk-01)
Liquid(milk-01)

describing a world containing a Cup named cup-01, which has a Handle handle-01
and holds the Liquid milk-1.

There are many variants of DL, which mainly differ in their expressiveness and
operators allowed. For a more comprehensive overview, I refer the interested reader
to Baader and Nutt (2003).

Reasoning Tasks In DL-encoded KBs, reasoning tasks of main interest include sub-
sumption, i.e. to determine, which concepts subsume other concepts, such as “are
rooms containers?”, for instance, or to determine all instances of particular concepts,
such as “which individuals in the world are liquids?”.

27

Chapter 2. Probabilistic Knowledge Representation

215 Relational Algebra

Atomic facts (i.e. ground atoms) in FOL KBs have natural correspondences in rela-
tional databases. Here, predicate names correspond to relation or table names in
a relational database scheme and the list of constant arguments of a ground atom
represents a data tuple stored in that particular table. The tiny world model from the
previous section thus can also be partially realized in a relational database consisting

of six tables

Cup Handle Liquid
cup-01 handle-01 milk-01
is-a
sub super
has holds
Stuff |PhysicalThing
whole | part container | content |,
Liquid | Stuff
cup-1 | handle-01 cup-01 | milk-01

Cup |Container

where the identifying symbols like cup-01 correspond to primary and foreign keys in
the respective tables.

Relational algebra is an algebraic query language for retrieving tuples from a relational
database. As relational algebra serves as a basis for most modern relational query
languages, such as the SQL, it supports most of the operations, like the join, views,
aliases and the Cartesian product. I will briefly review only the operations most
relevant for this work (cf. Kemper and Eickler (2013)).

Selection The selection operator selects from a table all tuples that satisfy the selection
predicate. The selection is denoted by ¢ and has attached in a subscript the selection
predicate. An example is the query

O'super:Liquid(iS'a)’

which selects from the taxonomy relation is-a all direct subconcept assertions of
liquids. The selection o,(R) can be regarded as an iteration over all tuples of the

28

2.2. Probabilistic Graphical Models

argument relation R (in this case, is-a), evaluating the predicate p on each tuple. If
the respective tuple satisfies p it is added to the relation which is returned as a result.

Projection While the selection operator extracts single rows (tuples) from a table,
the projection operator II, (R) selects one or multiple columns y from its argument
relation R. Consequently,

sub (Osuper=Liquia (1s-@)),

projects from the subconcept assertions of liquids all concept symbols of the sub part
of the is-a relation.

It can be more convenient to formulate queries to relational models in algebraic nota-
tion than in purely logical, declarative statements, since its more procedural character
closer reflects a possible algorithmic implementation of a query in a relational KB.

2.2 Probabilistic Graphical Models

FOL and its variants provide powerful means for compactly representing and reason-
ing about deterministic knowledge. However, as shown above, the theoretical and
practical constraints imposed on strictly logical KBs do not allow for inconsistency or
uncertainty. Minsky stated this slightly more provocatively:

“Logical generalizations only apply to their literal lexical instances, and logical implications
only apply to expressions that precisely instantiate their antecedent conditions. No excep-
tions are allowed, no matter how closely they match. This approach permits you to use no
near misses, no suggestive clues, no compromises, no analogies, and no metaphors. To
shackle yourself so inflexibly is to shoot your own mind in the foot - if you know what |

mean.” — (MinsRy, 1991)

Using joint probability distributions over atomic logical propositions, the hard logical
constraints on KBs can be relaxed and uncertainty and inconsistency can be dealt
with in a meaningful way. However, maintaining the full joint distributions is compu-
tationally infeasible. To reduce the computational and representational complexity
in the distributions, probabilistic graphical models (PGMs) provide tools to make
independence among random variables explicit in the form of topological properties
of graphs.

29

&

Degree of
Belief

18>

Conditional
Probability

Chapter 2. Probabilistic Knowledge Representation

2.2a Probability Theory

Bayesian probability theory provides a sound mathematical apparatus for dealing
with the phenomena of uncertainty and inconsistency.

The pivotal element in probability theory is the concept of random events and random
variables. An atomic event denotes a possible outcome of a random experiment. All
possible outcomes of an experiment form the sample space Q of an experiment. All
atomic events A € Q are disjoint. Subsets of the sample space form a random event
of the experiment. A probability distribution P is a function on the collection of events
that additionally satisfies

1. P(A) 20, YAC Q
2. P(Q) =1

3. For any set of mutually exclusive events Ay, ..., As:
P(U,I':1 Aj) = 25:1 P(A;)

A random variable X : Q E is a transformation of atomic events to some set of
properties E that characterize the event. E is also called the domain of X, denoted
as dom(X) = E. Obviously, Boolean random variables can be easily constructed by
setting E = B and applying PL semantics. A probability distribution over such a
random variable quantifies the degree to which an agent believes that the respective
proposition holds in the real world. For example, P(X = T) = p denotes that, on a
scale from O to 1, an agent’s conviction that proposition X holds can be quantified
by p. Consequently, P(X = L) = 1 — p. To keep the notation uncluttered, I also use
the short forms P(X) and P(—X) instead of for P(X = T) and P(X = 1) whenever its
meaning should be clear from context.

More complex Boolean random variables can be constructed by using the full set
of logical junctors of PL, such as conjunction, disjunction, negation, implication
and bi-implication. For example, P (X A Y) denotes the probability of both X and Y
being true at the same time. Probabilities of this kind are called a-priori, marginal
or unconditional probabilities as they quantify an agent’s belief in a proposition
without any further constraints or conditions. Sometimes I write P (X, Y, X) instead
of P(X A Y A Z). Such a prior probability distribution over multiple atomic variables
is also called their joint probability distribution.

Sometimes, however, the awareness of some event Y alters an agent’s belief in
some other event X that is possibly not directly observable but correlated with the
observation. In such a scenario, the conditional or posterior probability of X, in

30

2.2. Probabilistic Graphical Models

symbols P (X|Y), denotes the probability of X given that Y is true. Technically, the
conditional probability of X given Y is defined as

P(XAY)

P(X|Y) = 208

(2.3)

Intuitively, the conditional probability of X given Y is defined as the proportional size
of the set of all events in which both X and Y hold, relatively to the size of the set of
events in which only the condition Y holds. From all events, in which Y holds, we
take those in which also X holds, and compare the sizes of the event sets relatively to
each other.

There are a few concepts, theorems and rules about probability distributions of
random variables that I will briefly revisit in the following.

Independence In the case when knowledge about one variable Y does not alter an
agent’s belief of some other variable X, then P (X |Y) = P(X) holds. X and Y are
then called independent and P (X A Y) = P(X) - P (Y). Otherwise, X and Y are called
dependent.

Chain Rule of Probability As a corollary from the definition of conditional probabilities
in Equation (2.3),

P(X,Y)=P(X|Y) -P(Y), (2.4)
which is also known as the product rule of probability. It allows to represent a joint
probability distribution as a factorization of conditionals and marginals, which is the

basis for probabilistic graphical models introduced below.

Law of Total Probability The law of total probability allows to sum out one or more
random variables from a joint distribution as follows:

P(X)= > PX.Y=y)= > PX|Y=y)P(Y=y) (2.5)

yedom(Y) yedom(Y)
The process of applying the law of total probability is also called marginalization.

Bayes' Theorem One of the most fundamental theorems in probability theory is Bayes’
theorem:

31

IS5

Posterior
Inference

(IS

Most Probable
Explanation

Chapter 2. Probabilistic Knowledge Representation

P(Y|X)P(X)

P(X|Y) = 253

(2.6)

Bayes’ theorem allows to convert an abductive reasoning task into a deductive one
and vice versa. It plays a fundamental role in Bayesian networks, which model
uncertain causal relationships among random variables. Applying Bayes’ theorem
allows to turn a causal model into a diagnostic reasoning task.

Inference It is obviously straightforward to convert a propositional logic KB into a
probabilistic KB by introducing a Boolean random variable for every atomic proposi-
tion in . The joint probability distribution P(X) then can be stored in a contingency
table holding the co-occurrences of the respective atomic events. Making use of
the chain rule, the law of total probability and Bayes’ theorem, one can compute
the posterior probability P(Q | E) of any arbitrary query Q C ¥ given any arbitrary
evidence E C . Such a posterior belief can be computed by the canonical inference
equation (cf. Jain, 2012)

P(Q=qgE=e¢)
P(E=c¢e)

_ Zuedom(U)P(Q =q¢E=eU=u)
Zq’edom(Q) Zuedom(U) P(Q=¢q,E=¢eU=u) ’

P(Q=qlE=e)=

where U = X\ Q \ E is the set of all hidden variables. However, as there must be
an entry for every combination of atomic events, such a full joint probability table
is hopelessly infeasible to represent for practical applications. Not only does the
table grow exponentially in the number of variables, but, in order to be of statistical
significance, the amount of data to be collected also grows exponentially.

Computing the posterior distribution over a set of query variables Q in the light of
observed evidence variables E is only one kind of inference that is typically carried
out in probabilistic KBs. Sometimes, however, one is not necessarily interested in
the complete posterior distribution over the queries, but only in the most probable
variable assignment given the evidence. In this kind of inference, also called most
probable explanation (MPE) or maximum a-posteriori (MAP) inference, thus the
most probable possible world x is computed that is compatible with the observations
E, i.e.

X =argmaxP (x|E).
xeX

32

2.2. Probabilistic Graphical Models

As P (x| E) « P (x, E), it is not required to compute a normalization constant, and it is
often computationally more appealing to compute the MPE state of a posterior, when
the complete distribution is not necessarily required. A very common class of such
inferences are classification problems, where one is typically interested in assigning
an entity the most probable class.

Learning There are, in principle, two ways for determining the quantitative specifica-
tion of probabilities of specific random events: First, a knowledge engineer can enter
manually probabilities into the model that expresses their belief in and knowledge
about the domain of discourse. Such probabilities are called subjective probabilities.
Another, much more frequent way of obtaining probabilities is to derive them from
previously made observations. This special kind of inference, also called inductive
reasoning, aims at determining the most suitable model parameters 0, in some model
space O, such that the model best explains the observed data set. The training set D
comprises N examples of complete assignments of all variables under consideration,
D ={dy,...,dn}. Itis typically assumed that the individual examples d; represent
samples that have been drawn independently of each other from the same ‘true’,
problem-intrinsic distribution which is to be approximated by the learning proce-
dure. This assumption is also called the i.i.d. (independent, identically distributed)
assumption. Given the data at hand and variable model parameters 0, the likelihood
function £ measures the congruence of the model defined by 0 and the observations
by applying the model under 6 to D, i.e.

N
LO1D) =] [P 0). 2.7)
i=1

The problem of parameter estimation or learning is now to find the parameters 0 that
maximize the likelihood function (2.7) with respect to 0,

N

/QNMLE = argmax /£(0) = arg max P(d;; 09),
0eO 0e® 1

i=

to yield the parameters 5M L that best explain the observations, the so-called max- €1

imum likelihood estimate (MLE). The maximum likelihood principle is the most
fundamental and perhaps most commonly used technique to fit probabilistic models
to observed training data. Often, it is more convenient to maximize the natural loga-
rithm of the likelihood function. The so-called log-likelihood does have its maxima at

33

Maximum
Likelihood

Chapter 2. Probabilistic Knowledge Representation

same positions as the logarithm is a strictly monotonically increasing function. The
log likelihood has the advantage that the logarithm of the product in (2.7) turns into
a sum of the individual logarithms, which can be conveniently maximized when the
model’s functional form is chosen appropriately.

Complexity Both the problem of parameter learning and inference can be shown to
be NP-complete (Russell and Norvig, 2003). Indeed, it can be shown that for many
probabilistic models, the optimal model parameters can be obtained by combining
model inference with a numeric optimization technique. It is therefore unlikely that
there exist algorithms to compute the respective problems efficiently. Unfortunately,
it seems that the only effective way to reduce the representational complexity of
probabilistic KBs is rigorous exploitation of domain knowledge about independencies
of variables (Koller and Friedman, 2009). Probabilistic graphical models (PGMs) are
representation formalisms that make use of directed or undirected graph structures
to represent the (in-)dependencies among random variables.

2.2.2 Bayesian Networks

In order to mitigate the computational complexity of probabilistic methods, Bayesian
networks (BNs) provide a formalism to specify dependencies in terms of a causal
relationships of variables. A Bayesian network (BN) consists of a directed, acyclic
graph (DAG) structure, where there is one node for every random variable under
consideration, and the (directed) edges among the nodes determine the dependency
structure of the distribution. A node with an outgoing edge is called a parent of
the node that the respective edge points at. Every node X; with incoming edges
directly depends on all of its parents, which are denoted by the set Par(X;). Every
node has attached a distribution that determines the probability of the respective
variable conditioned on all its direct parents. The joint distribution over all variables
X1,...,X, is then given by

P(X1,....Xp) = l_[p (X; | Par(X;)) (2.8)
i=1

The graph structure of a BN thus directly determines the factorization of the joint
distribution. BNs have been successfully used for modeling causal relationships
among variables, such as in expert systems for deductive and abductive reasoning in
medical diagnosis (Uebersax, 2004) and risk management (Cardenas et al., 2013),

34

2.2. Probabilistic Graphical Models

il Ie ol

(a) Exemplary Bayesian network with five (b) Graphical representation of the three
nodes A, B,C,D, E and their conditional cases of path blocking in the d-separation
probability tables. criterion.

P(C|A,B)

Figure 2.2: Exemplary Bayesian network structures

among many others.

Knowledge engineering with BNs appears particularly intuitive and natural since the
graph structure directly determines the joint distribution as a normalized factorization
of conditionals reflecting the graph structure. In addition, the principle of a causes-
and-effects model allows very intuitive top-down construction of BNs.

An example of a BN is shown in Figure 2.2a. It consists of five random variables/n- €1
odes A, B,C,D and E, and each node has attached a conditional probability table Example

conditioned on its direct parents storing the respective conditional distributions.
According to (2.8), the distribution in turn factorizes as

P(A,B,C,D,E)=P(D|C)-P(E|C)-P(C|AB)-P(B)-P(A).

The structure of this exemplary BN is adapted from the well-known ‘alarm example’
from Russell and Norvig (2003). The random event C can have one of two causes A
and B, which are independent of each other. The common effect C of A and B can
itself trigger two possible events D and E. Although very simplistic, the example
exposes a couple of very interesting and fundamental properties of BNs.

Parameter Estimation Parameter estimation boils down to counting relative frequen-
cies of events in the training data and storing them in conditional probability tables,
which can be shown to be the maximum likelihood estimate of the conditional proba-
bilities. There are, however, a few subtleties that need to be taken into account when
working with BNs, which I address in the following.

35

Chapter 2. Probabilistic Knowledge Representation

Conditional Independence The perhaps most subtle property of variables in a BN is
the phenomenon of conditional dependence, i.e. two a-priori independent variables
in a BN can become dependent given a third variable is observed. In the BN in
Figure 2.2a, A and B are a-priori independent. If C is observed, however, they
become dependent as knowledge about either of them might ‘explain away’ the
respective other. This phenomenon of inter-causal inference makes determination of
independence in BN structures particularly cumbersome.

The concept of d-separation defines a couple of criteria that enable to tell whether
or not two sets of variables in a BN are conditionally independent by simple graph
properties: Two sets of variables X and Y are conditionally independent given a set of
observations E iff all (undirected) paths between X and Y are being blocked. A path
between X and Y is being blocked by a node z on that path iff one of the following
criteria applies:

1. there is a node z on the path with one incoming and one outgoing edge that is
observed, i.e. z € E,

2. there is a node z on the path with two outgoing edges that is observed, i.e.
z €E,

3. there is a node z on the path with two incoming edges and neither z nor any of
its descendants desc(z) are observed, i.e. z ¢ E and desc(z)) N E = 0.

The three criteria are depicted in Figure 2.2b. It can be shown that d-separation
is equivalent to conditional independence. It remains, however, an unhandy and
peculiar way of investigating dependencies in BNs.

Directedness and Acyclicity The directedness of edges conveys that dependencies are
unilateral, i.e. one variable influences another variable but not vice versa. However,
this is not possible in Bayesian probability theory: Let, w.l.o.g. be P (X|Y) > P (X).
Then, according to Bayes’ theorem, we have

PX.Y) P o P(Y,X)

P(X|Y)>P(X) & PO P00

>P(Y)eP(Y|X)>P(Y).

Consequently, (in-)dependence among any pair of random variables is always bilateral
and the directedness of edges in a BN does not seem to have a natural correspondence
in terms of probabilistic dependence.

Correlation and Causality In statistical learning and inductive reasoning, the use of
causal models may be misleading and only serve better interpretability. Despite the

36

2.2. Probabilistic Graphical Models

presence of many variables whose causations are undoubted, many others are very
hard if not impossible to determine: For example, although it is commonly assumed
that smoking can be a cause of lung cancer, a correlation between health and mood
in humans is less evident: Does improved health lead to improved mood, or does
good health lead to good mood? Or do both factors influence each other mutually?
Creating a BN requires a knowledge engineer to decide on either direction of causality.
If there is no or only little evidence for causality, it is hard to come up with resilient
BN structures. In the worst case, unfortunately designed BN structures even leverage
misinterpretations of correlations to exhibit causation. From a purely statistical point
of view, for instance, it is not possible to tell if obese people tend to consume diet
drinks in order to loose weight, or if the consumption of such drinks causes weight
gains (“consuming diet drinks leads to obesity”).

The directed nature of knowledge bases encoded as BNs has consequences that make
them practically less straightforwardly applicable as they, at first, may have seemed.

2.2.3 Markov Random Fields

As a trade-off between the generality of full joint distributions and strongly restricted
BN structures, undirected graphical models are another family of probabilistic for-
malisms, whose semantics are more straightforward.

Undirected graphical models, also known as Markov random fields (MRFs) or Markov
networks (MNs) are an alternative representation of probability distributions over
complex structures of random variables. As opposed to BNs, MRFs use undirected
graph structures for representing the dependency model of the variables. In an
MREF, a pair of nodes in the network is connected by an undirected edge if the
respective variables are conditionally dependent given all other nodes in the network.
The factorization of the joint distribution over the variables X = (X1, ..., X,,) of the
network G for a specific possible world x is defined as the Gibbs distribution

P=x) = o [e 2.9

ceG

where the c¢s denote all maximal cliques in G, /. denotes a potential function attached
to ¢, and x(.) denotes a projection of the values of all variables in the specific world
x that are part of ¢. The clique potentials . in an MRF constitute the quantitative
representational part of a distribution. A potential maps every state of a clique to
a non-negative real-valued measure that multiplicatively contributes to the overall

37

Chapter 2. Probabilistic Knowledge Representation

probability mass of a possible world:
Ebc . X{c} — R*

As the probability masses of all possible worlds may not sum to 1, it is required to
normalize them by the so-called partition function Z,

Z= Z l_llﬁc(xfc,),

x'eX ceG

in order to form a proper probability distribution. The perhaps most important
observations are firstly, whereas in BNs, the individual factors in the joint distribution
are local, normalized conditional distributions, in an MRF, the factors are (not
necessarily normalized) clique potentials that contribute in some way to the overall
probability of a possible world. Consequently, the numeric values of the potential
functions in isolation do not have a direct probabilistic interpretation, but they
only gain their probabilistic semantics when the contributions of all potentials are
taken into account. Secondly, since the partition function sums over the probability
masses of all possible worlds, exact inference in MRFs is intractable for all but the
smallest problem instances. Therefore, approximate algorithms are typically applied
in parameter learning and inference.

Independence As opposed to BNs, inde-

pendence of sets of variables in MRFs
can be determined by simple graph sepa-
ration instead of d-separation. Two sets
of variables X and Y of an MRF G are
conditionally independent of each other
given a third set of variables Z (with X,
Y and Z being pairwise disjoint) if the

removal of Z from G would separate X
and Y, i.e. the removal of Z would re-

Figure 2.3: Exemplary Markov network with
] three maximal cliques {A, B, C}, {C, D} and
Figure 2.3 shows the exemplary prob- (c, E} and their clique potentials %1, 1> and

abilistic model from Figure 2.2a as an ¥

move any connection between X and Y.

MREF retaining the conditional (in)dependencies among the variables. The MRF
comprises the same nodes A, B,C, D, and E. There are three maximal cliques in the
network, one ternary connecting A, B, and C, and two binary connecting C and D,
and C and E, respectively. Hence, there must be three clique potential functions

38

2.2. Probabilistic Graphical Models

¥, : AXBXCH R,¥ : CxDw R,and ¥3 : C x E — RR. Note that, in order to
retain the conditional dependence of A and B given C, there must be an additional
edge connecting A and B. Without the edge {A, B}, A and B would be separated given
C and hence would be independent. With the edge {A, B}, they can still be a priori
independent as independence can also be expressed in terms of the potential values.

Log-linearity In practice, it is often beneficial to choose the clique potentials in an
MREF such that they take the functional form of an exponentiated weighted sum of
binary features, i.e.

Ye(x(ey) = eXP(Z Wc,ifc,i(x{c})),

iEX(C)

where X|., denotes the set of possible configurations of the clique ¢ and f ;(xc)
denotes a Boolean feature function returning 1 iff x.) corresponds to the i-th config-
uration of the clique c. w.; denotes a real-valued weight that is attached to the i-th
configuration of clique c. If all clique potentials take this log-linear form, the MRF dis-
tribution has a couple of particularly appealing representational and computational
properties. First, the product over all clique potentials in Equation (2.9) reduces to a
sum over all weights attached to the respective clique configurations that hold in a
specific possible world x. And second, the gradient with respect to a particular model
parameter w, ; can be computed fairly efficiently, as I show below. A slightly more
general representation of MRFs is obtained by relaxing the factorization of the joint
distribution in (2.9) which is imposed by the topological constraints of the maximal
cliques and allowing features to represent aspects of a possible world on a global
scope. Such an MRF distribution, also called a Boltzmann distribution is given by

P(X=x)= %exp (Z w,-ﬁ-(x)), (2.10)

where Z denotes again the partition function given by

Z = Z exp (Z w,-ﬁ(x’)),

x'eX

fi is a feature function that is 1 iff the respective feature is present in the world x
and 0 otherwise, and w; is a real-valued weight attached to the i-th feature. The
representation in (2.10) is both more compact and more general than the original
definition of the MRF distribution in (2.9), since it considers features more ‘global’

39

Chapter 2. Probabilistic Knowledge Representation

characteristics of a possible world rather than a ‘local’ configuration of a clique. It
also makes the MRF design more convenient as a knowledge engineer does not need
to be attentive to the topological structure and the maximal cliques in a network, but
can concentrate on the variables and features of the probabilistic KB.

Inference Considering an MRF representing a probability distribution over a KB
in propositional logic, a canonical inference problem for computing the posterior
probability of an arbitrary sentence ¢ given another sentence ¢ is given by

Lxegny Hx')

2.11
Sy 1) (211

P(ply) =

u(x) is called the probability mass function and assigns a positive real-valued measure
to every possible world x, which determines x’s portion of the available total mass of
probability given by . cx u(x). It is evident that exact inference according to (2.11)
requires enumerating all models of particular logical sentences, which is known to
be #P-complete (Roth, 1996) and thus intractable for real-world applications. In
practice, approximate algorithms therefore need to be applied. Among those, Markov
chain Monte Carlo (MCMC) based methods such as Gibbs sampling (Russell and
Norvig, 2003) are perhaps the most popular ones. Alternatively, there are subsets
of general MRFs that impose constraints on the structural design of a model that
is less expressive but allows for specialized more efficient algorithms. Examples of
such MRFs include logistic regression models (Bishop, 2006) or conditional random
fields (Lafferty et al., 2001).

Parameter Estimation The parameters w; of features in an MRF taking the functional
form of a log-linear Boltzmann distribution as in (2.10) are particularly elegant to
obtain. Considering a set O of independently drawn, identically distributed fully
observed examples, the log-likelihood function is given by

LLw) =logP(w|D)log [| P(X=d|w)
deD

= > > wifi(d)-logZ. (2.12)

deD i

As maximizing Equation (2.12) does not have a closed form solution, numeric
optimization methods, such as Newton or quasi-Newton methods need to be applied
in order to find the parameters w that maximize the log-likelihood. To this end, its
partial derivative with respect to a particular component w; of the weight vector w

40

2.3. Probabilistic Relational Models

can be obtained by computing

aé:jvviv) LY (Z wifi(d) - —log(D, exp (Z w;-ﬁ(x’))))

deD \ i x'eX

= Z(ﬁ(d > P (X =x)) (2.13)

deD x'eX

The gradient in (2.13) intuitively represents for every feature the difference between
the value of the feature in the data and the expectation of the feature with respect
to all possible worlds subject to the model parameters. Consequently, if model
parameters have been found, such that this difference disappears (equals 0), the
prediction of the model for a feature and the actual value of the respective feature
in the data coincide, which in turn means that the model is perfectly fitted to the
training data. The likelihood is maximal in this particular set of parameters. However,
as the computation of the gradient requires inference over the model as a whole,
exact learning is intractable for all but the smallest examples.

It is not always necessary to represent a full joint distribution over all variables in an
MRF. Instead, in many real-world applications, a knowledge engineer can identify
random variables that will never appear in any query but can in any case be observed
as evidence. Examples of such models are, for instance, optical character recognition
systems, where the input pixels of a document are always observed but are never
subject to reasoning. Such kinds of models, which are commonly referred to as
discriminative models, are typically computationally cheaper than their generative
counterparts as they require enumeration over fewer possible worlds.

2.3 Probabilistic Relational Models

Probabilistic graphical models, such as Bayesian networks and Markov random fields,
provide very elegant means for compactly representing joint probability distributions
over large sets of random variables. As opposed to a naive table-based representation
of random events, which was hopelessly infeasible, these models carry a graph-
based structure that makes independencies among variables explicit and thus allow
more compact representations and more efficient computations. In addition, these
graphical structures are fairly easily interpretable and thus can be straightforwardly
designed by domain experts and knowledge engineers.

41

=l

Generative vs.
Discriminative
Learning

Chapter 2. Probabilistic Knowledge Representation

However, the number of random variables in PGMs is fixed and must be known be-
forehand in order to instantiate a respective network. In many practical applications,
however, it is desirable for KBs to support varying numbers of random variables.
As an example, consider the perception component of a household robot that is to
categorize different items that its sensors have identified in the environment (cf. Nyga
et al. (2014)). Ideally, such a classification system should support inputs of arbitrary
lengths since the number of entities to classify cannot be known at compile time.
Their propositional nature thus limits the expressiveness of classical PGMs.

The field of PRMs is a research direction that aims at overcoming the obvious
limitations of logics and PGMs by lifting propositional probabilistic models to first-
order representations and thereby provide knowledge representation formalisms that
are as expressive as FOL, but still able to deal with uncertainty and inconsistency
in a meaningful way. It has been a long-standing goal in the Al and machine
learning community to combine probability theory and logic in a single, coherent
representation and many attempts towards this direction have been published in
the recent two decades. An excellent and comprehensive survey of techniques is
given by Getoor (2007a). One of the methods that have garnered most attention in
recent years is perhaps Markov logic networks (MLNSs), a formalism combining the
expressiveness of FOL with the probabilistic semantics of MRFs.

2.31 Markov Logic Networks

In this section, I introduce the concept of Markov logic networks, following mainly
the definitions of Richardson and Domingos (2006) and Jain (2012).

A Markov logic network L consists of an indexed set of pairs (F;, w;), where F; is a
formula in FOL and w; is a real-valued weight attached to the i-th formula. Intu-
itively, a formula’s weight determines the ‘hardness’ or ‘correctness’ of the respective
formula, i.e. the larger the weight of a formula is, the more important the formula is
supposed to be; or the larger the penalty for violation of the formula is, respectively.
In most implementations of Markov logic, predicate arguments are typed, i.e. all
arguments of any predicate are bound to a dedicated named set of values, their
domain. This is in contrast to original FOL, where constant predicate arguments are
in one universal set of constant symbols. Given such a finite domain of discourse,
a ground Markov random field (ground MRF) can be instantiated by introducing
to the MRF one Boolean variable for each ground atom reflecting the truth of the
respective proposition. The set of possible worlds X is in turn given by the set of

42

2.3. Probabilistic Relational Models

all possible combinations of truth assignments to all ground atoms and one possible
world x can be considered a vector of Booleans assigning every ground atom in X a
truth value. Furthermore, for each ground formula 1::] that can be generated from the
respective formula Fj, a binary feature function f] : X — {0, 1} is introduced, whose
value for x € X is 1 if the respective ground formula is satisfied in x, i.e. x E I?j,
and 0 otherwise, and whose weight is w;. The ground MRF specifies a probability
distribution over the set of possible worlds X according to:

. T
PX =x)= Z exp (Z wjfj(x))
=1
1 IL]
= Eexp ;wini(x) , (2.14)

where n;(x) denotes the number of true groundings of a formula F; in the world x. Z
is again a normalization constant ensuring that the distribution sums to 1 given by

IL|
Z = Z exp(z wjnj(x’)).
=1

x'eX

Obviously, the probability of a possible world x is proportional to the exponentiated
number of true instantiations of all formulae and their respective weights, i.e.

Gl
P (x) exp(Vv]'fj(x))
ji=1

J

Intuitively, a possible world x thus becomes more probable the more true groundings
it has in x and the larger its weight is, whereas formulae with close-to-zero weights
only contribute little to the overall probability mass available in the universe. In
contrast, if a formula has a negative weight, more true groundings turn into a penalty
in terms of probability mass, such that the respective world becomes less probable.

Example As a minimal example MLN, we consider a scenario in which a probabilistic
KB about students, their grades and their studying habits are to be modeled. To this
end, we introduce to the MLN the five predicates with the respective semantics:

student (person)
diligent(person)
friends(person, person)
grade(person, grades?)

43

Chapter 2. Probabilistic Knowledge Representation

grades = {A,B,C,D,E,F}

The predicates student and diligent assign the respective attributes to elements of
the person domain. friends specifies that two persons are friends, and grade assigns
a grade to a person. The possible grades are defined in the last line and range from A
to F. The question mark in the predicate declaration behind the grades argument of
the grade predicate specifies that to every person in the domain of discourse, at most
one of the grades can be assigned a person. Using these predicates, statements in FOL
can be formulated and attached a real-valued weight determining its ‘correctness’.
Deterministic logical statements (i.e. hard constraints) can be made by omitting the
weight and putting a period after the formula.

For example, one can state that diligent students typically get very good grades:
1.2 diligent(x) " student(x) => grade(x, A)
Companioned students tend to have similar studying habits:
0.7 friends(x, y) <=> diligent(x) " diligent(y)
Most students are lazy:
-0.4 student(x) => diligent(y)
Only students are being graded:
!student(x) => !grade(x, g).

For any set of persons, e.g. persons={Ann,Bob,Cecile}, this MLN can be queried for
any aspect of the domain given any other aspect as evidence. For example, one can
query for the probability that Ann gets an A given that she is friends with Bob, who is
diligent, P(grade(Ann,A) | friends(Ann,Bob) * diligent(Bob)), or the probability
that Cecile is friends with Bob given that she is lazy, P(friends(Cecile,Bob) |
!diligent(Cecile)).

This conceptual simplicity makes Markov logic one of the most general and most
powerful yet intuitive representation languages for uncertain knowledge. In the
following, I will briefly revisit the most important reasoning approaches.

Exact Inference In an MLN, the posterior of any arbitrary ground formula can be
computed according to Equations (2.11) and (2.14). However, such an inference
problem is impossible to solve exactly in the general case as computation of the
partition function Z requires the enumeration of all possible worlds X. It is therefore
required to draw on approximate inference methods.

44

2.3. Probabilistic Relational Models

Algorithm 1 MCMC

Input: Py @ the transition probability of a Markov chain
Q : aquery
E : observations
m : maximum number of steps
Output: an approximation of P (Q | E)
1: Initialize x©, such that P (x(o)) >0and x EE > Initial world state
2: i« 0,c<0
3: while not converged and i < m do
4 Randomly sample x(*1 from Py qns (x*D) | x()), where x*D £ E
5: if x(*D £ O then
6.
7
8
9

ce—c+1
end if
: end while
: return P (Q | E) ~ ¢/e

Approximate Inference Among the approximate inference techniques, MCMC (Gilks
et al., 1995) methods are the most popular ones. The basic idea behind MCMC is to
construct a Markov chain whose stationary distribution corresponds to the probability
P (X | E). The desired posterior P (Q | E) is approximated by drawing samples from
the Markov chain and counting the frequencies of Q being true in the samples drawn.

The probably most basic MCMC algorithm is Gibbs sampling, where the states of the
Markov chain are given by the possible states of the ground MRF of the MLN subject
to the evidence. The algorithm starts with a random assignment of the variables that
is consistent with the evidence. Then the algorithm randomly selects one of the query
variables X; € Q and draws a sample of the ground MRF state of the next iteration.
The probability of a transition from a state x = (x;,x;) to another state x” = (x/,x;)
is given by Puans(X; | X; = X;), where X; (x;) denotes all variables (values) in the
ground MRF except for X; (x;). Whenever a sample entails the query Q, a counter ¢
is incremented. The approximate posterior is returned as the relative frequencies of ¢
and the total number of samples.

Gibbs sampling provably converges to the desired stationary distribution given the
Markov chain is ergodic, i.e. when every state of the chain is reachable from any
other state and there are no absorbing states. This constraint, however, does not
always hold in MLNs as there is the possibility of hard (purely Boolean) formulae.
These formulae typically are assigned comparably large weights, which in turn stops
the Markov chain being ergodic and consequently voids the convergence guarantee.

MC-SAT is a variant of MCMC that is tailored to the specifics of Markov logic taking
into account deterministic constraints and more sophisticated sampling techniques,
which can significantly speed up the convergence of the Markov chain (Poon and
Domingos, 2006).

45

Chapter 2. Probabilistic Knowledge Representation

Most Probable Explanation Computing the MPE state of the ground MRF of an MLN
corresponds to solving a weighted maximum satisfiability problem (weighted MAX-
SAT), where the goal is to find a complete assignment to a set of Boolean variables (in
this case ground atoms), such that the total weight of a set of weighted clauses (the
ground formulae) is maximized. The MAXWALKSAT algorithm is a variant of local
stochastic search that randomly flips truth values of ground atoms in a simulated
annealing fashion (Kautz et al., 1996). Due to its stochastic nature, however, it is not
guaranteed to always find the globally best solution.

A different approach is to transform an MLN into a weighted constraint satisfaction
problem (WCSP) as described by Jain et al. (2009a) and apply state-of-the-art solvers
that compute exact solutions to even big problems fairly efficiently by branch-and-
bound search (Clausen, 1999). An example of such a solver, which is also used in
this work, is toulbar2 (Allouche et al., 2010).

Parameter Learning Given a set of logical formulae and a database x for training,

the problem of learning the model parameters, i.e. weights for each formula is
straightforward. The log likelihood is given by

LL(w|X) = log(% exp (Z w,-ni(a?))) = Z w;n;(x) —log Z

- Z w; - ni(X) — log(Z exp (Z wknk(x'))>, (2.15)
i k

x'eX

and the gradient of the i-th weight component is

OLL(w|X) 0 (%) - Z ni(x) - exp (Xx wrng(x’))

Ow; = 2xrex €XP (Xr wrnk(x”))
=ni(® -) mi(x') - P(X =x). (2.16)
x'eX

Equation (2.16) can be maximized by standard gradient-based optimization tech-
niques such as Newton’s method or quasi-Newton methods like BFGS (Broyden,
1970). In practice, however, the learning of joint probability distributions from
observed training data entails severe computational challenges as exact parameter
learning requires inference over the model as a whole in every iteration of the nu-
merical optimization. This makes exact learning via maximum likelihood impossible
for all but the smallest problem instances.

As a consequence, a variety of simplifications have been proposed to leverage the

46

2.3. Probabilistic Relational Models

computational intractability of learning in MLNs. Among them two families of
approaches for approximating the exact likelihood have received particular attention
in the research literature:

1. Approximation of the gradient of the likelihood: This approach leaves the ob-
jective function to be optimized during learning the exact likelihood, but uses
approximations of its gradient to avoid heavy inference over the model, i.e.
computing the expectation over possible worlds. Examples for such algorithms
use for instance the MPE state of the current model (‘voted perceptron’) or
contrastive divergence in combination with MC-SAT.

2. Approximation of the likelihood: The likelihood function itself is approximated
by a different function, which typically makes strong independence assumptions
among the variables in the models. The best-known algorithm of this kind
is probably pseudo-likelihood learning, which assumes independence among
ground atoms in the ground MRF and imposes conditions on their Markov
blanket.

Lowd and Domingos (2007) provide an excellent overview of learning algorithms
for MLNs that fall into the first category. Among those, the voted perceptron and
contrastive divergence algorithm have been deemed most superior. A drawback that
all of those methods have in common is that they rely on a good estimate of the
gradient in each optimization step, which is, in the general case, infeasible. They
mostly use MC-SAT for performing approximate inference over the model, which is
an MCMC slice-sampling method dedicated for MLNs. While MCMC methods can
be shown to converge to the exact MLE estimate given sufficiently large numbers of
samples they often require too much computational resources to reach their stationary
distributions.

Pseudo-likelihood Learning Hence, for practical applications, most researchers apply
the pseudo-likelihood (Besag, 1975), which uses an approximation of the objective
function itself. Pseudo-likelihood learning is computationally much cheaper than any
likelihood method because it conditions every atom in the ground MRF on its Markov
blanket in x:

|X|
PLL(x) =log [| P (xx | MBx(Xi)) (2.17)
k=1

IX|
= Z —log((l + EXP(Z wi (1, (x) — "i(x))))’

k=1 iGFXk

47

L
Probabilistic
Implication
Fallacy

Chapter 2. Probabilistic Knowledge Representation

where 7; (x) denotes the number of true groundings of the i-th formula in a modifi-
cation of x where the k-th ground atom, Xy, is inverted in its truth value and MB, (X)
denotes the Markov blanket of the ground atom Xj in x. Its gradient with respect to
w; is given by

1X|
af?)ﬁL - Z (ni(x) = P (xx | MBx (X)) - ni(x)
PA

— P (Xg = ~xx | MBy(Xg)) - 1 1 (x)) - (2.18)

In contrast to exact parameter learning in (2.15), the computational effort of maxi-
mizing the pseudo-likelihood scales linearly instead of exponentially in the number
of atoms in the ground MRF. However, the very strong independence assumptions
can lead to very imprecise weight estimations. As the purpose of formulae in MRFs is
often to capture the interaction between their subformulae the simplification is often
too strong for the learned probabilities to be accurate.

Caveats MLNs have garnered a lot of attention in recent years. One reason for this
success is undoubtedly their conceptual simplicity, generality, and straightforwardness
in design. However, although they have been intensively studied since their original
inception, there are various subtleties and pitfalls that make their practical application
of more difficult as it may;, at first, appear. The perhaps greatest difficulty is related
to the semantics of the logical implication in a probabilistic setting, which might
produce unexpected if not unwanted results in the posterior probabilities. According
to Jain (2011), the natural correspondence to a causal relation of the form foo(x) —
bar(x) in a probabilistic setting is a conditional probability P (bar(x) | foo(x)) as when
observing foo(x), one can expect to recover bar(x) only with a certain probability. The
conditional, however, in an MLN, cannot be established properly by simply attaching
a weight to the formula foo(x) — bar(x) in order to make it a soft constraint. It
rather must be constructed by a set of mutually exclusive formulae that establish a
ratio of probability masses of the sentences foo(x) A bar(x) and —foo(x) A bar(x). Jain
refers to this phenomenon (among others) as the “probabilistic implication fallacy,”
and strongly discourages the use of implications when designing MLNs. Jain instead
advocates the explicit representation of individual conditional cases in an MLN.

Implementational Aspects Making structural commitments to the shape of logical
formulae has further computational advantages. As Equation (2.14), (2.15) and
(2.16) show, learning and inference in MLNs require counting the number of true
groundings of the logical formulae in an MLN, which is known to be a #P-complete

48

2.4. Uncertainty versus Vagueness

problem in the general case (Roth, 1996). However, it is possible to identify special
cases of formulae, for which model counting can be computed significantly faster than
enumerating all interpretations of a sentence. As an example, consider a conjunction
F, whose constituents [all are literals. For any possible world x, the number of true
instantiations of F can be computed fairly efficiently since any of its instantiations
F can only be true for precisely one truth assignment, namely the one in which all
conjuncts are true. The PRACMLN learning and reasoning engine, which has been
developed in context of this thesis, implements a several of such computational
optimizations by exploiting frequently recurring patterns in models.

Syntactic Sugar Sometimes it is desirable to impose functional constraints on the
set of possible worlds. A functional constraint requires that out of several ground
atoms exactly one must always be true at a time and all others in turn must be false.
Such constraints are called functional constraints since the value of one argument is
functionally determined by the values of the other arguments. In most of the current
MLN implementations, functional constraints are supported and can be specified by
appending an exclamation mark (!) to the declaration of the functionally determined
argument. Any possible world that violates such a constraint is automatically assigned
0 probability. Apart from that it is reasonable to use functional constraints from a
modeling point of view in many cases, it is typically also computationally beneficial
since functional constraints result in a partial linearization of the computational
problem. In the PRACMLN implementation that I have developed in this work, there
is a second type of functional constraints, so-called soft functional-constraints, which
require maximally one ground atom out of the set of mutually exclusive ground
atoms to be true instead of precisely one. This is a convenient language element
in MLNs and quite useful for classification problems, for instance, in order to let
the probabilistic model decline to make a decision in case of insufficient confidence,
but still exploit the computational appeal of functional constraints. Soft-functional
constraints are specified by appending a question mark (?) to the respective predicate
argument.

2.4 Uncertainty versus Vagueness

Besides uncertainty, the concept of vagueness is another key concept I use in my work.
Both terms refer to settings in which propositions cannot be assigned a strictly Boolean
truth value, but the application domain requires finer grained specifications of beliefs

49

Fuzzy
Logic

Chapter 2. Probabilistic Knowledge Representation

blue cyan green

color

Figure 2.4: Illustration of the fuzzy membership functions Tpj,e, Tcyan ANd Tgreen

in particular propositions. Although closely related, uncertainty and vagueness
fundamentally differ in their semantics and thus it is crucial to not confuse the two.

Uncertainty generally refers to “a situation which involves imperfect and/or unknown
information” (Wikipedia, 2017), about specific matters in the world. A probability
P of an event ¢, P (p) = 0.75, for instance, expresses the belief in ¢ to be true or
false. It does not mean that ¢ is true to 75%. This degree of belief semantics thus
makes the same ontological commitment as pure logic does: If one could observe
¢ directly, it would turn out to be either entirely true or entirely false, and in an
uncertain situation an agent cannot be sure which one applies.

In contrast, the concept of vagueness or fuzziness refers to propositions whose ‘real’
truth values are not necessarily strictly Boolean but allow different shades of truth.
Vagueness is a phenomenon ubiquitous in linguistics as many natural-language
(NL) terms cannot be clearly demarcated from another. As an example, consider
terms referring to color names, such as ‘blue’ and ‘green’. Although the two can be
considered mutually exclusive colors, ‘cyan’ could be considered blue and green to a
certain degree. Even if the precise color value could be observed, the imprecision in
terminology cannot be eliminated.

A well known mathematical apparatus to deal with vague propositions is fuzzy logic
(FL), a multi-valued extension of propositional logic (PL). FL has its foundations in
the theory of fuzzy sets, in which elements belong to a set only to a certain degree.
Formally, a fuzzy subset x of a set X is a pair (X, n,), where X is called the universe
and 7, : S — [0,1] determines the degree to which a particular element actually
belongs to x, which is called the membership function. In FL, the universe X is given
by the set of atomic propositions and x, is a fuzzy interpretation of X assigning
every proposition in X a real-valued degree of truth. Its calculus is analogous to the
calculus of PL: If A and B are propositions in FL, then the logical connectors with
respect to x are defined as

50

2.4. Uncertainty versus Vagueness

A A B :=min (z(A), 7(B))
AV B := max (n(A), 7(B))
-A:=1- JT(A).

Note that the multi-valued logical calculus of FL reduces to the Boolean counterpart
of PL in the extreme cases where all propositions have binary truth values.

2.41 Summary

In this chapter, I have laid out the technical foundations of the formalisms and
techniques used in this thesis. I have reviewed the most basic elements of the
areas of knowledge representation and reasoning in terms of logical representation
languages. Propositional logic (PL) is a very basic formalism with only very restricted
expressiveness. First-order logic (FOL) is perhaps closest to natural languages in terms
of expressiveness, but the undecidability of entailment in FOL impairs its practical
applicability to real-world problems. Decidable fragments of FOL exist, such as
description logic (DL) and Prolog-related languages, but their deterministic semantics
impedes the treatment of uncertainty and inconsistency, which are omnipresent
phenomena in real-world applications.

Probabilistic graphical models (PGMs) like Bayesian networks and Markov random
fields (MRFs) are formalisms that compactly represent joint probability distributions
over variables and are designed to capture the uncertain and stochastic aspects of
the real-world. However, their propositional nature imposes a static structure on the
dependency relations constraining their applicability to domains of only fixed size.
Probabilistic relational models (PRMs) relax those assumptions by combining FOL
with PGM to elicit the best from two worlds: the expressiveness of first-order logical
KBs and the capability of PGMs to deal with uncertainty.

Markov logic is a popular PRM language, in which logical formulae have attached
real-valued weights determining the strength of the respective formula. The proba-
bilistic semantics is thereby defined over all instantiations of possible propositions
in a ground Markov random field. Most challenging in the application of MLNs is
the representational and computational expense for learning and reasoning. It is
therefore crucial to design models that do strongly generalize across specific problem
instances to keep the implied costs as little as possible.

51

Chapter 2. Probabilistic Knowledge Representation

In the remainder of this work, I will investigate and present PRMs, in particular
variants of MLNs that combine the concepts of fuzziness, uncertainty and ontological
engineering in description logic, as a representation for vague instructions and their
refinements, which enables to infer the most likely executable specializations thereof.

52

Chapter

Probabilistic Knowledge Bases for
Instruction Interpretation

In this chapter I will address the problem of action-specific knowledge processing,
representation and acquisition for autonomous robots performing everyday activities.
I will discuss the important role of action-centric knowledge representation and rea-
soning in human everyday problem solving and demarcate it from classical Al-driven
approaches towards action intelligence. I will report on a data-driven analysis of the
household domain, which has been performed on a large corpus of NL instructions
from the Web and which underlines the supreme need of action-specific knowledge
for robots acting in human environments. Based on this study, I will hypothesize and
give estimates for the amount of knowledge that robots might need for the competent
performance of envisioned robot jobs such as preparing meals. These estimates will
be obtained by the application of data mining techniques to websites that provide
written instructions for performing everyday activities intended for human use. I
will introduce the concept of Probabilistic Action Cores (PRAC) and describe in detail
the PRAC framework, a natural-language interpreter for transforming vague and
incomplete NL instructions into executable robot plans by means of probabilistic
first-order reasoning. I will address how such knowledge bases can be represented,
acquired and used for inferring the most probable executable action plan and the
problems of ambiguity, incompleteness and learning from sparse data can be tackled.
The work presented in this chapter is based on prior works published in parts by Nyga
and Beetz (2012, 2015b); Nyga et al. (2017b) and Lisca et al. (2015).

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

341 Probabilistic Action Cores

Robotic agents that are to be instructed in natural language need to be equipped
with capabilities for understanding human task specifications. In this work, I present
a novel approach towards instruction interpretation from the perspective of Bayesian
cognition, formulating the problem of NL understanding as a reasoning task in
probabilistic relational KBs. In this section, I give an informal definition of PRAC and
demarcate it from alternative approaches.

344 Definition

In a nutshell, the basic idea of PRAC is to learn joint probability distributions over
semantic networks like the ones shown in Figure 3.1, in order to (1) determine an
specific semantic representation from a vague NL statement and (2) be able to infer
missing aspects of an action specification from the given aspects.

For modeling these relations, probabilistic graphical models (PGMs) are built for each
relevant action verb in a specific domain. These models are inspired by semantic
network (Simmons, 1963) and frame semantics (Minsky, 1974) but are intended to
explicitly take into account uncertainty, vagueness and incompleteness by means of
probabilistic interrelations. These graphical models are called action cores and can be
considered generic, frequently recurring patterns of events in everyday activity. An
action core is a generalized concept of an action and has attached a set of relations
assigning semantics to all entities that are required to effectively perform the action.
These relational structures of the action are called action roles and can be thought
of as abstract, symbolic parameters of the action. The probabilistic action core is a
probabilistic model over the relational structure of the action core and its arguments.
The relational structure thereby needs to be designed by a knowledge engineer
who has to decide on the set of relations and actions, their semantics and level
of abstraction. Having such a relational framework the probability distributions
can be learned from specific instances of action cores, which in turn generalize the
knowledge to more generic action patterns that can be transferred to new situations.

In this chapter, I present data structures, probabilistic models, and algorithms for
representing, acquiring, storing, and using action cores for tackling the problems
of under-specification and ambiguity in the interpretation of natural language (NL)
instructions.

54

3.1. Probabilistic Action Cores

3.1.2 Alternative Approaches

Previous works on the topic of instruction understanding reported in literature, which
have received particular attention, can be roughly divided into two categories, which
differ in the methodologies for tackling the problem of NL understanding for robots.

Approaches that fall into one category are strongly driven by the linguistics commu-
nity and mainly focus on formal language analyses of written texts, investigating
its building blocks and units as well as how it is structurally organized. Typical
reasoning tasks in this field involve the syntactic structural analysis of sentences (e.g.
parsing), the aggregation of single words into larger semantic units (e.g. chunking,
named-entity recognition, compound-noun recognition) or assigning parts of speech
to words (part-of-speech tagging). The syntactic structure of NL commands is then
mapped into the space of robot control procedures, where mainly static, shallow map-
pings from action verbs to control routines are applied. The fundamental assumption
underlying these approaches is that the syntactic representation of a sentence reveals
sufficient information for performing a respective task. Typical application domains
reported in literature cover robot navigation tasks in mazes or office environments.
However, I argue that, for the execution of more complex, human-scale manipulation
activities, such shallow mappings from NL patterns to robot control programs are
too restricted in their scope to enable robust, flexible autonomous decision making
in robots. As an example, consider the two instructions “fill the kettle with water”
and “fill a cup with coffee.” Figure 3.1 illustrates the semantic networks of the two
instructions and a PR2 robot performing them in a kitchen environment. The syntac-
tic structures of these two instructions retrieved from the Stanford parser (Klein and
Manning, 2003) are

(ROOT (S (VP (VB Fill) (ROOT (S (VP (VB Fill)
(NP (DT a) (NP (DT the)
(NN cup)) (NN kettle))
(PP (IN with) (PP (IN with)
(NP (NN coffee)))))) (NP (NN water)))))).

Comparing the two syntactic parses and the two semantic representations in Fig-
ures 3.1a and 3.1b, one can see that the two instructions are isomorphic both
syntactically and semantically, i.e. their syntactic and semantic relational structures
are identical except for their symbolic names. Consequently, they are indistinguish-
able with respect to their linguistic structure. However, considering their execution,
the two instructions require fundamentally different manipulation skills: Filling a cup
with coffee typically can be done by pouring from a coffee pot into a drinking mug,
whereas filling a water kettle is normally achieved using the tap. Depending on the

55

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

Fill
ActionVerb
is-a
liquid.n.01 ’-—{ beverage.n.01

is-a

Stuff Stuff

ActionVerb

| fill.v.01 }m-’ Filling }m-’ Pouring ‘ | fill.v.01 Filling Achieved® . OperatingATap
o o

(a) Top: the PR2 pouring coffee from a pitcher. (b) Top: the PR2 operating a tap. Bottom:
Bottom: semantic structure of the instruction semantic structure of the instruction “fill the
“fill a cup with coffee.” kettle with water.”

is-a is-a

container.n.01 crockery.n.01

container.n.01

Figure 3.1: The PR2 robot performing two filling activities. Although the two instructions
“fill a cup with coffee” and “fill the kettle with water” are syntactically and semantically
isomorphic, they require fundamentally different manipulation skills.

current situation, environment and context, there might be even more possibilities
of how to perform the tasks. As a consequence, understanding NL instructions of
everyday manipulation tasks requires appropriate interpretation and completion as
pure linguistic representations do not necessarily carry sufficient information for
proficient execution by a robot. This goes beyond traditional machine reading and
question answering — typical applications of linguistic analyses: In machine reading
and question answering, ambiguity and incompleteness can often be retained since
queries and the respective answers typically reside on a similar level of abstraction. If
it comes to instruction execution, however, those ambiguities need to be resolved in
every detail and missing information needs to be added (Beetz et al., 2015b). Thus,
as Bergen et al. (2003) and Feldman and Narayanan (2004) point out, the ability to
understand an instruction is tightly coupled to the capability of actually performing
it.

A second class of approaches has its foundations in the AI community and formulates
the problem of instruction interpretation as a classical planning problem. Approaches
from this category assume that the NL commands describe goal states of the world
which is to be manipulated in a way that the desired state is established. To this end,

56

3.1. Probabilistic Action Cores

the NL statements are transformed into a formal, semantic, logic-based representation
in order to derive the goal state from an instruction. Classical methods in Al-based
planning are then applied to automatically generate sequences of actions from such
goal specifications, which are, in essence, based on the ideas of classical STRIPS
planning (Fikes and Nilsson, 1971). Planning about action sequences and reasoning
about actions, their effects and goals, has been widely studied by both the Al and
the robotics community. However, for the actions are regarded as black boxes, the
plans generated by such systems are often too abstract for competent execution by
robots since they merely contain what is given but not what is necessary. In addition,
these approaches towards action intelligence assume complete knowledge about
actions and the world. They make what is commonly referred to as the closed-world
assumption. However, service robots in human environments will have to act in
open worlds, in which they will be faced with high uncertainty, ambiguity and under-
specification. In such real-world scenarios, the knowledge about actions often is
incomplete though indispensable (Moore, 1984).

Humans understand and perform such instructions with great ease, if not uncon-
sciously, not requiring intensive planning or deliberation. They share a large amount
of common background knowledge about actions and objects, which appears self-
evident to them, rendering explicit statements of certain facts redundant and obsolete.
As a consequence, NL action descriptions are . . .

incomplete. This originates from the common human knowledge about actions,
which is so obvious that no explicit statements are required. In descriptions of
activities written by humans, such as cooking recipes, vague instructions like
“stir occasionally” or “serve” can be found frequently. These instructions are
characterized by extreme under-specification since they lack any information
about the objects involved. Humans, however, ares yet very successful in cor-
rectly performing such tasks. The current context and background knowledge
seem sufficient for deriving the necessary information.

ambiguous. As an example, consider the word ‘cup’ and its use in the instruc-
tions “fill a cup with milk” and “add a cup of milk.” In the first instruction, ‘cup’
refers to a physical container that is supposed to be filled with milk. Conversely,
in the second case, ‘cup’ refers to an abstract unit of measure, a specification
of how much is supposed to be added to something, while the actual object to
be added is still the milk and not the cup. Although this distinction may seem
subtle at first, it is yet crucial to distinguish between the two meanings in order
to manipulate the right objects in the right way. Common-sense knowledge, in
this case, serves as a constraining mechanism that rules out inappropriate com-

57

€l

Closed
vs. Open Worlds

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

binations and renders disambiguation a constraint satisfaction (or optimization)
problem.

Researchers have found evidence that everyday activities are too different to playing
chess or solving crypt-arithmetic puzzles — typical applications of classical, automated
planning techniques. Instead, understanding NL is rather knowledge-intensive than
planning-intensive and robots must be equipped with a large body of knowledge
about actions, objects, and environments, and with reasoning mechanisms allowing to
infer the information that is needed in order to perform an activity competently. The
most convincing arguments are given by Anderson (1995), which I will summarize
in the next section.

I argue that action-specific knowledge is key in dealing with complex, human-scale
everyday tasks rather than classical planning and I present a framework for modeling
probabilistic dependencies between actions, objects and ontological information
about the world.

3.2 Everyday Rationality

According to Anderson (1995), everyday activities are characterized by mainly three
qualities: First, an everyday activity typically is a complex task that is mundane or
routine to humans. That is, everyday activities do not put forward big surprises while
performing them, but primarily bring about unbiased expected results. Second, they
are common and occur frequently. An activity thus becomes an everyday activity
when an agent has performed it many times and thereby has acquired a great
deal of knowledge about the activity, which leads to the strong expectations about
its outcomes and a broad coverage of possible ramifications. And third, humans
performing everyday activity typically aim for adequate or satisfactory performance
rather than optimality and expert performance. They ‘satisfice’ rather than ‘optimize’
their decision making.

In classical Al the question of how to perform a particular activity has been mainly
reduced to the question of how to achieve a specific goal, i.e. finding a sequence of
actions that an agent needs to take in order to establish a world state that entails the
given goals. Classical planning applies general problem solvers and theorem provers,
as presented by Fikes and Nilsson (1971) and Newell et al. (1972), which have
been applied to logical reasoning, theorem proving, playing chess and solving for

58

3.2. Everyday Rationality

crypt-arithmetic puzzles. However, McDermott (1992) argues that planning problems
are both too simple and too complex at the same time: the computational problems
that planning imposes are intractable on the one hand, but the representational
black-box view on actions is too great a simplification to adequately represent a real
robot’s control program. Consequently, as Beetz et al. (2015b) find, the impact of
such planning systems on real-world robotic platforms still remains rather limited.
An excellent elaboration can also be found in Anderson (1995), who nicely puts it:

“The types of activities we commonly call everyday activities are of a fundamentally differ-
ent character than this. Everyday life is not a crypt-arithmetic problem. An activity such
as washing dishes seems, on the whole, to have little to do with the reasoning mecha-
nisms used to play chess. Traveling from home to work has few commonalities with logic

problems.” — (Anderson, 1995)

Firmly anchored in the science of Al is the term ‘rationality,’ an attempt to objectivize
the notion of intelligence in form of an idealized, abstract concept (Russell and Norvig,
2003). There are, however, different perspectives on rationality, where rational
behavior in the sense of “doing the right thing” is perhaps the one that has gained the
broadest acceptance. A decision-theoretic account of the “right thing” can be given
by the actions that maximize some kind of benefit, utility, probability or comfort, or
minimize entropy or costs of execution, subject to the given resources (Simon, 1957).
In terms of action planning, the concept of rationality simply refers to a selection
of actions that attain an agent’s goals (Newell, 1982). With regard to every activity,
however,

“Rationality does not mean performing the ‘logical’ action in the formal sense of the word; it
means doing something that is compatible with the agent’s past experience, future intentions,
and kRnowledge of the situation in which the agent finds itself. This form of rationality is
very different from the decision-theoretic perspective, but | argue keeps much of the spirit

decision-theoretic rationality encompasses.” — (Anderson, 1995)

While still being compatible with the premise of “doing the right thing,” Anderson’s
definition of rationality makes a slight relaxation to the classical decision-theoretic
accounts to rationality. In his definition, most obviously, rational decisions are not
necessarily globally objectively rational, but rather rational relatively to the agent
and what the agent knows. I argue that this relaxation is not only elegant but even
necessary when implementing agents performing everyday activities. As an example,
consider the activity of making a pancake. Given this goal, a globally objectively

59

<€l
Rationality

&

more knowledge
= less search

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

rational agent is to find a sequence of actions to conduct, which attains this goal
and provably produce a pancake. The agent in turn must have a fully axiomatized
set of pre- and post-conditions of actions and food-chemical processes, as well as —
perhaps most difficult — a formal specification of what the goal state, i.e. a pancake,
is. Creating a globally consistent knowledge base that entails such an action sequence
that provably creates a pancake does not appear feasible. As a consequence, the
global consistency and completeness postulated by classical planning methods and
entirely decision-theoretic definitions of rationality do not seem to translate well into
the domain of everyday activity. Rather, as Minsky stated it:

“[...]1do not believe that consistency is necessary or even desirable in a developing intelli-
gent system. No one is ever completely consistent. What is important is how one handles
paradox or conflict, how one learns from mistakes, how one turns aside from suspected in-
consistencies. [...] “Logical” reasoning is not flexible enough to serve as a basis for thinking;
I prefer to think of it as a collection of heuristic methods, effective only when applied to
starkly simplified schematic plans. The Consistency that Logic demands is not otherwise
usually available - and probably not even desirable - because consistent systems are likely
to be too weak. | doubt the feasibility of representing ordinary knowledge effectively in the

form of many small, independently “true” propositions.” — (MinsRy, 1974)

Following these considerations, everyday activities are routine in a sense that they
occur frequently and, as a consequence, an agent must be well-experienced in
performing them. The familiarity with these activities hence results in a large amount
of knowledge about how a particular activity is to be performed in a specific context,
going along with the awareness about objects involved in these actions as well as
their inter- and intra-relations. This makes executing everyday activities a very
knowledge-intensive task rather than intensive to planning.

Consequently, knowledge about actions and objects can serve as a source of con-
straints, i.e. an agent who is to perform a particular action must act subject to the
constraints given by its knowledge about this action. Constraining the space of
possible action configurations by knowledge does not mean to restrict the physical
or mental capabilities of an agent, but to guide the process of decision making.
Considering only alternatives that have worked before rather rules out alternatives
that are inappropriate or irrational in a particular context and hence makes repeated
reasoning about choices obsolete.

Knowledge consequently allows an agent to adjust action parameters such as the
object acted on, the utensil or tool used to manipulate the object, the direction
and destination of an action etc. In other words, knowledge is key to perform the

60

3.3. How much Knowledge does a Robot Need?

appropriate action on the appropriate objects in an appropriate way. Appropriateness
here does not mean optimality because an optimal solution often cannot be found in
real-world scenarios or it would consume excessive time to compute optimal solutions.
Nonetheless, the agent has to act and thus “accepts ‘good enough’ alternatives, not
because he prefers less to more but because he has no choice.” (Simon, 1956)
This ‘satisficing’ performance criterion in decision making is also referred to as
rational boundedness which is imposed by cognitive limitations of an agent ultimately
requires the agent to balance utility and costs of deliberation effort. Researchers have
also systematically incorporated computation time as first-order items in reasoning
algorithms in terms of expected utility of the deliberation effort in time-critical
applications (Gershman et al., 2015).

To summarize these considerations, I argue that providing robotic agents with com-
prehensive knowledge about actions and objects is key in pushing robots’ cognitive
skills and autonomy to more advanced levels. As a valuable complementary exten-
sion to classical planning techniques in Al, the use of NL instructions might be a
promising approach. In order to account for the ambiguity and under-specificity in
NL, I advocate the use of probabilistic relational models.

3.3 How much Knowledge does a Robot Need?

In studying the ways how humans explain complex activities to other humans, one
can observe that the language humans tend to use is extremely under-specified and
vague. As an example, consider the following recipe for making pancakes:

How to make Pancakes

Pour milk into a bowl.

Add 3 eggs.

Add flour and mix well.

Heat the greased pan.

Pour the batter into the pan, then wait for 2 minutes.
Push the spatula under the pancake and flip it.

Wait for another 2 minutes.

Place the pancake on a plate.

O ® N oA W=

Serve.

61

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

HOW make pancakes -

How to Make Pancakes

4,926,997 views & Community Tested
Updated 2 days ago

r ‘ 3 Ways to Make Basic Pancakes

298,878 views
Updated 2 weeks ago

3 Ways to Make Pancakes in a Microwave
Oven

191,387 views
Updated 3 months ago

How To Make Fluffy Pancakes

121,470 views
Updated 3 months ago

Figure 3.2: Screenshot of the wikihow.com website showing the result of a search for “make
pancakes.” The results do not only contain basic pancake recipes, but a large amount of
variants e.g. blueberry or vegan pancakes.

When formulating such directives, humans tend to omit important information, which
is necessary for performing a particular action. Thus, only understanding what is
explicitly specified by an instruction is insufficient for performing an action proficiently
and successfully. The example shows that NL action specifications written by and
addressed to humans are severely under-determined and ambiguous: instruction
2), for instance, does not specify what the eggs are to be added to. It also does
not state that the eggs need to be cracked before and only their content must be
added. Similarly, the relations between the spatula, its parts and the pancake are not
explicitly referred to in instruction 6).

Typically, humans fill such information gaps with great ease. They share a large
amount of common background knowledge that allows them to do such inferences
quickly on demand. As Bailey (1997) points out, humans are capable of rapidly
yet flexibly acquire the knowledge of how to use different action verbs in different
contexts. This already happens in early childhood and by hearing just a few examples.
Humans are capable of abstracting away from single instances of events to more
generic event patterns and to transfer this knowledge to new, unseen situations.

In this section, I investigate how much action-specific knowledge robots should be
equipped with in order to be capable of performing everyday activities successfully,

62

3.3. How much Knowledge does a Robot Need?

effectively and competently. I will further investigate in the subsequent sections
how this knowledge can be acquired, represented and used. For this research I
restrict myself to abstract knowledge, the knowledge about actions that is typically
communicated and written down in instructions. Other kinds of essential knowledge
that the abstract knowledge needs to be combined with is addressed in other works
and includes naive physics knowledge (Kunze et al., 2011), common-sense knowledge
(Kunze et al., 2010) and knowledge gathered from experience (Jain et al., 2009b) or
from demonstration (Fang et al., 2016).

In order to get a deeper understanding about the kind and amount of knowledge
required for executing everyday activities, we did a study on a large set of natural-
language instructions that we mined from the wikihow.com website. Wikihow con-
tains thousands of recipes, plans and other step-by-step instruction sheets for a vast
number of everyday household activities written by humans and intended for human
use. Our investigations aim at answering the following questions:

* How many different actions does a robot need to know?

¢ How much variation do these actions exhibit?

At the time this study has been conducted, the “Food & Entertaining” category on
wikihow.com comprised 273 subcategories consisting of 8786 articles in NL, covering
basic cooking skills (e.g. cutting techniques), recipes for cooking dishes (e.g. making
pancakes) and activities of wider scope, such as organizing a child’s birthday party.
An exemplary search result for the query “make pancakes” is shown in Figure 3.2.

The instruction sheets have been automatically extracted from the Web using a
common HTML parser. We carried out basic linguistic analyses, for which we applied
the system developed by Tenorth et al. (2010) for extracting single instructions from
NL text and for transforming them into a formal, logic-based representation. The
system first parses an NL text using the Stanford parser (Klein and Manning, 2003)
and afterwards determines the action verbs from the syntactic sentence structures.
The system also implements a mapping from word meanings to concepts into the
KnowRob knowledge processing framework. For a detailed description I refer the
interested reader to Tenorth et al. (2010).

3.31 How Many Actions Are There?

The 8786 NL plans consist of more than 130,000 sentences in total. Out of those, we
extracted about 53,000 relevant instructions. Instructions are considered relevant if

63

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

Action Verb # Occurrences
Adding sth. to sth./Combining > 7,900
Picking/Placing sth. swh. > 4,900
Filling/Pouring sth. into/onto sth. > 3,100
Stirring/Beating sth. > 1,900
Removing sth. > 1,700
Serving sth. > 1,400
Mixing/Blending sth. > 1,200
Cutting/Chopping/Slicing > 1,100
Cooking/Simmering/Boiling > 1,100
Baking > 900
Sprinkling > 800
Flipping/Turning over > 700
Refrigerating/Cooling/Freezing > 600
Shaking > 600
Waiting > 500

Table 3.1: Most frequent action verbs in the wikihow.com dataset and their number of
occurrences.

they are goal-directed in a sense that a respective instruction effectively contributes
to the overall outcome of an activity. This differentiation is important since in those
recipes, beside regular instructions, also many additional explanations, comments
and non-goal-directed instructions can be found, such as “enjoy your meal,” “admire
your work,” or “be an artist.” Such instructions do not represent action verbs for
object manipulation, which we consider here, and thus they have been filtered for
this study by a stop word strategy.

We found that almost the entire set of 8786 NL plans under consideration can be
represented by compositions of instructions spanned up by a space of about 100
different action verbs. These are remarkably few considering the number of 53,000
actions in total. Among those 100 action verbs, the most important (i.e. most
frequent) actions are given by pick-and-place actions (e.g. “Place the place mat in
front of the chair.”) and actions for combining two or more substances (e.g. “Add the
eggs to the flour.”). Even more interestingly, the top 15 action verbs make more than
50% of all the 53,000 actions. Table 3.1 shows the approximate frequencies of the
top 15 action verbs.

64

3.3. How much Knowledge does a Robot Need?

FlipSandwichWithSpatula

FlipBirdAfterTimePeriod
FlipPotatolnPan

FlipFoodToSide
FlipFoodIinPan is-a

FlipCookieOntoPlate

FlipCookie FlipF i
isa
o - % - -
Flip FlipPancake = Fiip Toside

FlipCakeOntoSupport
FlipCakeToSide
FlipCakeAfterSecond

FlipPancakeAfterSecond
FlipPancakeOutOfPan

Figure 3.3: Automatically generated taxonomy of different types of “Flipping” actions using
a semantic clustering of syntactic relations.

3.3.2 How Much Variation Is There?

Despite the fact that the pure number of action verbs in recipes from the household
domain is rather small, the actions under consideration are still very complex to
perform. On the one hand, this is due to the world to be acted in being inherently
continuous and uncertain, but, on the other hand, it also results from different actions
often occurring with different parameterization in different contexts.

To examine how much variation the domain-relevant action verbs exhibit, we ana-
lyzed the 53,000 instructions with respect to their parameterization given by syntactic
relations such as the object acted on as well as prepositional relations that modify the
respective action verb, such as ‘with’, ‘from’, ‘to’, ‘into’ relations and the like. These
relations can have different meanings in different contexts and hence it is crucial to
be able to resolve their meanings in order to understand and execute the respective
action proficiently.

The dimensionality of each action verb configuration has been reduced by applying a
semantic clustering technique to these parameterizations on the objects referred to in
the respective relations. As a distance measure between concepts, the WUP similar-

65

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

Relation Flipping | Cutting | Adding | Filling | Stirring
dobj 65 499 1200 188 166
prep_with 12 28 58 162 36
prep_on 2 34 42 3 4
prep_into 3 139 77 24 48
prep_onto 8 1 14 1 1
prep_to 2 26 460 24 18
prep_from 0 46 18 3 4
prep_through 1 31 4 o] 8

Table 3.2: Sizes of clusters that have been obtained by semantically clustering the preposi-
tional relations of action verbs.

ity (Wu and Palmer, 1994) has been applied to these symbolic, relational arguments.
The corresponding word senses (i.e. concepts in the WordNet class taxonomy) have
been determined first by the importer for NL instructions from Tenorth et al. (2010).

Figure 3.3 exemplarily shows a taxonomy of the action verb ‘Flip’, which has been au-
tomatically generated by recursively applying the semantic clustering algorithm to the
arguments of the syntactic relations in the entire set of ‘flipping’ instructions. It can be
seen that our procedure generates a steep taxonomy of different action configurations
for the action verb ‘Flip’, which reasonably reflects different types of that action.
As an example, consider the generalization of FlippingPancakeWithInstrumentality,
which is highlighted in yellow.

Table 3.2 shows the cluster sizes for relations with respect to five of the 15 most
frequent action verbs. For example, the action ‘stirring’ appears with 166 different
direct objects (denoted by the dobj relation), and 36 different words connected to
stirring via a prepositional ‘with’ relation (denoted by the prep with predicate).

The variation of prepositional arguments among action verbs varies a lot. Although
flipping is one of the most frequent actions in the data set with more than 700
occurrences, there are only 65 different direct objects that the flipping action is
performed on. Adding’, by far the most frequent action, has more than 1,200 distinct
direct objects. As the introductory exemplary recipe for pancake making also suggests,
adding is a very generic action that comes with very different parameterization and
can be executed in many different ways or even must be achieved in a very particular
way, depending on the current context the action takes place in. On the other hand,
adding eggs to a dough, adding egg yolks to a dough or adding a spice to a dough all
require different execution.

66

3.4. Conceptual Framework

The study on domain-specific action verbs shows that a large number of complex ev-
eryday household activities conducted by humans can be broken down to a relatively
small number of elementary actions. It therefore gives us grounds to assume that the
household activities are indeed not closed with respect to their elementary building
blocks of instructions, but their parameterization allows a great combinatorial variety
of whole instruction sheets.

The study thus also supports the introductory thesis that robots supposed to perform
everyday activities with the same ease as humans do, need to have a substantial body
of knowledge about how to execute the single actions involved. With implementing
robot control plans for the most important action verbs we reported on above, we
expect that we can cover a wide range of everyday household activities that can be
performed by our robots.

3.4 Conceptual Framework

Executing NL instructions in the way they are meant often requires robots to infer
missing, and disambiguate given information, which requires a large body of common
and common-sense knowledge. In this section, I conceptually describe PRAC, a
framework for learning of and reasoning about action-specific probabilistic knowledge
bases. In PRAC, knowledge about actions and objects is compactly represented in
first-order probabilistic models, which are used to learn joint probability distributions
over the ways in which instructions for a given action verb are formulated. These
joint probability distributions are then used to compute the plan instantiation that
has the highest probability of producing the intended action given the NL instruction:

“neutralize 75ml
argmax P | intended(plan) : 3.1)
plan of hydrochloric acid”

To solve this inference task, PRAC is equipped with a joint probability distribution over
the action roles source, destination, the object acted on, the tool to be used, etc. for
each action verb. To this end, I introduce the notion of action cores, conceptualizations
of action verbs that represent formal specifications of actions and their parameters.
Action cores are intended to interface executable robot plans on a symbolic, linguistic
level. The resulting probabilistic first-order knowledge bases of actions and their
respective roles are called Probabilistic Action Cores (PRAC).

67

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

Neutralize
ActionCore
Chem. Compound 'S-a— UnitOfMeasure
Is-a i

AcidSubstance Part-1

Substance-1

ActionCore-1 Neutralization ’MY‘ Adding AchievedBy Pipetting

AlkalineSubstance Part-2 Substance-2

Chem. Compound iS-a—< Base }-—is-a— sodium_hydroxide.n.01

(an action

(type [use-pipette)

(from (an object
(type container.n.01l)
(contains (some stuff (type |sodium hydroxide.n.01)))))

(to (an object
(type container.n.01)
(contains (some stuff (type
(amount (a quantity (type

(number

Figure 3.4: Fragment of a semantic reasoning process about executable refinements of the
instruction “neutralize 10 ml of hydrochloric acid.” The instruction is refined to a pipetting
action, which is used for instantiating the attached use-pipette plan schema with inferred
knowledge. The instantiated plan schema can be sent to the CRAM plan executive for
execution.

An interpretation of a natural-language instruction is defined as the most probable
instantiation of a plan schema with all of its parameters assigned. The process of
instantiating a plan schema is illustrated in Figure 3.4. The graph shows a fragment
of a semantic network of relations and entities, which might be a representation of a
reasoning process about the instruction “neutralize 10 ml of hydrochloric acid.” The
original Neutralizing action is being refined to an Adding and eventually to a Pipetting
action, and the inferred knowledge about given (hydrochloric acid) and missing
(sodium hydroxide) substances and the amount specification is filled into the free
slots of a plan schema attached to the Pipetting action. Instruction understanding can
in turn be realized by retrieving the plan corresponding to the action required by the
instruction and by constraining its parameterization accordingly to the instruction.

This formulation of the problem of instruction interpretation is elegant and general
because by performing the inference task on a joint probability distribution over
action instructions we can at the same time infer the plan that is most appropriate for
performing the instruction, the refinement of the parameters of the plan schema on

68

3.4. Conceptual Framework

the basis of the information given in the instruction, and automatically fill in missing
parameters by inferring their most probable value from the distribution.

One of the core concepts in PRAC is that it is connected to the WordNet dictionary,
which provides a rich taxonomy of word meanings. The use of WordNet has two
essential benefits: First, as already mentioned, it provides the ontological groundwork
for unambiguous representations of activity models as every concept in its taxonomy
has a distinct, well-defined semantics. Second, a taxonomy like WordNet enables to
establish analogies across concepts and thus allows to transfer knowledge from one
concept to an unseen one by exploiting the semantic similarity of the two.

For the purpose of this thesis, I assume that robotic agents are equipped with a plan
library that contains parameterizable plans for actions, which have to be refined and
instantiated according to a given instruction. I call such symbolic interfaces to robot
plans plan schemata. A plan schema is a generic, parameterizable implementation
of an elementary action which is executable and guaranteed to produce meaningful
behavior on a robot. Note that ‘meaningful’ does not necessarily mean ‘successful’
in the sense that its execution always results in the desired outcome. It is rather to
be understood as ‘intentional’ or ‘goal-directed’ in the sense that there is a rationale
behind its behavior which can be reasonably explained. As an example, consider a
generic action such as pipetting liquids from a container into some other container.
The signature of a respective plan schema might look as follows.

use-pipette(from :default (an object
(type container.n.@1)
(contains (|Pipetting Source))
amount :default (|Pipetting Quantity)
to :default (an object
(type container.n.@1)
(contains ((Pipetting Destination)))),

The plan schema has three formal parameters from, to and amount that specify the
source container from which the substance to be transferred by a Pipetting action
is to be aspirated and the goal container where the substance is to be released to.
amount specifies the amount of this substance. Plan schemata may reside on different
levels of abstraction and complexity of actions. They may represent very elementary
actions such as grasping an object or putting an object down, or more complex
manipulation skills like using a tool like a knife or appliances like a tap. The degree
of complexity and generality a plan schema can exhibit is very task dependent and
needs to be determined by the engineer who is designing it. In general, plan schemata

69

€l

Plan Schemata

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

should be as generic as possible to be applicable to a broad range of situations and as
specific as necessary to still be able to make commitments to certain effects of the
action. A plan schema has slots that are free for individual parameterization. In the
above example, the type of substances from the source and destination containers
as well as the quantity of the substance to be transferred (highlighted in gray) can
be retrieved from the respective action roles attached to the abstract concept of a
Pipetting action.

3.41 Reasoning Tasks

The ultimate goal of PRAC is to resolve ambiguity and to complete an instruction
to the most plausible action specification based on what is given by the instruction.
In the following, I will illustrate the anticipated usage of the PRAC distribution by
means of three simplified exemplary queries.

Action Role Assignment PRAC can be queried for the most likely assignment of roles for
a given set of objects with respect to a particular action core. Consider an instruction,
such as “add a drop of sodium hydroxide.” In order to generate a mathematical
formulation of the problem of computing the most probable role assignment, we
introduce two symbols 0; and oy denoting two words ‘drop’ and ‘sodium hydroxide’
mentioned in the instruction. They are assigned the word senses drop.n.02 and
naoh.n.01 in the WordNet upper ontology, respectively. In context of an Adding
action, the PRAC distribution can be queried for the most probable assignment of the
action roles attached to Adding. Assuming that there are three action roles attached
to Adding, namely Quantity, NewMember and Group, such a query can be formulated
as

Quantity(o},Adding), is_a(oy. drop.n.02) 0] = o1,
argmax P| NewMember(o,,Adding),| .~ (L h '01)’ oh =02,
Lo is_a(og, naoh.n.
o003 €lor 02 4} Group (o}, Adding) —Hoz oy =1

where 1 denotes no assignment. In this example, the Quantity role was assigned
to the object of the type drop.n.01, the NewMember role to the object of the type
naoh.n.01 and the Group could not be assigned any of the objects mentioned in
the instruction. Note that this arg max solution is not a proper interpretation of the
instruction in the notion from above, because there is no Group specified.

70

3.4. Conceptual Framework

Action Role Completion In order to fill missing role assignments such as the Group
in the previous example, one can solve for a different arg max query. Consider the
instruction “neutralize the hydrochloric acid” and suppose the word of the type
hcl.n.01 has already been assigned the role AcidSubstance of the Neutralizing action
core analogous to the previous example. According to its definition, there must be the
role AlkalineSubstance assigned to some concept, which is not given in the instruction.
In order to infer its role assignment, a Skolem constant s can be introduced, which
hypothetically fills the missing role slot of AlkalineSubstance. Since the taxonomy
relation of the PRAC dictionary is included in the distribution, one can query for the
most probable type of s:

is_a(hcl, hcl.n.01),
argmax P| is_a(s,c) | AcidSubstance(hcl,Neutralizing), |= naoh.n.01,

T AlkalineSubstance(s, Neutralizing)

which means that sodium hydroxide (NaOH) is the most probable alkaline counter-
part for Neutralizing hydrochloric acid (HCI).

Joint Distributions Over Taxonomies One of the key features of PRAC is the ability to
perform reasoning about unmodeled concepts, i.e. concepts that have not been seen
during learning and in turn are not present explicitly in any probability model. This
enables (1) a compact representation of knowledge, (2) efficient transfer of the learnt
knowledge to new situations and (3) filling missing information pieces in under-
determined action specifications. Figure 3.5 shows two examples of conditional
distributions over concepts in an excerpt of the WordNet taxonomy for potential slot
fillers of the AlkalineSubstance and Amount roles of a Neutralizing action: From all
concepts, non-acidic specializations of chemical compounds gain highest probability
for the AlkalineSubstance. Analogously, subclasses of the unit_of measurement.n.01
concept represent the most likely Amount specifications. For PRAC maintains joint dis-
tributions over the action roles and concepts from the PRAC dictionary, any conditional
distribution can be computed given any evidence, which enables context-sensitive
completion of actions like in the previous example. PRAC is even able to assign
probabilities to concepts that are not explicitly represented in symbols in a proba-
bilistic KB. To this end, I have developed Fuzzy-MLNs, a reasoning framework that
extends MLNs by the concept of semantic similarity in taxonomies. FUzzy-MLNs are
presented in detail in Chapter 4.

71

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

entity.n.01

abstraction.n.06 physical_entity.n.01

unit_of_measurement.n.01 ‘ substance.n.01 ‘ substance.n.07 || test_tube.n.01

A A N TN

metric_unit.n.01 ‘ compound.n.02 liquid.n.01 food.n.01 ‘ nutrient.n.02 ‘ bottle.n.01 ‘ dish.n.01 ‘

artifact.n.01

N

crockery.n.01 ‘

container.n.01 ‘

small_indefinite_quantity.n.01 ‘

drop.n.02 ‘ ‘ morsel.n.01

volume_unit.n.01 ‘

‘mecrxc,capacny,unit.n.o1 ‘ lnl(ra(e.nm caustic.n.01 lhydroxlde.nm l |base.n.1o| acid.n.01 % petri_dish.n.01
liter.n.01 ‘ ‘ milliliter.n.01 ‘ silver_nitrate.n.01 ‘ |Iye.n.01 | |pyr|dlne.n.0| | limidazole.n.m l dibasic_acid.n.01 ‘ }hydmch\oricﬁacid n.01 ‘

sodium_hydroxide.n.01

(a) Distribution over the WordNet taxonomy given the AlkalineSubstance action role.

entity.n.01

abstraction.n.06 physical_entity.n.01

part.n.01 matter.n.03

artifact.n.01

‘smallJndeﬁnlleguanmy,nm‘ |un|(_of_measuremem.n.01| substance.n.01 ‘ substance.n.07 || test_tube.n.01 H container.n.01 ‘ ‘cruckeryvnm ‘
A N RN
drop.n.02 ‘ ‘ morsel.n.01 ‘ ‘volume_uni(.n.m ‘ ‘metﬂc_unlt.n.m ‘ compound.n.02 liquid.n.01 ‘lood n.01 ‘ nutrient.n.02 ‘ ‘ bottle.n.01 ‘ ‘dlsh,n,m ‘
‘ metric_capacity_unit.n.01 ‘ nitrate.n.01 caustic.n.01 hydroxide.n.01 base.n.10 water.n.06
1 i
‘ liter.n.01 ‘ ‘ milliter.n.01 ‘ silver_nitrate.n.01 ‘ ‘ Iye.n.01 ‘ pyridine.n.01 ‘ ‘ imidazole.n.01 ‘ ‘dibasic,acid n.01 ‘ }hydrcch\oricﬁacid n.01 ‘

sodium_hydroxide.n.o1

(b) Distribution over the WordNet taxonomy given the Amount action role.

Figure 3.5: Posteriors distributions over the taxonomy conditioned on action roles of a
neutralization action. More intense node colors indicate higher probability.

3.4.2 System Architecture

The PRAC framework for translating NL instructions into abstractly parameterized
robot action plans is depicted in Figure 3.6. Its main components are the PRAC plan
library, the PRAC knowledge base, the PRAC howto library and the PRAC dictionary. In
a nutshell, the roles of these components are the following ones.

PRAC Dictionary The PRAC dictionary provides all possible meanings of all words
that can occur in an NL instruction to be executed by a robot. The meanings are
concepts in an ontological knowledge base defined in the online dictionary WordNet,
which comprises more than 117,000 concepts. For example, the possible meanings
of ‘cup’ in the PRAC dictionary include a specialization of a physical object and,
more specifically, a container object, an amount specification, and a trophy (see also

72

3.4. Conceptual Framework

Table 3.4).

PRAC Knowledge Base The PRAC knowledge base contains a collection of action verb-
specific knowledge bases, called action cores, that represent how possible action
configurations for a given action verb can be constructed on a conceptual level.
For example, a Pouring action can be formalized on a conceptual level in terms
of conjunctions of logical assertions over the predicates action core(a, Pouring),
Theme(a, t), Source(a, s), Destination(a, d), etc. The assertion Theme(a, t) states that
the theme of action a is of the type t, i.e. the entity which is poured. The parameters
t, s and d are concepts in the PRAC dictionary, while a denotes the action under
consideration.

Probabilistic Action Cores Action-specific knowledge bases are then trained with a
set of instructions stated in first-order logic in order to learn a joint probability
distribution over predicate instantiations, which is induced by the given set of
instructions. These distributions are called the Probabilistic Action Cores (PRAC).
The learned distributions represent correlations between the concept restrictions of
the parameters in instructions with respect to an action verb. For example, the PRAC
of the Pouring action core could entail that if the Theme of a pouring action is the
concept wine.n.01 then it is likely that the Source for the pouring action will be an
instance of the concept bottle.n.01 and the Destination will be an instance of the
concept glass.n.02. Conversely, if the Theme is of the concept water.n.06, then the
Source is more likely to be a water_faucet.n.01.

PRAC Howto Library The PRAC howto library is a database containing a large amount
of semantically annotated documents from any source of knowledge. The howtos
might be mined from web pages containing recipes like the wikihow.com web page,
but also text books (e.g. for basic chemical experiments), user manuals for operating
devices (e.g. how to operate a microwave oven) or commands put in by a human
user (e.g. “I take my coffee with milk and sugar.”) are imaginable. The howto library
serves as a data corpus for analogical reasoning, which allows instruction completion
to be more efficient than purely probabilistic approaches. When an incomplete
instruction is encountered, PRAC searches in the howto library for the most similar
instructions and uses them as a blueprint for the completion of the missing roles. As
no re-learning of the probabilistic models is required, this instance-based learning
approach also allows learning from only one exemplar (so-called ‘one-shot’ learning).

PRAC Plan Library Finally, the PRAC plan library contains action specific plans and
their schemata. PRAC plans are equipped with plan signatures following the ‘design-

73

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

" PRAC Knowledge Base i i
Plan Library g PRAC Learning and Reasoning
R
r
; ic Reasoning
r Action Core: Neutralizing
pour- fron-container (from :default (an object = - Action Role:
tl Ct i - Action Role: AlkalineSubstance * *
contains (Source Pourin g , :
amount :default (Quantity Action Role: Achievedsy ==
I Action Core: Pouring
use-pipette(from :default (an object - Action Role: Source *
(type Container - Action Role: Destination
(contains (Source Pipetting))) - Action Role: Quantity =1 I
amount :default (Quantity Pipetting) — . —
to :default (an object Action Core: Pipetting TS| c
(type container - Action Role: Source Analogical Reasoning PRAC Instructions .
(contains (Dest Pipetting))))) ||} - Action Role: Destination B =

- Action Role: Quantity

dobj

amount :default (Quantity OperatingATap)) - Action Role: NewMember
- Action Role: Group

- Action Role: Quantity -

- Action Role: AchievedBy H PRAC Howto Library

f'a
RV i 0 e)

operate-tap(to :default (Dest OperatingATap) |jAczjun Core: Adding 1 ‘”

amount :default (Quantity UsingSpicelar))

use-spice-jar(to :default (Dest UsingSpiceJar) HH

Figure 3.6: Key components of the PRAC framework and their role in inferring the most
probable executable instruction.

by-contract’ principle: The plan signature specifies the formal parameters of the plan,
the concept restrictions for each parameter and how the respective plan parameter
can be computed from the PRAC knowledge base. An example of such a plan signature
has already been given above in the form of the use-pipette plan schema.

Reasoning The probabilistic first-order knowledge base over semantic networks for
solving inference problems of the form shown in Equation (3.1) has an enormous
size. It contains at least the cross product of all possible word meanings squared and
roles where the set of the possible word meanings include all possible meanings of
the words that occur in the training data plus the number of their superconcepts in
the taxonomy. To make the reasoning problem feasible we decompose it into three
weakly connected subproblems and generate the probabilistic knowledge bases for
each substep independently to keep the knowledge bases as small as possible: (1)
inferring the relevant PRAC, (2) disambiguation and role assignment and (3) inferring
missing information pieces and refinements of action cores and their associated roles.
Using the components of the PRAC system introduced above, the computational
process for computing the most probable executable instruction operates as follows:
In a first step, a given natural-language instruction : is translated by a natural-
language parser NL-PARSE into a logical representation of the instruction’s syntactic
structure I, which I call a PRAC instruction. The PRAC instruction I is then interpreted
by inferring the meaning and semantic role of the individual syntactic structures
and missing information pieces using the PRAC dictionary, the PRAC howto library
and the action core itself. This interpretation process results in the most probable
executable instruction of 1. Starkly simplified, reasoning in PRAC about the most
probable interpretation of an NL instruction : is implemented by the following multi-
step composition of database transformations by means of probabilistic relational
inference:

74

3.4. Conceptual Framework

Predicate Meaning

det(wy, w) ws is the determiner of wy

dobj(wy, wy) wy is the direct object of w,

advmod(wy, w») wy is an adverbial modifier of ws

prep_with(wy, wo) wy and w» are connected by the preposition ‘with’
prep_from(wy, wo) w; and w, are connected by the preposition ‘from’
prep_to(wy, w) wy and w» are connected by the preposition ‘to’
nn(wy, ws) w» and wy, form a compound noun

has_pos(w, p) p is the part-of-speech of w

Table 3.3: Selection of logical predicates representing the syntactic structure of words in a
sentence. A comprehensive list can be found in de Marneffe and Manning (2008)

argmaxP| Ry

missing
Ry,

argmaxP(AlI)) , (3.2)
A

argmax P (R Agiven

missing RAgiven

where I = NL-PARSE(:) is a PRAC instruction representing the syntactic structure of
the NL instruction returned by NL-PARSE. A denotes the action core referred to by
the instruction, Ry, are the action role assignments of A given in I, and Ry, are
the action roles of A which do not have a correspondence in I.

In the remainder of this section I will describe in greater detail the concepts and
components that the learning of and reasoning about probabilistic action cores is

built upon. Section 3.5 addresses the reasoning pipeline in PRAC.

3.4.3 PRAC Instructions

A PRAC instruction I is a set of assertions about the grammatical relations refer-
ring to the constituents of a NL instruction and their syntactic structure. These
grammatical relations are represented by predicates including the small selection
listed in Table 3.3. They are obtained for any sentence in natural language by a
parser like the Stanford parser (De Marneffe et al., 2006). Using these predicates,
a natural-language instruction such as : = “neutralize the hydrochloric acid with
sodium hydroxide”, for example, is transformed into the logical assertions I,

75

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

dobj(neutralize-1, acid-4) has_pos(neutralize-1, VB)
det(acid-4, the-2) has_pos(acid-4, NN)

nn(acid-4, hydrochloric-3) has_pos(hydroxide-7, NN)
nn(hydroxide-7, sodium-5) has_pos(sodium-6, NN)
prep_with(neutralize-1, hydroxide-7), (3.3)

which we denote by NL-PARSE(:). These syntactic dependencies indicate that the
second word ‘the’ depends on the fourth word ‘acid’ as a determiner, ‘hydrochloric’
and ‘acid’ represent a compound noun, which forms the direct object of the word
‘neutralize’, which is connected to the word ‘hydroxide’ via the preposition ‘with’. The
logical assertions representing the syntactic structure of the instruction thus form a
relational database that can serve as evidence in a probabilistic relational model as
indicated in Equation (3.2). For a more detailed and exhaustive description of the
syntactic dependencies, I refer to de Marneffe and Manning (2008).

The syntactic information about an instruction can carry strong evidence for un-
derstanding NL action specifications. Prepositional relations, for instance, but also
the order of words in an instruction can have strong influence on its semantics.
For example, in the instruction represented in (3.3), the prepositional relation with
indicates that the sodium hydroxide can fill the action role of the Neutralizer for the
hydrochloric acid, which in turn is the Neutralizer. However, the syntax alone is
insufficient for robustly determining an object’s role in an instruction. For example,
in the instruction “flip the pancake with a spatula,” whose parse is given by

det(pancake-3, the-2) dobj(Flip-1, pancake-3)
det(spatula-6, a-5) prep_with(Flip-1, spatula-6),

the preposition ‘with’ rather denotes an instrumental relationship between the action
flip and the subsequent word spatula. Other prepositional relations, such as ‘into’,
‘onto’, ‘from’ or ‘off’, however, indicate Goal and Source relations in instructions like
“Fill a cooking pot with water from the tap.” As the syntax alone does not carry
sufficient information for a competent NL interpretation, in PRAC, the syntax of an
instruction is only taken as evidence for semantic probabilistic reasoning. PRAC in
turn does not rely on a correct parse, for it considers these relations just as evidence
features and systematic errors of a parser could be incorporated in the learned model
P(A|D.

76

3.4. Conceptual Framework

entity.n.01
A

abstraction.n.06

physical_entity.n.01 ‘

artifact.n.01

lmatter.n.03 lpart.n.l)l‘ containerful.n.01 ‘

— 1

substance.n.07 cup.n.02

tableware.n.01 substance.n.01

bowl.n.04

spoon.n.02

cutlery.n.02 ‘ container.n.01 ‘ crockery.n.01 ‘ liquid.n.01 nutrient.n.02
/ | \\K\ | |
spoon.n.01 g\ass.n.OZ‘ cup.n.01 ldish.n.ol‘ dairy_product.n.01 ‘ soup.n.01 beverage.n.01
/ ¥

lbowl.n.OB‘ lmilk,n,ol‘ coffee.n.01

Figure 3.7: Excerpt of the WordNet upper ontology showing three major taxonomic areas:
physical objects like containers (cf. bowl.n.03) and substances (cf. milk.n.01) abstract units
of measure (cf. bowl.n.os)

water.n.06

3.4.4 PRAC Dictionary

Words can have multiple meanings causing ambiguity in NL instructions. Consider,
for example, the terms ‘cup’ and ‘milk’ and their meaning in the two instructions
“fill a cup with milk” and “add a cup of milk.” In the former case, ‘cup’ refers to
a drinking mug, a physical object that can hold milk. In the latter case, it rather
denotes a measurement unit specifying the amount of milk to be added. Though
this semantic difference may seem subtle, correctly distinguishing between word
meanings is crucial for successfully performing the actions.

The PRAC dictionary is a set of logical assertions that assign meaning, i.e. word senses,
to words. It is filled with word senses, so-called ‘synsets‘, from the online dictionary
WordNet. A selection of possible meanings of the noun ‘cup’ is given in Table 3.4,
a more comprehensive selection of synsets can be found in Appendix B. The word
senses are organized in a taxonomy given by a directed acyclic graph, which we
denote by the relation C, i.e. ¢1 C ¢y denotes that the concept ¢; is a specialization
of concept cp. Given a word and its part of speech, the possible word meanings can
be obtained from WordNet.

In the PRAC dictionary, a word w is assigned a particular meaning s by means of a set

77

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

Concept Name Definition

cup.n.o1 a small open container usually used for drinking; usually
has a handle (“he put the cup back in the saucer”; “the
handle of the cup was missing”)

cup.n.o2 cupful, the quantity a cup will hold (“he drank a cup of
coffee”; “he borrowed a cup of sugar”)

cup.n.os cup-shaped plant organ

cup.n.o8 a large metal vessel with two handles that is awarded as

a trophy to the winner of a competition (“the school kept
the cups is a special glass case”)

Table 3.4: Selection of different meanings of the word ‘cup’ obtained from WordNet.
of atomic logical assertions

has_sense(w,s) and

is_af(s,c).

where has_sense(w, s) states that the word w has the sense s and the is_a predicate
connects the sense s to a concept in in the WordNet dictionary C. It is important
that the word sense s is a first-class object and words are not just directly assigned a
concept using the is_a predicate. This reification allows to reason about the uncertain
sense assignment has_sense and at the same time specify similarities of one word
sense to multiple concepts using is_a. In Chapter 4, I will motivate this modeling in
more detail in context of fuzzy Markov logic network (Fuzzy-MLN) inference and
reasoning about unmodeled concepts.

3.4.5 PRAC Knowledge Base

The PRAC knowledge base is the central component of the PRAC system. It contains a
library of data structures, which I call action cores. An action core is the conceptualiza-
tion of an action which constitutes an abstract event type and assigns an action role
to each entity that is needed in order to successfully perform the respective action.

Fillmore (1976) provides conceptualizations of actions that consist of an action
definition (so-called frames) and a set of associated roles (so-called frame elements)
that represent the parameters of a respective action in context of the FrameNet
initiative. An action itself is represented as an abstract concept and specific action

78

3.4. Conceptual Framework

verbs represent instances of these concepts. As an example, consider the definition of
the action concept MovingInPlace, which is defined in FrameNet as follows:

“A Theme moves with respect to a fixed location, generally with a certain Periodic-
ity, without undergoing unbounded translational motion or significant alteration of

configuration/shape.” — (International Computer Science Institute, 2017-02-22)

Possible instances of this abstract event are given by the action verbs Rotate, Shake,
Spin, Twirl, Flip, Turn around etc., which share the same action parameters, such as
the Theme undergoing a non-translational motion, the FixedLocation or the Periodicity
of the motion. Table 3.5 shows definitions of a selection of roles attached to the
MovingInPlace event. In PRAC, action cores adopt the idea of frames in FrameNet but
extend them by several components:

1. the joint probability distributions over the arguments of frame elements (or
rather action roles)

2. the use of a dictionary and deep upper ontology assigning senses to words

3. the connection of action cores to executable robot plan schemata.

More formally, an action core AC is defined as a tuple (A, R), where A is the globally

4 is an indexed set of its associated

action roles. For an interpretation x of a PRAC instruction I, the following holds:

unique name of the action core and R = {r4,}

na
action_core(x,A) — Jc1,...,cn, /\ ra;(ci,A), ¢, €T (3.4)
i=1

The right side of the implication in (3.4) ensures that every instantiation of an
action core must have a complete assignment of its action roles to concepts in T,
otherwise it is not an instance of the action core. However, being able to assign
all roles of an action core does not imply that it must have an instance in x. It is
important to note that in PRAC, the domains of action roles and their corresponding
parameter slots in the plan schemata are given by the set T of all concepts from the
ontological knowledge base in the PRAC dictionary. Equation (3.4) defines the space
X of possible interpretations of an instruction. A graphical representation of one
particular interpretation of the instruction “neutralize 75 ml of hydrochloric acid”
is shown in Figure 3.4: There are instances of the three action cores Neutralizing,
Adding and Pipetting with their respective roles assigned to a concept representing the
process of causing a chemical substance to take a neutral pH-value by combining it

79

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

Role Definition

Theme A physical entity that is participating in non-translational
motion.

FixedLocation The point or set of points that define the limits of motion
for the Theme.

Angle The amount of rotation that the Theme undergoes

Periodicity The number of times the Theme returns to a state in a
given duration.

Direction The direction of rotation of the Theme.

Place The location where the bounded motion happens.

Time The time at which the Theme is in bounded motion.

Table 3.5: Role definitions for the Action concept MovinglnPlace

with some other substance. For the chemical reaction itself, there must always be two
components reacting, an acid and a base. The corresponding action core Neutralizing
thus is attached two action roles, AcidSubstance and AlkalineSubstance. This ensures
that all symbols have the same semantics across the different components of PRAC, the
syntactic representation in the PRAC instructions, the semantic action representation
of action cores as well as the plan schemata. The set of action cores and the above
definition of an interpretation can thus be regarded as a template for constructing a
graphical model of interpretations like the one in Figure 3.4.

There is an action core for every verb in the PRAC dictionary that represents a
meaningful action. However, there are action cores that do not have a direct corre-
spondence to a plan schema because they do not represent actions that are directly
executable but are subject to further reasoning. Neutralization is an example of such
an action core: It is not an executable action as such, but rather describes a chemical
process that is triggered by Adding one substance to the other. Adding itself is an ac-
tion core representing the process of making a new member part of an existing group.
It has three action roles, namely the Group, the NewMember and the Quantity. The
Adding action core, however, also represents a process that can be achieved in very
different ways depending on the context and the objects involved. For example, “add
one liter of water” could be achieved by using the tap or pouring from one container
to the other, whereas “add one milliliter of water” should be performed by using a
pipette. Conversely, “add a pinch of salt” can be done by using a salt cellar. Such an
action core A that does not have a direct mapping to an executable plan schema has
attached a designated action role AchievedBy(A, A’), which is assigned another action
core A’ representing the most likely refinement of the action represented by A. In

80

3.4. Conceptual Framework

Section 3.8, I will present in detail how such refinements can be computed in PRAC.

The goal in NL instruction understanding is to find the most probable interpretation
under the instruction given as evidence. Therefore, the PRAC knowledge base has a
probability distribution over all action cores and their action roles, conditioned on
the PRAC dictionary and the PRAC instructions, as depicted in Figure 3.6,

action_core(x, A) —
) .1 (3.5
de1, - ooseng N2 T4, (cis A)

I call (3.5) the Probabilistic Action Cores (PRAC). The PRAC is a first-order prob-
abilistic knowledge base about actions and their parameterizations that is used to
disambiguate, interpret, complete and refine NL instructions.

3.4.6 PRAC Howto Library

In order to draw on a large collection of instruction sheets that serves as a source of
knowledge, PRAC has a database of semantically indexed recipes available, which
can be queried for instances of similar instructions that might contain valuable
information for action role completion. As an example, consider the instruction
“season the steak.” Browsing a large number of recipes may yield cues for most
likely seasonings for steaks in particular, or at least spices for similar dishes. For the
answers to all of such queries cannot be captured by purely probabilistic models, the
howto library enables PRAC to look up the answer to a query in a library.

For storing howtos semantically in a database, a recursive data model of a Frame
is defined as follows. As shown in Figure 3.8, the primary data structure of a
Frame consists of an identifier of the action core the Frame is connected with, and a
key/value store assigning words to action roles that are attached to the respective
action core. It is important to note that at this point, the role assignment is not
required to be complete, it is even allowed to be empty. Furthermore, a syntactic
representation of the instruction the respective frame has originated from is stored,
which consists of a table mapping syntactic relations to pairs of words in a sentence.
The representation of a Word, on the other hand, consists of an ID that identifies the
word uniquely in an instruction, a lemmatized version of the word, its part-of-speech
tag, as well as its word sense. The word sense is a pointer to a synset in the PRAC
dictionary.

Using this definition of the Frame data structure, a Howto can be defined as a

81

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

Dependency
0,..¥ ; i 2
DependencyStore O—relatlon: string
P R wordl: Word >
word2: Word
1
1
Frame
Synset
Howto
(]_
actioncore: string
actionroles: ActionRoleStore steps: Frame(]
syntax: DependencyStore <A
1
Word
1 ActionRole
id: string
0. .) lemma: string
ActionRoleStore k>—" actionrole: string Oisense: Synset
wvalue: Waord pos: string

Figure 3.8: The data model used to store semantically annotated howtos in the PRAC howto
library.

specialization of a Frame, which extends it by a sequence of Frames representing
a sequence of subactions the respective Frame can be equivalently replaced by. A
Howto thus is a Frame consisting of a sequence of subframes subsuming it. This
model of semantic action representations naturally corresponds to howtos, recipes,
instruction sheets, or manuals, which have a title representing a higher-level task,
such as ‘how to make an Italian dinner’, and finer-grained step-by-step instructions
that are to be performed to achieve the high-level goal, e.g. ‘set the kitchen table
for two persons,’ ‘make a salami pizza,’ or ‘serve some wine.’ It is worth mentioning
that — like in the previous example — the single instruction steps are not required
to be directly executable by a robot. On the contrary, the subframes are allowed to
reference other Howtos. This recursive definition allows to compose new Howtos by
stacking together existing ones. In Section 3.5.1, I present the PRAC-QUERY algorithm
that translates such recipes into fully instantiated, executable robot plans. There
may also be different subframe sequences for the same high-level action. This is
particularly useful to find alternative ways to achieve a goal if objects required in
one howto are not available in the environment or the agent is physically or mentally
not capable of performing single action steps. In such cases, an alternative action
sequence can be retrieved from the library.

In the current implementation of PRAC, the MongoDB (Chodorow and Dirolf, 2010)
database is used as the backbone of the howto library. The basic idea is to fill the

82

3.4. Conceptual Framework

database with representations of huge amounts of step-by-step instructions to be able
to efficiently issue semantic queries to it. In the current implementation about 8,400
recipes in natural-language have been mined and imported from the wikihow.com
website, comprising more than 103,000 instruction steps in total. The procedure for
semantically indexing and storing the data in the database is described in more detail
in Section 3.6.

Having defined the data model for storing howtos semantically indexed, queries
about action specifications can be issued, such as “what are possible utensils for
flipping a pancake?”, i.e.

I actionroles.nstrument.sense | O I (praC.hOWtOS) s (3.6)
actioncore=Flipping A

actionroles. Theme.sense=pancake.n.01

or “what are possible seasonings for a steak?”, i.e.

(prac.howtos) |, 3.7)

actionroles. Theme.sense=steak.n.01

Hactionroles.Spice.sense o . .
actioncore=Flavoring A

where the selection (¢) and projection (IT) operators from relational algebra have
been used. The query in (3.6) first selects from the collection howtos in the database
prac those Frames that have been indexed with the Flipping action core and whose
action role Theme is filled by a word with the word sense pancake.n.01. It then does
a projection of word senses filling the Instrument action role. A possible response
could be spatula.n.01. Analogously, (3.7) retrieves the word sense of words filling
the Spice role in those howtos with the Flavoring action core.

The primary assumption is that the answers are likely to be found among the several
thousands of instruction steps that we mined from the Web. A robot instruction like
“season the steak.” can thus be completed by issuing such a query to the database.
Section 3.8 describes in greater detail how the PRAC howto library can be used
to complete instructions and transfer knowledge by analogical reasoning to new
situations.

83

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

3.4.7 The PRAC Plan Library

The PRAC plan library contains action specific plans and their schemata. PRAC plans
are equipped with plan signatures following the ‘design-by-contract’ principle: The
plan signature specifies the formal parameters of the plan, the concept restrictions
for each parameter and how the respective plan parameter can be computed from
the PRAC knowledge base. An example of such a plan signature has already been
given above in the form of the use-pipette plan schema. As another example, the
signature of the plan for a pouring action looks as follows:

pour-from-container(from :default (an object
(type container.n.@1)
(contains ((Pouring Source))
amount :default (/|Pouring Quantity)
to :default (an object
(type container.n.@1)
(contains ((Pouring Destination))))

The plan schema specifies that the from parameter has to be a specialization of the
concept container.n.01 and that it can be retrieved from the action role Source of the
action core Pouring in the PRAC knowledge base. Likewise, the amount parameter can
be obtained by querying for the Quantity.

It is required that all formal parameters of the plan are linked to roles in the respective
action core. By providing a plan signature, the designer of the plan guarantees that for
all plan refinements that satisfy the concept restrictions of the individual parameters,
executing the plan generates meaningful behavior. ‘Meaningful’ here means that the
plan generates behavior that makes sense but is not required to succeed. For a Pouring
action, for instance, the plan tells the robot to grasp the Source container, to hold it
above the destination and to tilt it. However, the execution of the parameterized plan
hazards failures caused by inappropriate motor control or inaccurate perception, such
as spilling the liquid because the container is held too high, off center, or the pouring
angle is too steep. This requires that all parameters needed to call sub-plans are
computed and none of sub-plan calls contains undefined parameters, which would
cause the control system to crash.

The plans themselves are considered as black boxes in PRAC reasoning. Plan execution
systems that can handle such qualitative, symbolic constraints on parameters include
reactive action packages (RAP) (Firby, 1989) and procedural reasoning system
(PRS) (Georgeff and Ingrand, 1989). If deeper reasoning about the ramifications

84

3.5. Learning and Reasoning in PRAC

of actions is necessary, the CRAM (Mosenlechner and Beetz, 2011; Beetz et al.,
2012; Mosenlechner, 2016) executive provides reasoning methods that translate
qualitative constraints into PROLOG queries that use sampling and backtracking to
find parameter instantiations satisfying these constraints. Kinds of such parameters
include e.g. action effects, visibility, reachability and the like. The problem of plan
design goes beyond the scope of this work and is therefore not further addressed in
this thesis.

3.5 Learning and Reasoning in PRAC

In this section, I will describe in more detail how learning and reasoning is performed
in the PRAC framework. I will depict the basic ideas of learning and inference in
PRAC, address challenges that arise and present a processing pipeline for performing
inference about interpretations and completions of natural-language instructions.

Learning through generalization Humans are capable of learning rapidly and flexibly
how to use different words in different situations by only having seen very few
examples. They have an efficient apparatus for generalization available, which allows
them to abstract away from a very small set of specific exemplars to more generic
patterns of everyday situations that they often encounter in their stereotypical form.
Consider the example of a ‘filling’ action. From hearing just a few specific instances
of that action verb, e.g., “fill a pot with water” and “fill a cup with milk”, humans are
capable of forming a stereotyped pattern like “fill a container with a liquid.” This kind
of generalization is both powerful and efficient since, on the one hand, it enables
compact representation of knowledge and on the other hand, it allows to treat new,
unseen examples in a meaningful way.

Inference through specialization Reasoning about new, unseen situations is done by
selecting one or more generic patterns that best fit the new situation and by adapting
them to reality as necessary in order to come up with an instantiated representation
which is as specific and unambiguous as possible. In the example from above, an
instruction like “fill a glass with juice,” for instance, is matched against the generic
‘filling’ action and is adapted accordingly by inspecting the conceptual subsumption
of the terms ‘juice’, which corresponds to the liquid being poured and ‘glass’, which
constitutes the goal container of the filling action.

PRAC implements these two paradigms in a coherent probabilistic framework, which

85

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

entity.n.01

abstraction.n.06 ‘ | physical_t emi(y n.o1

containerful.n.01 pan n.01 matter.n.03

bowl.n. 04 cup.n. 02 substance.n.! 01 substance.n.! 07

. et o
dish.n.m‘

liquid.n.01
beverage.n.01 ‘ foodstuff.n.02 | soup.n.01 |

‘ batter.n.02 ‘ ‘dairy_product.n.m ‘ flavorer.n.01 bowl.n.03

salt.n.02 ‘

artifact.n.01
tableware.n.01

crockery.n.01

spoon.n.02

container.n.01 cutlery.n.02

cup.n.01

| water.n.06

glass.n.02 ‘ spoon.n.01 ‘

sauce.n.01 ‘

pepper.n.03 ‘

(a) Posterior distribution over the taxonomy conditioned on the Goal role of a Flavoring

action.

abstraction.n.06 ‘ ‘ physical_¢ emily n.01

containerful.n.01 part n.o1 matter.n.03

bowl.n. 04 cup.n. 02 substance.n.! 01 substance.n. 07

/ /\

liquid.n.01

artifact.n.01
tableware.n.01

crockery.n.01

spoon.n.OZ

container.n.01 cutlery.n.02

water.n.06 beverage.n.01 ‘ foodstuff.n.02 soup.n.01 ‘ cup.n.01 dish.n.01 ‘ gIass.n.OZ‘ spoon.n.01 ‘
batter.n.02 ‘ dairy_product.n.01 ‘ |flavorer.n.01 | bowl.n.03 ‘
sauce.n.01 ‘ | salt.n.02 | pepper.n.03 |

(b) Posterior distribution aver the taxonomy conditioned on the Spice role of a Flavoring
action.

Figure 3.9: Posteriors distributions over the taxonomy conditioned on action roles of a
seasoning action. More intense node colors indicate higher probability.

automatically finds abstractions of common situations as illustrated in the above
examples by exploiting the semantic similarities of concepts in the taxonomy graph.
These abstractions reasonably reflect human intuitions of how specific terms are to
be used in certain situations. These principles of abstraction and generalization from
examples also constitute cornerstones of human cognition (Tenenbaum et al., 2011;
Bailey, 1997; Minsky, 1974).

As an implementational framework, PRAC uses MLNs to encode the knowledge about
action cores, their action roles, the PRAC dictionary and the PRAC instructions. The
knowledge bases are learnt from few hand-labeled instances.

86

3.5. Learning and Reasoning in PRAC

"Make an Italian dinner"

{actioncore: Cooking,
0ObjToBeCooked: dinner.n.01}

"Set the table" "Prepare a pizza" “Cut the pizza® "Serve some wine."
{actioncore: Arranging, {actioncore: Cooking i . {acti : S
- - 1 ’ actioncore: Cut, actioncore: erving,
ObjToBeArranged: table.n.02} 0ObjToBeCooked: pizza.n.01} (ObjTuBeCut: pizza.n.01 Theme: wine.n.01}
Utensil: ?,
Unit: ?
Amount: ?}

{actioncore: PuttingSthSwh, {actioncore: PuttingSthSwh, -
0bjToBePut: glass.n.02, 0ObjToBePut: plate.n.04, {actioncore: Cut,
Location: table.n.02} Location: table.n.02} P ObjToBeCut: pizza.n.01

Utensil: cutter.n.0l,

\ Unit: piece.n.0l
Amount: eight.n.01} LU
(put-object (an object (type glass.n.02)) L]
(on (a location (type table.n.02))))

1
(put-object (an object (type plate.n.04))
(on (a location (type table.n.02))))

(amount (a quantity

(type piece.n.08)

(number eight.n.01))))
(with (an object (type cutter.n.06))))

‘ (cut (an object (type pizza.n.01))(into

Figure 3.10: Excerpt of the inference tree of PRAC nodes spanned by the PRAC-QUERY al-
gorithm applied to the instruction “Make an Italian dinner.” The root node holds the
original, vague instruction and the leaf nodes contain instantiated calls to executable plan
schemata.

An example of a distribution over an excerpt of WordNet concepts for possible
seasonings is shown in Figure 3.9. The distribution in Figure 3.9a is conditioned
on the Goal action role of the Flavoring action core, whereas the distribution in
Figure 3.9b is conditioned on its Spice action role. Although the respective MLN
has been learnt with only one specific training example, the distribution reasonably
generalizes also to superclasses in the PRAC dictionary, i.e. different kinds of food
and different subclasses of flavorers.

3.51 Reasoning Pipeline

Ideally, it would be desirable to have the reasoning process implemented directly
as described by Equation (3.2), which starts by extracting the syntactic structure
from an NL instruction, identifies the given action roles and, based on the given
roles, infers the missing action roles. However, aggregating all desired inferences
into one single reasoning problem of one unifying probabilistic model is infeasible
in both representational and computational regards. Consequently, reasonable inde-
pendence assumptions need to be introduced that allow for independent treatment
of subproblems by specialized routines and models. To this end, the reasoning in

87

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

PRAC is distributed over several PRAC modules that operate on PRAC nodes. A PRAC
node is a data structure wrapping around the results of the probabilistic reasoning,
which can be passed around the reasoning modules. All reasoning modules in PRAC
have the same functional signature: They accept as arguments one node holding a
data structure representing the semantics of an instruction step and they return a
sequence of new nodes with possibly refined action steps and augmented semantics.
As a result of this one-to-many relationship, the nodes form a tree structure generated
by the reasoning process, which I refer to as the PRAC inference tree. The root of
the inference tree always contains the original PRAC instruction and the leaf nodes
contain the executable, disambiguated and completed plan steps. A fragment of an
exemplary inference tree is shown in Figure 3.10, which has been generated from
the instruction “Make an Italian dinner.” PRAC does not impose any constraints
on the shape of the semantic data structures, which makes the proposed pipeline
very general. In the current implementation the logical assertions in the form of
MLN databases are used, but different semantic representations, such as discourse
representation structures (DRS) (Kamp, 2008), for instance, are imaginable.

The overall reasoning process in PRAC is implemented in an algorithm called PRAC-
QUERY, which is listed in Algorithm 2. PRAC-QUERY performs recursive expansions
of nodes into finer-grained instructions with augmented semantics using inference
in probabilistic first-order KBs and analogical reasoning in the PRAC howto library
described in the previous section. PRAC-QUERY essentially runs different reasoning
modules of PRAC, whose processing order is determined by a generator called NEXT-
MODULE, which is described below. PRAC-QUERY accepts a list of natural-language
commands, which a robot is supposed to execute. In principle, there are no further
constraints imposed on the shape, wording or structure of the NL commands. In
a first step (line 5-9), the commands are parsed into a PRAC instruction using the
parser NL-PARSE. The parse of each instruction represents the initial state of the
algorithm, represented by the fringe, which is a first-in/first-out (FIFO) queue of
nodes that are to be processed next. The loop in lines 10-25 iteratively takes the first
node from the fringe and gets the reasoning module mod that is to be applied next to
that node (line 12). If the pipeline has reached its end, i.e. NEXT-MODULE returns
NULL, the state of the node, which at this point in time should not have any missing
information pieces, is transformed into an executable plan call by substituting the
plan parameters in the respective plan schema. If the pipeline has not reached its end
and the current state has not been processed so far, the next reasoning module mod
is executed on node, which yields a new list of nodes, as indicated by the EXPAND
function. The returned nodes are appended to the fringe for subsequent processing.
The check for repeated states ensures that the algorithm will not get stuck in infinite

88

3.5. Learning and Reasoning in PRAC

Algorithm 2 PRAC-QUERY

Input: instr: a list of natural-language instructions
Output: a fully instantiated robot plan
: fringe « [] > a FIFO queue
steps « [] > holds the parameterized plan calls
closed « {} > already processed states
modules «— HASH-MAP() > generates the sequence of reasoning modules
: for i in instr do

n «MAKE-NODE(NL-PARSE(i))

fringe < APPEND(n, fringe)

modules[n] =NEXT-MODULE(n)
end for
10: while not EMPTY? (fringe) do
11: node < POP(fringe)

NI S

b

12: mod «— modules[node] .NEXT (node)

13: if mod = NULL then

14: steps < APPEND(GENERATE-PLAN(node), steps)
15: else if STATE[node] ¢ closed then

16: closed « closed U {STATE[node] }

17: newnodes «—EXPAND (node, mod)

18: fringe < APPEND-ALL(newnodes, fringe)
19: for each n in newnodes do

20: modules[n] = Copy(modules[node])
21: end for

22: else

23: return error

24: end if

25: end while
26: return steps

recursion in case of instruction sheets mutually reference one another. Since the
fringe implements a FIFO queue and reasoning modules generate new ‘child’ nodes,
PRAC-QUERY effectively spans a tree of (intermediate) reasoning results in the form
of nodes that are generated in a breadth-first-search (BFS) fashion.

The order in which the reasoning modules in the pipeline are being executed is
controlled by a procedure NEXT-MODULE, which in essence implements a generator
yielding the individual reasoning modules depending on the current state of the
respective node. The procedure is listed in Algorithm 3. In the following, I will
briefly describe the individual reasoning modules and their role in the interpretation
process.

Parsing The first step in PRAC reasoning is to analyze the syntactic structure of
the instruction at hand, which yields a PRAC instruction database I as described in
Section 3.4.3. The grammatical relations retrieved from the Stanford parser and the
part-of-speech tags as shown in Equations (3.3) allow to query the PRAC dictionary

89

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

Algorithm 3 NEXT-MODULE

Input: node: a PRAC inference node
Output: the PRAC reasoning module to be processed next on node,
or NULL if the pipeline has finished.

1: yield ACTIONCOREINFERENCE > identifies the action core
2: yield PROPERTYEXTRACTION > extracts visual properties of objects
3: yield ACTIONROLEINFERENCE > infers given action roles
4: yield COREFERENCERESOLUTION > resolves coreferences
5: actioncore<ACTIONCORE(node)

6: if ROLESNEEDED (actioncore) \ ROLESGIVEN (actioncore)# 0 then

7 yield ACTIONROLECOMPLETION > infer missing roles
8: end if

9: while not EXECUTABLE? (node) do > do we have a plan schema for the action core?
10: yield ACTIONCOREREFINEMENT > refine the action and roles
11: end while

for all possible meanings of all words in I.

Action Core Inference Given the words, their parts of speech and the possible word
senses from the PRAC dictionary, the first probabilistic reasoning problem in the
PRAC pipeline is formulated for inferring the most probable action cores that are
activated in I. One sentence may contain multiple action verbs denoting different
instructions. An example of such a sentence is “add two eggs and mix.” The action
core inference tags every action verb in a sentence which most likely refers to an
actual separate instruction, such as “addaqging two eggs and miXyving” in the above
example. Not every verb in a sentence, however, refers to an actual purposeful
action. Consider the instruction “start with cleaning the dishes.” In this example, the
word ‘cleaning’ denotes the action to be conducted, although ‘start’ is the verb in
the sentence. Consequently, it is insufficient to merely attach an action core to every
verb in a sentence, but more sophisticated statistical reasoning is required to robustly
identify actions, which is accounted for by the action core inference module.

Property Extraction Object properties can play an important role in instruction un-
derstanding as they may carry information about visual cues of objects, such as
shapes, sizes, materials or colors. These characteristics can identify objects or make
them discernible from each other. Example statements are “pass me the mid-sized
screw” or “my cup is the green one.” But visual properties also can give important
information about how to conduct an action by specifying conditions for beginning
or stopping with execution, such as “bake until golden brown” or “when the solution
turns purple, pour in the imidazole.” The capability of competently interpret and
execute instructions is therefore tightly coupled to the capability of extracting and
detecting perceptual characteristics of objects in a robotic agent. In Chapter 5, I will

90

3.5. Learning and Reasoning in PRAC

in detail address probabilistic KBs for object perception and the extraction of visual
properties from textual descriptions.

Action Role Inference Having identified action cores and their activations in an instruc-
tion, the action roles attached to the respective action cores are retrieved from the
PrRAC knowledge base. The action role inference performs simultaneous word sense
disambiguation and action role labeling using Fuzzy-MLN reasoning. In Chapter 4, a
more detailed treatment of this learning and reasoning task can be found.

Coreference Resolution Consecutive instructions often make references to entities
mentioned in previous steps. Such references can be explicit by means of pronouns
addressing a particular item, e.g. in the instruction “fill the pot with water and
put it on the stove,” or implicit, such that references are inferable but not stated,
e.g. “put the pancakes on a plate, then serve.” The coreference resolution module
disambiguates possible back-references to previous objects. More details are given in
Section 3.7.

Instruction Completion If not all action roles have been assigned a value by the action
role inference, the instruction at hand is considered under-determined and thus needs
appropriate completion. In general there are two possibilities of determining missing
action role specifications in PRAC: First, learnt probabilistic first-order models can be
used in the way depicted in Section 3.4.1. In this case the semantic representation of
the instruction interpretation so far is taken as evidence in a probabilistic query for
the most probable assignment of missing roles from all examples seen during training
time. Second, as I will describe in Section 3.8, the PRAC howto library can be used
for analogical reasoning in an instance-based learning fashion. Here, the knowledge
about previously encountered instructions can be transferred to the new situation
much more efficiently than by employing purely probabilistic reasoning approaches.

Instruction Refinement In the case that the action cores and roles inferred so far are
not executable because there is no plan schema attached in the PRAC knowledge
base, the actions must be refined into more specific actions or sequences of actions.
In Section 3.8, I will present two complementary approaches that infer refinements
of such actions descriptions.

Plan Parameterization If the interpretation does not have missing roles, PRAC checks
if there is a plan schema in the PRAC library attached to the action core, which can
be parameterized with the inferred roles. If so, the schema is instantiated with its
parameters and sent to the plan executive for execution.

91

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

3.6 Knowledge Acquisition

In this section, I will describe two ways in which new knowledge can be acquired
in PRAC. First I will describe PRAC-TELL, a procedure that can be used to populate
the PRAC howto library by means of natural language statements serving as a data
pool for an instance-based learning strategy, and second, a strategy for using Amazon
Mechanical Turk™ (AMT) for crowdsourcing the process of data acquisition for
learning the probabilistic relational models described in the previous sections.

3.61 One-shot Learning from Natural Language

Prevalent techniques in the field of machine learning are strongly data-driven. This
means, the learning algorithms rely on training data sets of sometimes several
hundreds of instances that are required to induce biases to models to generalize
sufficiently well. Prominent approaches are, for instance, deep learning methods,
which have drawn a lot of attention lately (LeCun et al., 2015). In this section I
will describe PRAC-TELL, a procedure which transforms NL statements into semantic
representations that form entries in the PRAC howto library.

For many learning tasks in the real world huge amounts of data are often not available
for training, and if they are, they are mostly tailored to very specific problem instances
like the recognition of hand-written digits, for example. In addition, the learning
is often critical with respect to time and the number of training instances, because,
as Krause et al. (2014) point out, agents must be able to “acquire new knowledge
quickly, on the fly, during task performance. Hence, we need to augment data-driven
methods with other methods that allow for online learning from possibly only a few
exemplars.” Researchers in the field of Bayesian cognition have also found that

“People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to perform
with similar accuracy. People can also use learned concepts in richer ways than conventional

algorithms—for action, imagination, and explanation.” — (Lake et al., 2015)

One-shot learning,i.e. learning from very few, or even only one example, has been
mainly applied to problems in the field of computer vision and image understanding.
However, learning from one shot only is also highly relevant for robotic agents

92

3.6. Knowledge Acquisition

Algorithm 4 PRAG-TELL

Input: instr: a list of natural-language instructions
Output: a sequence of nodes holding semantic representations of the
action cores and roles given in instr
1: fringe « [1] > a FIFO queue
: modules «— HASH-MAP() > generates the sequence of reasoning modules
steps « [] > holds the nodes
for i in instr do
n «MAKE-NODE(NL-PARSE(i))
fringe < APPEND(n, fringe)
modules[n] =NEXT-MODULE(n)
end for
9: while not EMPTY? (fringe) do
10: node < POP(fringe)

11: mod «— modules[node] .NEXT (node)

12: newnodes «— EXPAND (node, mod)

13: if mod = COREFERENCERESOLUTION then
14: steps < APPEND-ALL(newnodes, steps)
15: else

16: fringe « APPEND-ALL(newnodes, fringe)
17: for each n in newnodes do

18: modules[n] = CoPy(modules[node])
19: end for

20: end if

21: end while
22: return steps

and assistants in near-future applications. For example, a robot in a household
environment is expected to adapt its knowledge to the needs and preferences of its
users and the particularities of the environment. It is, for instance, inacceptable for
such a robot to collect many examples of letting milk perish before it learns that milk
and other dairy products have to be stored in the refrigerator. Likewise, it has to
accommodate the knowledge where the cutlery is stored or that I take my coffee with
milk and sugar on the fly, without the need to relearn and to process huge amounts of
data. Even more safety-critical, for a chemical laboratory assistant, it is not tolerable
at all to let it collect negative samples of experiments with dangerous substances
for learning. In PRAC, one-shot learning refers to the problem of adjusting the free
action roles in an under-determined instruction. The problem of using the PRAC
howto library for instruction completion is described in detail in Section 3.8.5.

PRAC provides a TELL interface for additively populating the howto library with
knowledge in the form of instances of the Howto data structure described in Sec-
tion 3.4.6. The single entries in the howto library are used as the data pool in an
instance-based learning fashion. An algorithm called PRAC-TELL allows to transform
NL instructions into Frame instances, which are in turn stored in a database for

93

IS5

Crowdsourcing

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

later retrieval during reasoning. PRAC-TELL is a modification of the PRAC-QUERY
algorithm which only partially executes the reasoning pipeline on the respective
instruction. The PRAC-TELL algorithm is listed in Algorithm 4. After NL-PARSING,
it passes through the first four reasoning modules of the NEXT-MODULE generator,
i.e. , ACTIONCOREINFERENCE, PROPERTYEXTRACTION, ACTIONROLEINFERENCE, and
stops after the COREFERENCERESOLUTION. In contrast to PRAC-QUERY, PRAC-TELL
does not infer information that is unspecified in an instruction. The rationale behind
this is that, as the instructions are being used as supporting points for instance-based
learning, it makes sense to only include the definite knowledge that has been entered
as factual knowledge. Moreover, keeping certain gaps in the action specifications
gives more freedom and flexibility for the matching process during reasoning later.
Using the PRAC-TELL interface, it is possible to acquire knowledge from NL instruc-
tions such as “season steaks with salt and pepper” and “season pancakes with sugar
and cinnamon.”

In the current implementation, the PRAC-TELL algorithm was used to populate the
PRAC howto library with the complete set of more than 8,400 recipes from the
wikihow.com website comprising in total more than 103,000 sentences.

3.6.2 Data Acquisition with Amazon Mechanical Turk™

Besides the instance-based learning approach using the PRAC howto library and the
PRAC-TELL algorithm, PRAC uses conventional data-driven learning techniques for
parameter estimation in MLNs to train the probabilistic models. Existing corpora
with ground truth for applications in NL understanding, however, are inapplicable
to PRAC as they consist of mostly newspaper or encyclopedic articles, which are of
a fundamentally different nature than instruction sheets for everyday activities. In
this section, I report on a study that has been conducted in collaboration with Epping
(2011), who uses the crowdsourcing AMT marketplace for endowing the wikihow. com
instructions with semantic labels. In short, the approach works as follows. In a first
step, a collection of NL instructions is parsed using the Stanford parser. Given the
parse and part of speech, WordNet is used for obtaining a selection of possible word
meanings and semantic roles that each word can have. This selection is posted as a
human intelligence task (HIT) to AMT, where human workers can manually select
the correct word senses for nouns, verbs, adjectives and adverbs occurring in the
natural-language instructions. As a result, a semantically annotated corpus of word
senses has been obtained that can be used to train the PRAC models described above.

94

3.6. Knowledge Acquisition

There are a couple of hand-labeled corpora that researchers from the field of com-
putational linguistics have created for training and evaluating statistical language
models. These corpora mainly differ in the aspects of language they cover. Some
focus on the problem of word-sense disambiguation, such as the Semantic Concor-
dance (Miller et al., 1993) or mere syntactic analyses of sentence structures, like
the Penn Treebank (Marcus et al., 1993) and the SensEval (Kilgarri, 1998) datasets.
Others aim at attaching labels to words which assign them certain semantic roles.
An example is the Proposition Bank (Palmer et al., 2005), which is the perhaps most
widely used corpus. Although these corpora provide comprehensive data sets, they
all have in common that the underlying data sources are newspaper articles or lexical
entries from encyclopediae. These texts are both syntactically and semantically too
different to cooking recipes or instruction sheets, so they are hardly applicable to the
PRAC application domains. As to the best of our knowledge, none of the available
corpora accounts for the kind of knowledge that is required for learning in PRAC, we
decided to acquire an own corpus of annotated robot instructions.

Crowdsourcing Conventional approaches to collect corpora of annotated data have
some serious drawbacks: One way to collect the data is to set up a team of human
annotators, who build up the required corpus, which is very time-consuming, tedious
and costly. A new form of delegating the task of data acquisition to a wide range
of people is the so-called crowdsourcing approach, which has emerged in the recent
years. It describes the act of outsourcing a task to an unknown, large group of people
or a community (i.e. the crowd). Members of the crowd accomplish small tasks
requiring human intelligence (so-called human intelligence tasks (HITs)) for a small
payment via online platforms. The most famous crowdsourcing platform is Amazon
Mechanical Turk™ (AMT). These so-called micro-task markets provide an on-demand,
scalable workforce for only small monetary costs. Consequently, this approach has
the advantages of being very flexible, inexpensive and independent and while most
knowledge sources on the Web are static and read-only, crowdsourcing provides the
chance to actively use the Web by asking the crowd custom questions and thus allows
to collect precisely the data of interest. In addition, a great number of previous works
has shown promising and encouraging results.

Task Architecture A set of more than 1,400 NL instructions from the “Food & Enter-
taining” category of wikihow.com have been selected for semantic labeling. This set
of instructions comprises the action verbs add, cut, fill, flip, mix, place, pour and put,
which all belong to the most frequent actions verbs I reported on in Section 3.3.1. In
this study, we constrained ourselves to the acquisition of word senses and skip the

95

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

semantic role labeling task. The architecture of a HIT has been designed as follows.

Consider the sentence “stir/VB the/DT mixture/NN into/IN a/DT bowl/NN,” where
each word has been assigned its part of speech using the Stanford parser. Given the
part of speech, WordNet can be queried for all possible word senses (synsets) for
each word. For example, the noun ‘mixture’ has five possible meanings in WordNet:

1. mixture.n.01: (chemistry) a substance consisting of two or more substances
mixed together (not in fixed proportions and not with chemical bonding)
synonyms: -

examples: -

2. concoction.n.01: any foodstuff made by combining different ingredients
Synonyms: concoction, mixture, intermixture

examples: “he volunteered to taste her latest concoction”; “he drank a
mixture of beer and lemonade”

3. assortment.n.01: a collection containing a variety of sorts of things
synonyms: mixed bag, miscellany, miscellanea, variety, salmagundi,
smorgasbord, potpourri, motley

examples: “a great assortment of cars was on display”; “he had a variety

2, «

of disorders”; “a veritable smorgasbord of religions”

4. mix.n.02: an event that combines things in a mixture
synonyms: mix, mixture

examples: “a gradual mixture of cultures”

5. mix.n.03: the act of mixing together

synonyms: mix, commixture, admixture, mixture, intermixture, mixing

examples: “paste made by a mix of flour and water”; “the mixing of
sound channels in the recording studio”

The list of possible meanings is transformed into a HIT, in which the subjects can
just tick the most appropriate word meaning. The task is now to determine the most
appropriate sense of the word ‘mixture’ in the given context. The correct answer
to be expected as a label is sense no. 2, i.e. “any foodstuff made by combining
different ingredients.” As the POS tagging is not 100% accurate and there might be
appropriate word senses missing in WordNet, two respective additional options have
been added to list of possible answers. Figure 3.11 shows a screenshot of a generated
HIT available on AMT.

96

3.7. Coreference Resolution

Pour blugberry mixture into prepared oie crust.
Please select the most appmpr\ate sense for the Aujectlve prepared in the sentence above.

Wrong part of speech provided

made ready or fit or suitable beforehand "a prepared statement”; "be prepared for emergencies”

having made preparations "prepared to take risks"

equipped or prepared with necessary intellectual resources "graduates well equipped to handle such problems”; "equipped to be a scholar”

No matching sense found

Figure 3.11: Example of a human intelligence task on the Mechanical Turk marketplace

Evaluation and Quality Assessment Using AMT we labeled around 1,030 sentences
with an average of 5.5 words per sentence. In total, 448 workers took the qualification
test which we demanded, out of which 183 have passed. Every word was labeled
by 3 different workers, where we applied a majority voting scheme to obtain the
final decision. To estimate the accuracy to the collected data, 110 randomly selected
annotations have been reviewed by an expert. The results show an accuracy of 94.5%
with majority voting against 70.9 % accuracy of a single worker. A Binomial Test
with significance level a = 0.05 suggests that the overall accuracy of the whole data
acquired is at least 92%.

3.7 Coreference Resolution

Typically, single instructions in NL howtos are not self-contained and thus do not
make much sense when regarded in isolation. In many cases, instructions make
references to previous instructions implicitly or explicitly, mostly by referring to
previously mentioned objects in the form of pronouns like it, they, or them. In this
section, I report on a novel probabilistic approach for resolving such coreferences
across instructions that has been jointly developed with Meyer (2013).

Consider the following recipe for boiling pasta:

97

18>

Explicit
Coreference

IS5

Latent
Coreference

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

How to Cook Pasta

1. Put the pasta into a pot.

2. Fill it with water and add a
pinch of salt.

3. Cook for 5 minutes.

4. When they are done, let the
noodles drain in a sieve.

5. Serve on a plate.

The computational linguistics literature distinguishes at least three different kinds of
coreferences (cf. Crystal, 2011): Anaphora denote back-references from a pronoun to
a noun phrase mentioned antecedently. An example of an anaphora is in instruction
Step 2, where ‘it’ refers to the cooking pot introduced in Step 1. Conversely, cataphora
denote forward-references of pronouns anteceding a noun phrase, such as ‘they’ in
Step 4. A third kind of coreference, in which no pronouns are used, is given by
different noun phrases that paraphrase the same entities they refer to. The term
‘noodles’ in Step 4, for example, references the same entity as the word ‘pasta’ in
the first sentence. What all these types of coreferences have in common is that the
coreferences are definite in the sense that there is an explicit term in the statement
whose coreference needs to be resolved. However, we can identify an additional type
of coreference, which is not immediately visible: Consider the instruction in Step 3,
“cook for 5 minutes,” which does not contain any of the aforementioned coreferences.
Yet it refers to the pasta introduced in Step 1 and the water from Step 2, which need
to be boiled for 5 minutes. Likewise, adding a pinch of salt in Step 2 refers to the
water in the pot from the first instruction, and the last step relates to the noodles
mentioned in the preceding instruction. I refer to these kinds of coreference as latent
coreferences for their existence, as opposed to the classical explicit coreference, is
not directly evident in a sentence. In this work, I only consider explicit and latent
anaphora.

Figure 3.12 illustrates in minimalistic semantic networks the four action cores Putting,
Filling, Cooking and Serving from the above recipe for cooking pasta. Action roles
that are explicitly referred to in the instructions are highlighted in colors, whereas
missing roles are denoted by gray boxes with a question mark inside. This semantic
representation gives rise to a novel account to coreference resolution: Instead of
relying on pronouns explicating coreferences in an NL sentence, undefined action
roles from the PRAC knowledge base can serve as evidence for coreferring entities that
must be resolved. This enables to not only identify explicit but also latent coreferences

98

3.7. Coreference Resolution

water.n.06 ?
Theme Stuff Duration Theme
Putting Filling Cooking Serving
Goal Goal Theme Goal
? ? ?

Figure 3.12: Graphical representation of the coreference resolution problem in a semantic
network: The colored roles are given in the original instructions, coreferences can be
identified by missing action role assignments.

that are implicit in the instructions and coreference resolution can be formulated
as the problem of assigning action roles to entities in anteceding instructions. It
therefore makes sense to execute the COREFERENCERESOLUTION reasoning module
in the PRAC pipeline after the existing roles in the instruction have been assigned,
but before the role completion using the general PRAC knowledge base and the PRAC
howto library takes place (cf. Algorithm 3). The basic assumption is that action roles
that cannot be assigned in the current instruction under consideration might be given
in the context of surrounding instructions, and if they cannot be found in the NL
context, one has to fall back to general background knowledge.

3.71 Probabilistic Coreference Resolution

In this section, I will describe how a probabilistic model can be constructed that is
able to resolve coreferring terms in an instruction sheet by computing probability
distributions over potential action role fillers in preceding instructions. I begin with
introducing the constituents of the probabilistic model.

The building blocks that are used to generate the probabilistic reasoning models can
be roughly divided into the following groups:

Syntactic Relations Syntactic relations are relations between words in the text or
assignments of properties to those words as given in the PRAC instruction as intro-
duced in Section 3.4.3, which also comprises the part-of-speech (POS) tags of all
words in all PRAC instructions of a complete NL recipe. Moreover, several syntactic

99

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

dependencies between the words in a sentence can be identified. It is important to
note that when considering multiple subsequent instructions, the symbols within a
PRAC instruction generated by the Stanford parser are not globally unique anymore,
since they only convey the index of a word within a particular sentence. Thus, the
symbols are extended by the index of the sentence. For example, the symbol denoting
the word ‘minutes’ in the above recipe is minutes-4-3 instead of minutes-4 as it is the
fourth word in the third sentence.

Taxonomic Knowledge Taxonomy relations refer to the prior knowledge about the
subsumption relation of concepts in the PRAC dictionary. For example, the concept
container.n.01 is in a hyponomy relationship with the concept cup.n.01 since the
concept of a ‘cup’ is a specialization of the concept of a more generic ‘container’.

Action Roles Action roles from the PRAC knowledge base refer to the partial evidence
and queries that are instantiated in order to identify the abstract parameterization of
an activity in an instruction in context of the action core referred to by the sentence.

Distance Relations Distance relationships are established between all pairs of words
to determine the number of sentences that lie between the two words. For example,
in our introductory example of making pasta, the word ‘pasta’ from the first action
step and the word ‘it’ in the second step have a distance of 1, whereas ‘it’ and ‘water’
have distance O for they appear in the same sentence. It has been shown by McEnery
et al. (1997) that within three sentences roughly 90% of all coreference relationships
can be found. We therefore assume that, for the purpose this work, it sufficient to
consider a constant ‘sliding’ window of 4 sentences, i.e. for resolving anaphora in a
particular instruction, the objects appearing in the respective 3 sentences in front are
considered. The abovementioned distances thus can be asserted using statements
such as

distance(pasta-3-1,it-2-2,1) and
distance(it-2-2, water-4-2, 0)

for the example words from above. As the probability is expected to decay with
increasing distance, a separate predicate is introduced that allows explicit incorpora-
tion of distances in the model. However, the distances 1 and 0 do not have arithmetic
semantics in this case but denote plain symbols in a Boolean predicate. The decay
in probability thus needs to be established by means of the model structure and
parameters, as I will show in the next section.

100

3.7. Coreference Resolution

Coreference Relations Statements about the coreference of two words can be made in
the form coreference(wy, wo), which states that the words w; and wy refer to the same
entity. In order to enable reasoning about the action roles that are undetermined
in an instruction, a Skolem constant in the fashion presented in Section 3.4.1 is
introduced. Using this Skolem constant it is possible to explicitly reason about the
roles missing and determine their coreference relationships.

In consequence, the probabilistic reasoning task is to compute the most probable
assignments of atoms of the coreference predicate comprising all words from the
three antecedent instructions as well as the Skolem constants introduced for the
unassigned action roles.

Several semantic features are taken into consideration when inferring coreference.
The word sense and the path through the taxonomy of two words are among the most
important ones. Two words are more probable to be in coreference if the semantic
distance is small. If the semantic distance is zero, two concepts are exactly the same.
Different similarity measures for the semantic distance exist like the WUP similarity
by Wu and Palmer (1994), which is discussed in more detail in Chapter 4.

Model Structure It is reasonable to assume that the coreference relation is transitive
and symmetric, which can be implemented as hard formulae in MLNs, i.e. a formula
that always needs to hold:

coreference(wi, wa) A coreference(ws, w3) — coreference(wy, ws).

coreference(wy, wg) — coreference(ws, wi).

Moreover, certain combinations of POS tags usually are not in a coreference relation-
ship, e.g. it is unlikely that nouns corefer with adjectives. Conversely, it is assumed
that the part of speechs (POSs) of coreferring terms often coincide. Consequently,
the following formula template is used in the model that attaches a weight to each
possible combination of POS tags:

coreference(wi, wa) A has_pos(wi, +pos;) A has_pos(wa, +poss)

Note that the ‘+’ operators in front of the variables pos; and pos, produce one
separate formula with an individual weight for every combination of POS tags.

Coreference between two words correlates with the action roles, the word senses and
the distance between the words. This relationship is captured in the formula

101

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

has_role(w1, +r1) A has_role(wa, +r2) A coreference(wy, wo) A distance(wy, wa, +d)

The formula will be expanded over the roles and distances before the parameter
learning takes place and consequently makes the roles an explicit part of the model.
As a result, the model size increases quadratically in the number of roles.

3.7.2 Experiments

For the experiments, a total of 20 short yet representative texts containing a total of
57 instructions have been manually created and annotated. Each set of instructions
contains on average about 12 words. It was necessary to draw on instruction sheets
of this small size due to the computational complexity the number of words impose
on the learning and reasoning'. Three exemplary howtos are the following:

How to Serve a Coke How to Make Instant Coffee | How to Serve Soda

1. Add coca cola 1. Fill a coffee mug 1. Fill a bottle

to a glass. with water. with soda-water.
2. Afterwards mix 2. Add instant-coffee. 2. Add lime.

with ice. 3. Serve. 3. Serve.

3. Serve on a tray.

A complete list of howtos used in the experiments can be found in Meyer (2013). The
howtos comprise the action cores Putting, Adding, Mixing, Filling and Serving, which
are among the most frequently used action verbs according to Section 3.3.1, and
each sentence only contains one verb. Every howto contains a unique set of objects
that do not exist in another howto. In all howtos, a total of 67 different objects are
used. For inference, all predicates that are part of the evidence are assumed to fulfill
the closed-world assumption, i.e. if they do not appear in the evidence, they are
assumed to be false. In the experiments, the word senses (denoted by the has_sense
predicate) were provided in the query databases. This is a reasonable assumption as,
in the overall PRAC reasoning pipeline, the word senses are jointly inferred by the

1The experiments have been conducted before the inception of Fuzzy-MLN reasoning. Since they
allow more compact model representations, it is expected that more complex cases can be covered
using Fuzzy-MLNs.

102

3.7. Coreference Resolution

oit of formulae |# Test DBs # Training DBs | oF1 | @ Precision | o Recall
1635 2 18 0.690 0.617 0.851
1615 10 10 0.600| 0.522 0.762
1183 15 5 0.558 0.473 0.782
1021 17 3 0.513 0.428 0.778
816 18 2 0.442 0.363 0.752

Table 3.6: Experimental results of the coreference resolution experiments.

ACTIONROLEINFERENCE module (cf. Algorithm 3).

The 20 databases are split in sets of different sizes, on which we performed cross
validation with differently large portions of training and test sets. The results are
shown in Table 3.6. In the experiment, the results show that expectedly, the run with
18 training databases receives the highest scores for recall as well as precision and
the lowest for the run with only two training databases. The experiments show that
the simple model introduced in this section is in principle able to effectively learn the
coreferences in NL howtos.

Limitations Extremely challenging scenarios are instructions in which not all word
senses are available or even no word sense is available at all. For example, in the
howto

How to Make a Fruit Salad (1)

1. Mix the fruits.
2. Serve.

As the location of the Mixing activity is not explicitly mentioned, e.g. a bowl, it is
impossible for the coreference model to infer coreferences of the subsequent Serving
action. An additional difficulty with coreference exists when identifying individual
objects and a word occurs multiple times in a set of instructions but they refer to
different object entities. For example, the instruction set:

How to Make a Fruit Salad (2)

1. Add fruits to a bowl.

2. Mix.

3. Serve in a bowl.

103

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

One interpretation of the instructions could be that the word ‘bowl’ in the first
sentence refers to a mixing-bowl where the ingredients are mixed. The word ‘bow!’
in the third sentence on the other hand might refer to an eating-bowl that is used
for serving. This is difficult to handle and particularly difficult to handle only with
syntactic features. Consequently, the semantic information is a key element in the
correct resolution of the coreference. In the given example a possible resolution is
that the term ‘bow!’ in the first sentence has the sense mixing bowl.n.01 and in the
last sentence it has the sense salad_bowl.n.01. This already indicates that these two
are not the same real world object. Moreover, even in the absence of the senses, the
roles of the two words can indicate whether it is probable that they are in coreference

or not.

104

3.8. Instruction Completion

3.8 Instruction Completion & Refinement

One (?f t}?e key cha.llenges in in- X—“—:- -

struction interpretation addressed ! arg max P(oots 0| on savon)
by PRAC is the specification and re- ' = pizza_wheel.n.01
finement of incomplete information
in NL statements. Consider and in-
struction like “season a steak,” or
“season the soup” as parts of cook-
ing recipes. A robotic agent needs
to know that it should use salt and
pepper for spicing steaks and that

it can achieve this goal by pouring

from a spice jar or a pepper mill, re-
spectively. Conversely, the topping

Figure 3.13: “Cut the pizza!” - the simulated PR2
of a pancake should be sugar rather robot generating and solving for a query for the

than salt and pepper, for instance. Most probable completion with respect to the cut-
ting tool.

In addition, the robot should also be
able to transfer its knowledge about specific actions and objects to new situations
and new objects that it has not seen before. The knowledge about pancake toppings,
for instance, could be transferred to waffles and donuts as well. In Section 3.4.1 and
Section 3.5.1, I have already shown how distributions over ontological concepts can
be used to infer missing action roles. However, the enormous size of these models
and the computational expense in learning and reasoning often impedes the practical
applicability of purely probabilistic models to real-world domains. I will review two
approaches for the tasks of completing and refining instructions. The first approach is
a purely probabilistic one, making use of trained MLN KBs. I propose a novel method
of inferring missing information pieces for instruction completion, which implements
knowledge transfer by semantic analogical reasoning in the PRAC howto library of
NL instruction sheets, while instruction completion can be achieved through fast
database queries. Parts of the work presented in this section build upon the work
by Koralewski (2016) and have been published in Nyga et al. (2017b).

105

&

Instruction
Refinement

IS5

Instruction
Completion

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

3.81 Probabilistic Completion & Refinement

As described in Section 3.4.5, not all action cores are directly executable and have a
plan schema attached, but need further semantic analysis. An obvious example is the
Adding action core, which is, with respect to execution, too generic an action to be
directly executable. Consider the many ways in which different types of objects can be
added, e.g. water, milk, salt, pepper, or baking soda. Consequently, action cores with
certain roles assigned need to be refined in order to describe more concrete activities.
For example, an instruction “addadding @ pinchamount Of saltyewaremper” should be refined
to a Scooping or UsingSpiceJar action, whereas an instruction “addaqding @ splashamount
of milkyewmemper’ can be most likely performed by Pouring. To account for this
kind of action refinement, PRAC maintains a special binary predicate AchievedBy(a,
a’), which is used to state that an action a can be achieved by a different action
a’. PRAC maintains probability distributions over the AchievedBy relation, which
have been learned from manually annotated modal clauses found in NL recipes.
Examples of such modal clauses are “flip the pancake using a spatula,” or “use a
pipette to add 5 drops of HCL.” An example of a distribution over the AchievedBy
predicate for the Adding action is shown in Table 3.7. The table shows three possible
refinements of the Adding action core, namely Pipetting, Pouring, and OperatingTap
(the query to the PRM of the AchievedBy relation), and different concepts from the
PRAC dictionary filling the NewMember and Amount role slots of the Adding action
core. The probability distributions show that PRAC learns reasonable biases with
respect to the role arguments: Depending on the amount and the type of substance to
be added, the distributions suggest different refinements: small amounts of chemical
substances (NewMember(hcl.n.01), Amount(milliliter.n.01)) can be added with a
Pipetting action, larger amounts of beverages like juice (NewMember(fruit juice.n.01),
Amount(liter.n.01)) with a Pouring action, but the tap is also a possible source of
water (NewMember(water.n.06), Amount(liter.n.01)). Having computed a refinement
of the action, the roles of the respective refined action core are assigned in a separate
reasoning module.

Although formulating the problem of action completion as a query in form of a
conditional probability distribution seems natural and elegant at first, such a purely
probabilistic approach suffers from the representational and computational costs
incurred by the learning and reasoning. Consequently, the generality of KBs and the
transferability of knowledge to new situations is only given within limits. Figure 6.4d
shows a scenario, in which a PR2 robot is to slice a pizza. Depending on the current
context, the robot needs to select an appropriate action to conduct, which is not
explicitly mentioned in the instruction, however. Symbolic probabilistic models need

106

3.8. Instruction Completion

E Q P(QIE)

(o) 0.5 1
AchievedBy(Adding,Pipetting) I 0.01

NewMember(water.n.o6)]))

Amount(milliliter.n.o1) AchievedBy(Adding,Pouring)] 0.68
AchievedBy(Adding,OperatingTap) |[] 0.31
AchievedBy(Adding,Pipetting) \ 0.00

NewMember(water.n.o6))))

Amount(liter.n.o1) AchievedBy(Adding,Pouring)] 0.40
AchievedBy(Adding,OperatingTap) [| 0.60
AchievedBy(Adding,Pipetting) \ 0.00

NewMember(fruit_juice.n.o1))))

Amount(liter.n.o1) AchievedBy(Adding,Pouring) |] 0.96
AchievedBy(Adding,OperatingTap) |[] 0.04
AchievedBy(Adding,Pipetting) | | 0.99

NewMember(hcl.n.o1))))

Amount(milliliter.n.o1) AchievedBy(Adding,Pouring) I 0.01
AchievedBy(Adding,OperatingTap) || 0.00

Table 3.7: Probability distribution over the AchievedBy predicate for different parameteri-
zations of Adding: Different specifications of the Liquid and the Amount result in different
probabilities of action core refinements.

to explicitly represent in the model every symbol subject to reasoning. For example,
a probabilistic model that is supposed to consider the bread knife.n.01 as the most
probable tool for cutting bread, and the pizza wheel.n.01 the most probable tool for
cutting pizza, more formally,

action(a, cut.v.01)
argmax P| tool(a, t)
4 object(a,bread.n.01)

= bread_knife.n.01 (3.8)
and

action(a, cut.v.01)
argmax P| tool(a, t)
t object(a,pizza.n.01)

= pizza_wheel.n.01, (3.9)

must at least contain representations of the respective combinations of atoms in Equa-
tions (3.8) and (3.9) in its symbolic structures. If we consider real-world applications
such as human household and cooking scenarios, constructing probabilistic KBs

107

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

over such large domains is hopelessly infeasible as the number of required symbolic
combinations would be intractable. Consequently, deep knowledge transfer (Davis
and Domingos, 2009) with purely probabilistic symbolic models to new situations is
not always straightforward. As another related example, consider an instruction like
“pour milk into a glass,” which a probabilistic KB has been trained with. A desirable
answer from this KB to a query for the most probable destination container for a
“pour juice” instruction is also the glass. However, unless the combination of juice
and glass is not represented explicitly in the model, the desired result cannot be
computed in such a model. In fact, the model is inapplicable to such queries. The
Fuzzy-MLN framework introduced in Chapter 4 exploits the semantic similarity of
concepts in a taxonomy in order to support off-domain reasoning, i.e. reasoning
about symbols that are not present during model construction. Examples of such
distributions are shown in Figure 3.9. Fuzzy-MLNs are able to compute posterior
beliefs about unseen concepts, but they are unable to efficiently and constructively
compute novel solutions in open domains. Consequently, this kind of reasoning does
not bring about the desired results since the completion still can only be performed
on concepts in the model.

Following these considerations, employing probabilistic models for the deep transfer
from one scenario to another does not seem as straightforward as it may, at first,
have appeared.

3.8.2 Reasoning by Analogy

A different way of refining an under-determined action which is not directly exe-
cutable is applying role completion, plan expansion, and plan adaptation by analog-
ical reasoning. The role completion simply looks up potential slot fillers in a large
library of instructions that have worked before in similar situations, i.e. the PRAC
howto library. The plan expansion resolves references across different howtos by
replacing one particular step in an instruction sheet by the steps that PRAC finds an
instance of a howto in the howto library. For example, when a command “cook the
pasta” is encountered as part of a recipe, PRAC recursively expands this command to

7

the single steps “fill a pot with water,” “put it on the stove” and “switch on the stove,

then insert the pasta,” for instance, which can be found in the PRAC howto library.

The basic assumption of the analogical reasoning approach is that the answers to
the queries can be found elsewhere in a large collection of recipe documents and
can be easily ‘looked up’. Moreover, accessing semantically not only action roles

108

3.8. Instruction Completion

Set the table

Take a glass from the cupboard.
Put it on the table.
Take a plate from the cupboard.

Put it on the table.

Make pancakes.

Take the mix from ti
refrigerator

Pour the batter jito
Wait for two mifutes

Flip it

Take the cutlery from the drawer.

Put it on the table.

A,AAAAAAAAAAZCi] gke an Italian dinner
Cut bread with a kn;
Set the table.

Prepare a pizza.

Cut the pizza andm

Make a pizza

Spread tomato sauce over the
dough

the
Add the salami.
Sprinkle with cheese.

Season the pizza with oregano.

ith a spatula

Slice the bread and serve it.

Serve some wine.

Take a glass from the cupboard.

Pour coffee in a /\

Serve some food

Take a plate from the cupboard.

Put the food on the plate.

. . . - Put the flatware on a table.
Fill it with juice.

Put the glass on a table.

Figure 3.14: Illustration of the analogical reasoning: information pieces that are missing in
an instruction can be found in other documents. Instructions can be refined by looRing
up whole howtos in the howto library (e.g. “set the table”), some other howtos have to be
adapted to the current situation (e.g. “serve some food.”) or selected action roles (e.g. the
instrument for cutting a pizza) can be retrieved from other documents.

of single actions but also instruction sheet titles allows to recursively refine single
instruction steps referring to whole instruction sheets. Examples of such reasoning
tasks are illustrated in Figure 3.14. Starting from an instruction sheet for making an
Italian dinner, several steps in this howto may refer to other instruction sheets, such
as the directive to “set the table,” for which probably a separate document exists.
Other howtos that exist are written for manipulating different but similar objects and
can be adapted to the current recipe under consideration. The “Serve some juice”
howto, for instance, can be easily adapted to also work with wine. By establishing
such analogies on a semantic level, the knowledge about specific scenarios can be
transferred to new situations with possibly unknown objects. The ultimate advantage
over purely probabilistic reasoning methods lies in the scalability of learning and
the ease of extensibility: While the probabilistic models for understanding a given
sentence can be represented parsimoniously, new knowledge can be easily taught
by adding new instances to a database and undesired or flawed knowledge can be
‘forgotten’ by removing the faulty instances.

Researchers from the cognitive science and cognitive psychology found that “Ana-
logical reasoning — the ability to perceive and use relational similarity between two
situations or events — is a fundamental aspect of human cognition,” (Gentner and

109

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

Smith, 2012) and is frequently used by humans essentially in three ways. One use of
analogies aims at explaining a situation that cannot be directly seen by establishing
an analogy to a familiar situation, so it becomes easier to grasp. A frequently used
analogy to explain the concept of an algorithm is, for example: “think of an algorithm
as a cooking recipe for computers.” The projection of the new concept ‘algorithm’
into the familiar domain ‘cooking’ makes it easier to grasp for most non-computer sci-
entists. A second use case is in argumentation, where analogies are used to reinforce
propositions or to refute claims by reducing it to absurdity (e.g. “You’re comparing
apples to oranges!”). A third use case is abstraction: From several instances of
relational structures, one might abstract away to more generalized schemata that are
transferable to different domains.

“Similarity and analogy are fundamental in human cognition. They are crucial for recogni-
tion and classification, and have been associated with scientific discovery and creativity.
Successful learning is generally less dependent on the memorization of isolated facts and
abstract rules than it is on the ability to identify relevant bodies of knowledge already stored

as the starting point for new learning.” — (Vosniadou and Ortony, 1989)

An excellent overview on the structure and systematic use of analogies in human
reasoning is given by Gentner and Smith (2012). According to them, analogical
reasoning “involves identifying a common relational system between two situations
and generating further inferences driven by these commonalities.” In general, the
reasoning process can be divided into three parts: (1) Retrieval denotes the current
new situation in memory, which triggers remindings to potential analogs in the
long-term memory. (2) Mapping involves the alignment of two representations and
the inference by projecting structural parts of the reminded into the new structure,
and in (3) Evaluation the analogical mapping and inference is judged. The central
aspect in analogy reasoning is the process of mapping from a well-known source/base
situation to a less familiar target situation by similarity of the relational structures
of the two situations. Thereby, inference happens as a byproduct of the structural
alignment process:

“Once the base and target have been aligned and their common relational structure found,
if there are additional parts of the relational pattern in the base that are not present in
the target, then this missing pattern will be brought over as a candidate inference [...].
Thus, one way to think about inference generation is as a process of relational pattern

completion.” — (Gentner and Smith, 2012)
The structural alignment and inference process in the “season the steak” example

110

3.8. Instruction Completion

Figure 3.15: Exemplary role completion of the instruction “season the steak.” by analogical
reasoning: The action verb and the Goal role are given in the target structure (orange/red),
whereas the appropriate seasonings like salt and pepper need to be inferred. Inference is
being achieved by projecting the missing roles from a structurally similar source network
from the PRAC howto library, which provides the missing roles salt and pepper. The inferred
Spice roles are drawn with dashed arrows.

is illustrated in Figure 3.15. It shows two semantic network structures, namely the
source (left) and target (right) networks. The relational structures are determined by
the action cores that have attached their sets of action roles, in this case the Flavoring
action core with its action roles Goal and Spice. In the target network, no Goal relation
is specified, so a matching source structure is recalled from long-term memory (i.e.
the howto library), which has the missing roles assigned. In this example, the source
network might have originated from an instruction “season the spareribs with salt
and pepper.” The projection of the inference candidates salt.n.01 and pepper.n.03 is
indicated by the green projection corridors.

Researchers have identified three broad kinds of qualities that largely determine
the expressive power of analogies. At first, structural consistency denotes the prop-
erty of an analogy where every constituent of the source analog is in a one-to-one
relationship with a constituent of the target analog. Consequently, analogies are
unambiguous with respect to their structural alignment and no entity in the source
can match more than one thing in the target. Second, humans tend to prefer large,
deeply connected structures to just single relations. This preference is referred to as
the systematicity principle and indicates humans’ implicit preference for structures
with high information content and strong inferential power. A third principle, called
transparency assesses the congruence of two analogs and describes how similar corre-
sponding entities in the source and target analog are. Highly transparent matches
refer to analogies with both very similar structures and entities. The instructions “fill
a cup with coffee” and “fill the kettle with water” from the beginning of this chapter
are an example of a high-transparency analog: The relational structures of the two
instructions, determined by the action core Filling and its action roles, are the same

111

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

in both cases, and also the entities, the liquids water and coffee, and the containers
cup and kettle, are also quite similar. High-transparency analogies are generally more
natural and easier to process for humans than low-transparency analogies, in which
also the relational structures as such need to be aligned. Analogies that are used
in this work are mostly highly transparent, in some cases even literally similar, i.e.
matching entities are equal and also fill the same relational slots.

3.8.3 Analogical Completion & Refinement

As mentioned above, maintaining a joint distribution as in Equations (3.8) and (3.9)
is intractable for all combinations of concepts. Therefore, we intend to keep this
kind of knowledge outside the probability distribution and rather maintain a large
collection of example instructions that can be found web pages and have PRAC
semantically annotate them using the PRAC-TELL algorithm. In order to answer
questions about missing action roles, the PRAC howto library can then be queried
for the most similar instance in the KB and adapt it to the current situation. The
knowledge acquisition in this fashion can be regarded as an instance-based learner
as the acquired knowledge is mapped against and adapted to new unseen situations.
To enable fuzzy mappings from target to source structures, a similarity measure
is needed which uses deep taxonomic prior knowledge in order to retrieve from
the PRAC howto library the instructions that are semantically most similar to the
given incomplete task description. The system in turn is queried for the semantically
annotated sentence in the PRAC howto library that is most similar to the given
incomplete NL instruction. The howto library can be queried much faster than
computing the joint distribution and thereby enables the deep transfer of knowledge
to unprecedented situations. The method thus implements an instance-based learning
technique employing reasoning by analogy as introduced above and is thereby also in
line with Minsky’s notion of frames:

“When one encounters a new situation (or makes a substantial change in one’s view of the
present problem) one selects from memory a structure called Frame. This is a remembered

framework to be adapted to fit reality by changing details as necessary.” — (MinsRy, 1974)

The approach presented in this section complements the PRAC reasoning pipeline
implementing the reasoning modules ACTIONROLECOMPLETION and ACTIONCOR-
EREFINEMENT as presented in Section 3.5.1. The data model of Frames in the PRAC
howto library allows for queries targeted at specific action cores whose action roles

112

3.8. Instruction Completion

must precisely match the query. In such cases, the KB must contain howtos or frames
that entail the desired answer for successfully finding a completion of an instruction.
However, this is not always the case although the knowledge from a very similar
frame could be used as an answer to the query. As an example, consider the query
for possible seasonings of a steak from above. If the KB does not contain a frame
attached to the action core Flavoring with an action role theme=steak.n.01, the query
in Equation (3.7) does not return a result at all. If, however, the KB contains a similar
frame with action roles theme=cutlet.n.01, spice={salt.n.02, pepper.n.03}, then it
would yet be desirable if the system were able to transfer this knowledge about
seasonings of a cutlet to seasonings of a steak.

3.8.4 Similarity of Frames

To enable fuzzy reasoning about the frames stored in the PRAC howto library, a notion
of frame similarity is required in order to enable a fuzzy mapping from the source to
the target frames in a way that not only exactly matching frames are selected from
the knowledge base, but also frames which are similar to the query. The semantic
similarity of two concepts in a taxonomy can be characterized in terms of the relative
location of the two concepts in the taxonomy. Popular measures take into account
the lengths of the shortest paths between two concepts in the respective taxonomy
graph. The shorter the paths connecting the two nodes in the graph are, the more
similar the respective concepts are assumed to be. Among those similarity measures,
the WUP similarity (Wu and Palmer, 1994), simyyp : T X T — [0, 1], is the most
widely used, which I will discuss in more detail in Chapter 4. It defines the semantic
similarity measure on concepts in a class taxonomy as

. __ 2-depth(lcs(cy, c2))
stmwup(c1, ¢2) 1= depth(cy) + depth(cz)’

where lcs(-, -) denotes the lowest common super-concept of two concepts. We define
the semantic similarity of a frame f; and another frame f, as the harmonic mean of
WUP similarities of all roles in f; to the respective roles in f5, i.e.

IR(f1)I
Yrer() Simwup(r(f1). r(f2))™

sim(f1, f2) = (3.10)

where R(f) is the set of all given action roles in the frame f. A similarity value of 1
denotes maximal similarity, whereas a value of O denotes maximal dissimilarity. For

113

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

the harmonic mean of two numbers tends to be closer to the lower of the two, all
concepts of action roles of f1 and f, must be reasonably similar for the two frames to
expose significant similarity. Note that our frame similarity measure is not symmetric,
i.e. sim(fi, f2) # sim(f2, fi) in general, for the number of assigned roles can vary
among different frames, such that |[R(f1)| # |IR(f2)l.

3.8.5 Action Role Completion

Having defined the conceptual and computational apparatus of the action role
completion engine, it is straightforward to formulate queries to the PRAC howto
library that infer missing roles, expand single instructions to sequences of plan
steps, and adapt existing howtos to new, even unseen situations and thus transfer
knowledge about manipulating specific objects to unknown objects by analogical
reasoning.

Consider the task of finding a reasonable completion of an action, which is given by
the instantiation of a frame, as shown in Figure 3.15. As described in Section 3.4.6,
the mapping phase in the analogical reasoning process can be efficiently implemented
through database queries that select the frames from the PRAC howto library that
match the roles in the target frame. In the following, let fiource and fiarger denote
the source and target frames. Let further R(f) denote the action roles assigned to
the frame f and let M(f) be the roles that are missing in f. prac.howto denotes the
collection named howtos in the database prac, which denotes the howto library in
PrRAC. The analogical inference for role completion can be realized by the canonical

query
H]M(fsource) (O-/\ reR(ﬁarget> r(ftarget):r(fsource) (prac. hOWtOS)) (3 1 1)

to the howto library, which selects all frames whose action roles correspond to the
given roles of fiarger, and does a projection of the role Spice, which is unspecified
in the source frame. However, queries of this kind are too limited to implement
knowledge transfer as they only apply to their literal action core instantiations in the
library. Using the frame similarity, we can formulate a more general inference task.

Given a partially instantiated frame fiqrgec, its missing roles can be completed by for-
mulating a query for the most similar frame f;ource in the howto library, and projecting
the roles that are unspecified in fiue:. We can formulate the canonical inference
problem of completing action roles in fiqger by means of analogical reasoning as

114

3.8. Instruction Completion

HM(frarger) argmax (Sim (fearget» fsource)) . (3.12)

frource Eprac.howtos

Note that, in contrast to (3.11), this query does not select the frame from the
database that literally matches the action roles of the query, but for the most similar
one. Thereby, the selection of the most similar source frame f;yye corresponds to the
matching phase of the analogical reasoning, and the projection corresponds to the
‘relational pattern completion’. The fuzzy matching enables to generalize knowledge
about roles of specific objects in terms of their semantic similarity as explained in the
previous section and to transfer this knowledge to different types of objects as shown

in Figure 3.15

In its current implementation, the inference in (3.12) always returns the most similar
frame found in the database. In some cases or domains, however, when the robot is
manipulating delicate or even dangerous objects, e.g. experimenting in a chemical
laboratory, one might want to restrict the robot’s freedom to extrapolate its knowledge
to unseen objects. To account for such scenarios, it is also possible to introduce an
absolute threshold 6 of minimum similarity that frames in the database are required
to expose in order to satisfy the query:

H]W(ftarget) arg max (Slm (ﬁarget, fsource)) . (3.13)
Ssource €{f | f €prac.howtos, sim(farget,) >0}

Note that, in the case 6 = 0, the query in (3.13) reduces to (3.12) and the case § = 1
is equivalent to the literal matching scheme in (3.11).

Example Using the query in the running example of the instruction “season the steak”
can be completed using the PRAC howto library in the fashion depicted in Figure 3.15.
Plugging the semantic network representing the given information into Equation
(3.12) yields

Spice

HSpice arg max sim ’ Season }ﬁa Flavouring
frource €prac.howtos .

is-a
cut.n.06

s ﬁource

Let us assume that there is a frame stored in the PRAC howto library representing the
knowledge that spareribs can be seasoned with salt and pepper, which is most similar

115

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

to the target frame. This is a plausible assumption since the two concepts sparerib.n.01
and steak.n.01 is simyyp(sparerib.n.01, steak.n.01) ~ 0.82. Consequently, solving for
the source frame and projecting the Spice action role missing in the target frame
yields

salt.n.01

Spice

ActionCore

= HSpiC& ‘ Season H Flavoring % pepper.n.03 ‘ - {Salt.n.()] ,pepper: n.03}’

lc,oa.

sparerib.n.01 ‘

is-a
‘ cut.n.06

i.e. the action role completion returns the concepts salt.n.01 and pepper.n.03 from
the PRAC dictionary as possible seasonings for a steak.

3.8.6 Plan Expansion

Very often single steps in a recipe cross-reference other complete instruction sheets.
Examples of such references can be found in abundance, for instance, in the example
of making an Italian dinner illustrated in Figure 3.14. The instruction to “set the
table” refers to a different howto which details the respective action. Likewise, the
directive to “serve some wine” also can be refined by looking up a howto for serving
juice and adjusting the respective parameters accordingly. In PRAC, it is assumed
that such instructions can be replaced by the sequence of steps of the respective
referred howto to obtain a more detailed description of what actions to perform. One
can thus think of this kind of instruction completion as ‘expanding’ a directive to its
associated plan steps. The ability to proficiently handle such references is a crucial
skill in resolving and detailing the vagueness in NL instruction interpretation.

The reasoning pipeline in PRAC has been designed to account for such plan expansions
directly by the functional signature of every reasoning module, which must map one
single inference node in the inference tree to a sequence of inference nodes, which
can contain refinements of action specifications.

In terms of the analogical reasoning framework it is straightforward to query the
PRAC howto library for an instruction representing a high-level activity, such as “make
a pizza” and access the sequence of action steps by querying for the steps attribute of
a corresponding howto in the database,

HfSaurce-StePS (O-AreR(fmrget) 7 (fearget)=r (fsource) (prac.howtos)) :

116

3.8. Instruction Completion

R(f) again denotes the set of roles specified in the frame f. As already described
in Section 3.4.6, every howto in the PRAC howto library has an attribute steps,
which holds a sequence of frames determining the single finer-grained actions to
be conducted in order to achieve the higher-level goal represented by fsource. It is
important to note that, during plan expansion, all action roles r in the returned frame
fsource must literally match the roles in the target frame fiarger, i.€. 7(fsource) = r(frarget),
Vr € R(fiarget)- The rationale behind this is that during action refinement of a specific
task, a user would not want to give a robot the freedom to replace a high-level task
by a different one, even if the source is a high-transparency match. For example,
if a recipe contains a command to “bring water to a boil,” it is inacceptable to let
the robot autonomously replace water by milk. In a chemical laboratory setting, if a
robotic assistant is instructed to fetch a certain substance, it would be considered a
flaw to bring a different substance instead. Therefore, I argue that it is reasonable to
require the source to literally match the preconditions imposed by the target.

However, it could be rational to assume that plans written for certain objects can be
transferred to similar entities. For example, an instruction sheet for heating up milk
in a microwave oven can also be applied to boil water if the antecedent conditions
from the original instruction are propagated through the plan. Likewise, a plan
for fetching a flask holding a substance can also be adapted to work with different
substances. This kind of adjusting parameters of a howto to work in new, previously
unseen scenarios is a kind of analogical reasoning and key in human cognition and
skill transfer.

3.8.7 Plan Adaptation

During plan expansion, all roles of the query and answer frames must coincide.
This is a reasonable restriction, since the action sequence steps of a howto is only
applicable if all objects occurring in the high-level action frame also are referred to
by the same symbols in the action sequence. If one wants to relax this restriction,
one additional step needs to be appended, which replaces objects referred to in the
source frame by the objects in the target frame. This substitution must be applied to
every frame in the sequence of steps. More formally, one can query the PRAC howto
library for the most similar howto that matches the target,

Hfmme.steps (arg max (Sim(ﬁarget, f;ource))) s (3.149)

eprac.howtos
ﬁource P [r(ﬁource)/r(ﬁarget)]reR(ftarget)

117

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

project the single action steps, and apply for each action role specified in farget,
r € R(fiarget), in every action step a substitution of the object satisfying r in fiourceby
the respective object satisfying r in fiqger. The substitution operator (-);,/,] replaces
all occurrences of x in its argument term by y. Consequently, the substitution
[r(fsource) /7 (frarget) 1 r €R (frarger) denotes the application of the substitution to every role
r € R(farger)- The substitution of objects in the plan steps thus adapts a howto to
new objects and implements the transfer of knowledge across concepts. It does so
by establishing analogies from the current target situations at hand to the source
situations that are recalled from memory.

Example Let a simple example illustrate the process of recalling a complete howto
from the PRAC howto library and adapting it to the requirements of the current
situation by analogical reasoning. Consider the following 3-step instruction sheet for
serving fruit juice:

How to Serve Juice

1. Take a glass from the
cupboard.

2. Fill it with juice.

3. Bring the glass to the table.

A robotic waiter is now instructed to serve a glass of wine. As the original plan
expansion cannot be applied since the howto is not a literal match to the query, the
robot is supposed to transfer the knowledge about serving juice to serving wine.
Using the plan adaptation scheme in Equation (3.14), the PRAC howto library can
be used to adjust the parameters of the instruction sheet as follows. First, the query
in (3.14) is instantiated by plugging in the semantic network representation of the

target frame, i.e.

drink.n.01

Hﬁource~5feps arg max sim Theme fsource

Ssource Eprac.howtos ActionCore
‘ Serve H Serving ‘ .
[Theme(fiource) /wine.n.01]

Assuming that the howto for serving juice is the most similar source candidate in the
library, we obtain

118

3.8. Instruction Completion

Is-a
’ drink.n.01 F—{ fruit_juice.n.01 ‘

A
Hfsource .steps Theme ’

ActionCore
s s ‘
’ eve H e [fruit_juice.n.01 /wine.n.01]

having resolved the Theme(f;ource) to the fruit juice.n.01 concept. Subsequently, the
projection of the sequence of single action steps is applied, which returns the vector

is-a is-a
vessel.n.03 - glass.n.02 ‘ ‘ vessel.n.03 glass.n.02 ‘ vessel.n.03 - glass.n.02 ‘

T Theme T Goal T Theme
ActionCore 3 ActionCore - ActionCore B
Take Taking Fill Filling Put Putting

l FromLoc ? lSubstance’ l FromLoc
is-a is-a ‘,. is-a
furniture.n.01 H cupboard.n.01 ‘ ‘ drink.n.01 }4—{ fruit_juice.n.01 ‘ ‘ furniture.n.01 H table.n.02 ‘ . .
[fruit_juice.n.01/wine.n.01]

Finally, in the last step, the substitution operator is applied to all occurrences of

is-a

fruit juice.n.01 in the source frame, which are replaced by the respective concept
wine.n.01.

vessel.n.03 %ﬁ{ glass.n.02 ‘ ‘ vessel.n.03 Fi{ glass.n.02 ‘ vessel.n.03 %i{ glass.n.02 ‘

ActionCore ActionCore ActionCore
Take Taking Fill Filling Put Putting

l FromLoc 2 ubstance l FromLoc

cupboard.n.01 ‘

S
is-a

isa is-a

furniture.n.01 table.n.02 ‘

‘ furniture.n.01 drink.n.01

The presented approach to instruction completion is fully integrated in the PRAC
natural-language interpreter. The PRAC howto library has been populated with more
than 103,000 single instruction steps extracted from the ~8,400 NL recipes from
Wikihow.

)

As a test case, we consider the instruction “flip the pancake,” which is lacking
information about which utensil to be used for the flipping action. The task is to
infer the most appropriate utensil by establishing analogies to similar situations
from the large body of instructions. Out of more than 7100 flipping instructions,
~210 have complete role assignments and thus are potential candidates for the role
completion. Table 3.8 shows the top 5 results of the frames most similar to the
instruction, their similarity score, the NL instruction they originated from, as well
as their role assignments. It can be seen that the examples are indeed semantically

close with respect to the similarity of their role assignments.

119

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

Score |Sentence Roles Senses
97% “If you're skillful, you can flip the crepe with | action verb: flip.v.08
a quick action of the wrist and no spatula.” | object: crape.n.o1
utensil: wrist.n.o1
93% “To flip a crumpet, remove the ring using | action verb: flip.v.08
tongs, and then flip the crumpet with a spat- object: crumpet.n.o1
ula. utensil: spatula.n.o1
92% “Turn the pancake with the help of turner |action verb: turn.v.10
and letit cook on the otherside till get brown object: pancake.n.o1
spots.” utensil: turner.n.o8
87% “Do not try to flip food with a skillet that is | action verb: flip.v.08
too heavy for you to easily control.” object: food.n.o2
utensil: frying_pan.n.o1
77% “Flip the steak over and repeat steps 1-3 with | action verb: flip.v.08
the other side.” object: steak.n.o1
utensil: side.n.o5

Table 3.8: Exemplary queries for semantically most similar frames in the PRAC instruction
sheet database: The top 5 scored frames for the query “flip a pancake.”

3.9 Execution in Simulation

Researchers in the fields of neuroscience and cognition have found evidence indicat-
ing that the capability to understand a directive in NL is tightly coupled to the ability
of actually performing it (Feldman and Narayanan, 2004). They view simulation
as a mental process for language understanding (Kaup et al., 2010) and physics
reasoning (Markman et al., 2008), and experiments have also shown that similar
regions in the human brain are active during actual task performance in the real
world and during just imagining the task being performed (Decety and Michel, 1989).
The ultimate goal of the PRAC system is therefore to be able actually perform the
analyzed instructions in simulation. To this end, PRAC is connected to the CRAM plan
executive (Mosenlechner, 2016) that can run the plans generated by PRAC in a robot
simulator. CRAM is connected via a bridge that has been developed in collaboration
with Pomarlan et al. (2017).

Figure 3.17 shows an architectural overview of the connected systems. Both PRAC
and CRAM are running on a web server machine and communicate over a remote
procedure call (RPC) interface. The user interface is PRACWEB, a web-based client to
the PRAC system running in a web browser, which I will present in Section 6.1. The
disambiguated, completed and refined semantic representations of NL instructions
computed by PRAC are sent to the CRAM server in the form of so-called action
designators, i.e. symbolic descriptions of actions consisting of the respective action
name and role-value pairs for the identified action parameters.

120

3.9. Execution in Simulation

(a) The simulated kitchen environment. (b) The simulated chemical laboratory.

Figure 3.16: Two Worlds in the Gazebo-based Robot Simulator.

On the CrAM side, a component called the simulation manager accepts a list of action
designators. As it takes several seconds to start a Gazebo simulator (Koenig and
Howard, 2004), the simulation manager maintains a pool of initialized simulated
worlds that have been prespecified to keep the system more responsive. The simula-
tion manager selects a world appropriate for the command. At the time this thesis is
being written, two different static worlds have been implemented, which corresponds
to the two application scenarios considered in this thesis, i.e. a kitchen and a chemical
laboratory. The two worlds are shown in Figure 3.16.

The received action designators are composed into a coherent plan and interpreted
and executed by CRAM. The components of the simulated robot, its sensors, con-
trollers, and the cognitive component, are all implemented as ROS nodes (Quigley
et al., 2009). A live visualization of the state of the simulated world is streamed back
to the PRACWEB client using the Robot Web Tools (Alexander et al., 2012), a toolkit
for remotely connecting robot middlewares with web technologies. The visualization
allows the users to see the simulated robot and the objects in the environment, as
well as additional visualization markers created by the robot plan. Using the mouse,
users can also change the position and orientation of the camera or zoom in and out.

The CRAM system is connected to the OPENEASE cloud robotics platform (Beetz
et al., 2015c¢), which records and stores information collected by the robot during
runtime. Such information includes the intentions of the robot while acting, why it
manipulated which object in which way and why, and what kinds of errors happened
during task performance. The logged information can be used by the robot to learn
and improve its future behavior.

In this section, I have presented a system integrating simulation of robot plans
with probabilistic reasoning about natural-language instructions in PRAC. PRAC in

121

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

User interface Simulation session manager
]

Natural language L

understanding e

Robot cognitive >
system <
Visualization
. Simulation
Y
Data storage
Gy | Data logger

Figure 3.17: Architecture overview of the connection between PRAC and CRAM. For reasons of
responsiveness, several simulated worlds are running concurrently, waiting for a command
from the natural-language understanding component. The simulation produces logs of
data about the robot’s processes, and a live visualization for the user. (By courtesy of Mihai
Pomarlan)

turn implements a complete pipeline from underspecified, vague NL instructions to
execution. This integration allows the robotic system to efficiently infer knowledge
about the physical world that would be tedious to specify by hand in a collection of
logical statements. It promises great potential for simulation as a learning, reasoning
and validation method for robots.

310 Related Work

In recent years, much work has been done in order to make knowledge sources
available to robots, which are originally indented for human use (Tenorth et al., 2010;
Ryu et al., 2010), and to generate robot plans out of natural-language instructions
(Matuszek et al., 2010; Tellex et al., 2011; Dzifcak et al., 2009; Neo et al., 2008;
Tenorth et al., 2010). Dzifcak et al. (2009) use combinatorial categorical grammars
for deriving a goal formulation in temporal logic in order to find an action sequence
that achieves this goal. Matuszek et al. (2010) use statistical machine translation
techniques to match natural-language navigation directives against a formal path
description language. Tellex et al. (2011); Ryu et al. (2010) use probabilistic models
to derive plans to be executed by a robot. Misra et al. (2014b) take into account

122

3.10. Related Work

the context of the environment for grounding objects in an instruction to objects in
the environment. They solve the ambiguity in instructions using an energy function
corresponding to a conditional random field.

What these approaches have in common is that they do not take into account that
natural-language instructions typically are severely underspecified, ambiguous and
often not directly executable. They make what is commonly referred to as the
closed-world assumption postulating that all knowledge about the world is given
and complete. Additionally, most approaches to teach robots by means of natural
language are designed to capture and execute what is specified by an instruction using
shallow mappings to robot control, but they are not intended to accumulate semantic
action knowledge that can be recalled in and adapted to different situations. Artzi
and Zettlemoyer (2013) and Kim and Mooney (2012) learn probabilistic context-free
grammars for robot navigation tasks. Their approach is inspired from a more linguistic
point of view, where such grammars are are typically induced from large corpora
of text consisting of sequences of navigational directives. The problems inferring
completions and executable refinements of instructions have received surprisingly
little attention so far.

PRAC pursues the goal of accounting for the variational complexity and richness
of human-scale manipulation tasks with everyday objects. In PRAC, the result of
a linguistic analysis of an instruction is taken only as evidence in a probabilistic
first-order knowledge base which allows us on the one hand to include any syntactic
characteristics of a sentence as evidence in a query, and on the other hand it enables
tight integration with the robot’s belief state, high-level knowledge base, executive
and perception system, which can provide comprehensive context information, such
as the objects perceived in a scene, for instance. In addition, PRAC makes use of a
rich taxonomy of concepts, the PRAC dictionary, which allows to transfer the learned
knowledge to new, unseen concepts. In PRAC the goal is not to find action sequences
given a particular goal, but to infer how to perform complex everyday activities in
presence of partial and incomplete information. It is inspired by and closely related
to frame semantics (Minsky, 1974) and is partially adapted from the FrameNet
initiative Baker et al. (1998) of action verbs but extended and adapted for including
knowledge necessary for robot action execution. ROBOFRAMENET (Thomas and
Jenkins, 2012) is a system that uses natural language to command robot action
through the intermediary of semantic frames. It does not account for uncertainty,
ambiguity or vagueness. Rather static mappings on a word level are used to connect
NL with robot control routines and no deeper semantic representation is used.

A number of previous works deal with inferring executable plans using probabilistic
models (Branavan et al., 2009; Matuszek et al., 2013; Misra et al.; Tellex et al., 2011).

123

Chapter 3. Probabilistic Knowledge Bases for Instruction Interpretation

However, to the best of our knowledge, only a few address the problem of inferring
missing information pieces and under-specificity. Similarly to PRAC, some of them are
able to infer reasonable plans even on unseen objects using taxonomic knowledge.
Tell Me Dave (Misra et al.) is a similar system, which is provided with training
sentences such as “throw the drinks in the trash bag.” Given a new instruction the
system is able to infer missing roles and finds that the “trash bag” is suitable as
well to “throw away the chips”. Sung et al. (2014) learn Markov random fields and
iteratively infer the most probable next action step to conduct and its parameters.

An example for a system that extracts knowledge from NL documents on the Web is
Text Runner (Etzioni et al., 2008) which is a self-supervised learning system generating
its own training data using a dependency parser to parse a corpus of documents.
The extracted knowledge is encoded by pairs representing relationships between two
respective entities. During the information extraction process, TextRunner applies
POS tagging on each sentence in the corpus the output of which is given as evidence
to the classifier which evaluates every sentence if it contains a relation considered
trustworthy, which will then be stored in a KB.

PRISMATIC (Fan et al., 2012) is another approach to extract knowledge from NL
documents. It was developed by IBM for creating knowledge bases for the Watson
system which became popular for winning the Jeopardy! competition (Ferrucci et al.,
2010b). PRISMATIC extracts shallow knowledge from the corpora based on which
it performs semantic inference using aggregate statistics. To process the corpora,
the system uses dependency parsing to extract the grammatical relations of the
words in the sentences and represent them as frames, which are attribute-value pairs
incorporating a predicate and its immediate participants. With a sufficiently large
data set, it is possible to infer relations that are not explicitly mentioned but implicitly
encoded in the corpus. However, using statistical aggregation to determine the results
comes with the side effect that the outcome may be biased if the information in the
corpus is unbalanced.

Never-ending Language Learner (NELL) (Carlson et al., 2010) is an information
extraction system. The system iteratively updates its knowledge base with new
corpora it is provided with. New knowledge is acquired using a number of subsystem
components serving different purposes. One component extracts knowledge of NL
documents based on the categories and relations in the knowledge base while another
component extracts new entities and relations of semi-structured documents like
HTML and XML. A third component is a uses sets of logistic regression models
determining which category noun phrases belong to. NELL learns new relations
based on relations already contained in the knowledge base. The components assign
scores to their extracted knowledge which is then used to decide which new facts will

124

3.10. Related Work

be added to the KB. Like PRAC, NELL uses an initial ontology to extract knowledge
for the information extraction process.

The Semantic Similarity Engine (Boteanu and Chernova, 2015) learns analogies of
the form “Ais to B as C is to D, like they are commonly used in standardized tests for
evaluating humans’ abilities to grasp and complete the relational structures of terms.

125

Chapter

Reasoning in Large-scale
Taxonomies

A key problem in the application of first-order probabilistic methods is the enormous
size of the graphical models they imply. The size results from the number of possible
worlds that have to be generated from a domain of objects and relations. One of
the reasons for this explosion is that so far the approaches do not sufficiently exploit
the structure and similarity of possible worlds in order to encode the models more
compactly, as shown in Chapter 2. In this chapter, I introduce fuzzy Markov logic
networks (Fuzzy-MLNs), an inference mechanism in Markov logic networks, which
enables the exploitation of taxonomic knowledge as a source of imposing structure
onto possible worlds. I show that by exploiting this taxonomic structure, probability
distributions can be represented more compactly and that the reasoning systems
become capable of reasoning about concepts not contained in the probabilistic knowl-
edge base. More specifically, I first present an approach for reasoning about unknown
concepts by exploiting semantic similarity to known concepts in Markov logic, which
typically impedes a compact representation of classes that are hierarchically orga-
nized in a taxonomy. Second, I present a reasoning framework for Markov logic
networks (MLNs) that enables inference in presence of vague evidence, which allows
a very compact representation of knowledge in MLNs and learning from sparse data.
And third, I demonstrate the strengths of the Fuzzy-MLN approach by the example
of a word-sense disambiguation task and showcase its strong generalization abilities.

IS5

Shallow
Transfer

&

Deep
Transfer

Chapter 4. Reasoning in Large Taxonomies

41 Motivation

Many real-world reasoning problems require the combination of relational represen-
tations with inference mechanisms that can solve the problems by reasoning from
incomplete, ambiguous, inaccurate and even contradictory information. Examples of
such reasoning tasks are the interpretation of natural language (Beltagy and Mooney,
2014), robot perception (Nyga et al., 2014) or intent recognition in human-robot
interaction (Sukthankar et al., 2014). Probabilistic relational models (PRMs) (Getoor,
2007b) have great potential to serve as powerful problem-solving tools for such ap-
plication domains: joint probability distributions over the instantiated relations that
describe the possible worlds in the respective domain can be queried for any aspect Q
contained in the model given any evidence E, P (Q | E). This kind of reasoning is often
called shallow transfer, which transfers the learnt knowledge to different variations of
the same domain, for example considering different numbers of objects of the same
kinds (Davis and Domingos, 2009).

These powerful reasoning capabilities, however, come at the cost of computational
complexity in learning and reasoning as the size of the domain under consideration
grows. As a consequence, practical applications are mostly bound to small application
domains with limited complexity. Many knowledge systems, however, have to work
in open worlds: they are equipped with knowledge bases (KBs) that have to answer
queries about unseen situations not accounted in their design like the examples
mentioned above. Hence, the application of expressive probabilistic representation
methods requires the inference mechanisms to support off-domain reasoning — rea-
soning about concepts that are not explicitly represented in the KB. Most of the
symbolic probabilistic KBs, however, do not support off-domain reasoning: They
require every symbol subject to reasoning to be explicitly represented in the model.
On the other hand, learning a probability distribution with all possible concepts is
hopelessly infeasible.

We therefore aim at developing reasoning mechanisms that are able to rapidly yet
flexibly generalize and learn from very few examples, which has also been identified
as key features in human cognition (Tenenbaum et al., 2011; Bailey, 1997). This form
of knowledge transfer is often called deep transfer (Davis and Domingos, 2009). One
possible idea to tackle this is to take into account knowledge about the taxonomic
structure of the reasoning domain, which is captured by ontological knowledge
representations such as description logic (DL). To this end, the correlation between
the semantic similarity of concepts, and the similarity of their relational structure can
be exploited for reasoning in probabilistic relational models to transfer the learned

128

4.1. Motivation

entity.n.01
A

abstraction.n.06

N

lmatter.n.03‘ lpart.n.l)l‘ containerful.n.01 ‘

substance.n.07 substance.n.01 Cup.n.OZ

cutlery.n.02 ‘ container.n.01 ‘ crockery.n.01 ‘ liquid.n.01 nutrient.n.02
/ | \\K\ | |
spoon.n.01 vlass.n.02 cup_n_ol ldish.n.ol‘ dairy_product.n.01 ‘ soup.n.01 begerave.n.ol‘ water.n.()ﬁ‘

/

bowl.n.03 milk.n.01 coffee.n.01

Figure 4.1: Excerpt of the WordNet taxonomy of concepts for the ‘containers-&-liquids’
example.

physical_entity.n.01 ‘

artifact.n.01

tableware.n.01

knowledge to classes unseen in the training data.

411 Running Example

Let word-sense disambiguation (WSD) and semantic role labeling (SRL), which are
challenging and widely studied problems in natural-language processing, be our
running examples. Solving these problems enables software systems to interpret
incomplete and ambiguous instructions and transform them into well-defined action
specifications. More specifically, take the terms ‘cup’ and ‘milk’ and their usage in
the two instructions “fill a cup with milk” and “add a cup of milk.” In the former
case, ‘cup’ refers to a drinking mug, a physical object that can hold milk. In the latter
case, it refers to a measurement unit specifying the amount of milk to be added to
something not further specified.

Figure 4.1 shows a small excerpt of the WordNet taxonomy of possible word senses
covering this example. Using the taxonomy we can represent the two instructions
using the logical assertions shown in Table 4.1. The assertions assign a word sense
(has_sense) to each word. The word sense is linked to the taxonomy using the is_a
predicate. In addition, the predicate sem_role states the semantic role that the word

129

Chapter 4. Reasoning in Large Taxonomies

“Fill a cup with milkR” “Add a cup of milk.”
has_sense(Fill, fill-sense) has_sense(Add, add-sense)
is_a(fill-sense, fill.v.01) is_a(add-sense, add.v.01)
has_sense(cup, cup-sense;) has_sense(cup, cup-sense,)
is_a(cup-sense;, cup.n.o1) is_a(cup-sense,, cup.n.o2)
has_sense(milk, milk-sense) has_sense(milk, milk-sense)
is_a(milk-sense, milk.n.o1) is_a(milk-sense, milk.n.01)
sem_role(cup, goal) sem_role(cup,amount)
sem_role(milk, theme) sem_role(milk, theme),

Table 4.1: Semantic representation of the natural-language instructions “fill a cup with
milk” and “add a cup of milR.”

takes in the instruction, whether it is the object acted on, the source of the stuff to be
transferred, the destination, the action verb, and so on.

Now suppose we have a taxonomy and two exemplary instructions to learn from:
“fill a cup with milk” and “add a cup of milk.” For the sentence “fill water into
the pot” a probabilistic reasoner should infer that water is the stuff to be added
and the pot the destination, even when 'water’ and ’pot’ are not contained in the
probabilistic knowledge base. The reason is that 'water’ is a liquid like 'milk’ and
therefore semantically similar and that a ’pot’ is a container and therefore similar to
a cup. Current first-order probabilistic reasoning frameworks cannot perform this
pattern of reasoning as they are restricted to concepts contained in their probabilistic
knowledge base.

In the following sections I will explain how reasoning in MLNs can be extended to
perform such reasoning tasks. Note that the reasoning tasks addressed here are not
whether or not two concepts are similar. This is already asserted in the taxonomy
and assumed factual knowledge. We rather want to infer the concepts that entities
belong to and the role they take in actions.

41.2 Semantic Similarity

In order to implement the principle of deep knowledge transfer in terms of the
proximity of symbols, a notion of similarity or distance in the symbol space is needed.
However, as there is no natural intrinsic total order on symbols in general, it is
nontrivial to define such a proximity measure for every symbol space. The key

130

4.1. Motivation

idea of Fuzzy-MLNs is to learn joint probability distributions conditioned on large
taxonomic knowledge bases that are assumed to be given as factual knowledge.
Indeed, a number of comprehensive high-quality taxonomies exist that have been
carefully designed to reflect the relational structure of concepts. Examples are the
WordNet dictionary (Fellbaum, 1998) and the Cyc ontology (Lenat, 1995). In this
work, I use the WordNet taxonomy as an implementational basis. Using WordNet is
particularly appealing since it has been carefully designed by linguists since the early
1990’s and is perhaps the world’s most comprehensive and mature ontology of terms
of the English language, comprising more than 117,000 concepts.

The semantic similarity of two concepts in DL-based representations can be charac-
terized in terms of the relative location of the two concepts in the taxonomy. Popular
measures take into account the lengths of the shortest paths between two concepts
in the respective taxonomy graph. The shorter the paths connecting the two nodes in
the graph are, the more similar the respective concepts are assumed to be. Among
those similarity measures, the WUP similarity (Wu and Palmer, 1994) is the most
widely used. Given a subsumption relation C, it defines the semantic similarity on
concepts in a class taxonomy as a function ~- mapping from the Cartesian product
of two concepts c¢1,co € T to a real-valued measure of the similarity of ¢; and ¢,
depth(lcs(c1, c2))

~rc: TXT [O, 1], C1 ~c €y = 1/2 (depth(cl) N depth((jz)) . (41)

les(-, -) denotes the lowest common super-concept of two concepts in C. A value of 1
indicates maximal similarity, whereas a value of 0 indicates maximal dissimilarity.
There are two basic assumptions that lead to Equation (4.1). The first assumption is
that the depth on which a concept resides in the taxonomy graph reflects its abstract-
ness or concreteness, respectively. Consequently, the leaf concepts are assumed to be
the most specific, and the root concept T is assumed to be the most abstract concept.
The second assumption is that the abstractness of the most specific concept that is
both a superconcept of ¢; and ¢y (i.e. the lowest common superconcept (LCS)) is an
indicator for their similarity. This means, the more abstract the LCS of ¢; and c; is,
the more dissimilar they are assumed to be.

An example of the WUP similarity applied to a small excerpt of the WordNet taxonomy
is shown in Figure 4.2. The figure visualizes the similarity of the concept coffee.n.01
to the two concepts milk.n.01 and cup.n.01. It is most intuitive to think of the
LCS in terms of properties that two concepts have in common. If the LCS is very
concrete, the concepts have many properties in common as properties in DL are being
inherited along the subsumption relation E to more specific concepts (cf. Figure 4.2a).

131

e

see Appendix B
for Reference

Chapter 4. Reasoning in Large Taxonomies

entity.n.01 entity.n.01
depth(lcs(ci,c;))=0

=3

depth(lcs(c;,c;))=3

depthl(c,)

4

nutrient.n.02

4
4

substance.n.07

depth(c;)
depth(c,)
depth(c;)

‘ liquid.n.01 ‘ ‘ nutrient.n. 02‘

food.n.01

[o
1

m} ‘ dairy_product.n. 01‘ ‘walern DG‘ ‘beverage n 01‘ ‘ dairy_product.n. 01‘

(a) coffee.n.o1~ milk.n.01=0.96 (b) coffee.n.o1~r cup.n.o1=0

Figure 4.2: Visualization of the WUP similarity of concepts (a) coffee.n.o1 and milk.n.o; (b)
coffee.n.o1 and cup.n.o1: the two concepts c; and c, are highlighted in green, their lowest
common superconcept lcs(cy, ¢) is highlighted in blue.

Conversely, if the most specific common property of two objects is to be instances
of something (i.e. an entity.n.01), it is reasonable to assume that those concepts are
fundamentally different in nature (cf. Figure 4.2b).

Following these considerations, the WUP similarity implements a reasonable distance
metric on the space of concepts in an ontology. There are, however, subtleties with
similarity measures that only take into account the path lengths connecting two
concepts, in particular in connection with properties that cannot be reflected by
the graph structure of the taxonomy. I will address these issues in greater detail in
Chapter 5.

41.3 Fuzzy Logic

Semantic similarity measures like the WUP similarity offer a convenient means
for referring to any concept in an upper ontology in terms of its similarity to any
other concept. Assuming a symbolic KB representing knowledge about the concepts
cup.n.01, cup.n.02 and milk.n.01 as indicated in Figure 4.1, it is possible using the
WUP similarity ~c to refer to a bowl.n.03 as something very similar to a cup.n.01
and very dissimilar to milk.n.01 and cup.n.02, and to refer to soup.n.01 as something
similar to milk.n.01 but dissimilar to cup.n.01 and cup.n.02, and thus to reason about
unknown concepts without explicitly introducing symbols for them.

As the goal is to perform reasoning about concepts that are not contained in a
probabilistic relational model (PRM), a representational means is needed, in order to
express the expectations about the properties of an unknown concept, which we are
uncertain about. To this end, the Boolean truth values in MLNs can be replaced by

132

4.2. Fuzzy Markov Logic Networks

degrees of truths about whether or not relations hold for a concept not contained in
the probabilistic model. Fuzzy logic (FL) provides an elegant calculus for this purpose,
a multi-valued extension of propositional logic (PL). As introduced in Chapter 2,
fuzzy logic (FL) has its foundations in the theory of fuzzy sets, in which elements
belong to a set only to a certain degree.

Formally, a fuzzy subset x of a set X is a pair (X, r,), where X is called the universe
and 7, : X — [0, 1] determines the degree to which a particular element actually
belongs to x, which is called the membership function. In FL, the universe X is given
by the set of atomic propositions and x, is a fuzzy interpretation of X assigning
every proposition in X a real-valued degree of truth. Its calculus is analogous to the
calculus in PL: If A and B are propositions in FL, then the logical connectors with
respect to x are defined as

A A B :=min (7, (A), 1.(B)),
AV B := max (7, (A), m.(B)),and
-A = 1- 1 (A). (4.2)

Note that the multi-valued logical calculus of FL reduces to its binary counterpart
of PL in the extreme cases where all propositions have Boolean truth values. By
replacing the strictly Boolean calculus of first-order logic (FOL) in MLNs by a multi-
valued calculus of FL, finer-grained statements about class memberships are possible
by stating that an object is an instance of some concept only to a certain degree.

4.2 Fuzzy Markov Logic Networks

In contrast to existing probabilistic methods incorporating class hierarchies, Fuzzy-
MLNs do not target reasoning about the taxonomic structure as such. This comes with
the advantage that the concepts subject to reasoning do not need to be exhaustively
modeled in the probabilistic model. This enables (1) a compact representation of
knowledge, (2) a powerful generalization from sparse training data and (3) a reduced
complexity of learning and inference.

133

18>

Semantic Similarity

&
Possible Worlds

Chapter 4. Reasoning in Large Taxonomies

421 Definition

A Fuzzy-MLN F is a pair (L, C), where L is an MLN and C is a taxonomy of concepts,
such that L represents a conditional probability distribution

P (has_sense(-,),... | mx(is_a(:,-)),...). (4.3)
In addition, the following conditions hold:

1. an entity e in the domain of discourse D is connected to a concept ¢ in the
taxonomy C always by a proposition

has_sense(e,s) Ais_a(s,c), wheres,c € T,

2. all ground atoms of the form is_a(s, c), where s, ¢ € T take real-valued degrees
of truth € [0, 1], which we call semantic similarity. Ground atoms of all other
predicates take strictly binary truth values € {0, 1}.

3. The set X of possible worlds represented by F is the set of all fuzzy subsets of
all ground atoms X, where the membership functions for every ground atom
is_a(s,c) is equal across all possible worlds and is defined as the semantic
similarity of s and ¢ with respect to C, i.e. for all x € X and for all s,c € T

7y (is_a(s,c)) =s~cc¢

holds.

4.2.2 Semantics

According to the second condition in our definition, the semantics of Fuzzy-MLNs
differs from the original in Equation (2.14) in two aspects: First, a possible world
x is no longer a strictly Boolean vector assigning a truth value to every ground
atom but also allows for real-valued degrees of truth. The ground Markov random
field (ground MRF) of a Fuzzy-MLN thus contains Boolean and numerical random
variables; one real-valued variable for every ground atom of the form is_a(:,-) and a
Boolean one for every other ground atom. Second, as a consequence, the semantics
of the Boolean logical features f; : X {0, 1} in the ground MREF is not applicable

134

4.2. Fuzzy Markov Logic Networks

anymore. Therefore, the features associated to every ground formula 1:"; in the Markov
random field (MRF) are defined to take the form f] : X — [0, 1], where each feature
f;(x) evaluates to the truth value of its ground formula I::] in x by applying the fuzzy
logic calculus as defined in Equation (4.2), i.e. ﬁ(x) = Ty (l?j). Hence the distribution
of F becomes

|G|
P(X =x) = — exp (Z w,-nx(?})), (4.4)

where the transition from formulas F; in FOL to ground formulas E is achieved by
the ordinary grounding process in MLNs. Condition no. 3 in the definition ensures
that the probability distribution in (4.4) corresponds to the conditional distribution
in (4.3): since the truth value of a ground atom of the is_a predicate is required to
be equal across all possible worlds x, the distribution P(X = x) in (4.4) is effectively
conditioned on every atom of the form is_a(,).

In FOL, the equality operator (‘=") is used to express that two symbols refer to the
same entity in the real world. Its semantics therefore corresponds to the identity of
two entities rather than equality. As I cannot think of any situation in which it would
be reasonable to discern several degrees of identity, I argue that it makes sense to
leave the equality operator its original semantics, i.e. a term y = z evaluates to 1 iff y
is identical to z, and 0 otherwise.

Since the FOL semantics of conventional MLNs do not account for real-valued truth
values, the calculus of the logical rules in the MLN, which are being transformed to
clique potential functions in the ground MRF during the grounding process needs
to be adapted appropriately. To do so, it is straightforward to make the step from
strictly Boolean FOL to a multi-valued logical calculus that reduces to its Boolean
counterpart in the extreme cases where all predicates have Boolean truth values.
Consequently, we can require every feature function in the ground MRF to take the
form f; : X — [0, 1] and taking the FL calculus as a basis.

4.2.3 Knowledge Representation

A Fuzzy-MLN contains two dedicated predicates, has_sense and is_a, which provide
means to incorporate knowledge from the class taxonomy into the probabilistic
model. In short, is_a encodes the taxonomic knowledge and has_sense is used for
expressing uncertainty about which concepts entities belong to. By discerning the

135

(IS

has_sense

Chapter 4. Reasoning in Large Taxonomies

two predicates, we can model that one is certain about the taxonomic structure of the
domain subject to reasoning, but possibly uncertain about which concept an entity
belongs to.

In contrast to conventional MLNs, Fuzzy-MLNs do not require all predicates to be
Boolean and they do not require all predicates to be real-valued. Variables (ground
atoms) of the form is_a(s,c) in the ground MRF take real-valued degrees of truth
€ [0, 1], which express the degree to which s is similar to c¢. Here, a value of 1 denotes
maximal similarity, whereas O denotes maximal dissimilarity. This allows to represent
entities that belong to concepts not contained in the probabilistic knowledge base
by referring to them in terms of their similarity to known concepts. Note that in
Fuzzy-MLNs, the semantic similarities are not computed by the inference algorithm
as in other formalisms. Rather, they are always given by the taxonomy structure and
exclusively appear as evidence. This makes the representation of the conditional
distribution in (4.3) very compact, since the taxonomy structure may be collapsed
into single numeric values that scale the contribution of every single ground formula
to the probability mass (4.4) by the similarities of its constituents to concepts that are
contained in the model. This allows to generalize the learnt knowledge also to classes
unseen in the learning data. In addition, realizing Fuzzy-MLNs without having to
equip them with the capability of reasoning about the similarity relation ~¢ as such,
enables to escape a complexity monster: without making this restriction, inference
and learning would require to compute integrals over those variables, rendering
computational complexity infeasible for practical applications.

Since the distribution of a Fuzzy-MLN is conditioned on the taxonomic structure of
the domain, the second predicate, has_sense, is used to link any entity in the domain
of discourse to a concept in C. Unlike is_a, has_sense is Boolean and may be subject
to inference. Propositions about class memberships of an entity e are made in the
form has_sense(e,s) Ais_af(s,c).

4.2.44, Example

Let a minimalistic example illustrate how inference about unknown concepts can be
achieved in Fuzzy-MLNs: Suppose we want to represent the conditional distributions
that parrots can fly and that mammals can not. In Markov logic, we can establish
these distributions in an MLN with, for example, the two weighted formulas

136

4.2. Fuzzy Markov Logic Networks

wy =1In-9/.1 flies(e) A has_sense(e, s) A is_a(s, Parrot)

wy =1n-1/.9 flies(e) A has_sense(e,s) A is_a(s, Mammal).

In conventional MLNs, reasoning can only be performed about instances of either of
the concepts Parrot and Mammal because for any other concept, none of the formulas
are applicable. Using a Fuzzy-MLN with the same model structure and an underlying
taxonomy C, however, reasoning tasks outside the model domain can be tackled,

such as
p = P(flies(F) | has_sense(F, Turkey)).

In this example, there are two ground atoms of the is_a predicate, is_a(Turkey, Parrot)
and is_a(Turkey, Mammal), which are, for instance, assigned the truth values

7ty (is_a(Turkey, Parrot)) = 0.90
75 (is_a(Turkey, Mammal)) = 0.01

in every possible world x according to a similarity ~c. Consequently, the influence of
the two ground formulae

7y (F1) = flies(F) A has_sense(F, Turkey)
A is_a(Turkey, Parrot) = min(7ny (flies(F)),0.9)
7o (Fy) = flies(F) A has_sense(F, Turkey)
A is_a(Turkey, Mammal) = min(n, (flies(F)),0.01)

on the distribution in (4.4) is scaled down by the similarity of concepts resulting
in a posterior distribution of p ~ (0.876,0.124). In the extreme case, where there
is maximal dissimilarity of two concepts, the contribution of every ground formula
vanishes resulting in a uniform distribution. This is reasonable since in this case the
model cannot make any well-informed statement about entities that are maximally
dissimilar to everything that is contained in the model.

Learning & Reasoning Fuzzy-MLN is an extension of reasoning in MLNs. As the only
modification is in the semantics of the features f to allow for soft truth values, there

137

Chapter 4. Reasoning in Large Taxonomies

is no need for adaptations of the learning and reasoning methods since the original
inference methods like Gibbs sampling are defined over the ground MRF of the MLN.

Running example continued Let us now continue with the running example and
explain how Fuzzy-MLNs solve the respective reasoning tasks. We consider again
the two training databases corresponding to the instructions (1) “fill a glass with
milk” and (2) “add a cup of milk.” In order to model word sense and role/sense co-
occurrences, we construct a Fuzzy-MLN consisting of one single weighted template
formula,

has_sense(wi,s1) Ais_a(si, +c1)
A has_sense(wa, s2) A1s_a(sa, +c2)

A sem_role(wi,+r1) A sem_role(wy, +r2) A wi # wa,

which has been trained with the two databases introduced at the beginning. As
described in Chapter 2, the ‘4’ operator expands the respective variable to a separate
formula for each value of the variable.

In order to illustrate that the learned MLN indeed reasonably generalizes across
classes, we visualize the posterior distributions over the WordNet taxonomy for two
exemplary queries. Figure 4.3 shows the posteriors of two queries for the meaning of
a word representing the theme of a ‘filling’ activity and its goal, respectively, i.e.

has_sense(wi, s1), | has_sense(w’, fill.v.01),
has_sense(ws, s2) | sem_role(w’, action_verb),
sem_role(ws, theme),
sem_role(wy, goal), (4.5)
7y (is_a(fillv.01,fill.v.01)), ...,
7y (is_a(sy, milk.n.01)),. ..

7y (is_a(sa, milk.n.01)), ...

The condition contains the real-valued assertions of semantic similarities of all word
senses s; and sy under consideration of all concepts in the MLN (i.e. fill.v.01, add.v.01,
milk.n.01, cup.n.01 and cup.n.02), such that the is_a predicate’s truth values are fully
specified for all of its ground atoms.

The distributions show that, conditioned on the semantic role of a word, two clearly

138

4.2. Fuzzy Markov Logic Networks

separable clusters of concepts appear in the taxonomy. For the theme role of a fill-
ing action, all substances/liquids gain considerably high probability (Figure 4.3a),
whereas the goals of such an action are represented by all types of containers (Fig-
ure 4.3b). Note that also categories not explicitly modeled, such as water.n.06,
soup.n.01, or spoon.n.01 and bowl.n.03 and glass.n.02, respectively, have been as-
signed significant probability masses indicating that the model indeed reasonably
generalizes knowledge across unseen object categories.

A slightly different query is visualized in Figure 4.4. Here, the goal is to show how the
distributions over the possible senses of the word ‘bowl!’ differs in the two instructions
“add a bowl of water” and “fill a bowl with water”. To this end, one can query for
the distribution over all possible senses s and condition on different action verbs, for
example

p (has_sense(W,s) has_sense(w’, fill.v.01),
sem_role(w’, action_verb),
m(is_a(fill.v.01,£ill.v.01)), ..., (4.6)
7y (is_a(s, milk.n.01)), ...,

7y (is_a(s,cup.n.01)), ..))

where the senses s are from the set of actually possible senses of the word ‘bowl’. Here,
a sense is considered a possible sense if the concept is returned by WordNet as a synset
for the word. Therefore, all other nodes in the taxonomy graph can be assigned zero
probability. Figure 4.4b shows the distribution of such a query. Obviously, the paths
of hypernyms of the concept bowl.n.03 has highest probability representing a physical
container object. Figure 4.4a shows how the posterior is altered by conditioning on a
different action verb, namely an ‘adding’ action (add.v.01). The distribution changes
in favor of the bowl.n.04 concept, which represents the abstract unit of measure.

The examples of simultaneous word-sense disambiguation and semantic role labeling
show that Fuzzy-MLNs are a promising concept for reasoning in PRMs and success-
fully transfer learnt knowledge to new, unseen concepts by exploiting the taxonomic
structure of the domain.

139

Chapter 4. Reasoning in Large Taxonomies

entity.n.01

abstraction.n.06

physical_entity.n.01

tableware.n.01 ‘substance‘n.wl |substance.n.01| |cup,n‘02| |bow\‘n‘04| ‘spoon,n‘oz‘
| cutrery.n.ozl |container.n.01 | lcrockery.n.01| |food.n.01| | liquid.n.01 ‘ | nutrient.n.02 ‘
/ 7 W / \\\ 3
|spoon.n.01| |glass.n 02 ‘ ‘cup.n.Oll |dish.n.01‘ | dairy_product.n.01 | |suup.n.01‘ |heverageAnA01| ,water.n.oﬁ[

|bow|.n.03‘ |miIkJ\.01 | coffee.n.01

(a) Posterior of Equation (4.5) for w; given sem_role(w;, theme)

entity.n.01

physical_entity.n.01

abstraction.n.06

artifact.n.01

matter.n.03 part.n.01 containerful.n.01
tableware.n.01 ‘substance‘n‘wl |substance‘n.01| |cup,n‘02| |bow\‘n‘04| ‘spoon,n‘oz‘
A
| cutlery,n.ozl |ccmtainer.n.01 | lcrockery.n.01| lfoud.n.01| l liquid.n.01 ‘ | nutrient.n.02 ‘
|spoon.n.01| |glassAn‘02| ‘cup.nﬁll |d|shAnA01| | dairy_product.n.01 | |soup.n.01‘ |beverage.nv01| ‘water.n.oﬁt

|bowl.m03| |mi|k.n.01 l coffee.n.01

(b) Posterior of Equation (4.5) for w» given sem_role(ws, goal)

Figure 4.3: Posterior distributions over the taxonomy conditioned on semantic roles of
a filling action according to Equation (4.5). More intense node colors indicate higher
probability. wy given sem_role(wy, theme) Also for word meanings that are unknown to
the MLN, all posteriors represent reasonably well the appropriate word meanings.

140

4.2. Fuzzy Markov Logic Networks

entity.n.01

| physical_entity.n.01 | | abstraction.n.06 |
A
‘matter.n,03| ‘part,n,01| | containerful.n.01 |
tableware.n.01 ‘substance.n.07| |substance.n.01| |cupvn 02| |bow\ n.04| ‘spoonvn.oz‘
| cutlery.n.02 ‘ ||:ontainer.n.01 | |crcckery.n.01| liguid.n.01 nutrient.n.02
/ ‘ W\ \
|spoon.n.01| |glass.n,02‘ ‘cup.n.oll |dish.n.01| | dairy_product.n.01 | |soup.n.01‘ Ibeverage.n.01| [water.n.oﬁ‘

/‘

|b0wl.n.03| |milk,n.01 | coffee.n.01

(a) Posterior of the meaning of ‘bowl’ given a ‘filling’ action.

| physical_entity.n.01 | | abstraction.n.06 |
A

S

‘matter.n,03| ‘part,n,01| | containerful.n.01 |

[~ | 15

substance.n.07| cup,n‘02| |bowl.n.04| ‘spoon,n.oz‘

artifact.n.01

tableware.n.01

substance.n.()ll

| cutlery.n.02 ‘ |container.n,01 | ‘crockery.n.01| liquid.n.01 nutrient.n.02
/ ‘ W\ \
|sp00n.n.01| |glass.n.02‘ ‘cup.n.oll |dish.n.01‘ | dairy_product.n.01 | |soup.n.01‘ Ibeverage.n.01| [water.n.oﬁ‘

|bow|.n.03‘ |mi|k.n.01| coffee.n.01

(b) Posterior of the meaning of ‘bowl’ given an ‘adding’ action.

Figure 4.4: Posterior distributions of word-sense disambiguation queries according to
Equation (4.6) for the word ‘bowl’ in the sentences “add a bowl of water”, and “fill a bowl
with water”. Also for word meanings that are unknown to the MLN, all posteriors represent
reasonably well the appropriate word meanings.

141

(IS

Inverse
Cross-validation

Chapter 4. Reasoning in Large Taxonomies

4.3 Evaluation

We chose the problem of word-sense disambiguation (WSD) as a showcase for
reasoning with Fuzzy-MLNs since it is a difficult, widely studied and highly relevant
problem in Artificial Intelligence (AI) and language understanding. We evaluate
the Fuzzy-MLN reasoning framework on a real-world data set of natural-language
instructions that have been mined from the wikihow.com web site and manually
annotated with correct word senses. We intend to contrast its performance against
ordinary MLNs with FOL calculus and — as a baseline comparison — the state-of-the-
art WSD algorithm “It Makes Sense” (‘IMS’) (Zhong and Ng, 2010). IMS operates
on the WordNet database of senses. However, it does not take into account the
class hierarchy. Instead, it learns support vector machine classifiers on features like
part-of-speech tags, surrounding words and local collocations. It has been selected
as a baseline comparison as it is one of the few algorithms specifically designed for
WSD, whose implementation is publicly available for training and testing.

Experimental Setup In our setup, we provide the learning and reasoning algorithms
with word co-occurrences and part-of-speech tags of words. In order to emphasize
the generalization capabilities of the considered methods, we chose the hardest
experimental setup we can imagine:

1. the datasets have been selected to exhibit maximal entropy with respect to the
concepts that are contained in the examples, such that they are as dissimilar as
possible. Indeed, none of the respective word senses occurs twice in the data.

2. the models were trained with only very small portions of data and tested on
larger, unseen portions of data.

k-fold cross-validation is a popular and well-acknowledged method for classifier
evaluation. In classical k-fold cross-validation, all data available are randomly
partitioned into k subsets of equal size. Subsequently, the classifier to be evaluated is
trained using k — 1 of the subsets and tested on the remaining k-th set. This procedure
is repeated k times with every subset serving as the test set once.

We conduct a modification of classical cross-validation, which we call ‘inverse’ k-fold
cross-validation. We call it ‘inverse’, because inverse proportions of training and test
set sizes are considered as well. For k = 1/9, for example, only 10% of the available
data is used for training, and the remaining 90% serve for evaluation. Conversely,
k = 9/1 corresponds to classical 10-fold cross validation. This makes the evaluation

142

4.3. Evaluation

H - r/\v/‘
07 / 05 = N /
=—a FOL-MLN '/0\‘./‘
= 0.6 | v—¥ Fuzzy-MLN & 0.4p—"
e—eo IMS
0.5 A 03l = |=a FOL-MLN
./- - vy Fuzzy-MLN
© o—e |MS
0.4 s ; 02 Z
i f % 3 1 31 3 i3 3
L L
(a) Filling (fill.v.01) (b) Adding (add.v.01)
=—am FOL-MLN
A
0.6} ¥—¥ Fuzzy-MLN 0.6 o
e IMS ~
0.5 0%
: 7)
& =04
0.4 %
0-3___.__—-—r/. B8 FOL-MLN
0-3i/I—I/'_'/.+H ¥ Fuzzy-MLN
0.2 e IMS
02 e
g E 1 B p 7 6 1 3
L k
(c) Slicing (slice.v.03) (d) Cutting (cut.v.01)
0.8 —
e == FOL-MLN
0.7 ¥—v Fuzzy-MLN
06 / e—e |MS
' ‘/ 05
05 [
04 04
E—8 FOL-MIN —
031 v—y Fuzzy-MLN 03
0.2} | e [MS
| — _— — — —" — — —
HEE T :s
L I3
(e) Stirring (stirv.01/08) (f) Putting (put.v.01)
——y—Y|
,_——v/
06 P
/ =& FOL-MLN
<05 v—v Fuzzy-MLN
v e—e |MS q
04 o—o——o—*¢
O.SK"—-T/’?/J'__./-,/.
§ ¢ & 5 1 8

I-

(g9) Average éver (a)-(f)

Figure 4.5: F, scores for inverse k-fold cross validation for k = 1/9...9/1 using classical
MLNs with FOL semantics and Fuzzy-MLN s applied to a WSD problem of 20 examples per
action verb. 143

Chapter 4. Reasoning in Large Taxonomies

Action Verb :
Yo |28 |37 |46 |55 |84 |73 |82 |91
FOL-MLN 0.40 | 0.41 | 0.41 |0.42 |O.44 |0.49 |0.44 | 0.46 | 0.51
Filling ms O.44 |O.44 | 0.4 | O.4ly | 044 | 044 | O.44 | O.44 | 044
Fuzzy-MLN 0.64 | 0.69 | 0.67 |0.68 | 0.75 |0.75 |0.75 |0.75 | 0.75
FOL-MLN 0.27 |0.29 |0.29 |0.32 |0.29 [0.34 [0.38 |0.36 | 0.38
Adding ms 0.40 | 0.41 | O.44 | 0.43 |0.45 |0.46 [0.53 |0.50 |0.53
Fuzzy-MLN 0.44 | 0.50 | 0.49 | 0.51 |0.49 |0.52 |0.57 |0.56 |0.57
FOL-MLN 0.28 |0.30|0.30|0.31 |0.31 [0.34 [0.34 |0.34 | 0.34
Slicing ms O0.44 |0.45 | 0.45 |0.45 | 0.45 | 0.46 |0.46 | 0.46 | 0.46
Fuzzy-MLN 0.36 | 0.49 | 0.54 | 0.48 | 0.60 | 0.56 |0.61 |0.61 | 0.65
FOL-MLN 0.27 |0.28 |0.29 |0.29 |0.32 [0.32 [0.34 |0.34 |0.34
Cutting ms 0.45 | 0.45 | 0.45 | 0.42 |0.45 |0.45 |0.45 |0.45 |0.45
Fuzzy-MLN 0.40|0.51 | 0.57 |0.62 | 0.64 | 0.64 | 0.66 |0.66 | 0.66
FOL-MLN 0.42 | 0.43 | 0.43 | O.44 |0.46 |0.45 [0.46 | 0.53 | 0.55
Putting ims 0.300.31 |0.32 |0.31 |0.32 |0.35 [0.35 |0.37 |0.38
Fuzzy-MLN 0.43 | 0.48 | 0.480.50 | 0.53 |0.50 | 0.51 |0.51 |0.50
FOL-MLN 0.6 |0.16 |0.16 |0.16 |06 [016 [0.16 [0.16 |0.16
Stirring ms 0.45 | 0.45 | 0.45 | 0.45 |0.45 [0.45 [0.45 |0.45 |0.45
Fuzzy-MLN 0.53 |0.79 | 0.73 | 0.77 |0.76 |0.83 |0.83 |0.82 | 0.82

Table 4.2: Left: F; scores averaged over all action verbs. Right: F; scores for inverse k-fold
cross validation for k = 1/9, ..., 9/1.

particularly challenging as models have to greatly generalize their knowledge to
unseen concepts.

Results The instructions are grouped with respect to the action verbs they contain
and use 20 examples per action verb in each fold because we observe that senses
of words in a sentence strongly depend on the respective action verb. Splitting
with respect to verbs thus allows easier interpretation of the results. A juxtaposition
of F; scores of an ordinary FOL-MLN, the IMS algorithm and Fuzzy-MLN is given
in Table 4.2. Fuzzy-MLNs clearly outperform the classical MLNs as well as the
baseline algorithm in almost every test case. Moreover, Fuzzy-MLNs achieve F;
scores significantly above 0.5 even with very small portions of training data.

An obvious example is given by the ‘filling’ action depicted in Figure 4.5a, where the
Fuzzy-MLN outperforms the competitors by at least 20 percentage points for k = 1/9.

144

4.4, Related Work

The F; score measures the classification accuracy with respect to word meanings
from the taxonomy assigned to each word in the respective natural-language (NL)
instruction. In cases of ‘putting’, all methods perform comparably poorly. An ex-
planation for this is that the verb ‘put’ by its nature is very generic and thus does
not impose a bias on its co-occurring words, which would be sufficient to effectively
discern word senses.

It is interesting to note that, while only moderate improvements in ordinary MLNs
and IMS can be observed with increasing amounts of training databases, the most
significant performance jumps with Fuzzy-MLNs are made when only sparse training
data is used, i.e. for k € {1/9,2/9,3/9}. In these extreme cases, where concepts occur in
the test data that are not contained in the training data, classical MLNs (and all other
approaches mentioned in the related work) are inapplicable to perform meaningful
reasoning but are forced to randomly guess.

The experiments, although not carried out on a large-scale corpus, are sufficient to
show that fuzzy inference in MLNs can perform adequate reasoning about concepts
in the taxonomy that are not explicitly represented in the probability distribution
and have not been seen during training and, in these cases, clearly outperform the
state-of-the-art methods.

4.4 Related Work

A couple of frameworks have been proposed to incorporate concept taxonomies and
similarity in probabilistic models, such as probabilistic description logics (Lukasiewicz,
2008; Niepert et al., 2011), tractable Markov logic (TML) (Domingos and Webb,
2012) and probabilistic similarity logic (PSL) (Brocheler et al., 2010), which Fuzzy-
MLNs differ from in basically two fundamental ways:

1. Fuzzy-MLNs do not postulate uncertainty among the taxonomy structure as
such, i.e. the structure itself is not subject to reasoning

2. Fuzzy-MLNs do not model the whole taxonomy in the probabilistic model, but
only the concepts seen during training.

This makes the Fuzzy-MLN concept a more compact reasoning framework.

Tractable Markov logic (TML) is a subset of MLNs. TML introduces the idea of
concept taxonomies in MLNs, but in order to perform reasoning about superclasses,

145

Chapter 4. Reasoning in Large Taxonomies

the inheritance relationship of concepts is explicitly represented in the model. By
employing semantic similarity as evidence, the taxonomy relation is more compactly
encoded in Fuzzy-MLN.

Probabilistic similarity logic (PSL) uses a formalism similar to Fuzzy-MLN. However,
their probabilistic semantics differ fundamentally: By definition, all constituents of a
ground formula in PSL are subject to the degree-of-truth semantics of multi-valued
logics. This comes at the cost that in PSL, the partition function Z is required to
integrate over all real-valued degrees of truth in the interval [0, 1] of all variables
in the ground MRF, which makes the models computationally even harder than
in Boolean-valued MRFs. Conversely, in Fuzzy-MLNs, we have both real-valued
variables in the ground MRF that follow the degree-of-truth semantics, and boolean
variables following the degree-of-belief semantics, whereas only the boolean variables
are subject to reasoning and real-valued variables are required to appear as evidence
only. This restriction is motivated by the assumption that ontology structures as
such are given and do not exhibit any uncertainty, and at the same time it allows
using existing inference algorithms for ordinary MLNs with only boolean variables
avoiding the intractability of computing integrals over real-valued variables in the
partition function. In addition, unlike Fuzzy-MLNs, the goal of PSL is rather to reason
about the degree to which a set of entities are similar to each other. Conversely, in
Fuzzy-MLNs the taxonomy is fixed and serves for filling gaps in the probabilistic KB.

Hybrid MLNs (HMLN) (Wang and Domingos) extend MLNSs to reason about continu-
ous variables. They discern features in hard FOL and numeric features that may be
expressed as ‘soft’ (in)equality constraints. Those constraints are typically connected
in a multiplicative way, such that, if a logical constraint evaluates to false, then
also a connected numeric feature will have no influence on the probability of the
respective possible world. Hence representing semantic similarities in HMLNs does
not appear straightforward. The concept of soft evidence (Jain and Beetz, 2010) is
closely related to the idea of vague evidence, though it has fundamentally different
semantics for it still assumes boolean truth values and soft evidences serve as prior
probability constraints on ground atom:s.

To the best of my knowledge, none of these approaches can deal with entities that
are not part of the probabilistic model in any meaningful way. This is a severe
limitation, because they are not capable of exhaustively modeling joint probability
distributions of realistic domain sizes. Since learning in first-order probabilistic
models remains intractable in the general case, inference and generalization across
concepts is essential and outstandingly important for probabilistic relational models
to be scalable and applicable to real-world problems.

146

4.5. Discussion

4.5 Discussion

A key feature in human cognition is the remarkable ability to rapidly yet flexibly
learn and generalize from specific examples of how a particular word or concept is to
be used in a certain situation, by just seeing very few examples of that word:

“In coming to understand the world - in learning concepts, acquiring language, and grasp-
ing causal relations — our minds make inferences that appear to go far beyond the data

available.” — (Tenenbaum et al., 2011)

This highly effective learning process is particularly impressive because it takes
place already in very early childhood (Bailey, 1997). Children grasp the meaning
of new words very quickly, categorize them into subsets and learn how to use them
appropriately in new situations.

As an example, consider again the terms ‘cup’ and ‘milk’ and imagine how they are
used in the context of the two instructions “fill a cup with milk” and “add a cup of
milk,” from an NL recipe. In both cases the word ‘milk’ refers to the white nutritious
beverage, which can typically be found in the refrigerator. The term ‘cup’, however,
in the former case refers to a drinking mug, a physical object that is supposed to hold
the milk, whereas in the latter case, it rather refers to an abstract entity, a unit of
measure, specifying the amount of milk which is to be added to something not further
specified. Now suppose a human is faced with an instruction “add a spoon of sugar,”
without having ever encountered the word spoon before. Typically, humans are able
to exploit their taxonomic knowledge to determine it can be either interpreted as a
piece of cutlery or as a measuring unit. I argue that in such a case it is rational to
choose the option which is most similar to a situation we have already seen, as one
can expect it to behave similarly.

In knowledge representation and reasoning, the usage of ontologies and class tax-
onomies, hierarchically organized sets of concepts, have a long tradition as they
appear to naturally represent a way of how humans organize their commonsense
knowledge. Subsuming categories of entities in super-classes allows efficient rea-
soning about everyday situations for all entities being affected in a single symbol.
Representation and reasoning about concept taxonomies in FOL has been widely
studied in AI (Thau and Ludischer, 2007) and so has been DL, a subset of FOL
dedicated to represent and reason about such hierarchies. Due to the inherently
uncertain nature of many real-world problems, however, the deterministic character
of those formalisms leads to difficulties with respect to their practical applicability.

147

Chapter 4. Reasoning in Large Taxonomies

With the field of statistical relational learning (SRL), a variety of new languages
and formalisms was given rise, which account for both the relational and the prob-
abilistic character of many application domains (Getoor, 2007a). Among those,
MLNs (Richardson and Domingos, 2006) have gained a lot of popularity and at-
tention in recent years. They combine the expressiveness of FOL with probabilistic
graphical models (PGMs)’ ability to deal with uncertainty and have been proven suc-
cessful in a variety of applications, such as collective classification, natural-language
processing, entity resolution, image processing and many more. It therefore appears
straightforward to incorporate reasoning about concept hierarchies in Markov logic.

As an example of knowledge representation that could be encoded in MLNs, consider
a framework in the spirit of Minsky’s frame structures (1974) or the PRAC framework
presented in Chapter 3, which can be thought of as data structures for representing
stereotyped situations, networks of nodes and relations, which represent a human’s
expectations about a certain situation. When encountering a new situation, a frame
from memory is recalled and adapted as necessary to fit reality. Following this idea,
one can elicit at least three fundamental requirements such a reasoning formalism

must meet. The formalism must be

1. capable of representing abstract, stereotyped knowledge,

2. this knowledge must be adaptable to (and possibly acquired from) more specific,
concrete situations and

3. new, unseen situations and concepts must be treated in a meaningful way.

From a representational point of view, a probabilistic logic approach seemingly puts
itself forward for encoding such structures. Since the model is supposed to abstract
away from specific occurrences of entities, it is also desirable to take into account
a hierarchy of class concepts and thus enabling the representation of more general
knowledge about particular situations. A limitation that many probabilistic methods
for categorical variables have in common is that such models can perform inference
only about propositions that are explicitly represented in the model, which comes
with the two drawbacks:

1. Generalization on a conceptual level is difficult. In continuous probability
spaces, for example, distributions are very compactly represented by a few
parameters allowing to perform inference on a typically infinite number of
propositions (i.e. numbers in R). Such distributions often have a compact
closed-form representation because of the existence of a total order on all

148

4.5. Discussion

propositions allows to interpolate the probability density between two proposi-
tions. Since categorical domain values typically cannot be arranged in such an
order, interpolation of the density is no longer possible and hence there is no
way of assigning a probability mass to a proposition not explicitly represented
in the model.

2. Consequently, a compact representation of generic knowledge is challenging,
since every concept a probabilistic model is supposed to take into account
needs to be explicitly incorporated. It can be argued that, in the realm of
statistical relational learning, these limitations are mitigated since those models
are supposed to generalize well across domains and hence are in this regard
superior to their propositional counterparts. However, this only holds for non-
conceptual domains, supporting the principle of shallow transfer. If we want
to meaningfully discern different concepts in a model, we need to introduce
symbols for every concept under consideration and explicitly represent them in
the model.

This problem becomes clear when comparing models from continuous and symbolic
probability spaces. Consider a Gaussian mixture model (Bishop, 2006) as shown in
Figure 4.6a, which depicts a mixture of two Gaussian distributions, represented by
their means y; and p, as well as their variances o and 2. The final distribution
P (x) is then defined as the weighted sum of Gaussians,

K
P(x) = Y meN (x5 ik, o),
k=1

where 7; are mixing coefficients determining the strength of the influence of the k-th
Gaussian, and N is the normal distribution given by

N (x; p,0%) =

1 (x — p)*
V2702 =P (_ 202) '

The parameters that fully determine the model are given by the x, ux and o,f and
reasoning about any number x € R can be made by referring to x in terms of its
squared distance to the model parameters, (x — y1)? and (x — y2)2. In the example
shown in Figure 4.6a, the sample at x is closer to y; than to us, such that the red
distribution will contribute more to the probability mass assigned to x than the blue
one. This is possible because the density function of a Gaussian allows to interpolate
between the supporting points specified in the model and thus to generalize the
knowledge from few supporting points to the whole space of real numbers. This

149

el

Interpolation in
Symbolic Spaces

Chapter 4. Reasoning in Large Taxonomies

P(x) P(x)
A Ny,, a7) A

—i—» m Pl >
Ry (ReAw)? xR dist(c,y,) dist(c,y,) cet

(a) Semantic distance induced by the arith- (b) Semantic distance induced by the taxon-
metic distance omy graph

Figure 4.6: Interpolation in the Probability Density Function based on semantic distances
in class taxonomies and real numbers.

makes such representations very compact.

In contrast, ordinary symbolic probabilistic models, such as MLNs, do not have as
powerful generalization capabilities. Instead, they rely on every symbol subject
to reasoning to have appeared in the training data and thus represent an explicit
supporting point in the model. Sometimes, such models are based on contingency
tables and reasoning is performed by a mere lookup. This impedes the deep transfer
of knowledge to different domains, even when they are very similar.

The principal idea of Fuzzy-MLN reasoning is to exploit the taxonomic structure of
symbols that comes from an upper ontology and imposes a distance metric on the
symbols, as shown in Figure 4.6b. The illustration shows a taxonomy of concepts
encoded in DL, with the most abstract concept T at its root. Two concepts y; and
y2 denote two (hypothetical) object classes that are explicitly modeled in the KB
and therefore can be considered the ‘supporting points’ of the distribution. Given a
distance metric dist, any arbitrary concept ¢ can be referred to in terms of its distance
to both y; and y», dist(c, y1) and dist(c, y2), which are shown in form of the paths in
red and blue, respectively.

This analog of continuous mixture models makes a key problem of symbolic KBs
evident and offers a possible solution to it: the disregard of the structure among
symbols in ordinary KBs impedes the generalization and deep transfer of knowledge
from one domain to another. In turn, taking the class taxonomy from an upper
ontology into account may help to exploit the semantic distance (or rather similarity)
of symbols in order to ‘interpolate’ the probability mass to regions of the taxonomy
that a model does not have explicit supporting points for.

150

4.5. Discussion

Recent developments in statistical relational learning have tackled the problem of
incorporating concept hierarchies into probabilistic logical models (Domingos and
Webb, 2012). They incorporate uncertainty in inheritance relationships of taxonomies
following the “degree of belief” paradigm which postulates sharp boundaries between
concept classes in a hierarchy. However, as has been shown earlier, it can by beneficial
to regard class memberships being not mutually exclusive, assuming that there are
no sharp boundaries clearly demarcating our notions of categories and no general
criteria for telling whether a particular entity belongs to one category and not to the
other, exist.

Instead, as Varzi (2001) points out, class memberships rather seem to be gradual
and their range of application have vague boundaries. In many practical cases, we
do not have available data from which we can induce models that are sufficiently
comprehensive and exhaustively cover all relevant cases. Instead, we experience data
that are sparse and noisy and we cannot expect our data at hand to completely cover
all concepts that are contained in a particular taxonomy. Hence, probabilistic KBs
should be able to perform reasonably well on classes that have not been seen in the
training set.

I argue that a key concept for powerful generalization from such severely sparse
data is a notion of conceptual similarity. Employing a measure of semantic similarity
comes with a fundamental advantage: there is no need for representing superconcepts
explicitly in a model, the taxonomic inheritance relationship (the structure of the
hierarchy) can be very compactly and efficiently captured by a numeric value, which
aggregates knowledge about how a particular concept behaves with respect to
concepts that have already been seen.

When performing probabilistic inference, one does not need to explicitly take into
account superclasses in the inference process, just conditioning on the similarity of
a concept to the known concepts suffices. This mechanism is both powerful and
efficient with respect to the requirements mentioned in our introductory example of
knowledge representation and reasoning. For reasoning about unknown concepts,
which have no correspondence to a symbol or proposition covered by the model,
this concept just needs to be related to the known concepts by application of some
semantic similarity measure.

In this work, we have described the design and the implementation of Fuzzy-MLNs, a
reasoning framework for MLNs that allows to represent probability distributions over
open domains compactly — if complete ontologies are available for these domains.
Fuzzy-MLNs exploit the semantic similarity of concepts in a taxonomy in order to
handle off-domain concepts in previously unseen situations in a meaningful way

151

€l

Uncertainty
about Taxonomies

Chapter 4. Reasoning in Large Taxonomies

and hence allow efficient generalization from very sparse data whilst the original
representation formalism of MLNs remains unchanged. The key idea of Fuzzy-MLNs
is to learn joint probability distributions conditioned on large taxonomic knowledge
bases that are assumed to be given as factual knowledge. In contrast to existing
more general probabilistic methods incorporating class hierarchies or similarities,
Fuzzy-MLNs do not target reasoning about the taxonomic structure as such. This
comes with the advantage that the concepts subject to reasoning do not need to be
exhaustively modeled in the probabilistic KB. This enables (1) compact representation
of knowledge, (2) powerful generalization from sparse training data and (3) reduced
computational complexity of learning and inference.

I have shown that Fuzzy-MLNs can perform different probabilistic reasoning tasks
in a way that matches our intuitions and can outperform probability distributions
learned in the ordinary MLN framework as well as state-of-the-art classification
systems both significantly and substantially.

152

Chapter

Probabilistic Knowledge Bases for
Robot Perception

Performing everyday activities in open human environments requires a robotic agent
to robustly perceive objects of daily use. NL instructions can contain indispensable
information about how the objects to be used look (e.g. “Bring me the green box
with cornflakes.”), how they change while they are being manipulated (e.g. “Bake
until golden.”) and what ramifications their appearance might have (e.g. “If the
test strip turns red, the solution is acidic.”). Although the perceptual characteristics
of objects hence play a crucial role in instruction understanding, the two problems
are largely treated independently of each other. In this chapter, I investigate how
the task of object perception can be grounded in natural language (NL), and how
NL object descriptions can be transformed into semantic representations that can
be used by ROBOSHERLOCK, a state-of-the-art perception system. To this end, I first
report on a novel approach for learning probabilistic first-order KBs that combine
many highly diverse perception routines to an ensemble of experts and therefore
leverages synergies across multiple algorithms with different expertises. Based on
this principle, I present an approach to transform phrases stated in NL that describe
such objects by their visual appearance into formal, semantic representations of their
perceptual cues, which in turn can be used in ROBOSHERLOCK in order to identify
objects that the robot has never encountered before. The results of this chapter have
been published in Nyga et al. (2014) and Nyga et al. (2017a).

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

51 Ensemble Learning with Markov Logic Networks

it fatr ° A key problem implied by the
o, text

et el task of perceiving objects of

2 [obitc.cereal) o \ daily use is the variety of per-
%zgq cf{pmg' i :[ogo(ci, ?logo) u‘ - /1 K

ceivable properties of objects,

otor

shape(7;

such as their shape, texture,
" (7€)~ Ol o] = . .
el) el 1 color’, "y ' oo color, size, text pieces and logos,

el C ..
) el) transparency and shininess, that
s small) 0 !) , whiieK) ~ oblSe g B 3 =7 e .
b Ceartie 2y - St B —aa® g0 beyond the capabilities of in-
m{t) shé , ~ ,gj:; £(7C, Fork |

te)
R

dividual state-of-the-art percep-
tion methods. A promising al-
ternative is to employ combina-

ize
ize(7
jze(7C

1,39823, o

1.871360 ize(

tions of more specialized per-

ception methods. In this section,
Figure 5.1: PR2 looking at a breakfast table. I report on a novel combination
method, which structures perception in a two-step process, and apply this method in
the ROBOSHERLOCK perception system (Blodow, 2014; Beetz et al., 2015a). In the
first step, specialized methods annotate detected object hypotheses with symbolic
information pieces. In the second step, the given query Q is answered by inferring the
conditional probability P(Q | E), where E are the symbolic information pieces consid-
ered as evidence for the conditional probability. In this setting, Q and E are part of a
probabilistic first-order model of scenes, objects and their annotations, which the per-
ception method has beforehand learned a joint probability distribution of. The work
presented in this section has been jointly conducted with Ferenc Bélint-Benczédi, who
has contributed the acquisition of the perception data, the application of annotators
to object hypotheses using ROBOSHERLOCK and the integration of the approach into
the ROBOSHERLOCK perception framework. The author has contributed the design of
the probabilistic models, their implementation, learning and evaluation. The results
presented in this section have been published in Nyga et al. (2014).

5141 Overview

One of the big challenges in object perception is that in most situations, the scenes
that a robot has to perceptually interpret include objects with different perceptual
characteristics. A scene on a breakfast table, for example, typically includes textured

154

5.1. Ensemble Learning

objects such as jelly jars and cereal boxes, objects characterized by their shapes such
as bowls and cups, translucent objects such as glasses, and small objects such as
knives and forks. In the past, it has proven difficult to equip robots with perception
algorithms that can handle objects with very different perceptual characteristics.
In most cases, scenes are being drastically simplified to account for the perceptual
capabilities of the individual methods.

A promising alternative is the development of perception systems that are capable
of combining more specialized algorithms in a synergistic manner to better scale
towards realistic environments and scenes. An example of such a perception system
is the ROBOSHERLOCK framework (Blodow, 2014; Beetz et al., 2015a).

In the following, I report on a novel approach to combine the outputs of several
diverse routines that are specialized on different perceptual characteristics of everyday
objects in different scenes. The primary idea is to implement object perception in a
two-step process: In the first step, specialized algorithms operate on perceived object
hypotheses, extract perceptual information from the sensor data, and semantically
annotate the respective object hypotheses with these pieces of information. Object
hypotheses, in this application, are RGB-D point clusters as they can be obtained
from a Kinect sensor, for instance. In a second step, the symbolic annotations of
objects and the background knowledge about the whole scene are used as evidence
to perform probabilistic reasoning about information that the perception system
is requested for. To this end, the robot has previously learned a joint probability
distribution over object classes, their annotations, the co-occurrences of objects, and
the occurrence of objects in different kinds of scenes.

Possible queries are illustrated in Figure 5.1. The robot asks queries, such as “is the
category of the object hypothesis ¢; a cereal box and what is the expected logo on
the object hypothesis c3.” These queries are transformed into a query to a relational
probabilistic model P(category(cy, cereal), logo(cs, ?logo) | E) that take the observed
scene as their evidence. Formulating the task of object perception as a relational
probabilistic reasoning problem has several advantages over alternative approaches:

1. using perception algorithms for collecting perceptual evidence rather than mak-
ing decisions makes the use of multiple specialized algorithms straightforward:
they simply add their findings as annotations.

2. as inferences take into account uncertainty on the basis of collected evidence,
the system can also handle inconsistent annotations in a meaningful way and
learn the systematic errors of individual methods.

3. the system can answer queries about any aspect contained in the probabilistic

155

&

Unstructured
Information
Management

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

Gl » gur G e e & &

— Ensembles. of. Exp.

For all point clusters c;:
perceive all evidence E from the annotators

A 4 A 4
. [P
color(c;, yellow) co:oriqv gr?len)) color(ca yellow)
icati shape(c;, box) color(cs, yellow 4
& Application Iogop(ci, br. C;(etker) shape(z;, box) Gl BllE)
1 of Feature g b C3 shape(cs, box)
Annotators Ca
C
Ca

50 typical real world scenarios with
manually labelled object categories and context information

scene(breakfast) scene(drawer) scene(fridge)

Stat's‘t’cal [" For each query q; in Q infer v;:
Relational
Learner arg max P(q; = vj| E)
Vv,
category(c, cereals) category(c;, spoon) category(c, juice) !
category(cy, bowl) category(c,, knife) category(c,, milk) P(category, size, color,

category(cs, spoon) - category(cs, fork) category(c,, ketchup) logo, text, shape,...)

Figure 5.2: Architecture of the system: (1) segmentation of point clouds into regions of
interest, (2) the statistical relational learning and (3) reasoning system.

model given any evidence.

4. the perception system can also exploit the regularities of the domain with
respect to objects and their appearance and the occurrence/co-occurrence of
objects in scenes.

51.2 Processing Pipeline

(By courtesy of Ferenc Bdlint-Benczédi)

ROBOSHERLOCK formulates the problem of object recognition in the paradigm of
unstructured information management (UIM) (Ferrucci et al., 2010b). Following
the UIM principle, ROBOSHERLOCK treats RGB-D scenes as a kind of unstructured
documents, which it strives to enrich with semantic information. To this end, it
searches for objects in pre-specified regions of interest, such as the top of counters, the
content of drawers, and the content of refrigerators. It generates object hypotheses
in these regions that might correspond to objects and annotates each cluster with
symbolic information pieces such as the color, size, shape, text, and the logo on the
respective objects. In this work, we describe how a probabilistic relational model can
be constructed that uses these annotations as evidence E for probabilistic reasoning.
Using a learned joint probability distribution over annotated scenes, ROBOSHERLOCK
can then infer answers to perception-related queries Q by computing the conditional
probability P(Q | E).

156

5.1. Ensemble Learning

Annotator | Condition MLN Predicate Description

Color Always color(cluster,color) The color annotator returns semantic
color annotation based on color distribu-
tion in HSV color space. Colors: blue, red,
black, green, yellow, white. Depending on
the distribution, one object can have mul-
tiple colors.

Size Always size(cluster,size) The size annotator classifies objects into
small or big depending on distance be-
tween extreme points normalized with the
distance to the camera. Values returned:
big, small.

Goggles If Google logo(cluster, logo) The annotator sends the image region of
goggles text(cluster, text) interest to the Google Goggles servers and
returns text or | texture(cluster, t) parses the answer to extract text, logo, and
logos texture information.

FlatObject |If there are shape(cluster, shape) After extraction 3D clusters from the table
objects that this annotator looks for additional object
are too flat to hypotheses in color space (e.g., napkins,
be found by)
the general 3D
clustering

PrimShape | Always shape(cluster, shape) This annotator fits lines and circles to 3D
point clusters projected on to the 2D plane
using RANSAC (Goron et al,, 2012). Values
returned: box, round.

LineMod Confidence linemod(cluster,category) This annotator matches each object hy-
that c is one of pothesis to a set of object models that the
the objects robot should actively look for using the
looked for Linemod algorithm (Hinterstoisser et al.,,
exceeds 2011).
threshold

SACmodel |If enough shape(cluster, shape) This annotator recognizes cylindrical ob-
inliers for a jects in 3D space. If the number of inliers
model are found exceeds the given threshold (60%
found of the total points in a cluster) the anno-

tator accepts the match. Value returned:
cylinder.

Location | Always scene(scene!) This annotator interprets object posi-

tions in terms of a semantic environ-
ment map (Pangercic et al., 2012) and re-
turns places such as counter tops, tables,
fridges, and drawers. The depth- and RGB-
image are being filtered leaving only pixels
in a pre-defined region of interest.

Table 5.1: Description of the annotators, the conditions under which they work and the

predicate declarations in the Markov logic networR.

Figure 5.2 gives a more detailed picture of the operation of the approach. It consists

of three main components: (1) an image annotation component that segments point

clouds into regions of interests that correspond to object hypotheses and annotates

157

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

the individual hypotheses, (2) a statistical relational learning engine that learns joint
probability distributions over annotated scenes, and (3) the probabilistic reasoning
system.

The image annotation component employs object segmentation mechanisms that
detect objects on supporting planes, in drawers, and in refrigerators. As the focus
of this paper is the boosting of object perception through method combination, this
work is restricted to scenes in which the individual objects are clearly separable.
Works that deal with object recognition in more cluttered scenes include Richtsfeld
et al. (2012), Mian et al. (2006), and Marton et al. (2012).

Simple Euclidean clustering in 3D space for objects located on a supporting plane are
applied. Segmentation methods using prior knowledge about the static environment
in the form of semantic 3D object maps (Pangercic et al., 2012) filter out everything
except for the region of interest. They in turn generate object hypotheses in the
remaining region of interest. Some of the annotators (such as SacModel, Size,
PrimitiveShape) use point clouds (Rusu and Cousins, 2011) as their input, whereas
others use RGB images (Linemod, Color, Goggles). A converter is used to find the
region of interest corresponding to the extracted clusters. Having a representation of
object candidates in both 3D and RGB space, all annotators can be executed on the
object hypotheses in order to attach their semantic information to those.

Annotators are specialized perception routines that perceive specific aspects of infor-
mation. For example, the color annotator asserts the fact color(c, col) for the cluster c.
Another annotator uses Google Goggles, an internet service that retrieves web pages
containing images similar to a given image (Blodow, 2014). Google Goggles works
well for distinctively textured images, logos, and texts. This annotator labels object
hypotheses with text (i.e. text(c, txt)) and logos (i.e. logo(c,)). A short overview of
the annotators used and the semantics of their outputs can be found in Table 5.1.

An example of a pipeline of annotators is depicted in the upper part of Figure 5.2. The
pipeline first evaluates the flatness of the individual object hypotheses. Subsequently,
object hypotheses are annotated with a simple shape symbol and their color. They are
also compared to existing object models using the Linemod algorithm (Hinterstoisser
et al.,, 2011). Finally, text and logo annotations are generated using the Google
Goggles web service. A detailed performance analysis of the annotators will be
presented in Section 5.1.4.

Given the annotations of objects E, the probabilistic reasoning component of the
perception system can be used to answer queries about any aspect of the respective
probabilistic model. The PRM represents the joint probability distribution over the
combinations of the object classes and all possible annotations. The answer to the

158

5.1. Ensemble Learning

query is then the arg max, P(Q = q | E).

The learning process of the joint probability distribution over manually labeled
scenes is depicted in the lower part of Figure 5.2. The learning of the the probability
distribution and the probabilistic reasoning mechanisms are detailed in Section 5.1.3.

51.3 Ensemble Learning

The previous section has described how the raw sensory input data is being trans-
formed into semantically more meaningful object hypotheses by the application of
experts, the so-called annotators. However, since most of the annotators producing
those object hypotheses are applied independently of each other, their outputs are
not guaranteed to be globally consistent and they typically do not take into account
object interactions in the current scene. In fact, their annotations might even be
incorrect or contradictory. Therefore, in order to come up with a final ensemble
decision, a strategy for combining all the annotations is needed.

To this end, we learn joint probability distributions over the annotator outputs
in PRMs, more specifically, in MLNs. In MLNs, we can capture complex object
interactions, represent and reason about object properties, their attributes and the
relations that hold between them. Most notably, the ultimate strength of PRMs is
their capability of allowing to reasoning about all observations simultaneously, taking
into account interactions between objects and thus achieving a posterior belief that is
guaranteed to be probabilistically sound and globally consistent.

Maintaining a joint probability distribution over observations, their class labels and
the robot’s current task context and belief state has several advantages over classical
approaches and makes the systems’ reasoning capabilities go far beyond traditional
classifier systems:

Collective Classification MLNs are able to simultaneously take into account any arbi-
trary but finite number of objects for classification. This is an important feature for
a perception system, since it captures interactions between objects in a scene. If a
classification system is aware of the probability of jointly encountering two objects of
particular types, this can tremendously boost the classification accuracy in real-world
scenes. Encountering milk and cornflakes together on a table, for instance, is much
more likely than finding cornflakes and ketchup.

159

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

Confidence-rated Output Since the MLN for compiling annotations to a final decision
is stacked upon the independent application of experts, such a probabilistic model
is able to compensate for inconsistent annotations or uninformative features. If, for
example, an annotator systematically confuses the shapes of clusters, the MLN will
learn this erroneous hypotheses and treat them in a meaningful way.

Generative Models An MLN representing a joint probability distribution can be used
to infer answers to arbitrary queries about any aspect represented in the model.
As our experiments will show, the MLN can also be used to reason about the most
informative visual features when looking for a particular type of object in scene, for
example.

Extensibility integration of additional task-specific context information, or new spe-
cialized perception routines is straightforward. They just need to add their annota-
tions to each of the object hypotheses and can be declaratively incorporated in the
MLN.

From a logical point of view, the outputs of the feature annotators can be regarded
as tables in a relational database and thus naturally correspond to predicates in FOL,
and the segmented clusters represent the domain of discourse of entities we wish to
apply probabilistic, logical reasoning to. Furthermore, we can think of the final class
label, i.e. the object category we wish to predict, as an additional predicate. As an
example, consider a scene of two objects ¢; and ¢z, where the ensemble of experts
have identified ¢; being a yellow-ish box with a “Kellogg’s” brand logo on it, and c;
being a round, blue thing. We can capture such a scene in a relational database as

follows:
shape(cy, Box) color(cy, Blue)
color(cy, Yellow) shape(ca, Round)
logo(cy, Kellogg’s’) shape(ca, Round)
category(cy, Cereal) category(cz, Bowl),

where we have manually added information about object classes in the category
predicate. It is straight-forward to construct an MLN relating object attributes with
class labels. Assuming, for instance, that an object’s category correlates with its shape,
a set of weighted formulae such as

w1 =1In0.66 shape(?x, Round) A category(?x, Bowl)

wo =1n0.33 shape(?x, Box) A category(?x, Bowl)

160

5.1. Ensemble Learning

can be added to the MLN, which naturally represent the rules “everything is a round
bowl” and “everything is a box-shaped bowl.” By default, all variables are universally
quantified in MLNs. Of course, the above rules do not hold for most of the entities
we encounter in the real world and, in fact, they can be even considered mutually
exclusive. However, according to the MLN distribution in Equation (2.14), the
probability distribution defined by this MLN indicates that any world in which we
encounter a round bowl is twice as likely as a world in which we find a box-shaped
bowl (assuming that all other aspects in the respective possible worlds are identical).
Following these considerations, abstract, coarse “rules of thumb” can be added to the
MLN, modeling connections between the ensemble experts and the final ensemble
decision. The weight parameters of the resulting MLN can be learned in a supervised
learning manner.

For the MLN used to obtain the final ensemble decision experts, the logical predicates
described in Table 5.1 are used, which naturally correspond to the annotator outputs
in ROBOSHERLOCK. Two additional predicates are used for specifying knowledge
about the current context (i.e. the type of scenario) the perceptual task is performed in
and for assigning a class label to each of the clusters in the scene under consideration:

* scene(scene): represents background knowledge about the current context in
which the perceptual task is being performed. Possible contexts are dom(scene) =
{Breakfast, Cooking, Drawer, Fridge} denoting a breakfast table scene, a cooking
scene, a view into a drawer and a view into a fridge.

* category(cluster,object!): assigns a class label to each cluster in the scene. In
the experiments, we distinguished 21 different object categories (see also
Figure 5.3).

In the MLN syntax, the ‘I’ operator in a predicate declaration specifies that this
predicate is to be treated as a functional constraint for the respective domain, i.e. for
every cluster ¢ € dom(cluster), there must be exactly one true ground atom among
the possible ground atoms with respect to the category predicate. In other words, we
require exactly one object category association for each cluster. Since a particular
cluster or entity cannot be of two different categories at a time, this model constraint
is a reasonable assumption.

The following MLN has been designed in order to model correlations between
annotator outputs and the object classes:

w1 size(?c, +?s2) A shape(?c, +?sp)

A color(?c, +2cl) A category(?c, +?0bj)

161

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

wo linemod(?c, +?1d) A category(?c, +?0bj)
w3 logo(?c, +?logo) A category(?c, +?0bj)
w4 text(?c, +?t) A category(?c, +?0bj)
ws scene(+?s) A category(?c, +?0bj)
we category(?c1, +?t1) A category(?co, +?t2) A ?c1 # ?ca,

where the ‘+’ operator specifies that the respective formula will be expanded to one
individual formula for every value in the respective domain.

The domain text of the predicate requires a special treatment: since its output is
based on OCR text recognition by Google Goggles, this domain is potentially infinite
and noise-prone. Thus, a mechanism is needed for transforming arbitrary strings
into a proper set of symbolic constants. To this end, we applied a SAHN (sequential,
agglomerative, hierarchical, non-overlapping) clustering technique to the values
of the text domain in the training data before running the learning process. As a
distance measure, the well-known Levenshtein distance (Brill and Moore, 2000) has
been chosen. Subsequently, every string (in both the training and test data) has
been replaced by its nearest cluster centroid. This mechanism mitigates the negative
effects of noise in the OCR annotations, since every unknown text is mapped to a
known string which is explicitly represented in the model.

5.4 Experiments and Results

With the experiments presented in this section, we will demonstrate the following
properties of the proposed system. We will show that

1. hypotheses of individual annotators can be significantly boosted by applying
probabilistic first-order KBs,

2. it is beneficial to take into account object-object co-occurrences in a perceptual
classification model,

3. the proposed method is robust towards inconsistent annotations, which can be
treated in a meaningful way,

4. the capabilities of the probabilistic KBs go far beyond ordinary classifier systems,
which are mainly given by discriminant functions with dedicated in- and output
variables.

162

5.1. Ensemble Learning

Object Accuracy Precision Recall F,-Score
Bowl 1.00 1.00 1.00 1.00
Cereal 0.98 0.80 0.80 0.80
Chips 0.99 0.83 0.71 0.77
Coffee 0.99 1.00 0.75 0.86
Cup 0.98 0.77 1.00 0.87
Fork 0.90 0.09 0.07 0.08
Juice 0.96 0.75 0.71 0.73
Knife 0.89 0.29 0.32 0.30
Ketchup 1.00 0.88 1.00 0.93
Milk 0.97 0.77 0.67 0.71
Mondamin 0.98 0.64 1.00 0.78
0oil 0.98 0.78 0.64 0.70
Pancake maker 1.00 1.00 1.00 1.00
Pitcher 1.00 1.00 1.00 1.00
Plate 0.95 0.77 0.82 0.79
Popcorn 0.99 0.83 0.83 0.83
Pot 0.99 0.75 1.00 0.86
Salt 0.99 0.75 0.75 0.75
Spatula 0.93 o.71 0.45 0.56
Spoon 0.91 0.35 0.38 0.36
Toaster 0.99 0.57 1.00 0.73

Table 5.2: Class-specific error measures for 10-fold cross-validation.

To this end, we arranged and recorded 50 realistic scenes, each comprising 5-10
instances of 21 different object categories, which can typically be found in kitchen
scenarios. We discern four different kinds of scenarios: a breakfast table, a cooking
scenario, a look into a refrigerator and a look into a kitchen drawer. The types of
scenarios have been incorporated into each data set and can be regarded as task-
specific knowledge about the current context of an activity. This is a reasonable
presumption, since the location the robot is currently looking at can be assumed
to be known from e.g. a map of the environment as described by Pangercic et al.
(2012), and co-occurrences of objects are highly correlated in real-world scenarios.
The object categories for each object have been manually labeled.

The weights have been determined by supervised learning of the manually labeled
data using pseudo-log-likelihood learning with a Gaussian zero-mean prior of o = 10,

163

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

1915e0]

0]

uoods

0|0

5

O |0

0|0

(0]

6 O

ejnyeds

1

1es

10d

0|0|O0 |O|O

uitoddod

0 |0|0O|O0 |O |O

1

5 0|00 |[O|O

a1e)d

JETTRIY

uedayeoued

0|0 |0

O0O|O0O|O0 |O 0|0 |2

0|00 |O |03 |0 |O|O

0/0|3 |[O|O0|O0|10|0 |O

110

1

ulwepuo

0/0/0|0|O0O |O|O|O|O |O |O

0|0|0|O0|O |O|0O]|0O |1

(0]

7 1

0|0|0|O0 |0 |O|O|O|0O |O |4

AW

U

dnyoisy

O 0|0 |[O|O0O|0|0 |1

O |0 |1

2INn(

3404

dn)

c0 |0|O0O |7 O|O |[O|O|O|O|O |O|O|O|O |O|O

981J0)

1

sdiyd

0O |00 [0|12/0 [0 |1

O |00 [O]1

1

1

10 0|0 O|O OO |O|O|O |[O|O|O|O|O |O|O|O|O |O|O

O |80 |0|0 |01

0O |05 O|O |[O|O |O |01

0 |0o|j0O |90 OO |O|O0O|O |[O|O|O|O|O |O|O|O|O |O|O

O [0]2 |2 |20|0 |0 |O |O |1

60 |0/O0 0|0 |1]|O0|O |7 |0 |O|O|O|O|O |O|O|O|0O |3 |O

(0]

O |0]|O

O |0Oj0O|O|O |9|0O|O|6|0 |O|O|O|O|O |O|O|O|1

0 0|0 |O|O |[O|3 |IO|O|1O0/O|O|O|O|O |O|O|O|O |O|O

0O |[0|O0O |O]O |O|O |O |01

0 |0|O0O |O|O |[O|O |[O|O|O |O|7 |O|O|O |O|O|O|2

0 0|0 |O|O |[O|JO |O|O|O |[O|O|O|3 O |O|O|O|O |O|O

0 0|0 |O|O |2|/O |O|O|O |[O|O|O|O|23/0 |O|O |3 |2 |O

O |0|O0O |O|O |[O|O |[O |O|O |O|O|O |01

O |Oj0O|O|O |O|O|O|O|O |O|O|O|O|O |O |61

0 |0|O0O |O]O |[O|O |O |O|O0 |O 1

0 |0|O0O |O]O |[O|O |O |O|O0 |O]1

O |0O|O|O|O |3|/0O|O|6|O |O|O|O|O|O |O|O]|O|2

o

Pred./Truth

Bowl

Cereal
Chips

Coffee
Cup

Fork

Juice

Ketchup
Knife
Milk

Mondamin

oil

PancakePan|o (0|0 |[0|O0 |O|O |O |O|O |[O|Of6 /0|0 |O|O|O|O |O|O

Pitcher
Plate

Popcorn
Pot

Salt

Spatula

Spoon

Toaster

Table 5.3: Confusion Matrix for 10-fold cross-validation on the data set of 50 scenes. The

rows represent the predictions, ground truth is given in the columns. Objects with the

most misclassifications are Rnives, forks, spoons and spatulas, which means that they are

visually hardly discernible.

164

5.1. Ensemble Learning

43410 ay1 Jo S10.443 3yl Jof a1psuadwiod pup Jaylo Ydna Juawajdwiod SI01DIoUUD JUILIP 3yl
1DY1 MOYs S3InsaJ ayl "NIW ay1 ul wayl buliapisuod A)aaisn)doxa “a° ‘s101pjouud paibjosi Yiim Uuoi1231ap 123/qo Jof sadliiby uoisnfuo) #°s ajqol

‘dnyn1ay pub adin(‘saxoq)paJad 'sdnd pup sajp)d
paJnixal uo Jood 1nq ‘sdnd pup saib)d ‘Symoq ssaja.nixal buiAfissp)d ‘symoq uo Jood 1nq ‘dnydiay pup adinf ‘saxoq 1patad painixal buiAfissp)d
ur buoais si 3 Joiplouup adoys ayi Ajuo buisn uonDPIIDA-SS0.) (q)ul buo.is si 3 uoploUUD S3)660Y ay1 Ajuo buisn uoiIDPIIDA-SSO.) (D)

0O/ 0Ol 0O|0O|O|0O]O|0O|O|O|O|0O|0O|0O]|]0O|O|0]0O] O] 0|0 Jo1seol | |0 O] O|]O|O| O] OJO|0O|0O|0O|0O| O] Ol O] 0O OJO|]O0O|O| O 191Seo0]
O] 0| 0|00l 0| O|O|O|O|0O|0O]O]0O|0O|]0O|O|0O|l O] O] O cOOQm O] 0l O|0O|O| O] O|O|O|O|0O|O| O] O] O]0O|] OJO]O0O]|]O0O]| O :OOn_w
O] 0| 0|0O|O|0O|O|O|O|O|O|0O]O]O0O|O|]0O| OOl O] O] O E:Hmam ol o| €/loj|o| 0| O|/O|O|O|O|O|O|O| LI O] O|L| O]O|] O m_zumqm
O] 0| 0j]O|O|0O|O|]O|O|O|0O|0O]O]0O|O|]0O|] O|0O| 0] O] O eS| |0l 0| O|O|O| O] O|O|O|O|O|O| O] O] O]l O] O|O]O|0O]| O 1jes
0| 0| 0|00/ 0| 0O|]O|O|0O|0O|0O]O]O|O|]0O|O|0O| 0] O] O 10| |0| O] O]O|O| O]l O|O|0O|0O|O|O| Ol O| O]l O OJO|O|0O| O 10d
0| 0| 0O|0O|O|O|O|O|O|O|0O|O]O]0O|0O|]0O|O|0O|l O] O] O SOUQOn_ Ol Ol 0O|0O|O|0O] O|O|0O|0O|0O|O| O] Ol O] 0O OJO|]0O|O]|] O :._Oun_On_
Oo| L| §|o|O|O|LL|O|O|O|O|O| L|O|lO|Y% O|lO| O] OO 9leld| |0l O O|O|O0| O] O|O|0O|0O|O|0O| O] Ol O] O] OJO] O|O] O 9lk]ld
O] 0| 0O]0O|O|0O|0O]|O|O|O|0O|0O]O]O|O|]0O|] O|0O| 0] O] O Jaydld| |0 0 00|00 O]O|O|O0O|O|O| 0| 0Ol O] O] OjO]0O|O]| O Jaydlid
0| 0| 0|0|0|]0O|0|O0|O|O|0O| O] O|0O|O|0O| O|O|] O] O] OjUEdd)EIUEBJ||O| O]l O|O|0O| O] O|O|O|0O|0O|0O| 0Ol 0| O] 0O| OJO| O|0O| O|UEdDNEOUEY]
0| 0| 0|00l 0| O|]O|O|O|0O|0O] O] 0O|0O|]0O| O|0O|l O] O] O 110//0| O] O|O|O| O] O]|O|O| L O]O| O] O] Ol O] OOl 0O|0O| O 110
0| 0| 0|O0|lO| 0O|0O|O|0O|O|O| O] O] O|0O|0O|0O|O| O] O O UWEPUON||O| Ol O|O|O|0O| O|O|O|O|L|L|O| L] L|]O] OO OO O UWepuow
o/o|o/ojlolo|o|ojlo|o|lo| o] 0|0/ 0|0| 0|0 0|0 O M| ol ol ojojo| ol olo|o|o|o|€ o] ol o] o] o|lo| o|lo| O MW
O| 6| ¢|O0|lO| O|€L|/O|0O|O|O|O|2L| O| O|LL| O|O| O] O| O 9JIuy | |0l O OO0l O] O|O|O|O|O|0O| 0O Ol O] O] OjO] 0|0 O CI)]
O] 0| 0O|0O|O|0O|O|]O|O|O|0O|0O|]O|]O|O0O|0O|] O|0O| 0] O] O Q:;UHQV_ ol o| olo|o|O| O|lO|O|O|O|O|O| G Ol O] O|O] L|O| O Q:r_uwmv_
7/Oo| L|LlLl 9| 0|/0|9|0|0O|€EL| O] O|LL| O| O] 6| O|OL| O wu_:— O| O] €/0|0O| L| O|lO|lO|C|LIElO|lO"L Ol OlO| ClC| O wu__i
O] 0| 0O]0O|O|0O|O|]O|O|O|0O|0O]O]0O|O0O|]O| OOl 0] O] O 404 7ioL|oL| 7| 9| G|Qc| €/ 9|8|%| L|6L| L| O|SL|OC| 6| 7| O|OL 404
Ol O]l L|OlO|O|O|O|0O| L|S|O|] O] €l0O|O|"L|0O| L| O O Q:U 0| Ol O|0O|O| O] O|O|O|O|O|O|O] O] O|]0O]|] O O0]0O|O]| O Q:U
0| 0| 0O|0O|O|0O|O|]O|O|O|0O|O]O]0O|0O|]0O|0O|O| O] O] O 99}J0)| | 0| O] O|O|O| O] O]|O|0O|0O|0O|O| O] O] Ol O] Ol 0O|0O| O 994400
o/o|o|/ololo|o|ojlo|o|lo| o] 0| 0| 0|0|0O|O|O|O|O sdiyy||o| o] o|o|o| 0| o|o|lo|o|o|0| 0|l 0| O] O] O|O|O|0O| O sdiyd
0| 0| 0|00l 0Ol O|]O|O|O|0O|0O]O]O|O|]0O|]O|O|l0O]O]| O leala) | |O0O| O] O|O|O| O O|O|O|O| L|L| O] O] LI O] OOl 0O|8 O 1eala)
Ol O|€L| €E/S| 0| 7| €|0|%| ¢l 2l o] #|O/0O| 9|€| O] O|OL mog||o| 0| 0j0|O0O| Ol O]O]|O|0O|0O|0O| O] O] O] O] OJO|0O|0O| O 1mog
g|g1¢L|3 3228125 2555 2 L8 2 || wuru g g 2282525858 L8 2R g HanL/"poud
28127 BFRE BRI CERE R 2817 BFRIE 37T EPIT T ERE R

- Q = RaFy 3 S = L = Ry 3 =]

g |5 NARRES
> >

165

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

Annotator # total # correct Predictive
Annotations Annotations perf. (acc.)

Color 289 231(79.9%) 17.5%

Goggles 80 — 21.2%

Prim. Shape 336 233 (69.3%)

SACmodel 38 31(81.5%) 261%

FlatObject 142 116 (81.6%)

Linemod 90 45 (50%) 19.6%

Table 5.5: Evaluation of annotators in isolation: Correctness of their annotations and their
predictive performance when applied in 10-fold cross-validation. Shape, SACmodel and
FlatObject have been aggregated since they all contribute to the ‘shape’ predicate.

which serves regularization purposes.

For evaluating the model’s performance in identifying object classes of entities given
the observations from the annotators as evidence, we performed 10-fold cross-
validation on the 50 scenes we recorded. The results are shown in Figure 5.3 and
5.2. It can be seen that the model achieves reasonably high classification accuracies
with respect to precision, recall and F;-score. Indeed, the system achieves F;-scores
significantly above 70% for all objects except for the cutlery. The comparatively
low performance on cutlery can be explained by the limited resolution of the sensor,
which is insufficient for the annotation experts to distinguish between the marginally
observable differences between forks, spoons and knives.

However, I argue that the overall performance of the system is remarkable compared
to the individual performances of the single annotators in isolation. Figure 5.5
shows an evaluation for each of the annotators, counting the number of times
an expert has annotated an object, the correctness of its annotations as well as
the predictive performance an MLN consisting of only one formula containing the
respective predicate would achieve. Note that Linemod’s low performance is due
to the fact that its main strength is recognizing untextured objects, but we created
models for textured objects as well.

Figure 5.4 shows the confusion matrices for MLNs that have been trained with only
one annotator each, in particular the Goggles and the shape annotator. It can be
seen that the individual annotators perform poorly on the entire data set, but each
achieves quite good results in a particular subset. The Goggles annotator, for example,
shows good performance on product images and textured objects like the cereal
boxes and the juice cartons, but fails on untextured object like cups and plates. On
the other hand, the shape annotator fails on most of the products, but succeeds

166

5.1. Ensemble Learning

Ground Atom Cereal Chips Cup Pot

color(c, black) 0.3302 0.3476 0.2864 0.3582
color(c, blue) 0.2954 0.3316 0.2186 0.3148
color(c, red) 0.3852 0.3656 0.3452 0.3388
color(c, white) 0.3508 0.4216 0.2806 0.3768
color(c, yellow) 0.4264 0.3484 0.4422 0.2936
text(c, VITALIS_A) 0.623 0.0000 0.0000 0.0004
logo(c, DrOetker) 0136 0.0006 0.0000 0.0000
logo(c, Kellogg’s) 0.3734 0.0000 0.0000 0.0008
linemod(c, Pfannerice) 0.0004 0.0000 0.0008 0.0002
linemod(c, Popcorn) 0.7392 0.0006 0.0000 0.0010
linemod(c, Pot) 0.0008 0.0004 0.0004 0.9994
linemod(c, PringlesVin) 0.0000 0.0000 0.0004 0.0006
linemod(c, PringlesSalt) 0.0002 0.4986 0.0010 0.0006
shape(c, box) 0.4806 0.3870 0.2810 0.3556
shape(c, cylinder) 0.3722 0.4540 0.4010 0.4266
shape(c, flat) 0.3226 0.3682 0.2864 0.3862
shape(c, round) 0.3176 0.4092 0.5182 0.4068
size(c, big) 0.368 0.3442 0.3768 0.3292
size(c, small) 0.2626 0.2686 0.3148 0.2836

Table 5.6: (Partial) probabilities for different queries about visual features conditioned on
the object class.

in identifying plates, cups and bowls. Hence, the single annotators can indeed be
regarded complementary with respect to their individual expertise, though neither
of them is strong enough to perform well on all of the object classes. The ensemble
given by the MLN, however, adapts to the individual strengths and weaknesses of the
experts and thus can treat contradictory annotator outputs competently in order to
come to a final decision.

Inferring the most probable categories given the observed properties of each objects
is only one possible kind of queries the system can answer. Indeed, the learned
joint probability distribution over objects and their attributes allows reasoning about
arbitrary queries with respect to any variable that is contained in the model. Our
approach can also be used to reason about the perceptual features to be expected

167

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

when looking for a particular object in a scene. If the robot is supposed to find a box
of cereals on a breakfast table, for instance, the following query can be formulated in
order to retrieve the most informative features for distinguishing the cereal box from
other objects:

shape(c, ?sh), color(c, ?c), scene(breakfast),

size(c, ?s),logo(c, I?), text(c, ?t) | category(c, Cereal)

Figure 5.6 shows an excerpt of the probability distribution computed for the above
query. where the most probable solution is printed bold. Querying for the most prob-
able solution (i.e. the most probable explanation (MPE) state), symbolic descriptions
of the expected visual properties objects can be deduced, which are highlighted: The
cereals are expected to be big, yellow and red boxes, on which one can read the
text ‘VITALIS A, and the Linemod annotator would consider it popcorn (which is
another example of how the MLN learns and compensates for the errors of individual

experts).

54.5 Discussion & Related Work

Most autonomous manipulation robots employ perception systems that are trained
with appearance models of the objects they are to detect, recognize, and localize.
In operation, the robot uses a database of trained objects to match against the
perceived sensor data. Successful examples of such robot object perception systems
are described by Aldoma et al. (2012) using point features of 3D opaque objects, or
MOPED, which uses visual keypoint descriptors for the learned textured objects (Collet
et al., 2011) and specialized perception systems for translucent objects (Lysenkov
et al., 2012). In the presented work we encapsulate these methods as annotators, use
them as experts, and therefore boost the performance by exploiting these algorithms.

The ensemble-based learning approach presented in this section has been fully
integrated into the ROBOSHERLOCK framework and applied on a real robot performing
everyday activities. Figure 5.3 shows a look on a kitchen table from the perspective
of a robot making pancakes. The detected object hypotheses are marked by their
bounding boxes. The logical annotations of the individual perception routines are
attached to these bounding boxes and so are the final class labels assigned by the
MLN.

A variety of methods exist that can handle reasonably well some of the subproblems

168

5.1. Ensemble Learning

/L

‘; ﬁgggsﬁ%lch)

ape(cO,roun
dil

Figure 5.3: Object classification tasks in a household scenario: the annotations from
individual perception routines are printed in black, the classification result from the MLN
in blue (By courtesy of Ferenc Balint-Benczédi)

of perception. Many of these methods are complementary and could be combined to
enhance performance. Examples of such methods are door handle detectors (Riihr
et al., 2012). Using the proposed approach, it is straightforward to include such
methods in the ensemble.

With respect to its operation, the approach of the ROBOSHERLOCK system falls into
the category of unstructured information management (UIM) systems — systems
that look for segments of unstructured information that have a deeper structure. In
3D perception, RGB-D point clouds can be considered as unstructured information
that contain object hypotheses as nuggets of more structured information. Object
hypotheses have several perceptual features as well as symmetry and compactness
properties. UIM primarily facilitates hypothesis generation, testing, and ranking
and the use of ensembles of expert methods. It is primarily investigated in the area
of webscale information systems, most prominently in the context of the Watson
system (Ferrucci et al., 2010a). In ROBOSHERLOCK, this technology is transferred and
used for robot perception. For a deeper view on ROBOSHERLOCK, I refer the reader
to Blodow (2014) and Beetz et al. (2015a).

169

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

Ensemble of expert-based systems have proven to be very successful in the area of
machine learning and computational intelligence and hold great promise for boosting
the perceptual capabilities of robots. Polikar (2006) presents an excellent overview
of ensemble-based systems. A categorization of ensembles is provided by Jain et al.
(2000) based on architecture, trainability, level of information the members produce
and adaptability.

An example of a robotic perception system employing the ensemble of experts idea
is presented by Okada et al. (2007). They combine multiple detectors and views
based on particle filters. The probabilistic fusion of different results corresponds to
a simple rule ensemble, i.e. one that is not trainable. MRFs have been successfully
used for object detection based on human interaction (Wu and Aghajan, 2010), and
in object segmentation (Kumar et al.). In the context of robotics, Sun et al. (2013b)
introduce the combination of appearance attributes and object names in order to
identify objects in a scene. Pronobis and Jensfelt (2012) describe a framework for
semantic mapping based on a combination of object attributes, room appearance and
human input. Our approach can be regarded as a combination of their approaches,
having as inputs only visual cues of the objects and the domain knowledge (e.g. the
scene type).

170

5.2. Interpretation of NL Object Descriptions

5.2 Interpretation of Natural-language Object Descriptions

As described in the introduc-

A cup is asmall, open container .
for carrying and drinking drinks. [l
may be made of wood, plastic, glz:
clay, metal, stone, china or other
materials,[®l and may have a stem:
handles or other adornments. Cu:

tory section, the recognition o)
and competent interpretation of Fill aietip with water.))
perceptual characteristics of ev-

eryday objects can yield impor-

size

hypernym

tant information about which TN
objects to be used during an ac-

tivity and in which ways their cup = : ﬁ ((smalli@s handle

visual appearance may change ,
PP Y & container

as an effect of the activity. In

particular, identifying objects, L . .
Figure 5.4: Pipeline how a robot can detect objects it

their properties and inferring ;s never seen before

how they relate to an instruc-

tion is a crucial ability of robots for competently performing everyday activity. Con-
sider, for instance, the instructions “pour flour into the metal bowl” and “put the sugar
bowl on the table.” In the former example, the word ‘metal’ denotes the material that
the bowl is made of, whereas in the latter case, the word ‘sugar’ refers to the stuff
which is held by the bowl. Though the two cases are syntactically not discernible,
their semantics are fundamentally different. Likewise, an instruction like “bring me
the carton with the text ‘orange juice’ on it” requires a robot to understand that it
has to search for a box with the label ‘orange juice’ on it. In this section I present
mechanisms for appropriately interpreting textual descriptions of objects of daily use
given in natural language and for identifying them in real-world scenarios. To this
end, the PRAC system is combined with probabilistic perception models described in
Section 5.1. Parts of the work presented in this section have been conducted jointly
with Mareike Picklum (2015) and published in Nyga et al. (2017a).

The overall idea of the approach is illustrated in Figure 5.4. Imagine a situation in
which a robot is tasked with the instruction “fill a cup with water,” but it is missing a
perceptual model for detecting a cup. The robot might then look up articles about
cups in online sources like Wikipedia, which it analyzes for perceptual attributes that
are typical for cups, such as “it is a relatively small container which has a handle.”
Those primitive visual attributes can then be used by the robot’s perception system in
order to identify cups in its environment. To realize such a system, I propose a novel
probabilistic, knowledge-driven approach to attribute-based object recognition from

natural language (NL).

171

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

The task of identifying objects from an NL description is formulated as a two-step
probabilistic reasoning process: First, a phrase in NL is interpreted by transforming it
into a formal semantic representation of the objects of discourse with respect to the
perceptual attributes mentioned in the phrase. Second, this semantic representation is
used in the ROBOSHERLOCK perception framework and matched against the annotator
outputs attached to object hypotheses in the scene. To this end, every symbol
considered by the reasoning system, be it a word in the NL description or a visual
attribute in the perception framework, is grounded in a taxonomy of concepts, in
particular the WordNet taxonomy. This comes with two major advantages:

1. All symbols subject to reasoning have a globally consistent and well-defined
semantics: all concepts referring to object attributes such as oval.s.01, box-
shaped.s.01 and cylindrical.s.01, or red.n.01, green.n.01 and yellow.n.01 for
example, correspond to concepts in the WordNet taxonomy and are used
consistently in all components of the system. This means that the meanings of
words in the NL description can be directly mapped to the output of perception
algorithms that detect, for instance, shapes or colors in a scene.

2. The taxonomy relation is_a(-, -) makes it possible to exploit the semantic simi-
larity. This enables powerful generalization across concepts, since words that
have not been seen during training can still be treated in a meaningful way: If
the probabilistic interpreter for object descriptions has been trained with only a
small number of colors, it can transfer the learned knowledge about how colors
are used in object descriptions to unseen words denoting a color, since they are
more similar to each other with respect to their location in the taxonomy.

This is in contrast to previous approaches towards attribute-based object recognition:
A common approach to relating NL descriptions of objects is to collect large amounts
of images and textual descriptions of them. Rudimentary feature extraction is applied
to the raw image data, which are used to learn shallow mappings between features
and NL terms. The feature attributes need to be learned from vast amounts of data
and the data in turn needs to cover the space of features sufficiently exhaustively. In
particular, every word that the system is to process needs to be seen beforehand in
order to be able to match it against what is represented in the model. Learning and
reasoning in the proposed approach is less data-intensive since it exploits knowledge
about super-concepts of objects.

The remainder of this chapter is organized as follows. First, I introduce the notion of
knowledge-based attributes in object perception — attributes that are not just abstract
symbols but are linked to a rich taxonomy of concepts giving them abstract symbolic

172

5.2. Interpretation of NL Object Descriptions

Knowledge-based Attributes @

High-level Attributes . ‘

° ellow rangé @
) G
"vellow" @ @

"orange"

Low-level Features C

E—)

Histogram

Figure 5.5: Overview over the different attribute types. Low-level features: mostly given by
numeric feature vectors like (color-, gradient-) histograms High-level attributes: Attach
symbolic identifiers to regions in feature spaces. Knowledge-based attributes: ground
high-level features into an ontology enabling symbolic reasoning about them.

meaning. Based on these attributes, I explore the construction of probabilistic
semantic models for object recognition in first-order probabilistic models, which
can be used to identify objects that have never been part of any training data of
a perception system. Then, I evaluate a proof-of-concept implementation of the
approach, on a set of 14 different object types.

5.21 Semantic Models for Robot Perception

In this section, I will introduce the notion of knowledge-based attributes and present
how they can be used to interpret and identify objects in a real-world scene. There
are two layers of abstraction on object attributes reported in literature.

Low-level Features are features that are often closely related to individual instances,
that means they denote characteristics not necessarily of an object category, but rather
of one specific image or object. Features such as color or gradient histograms (Chang
and Krumm, 1999), SIFT (Lowe, 2004) or HOG (Dalal and Triggs, 2005) are examples
of these kinds of features. They often occur in form of vectors of numerical values
and are used as inputs for training classifiers like SVMs or decision trees. The values
of low-level attributes can be easily compared by a suitable norm to the feature
values of previously seen objects and therefore allow recognizing objects that have
been part of the training data. However, they lack a well-defined semantics, which
makes them hard to be interpretable for humans.

173

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

color(ss,blue)

shape(ss,flat)
S. ~Shape(ss,round) color(s4,yellow)
 size(sg,medium)

S
£ . S3 shape(s4,round)
color(sy, ped) 4 OQ
shape(ss,cylinder) N
logo($,,Hela) [S2 i3 4 Q'@
text(sh,Cury)] , i N

color(sn;black).. ;Z’Of(es(g bﬁfj’; g
shape(so,flat) aperss,

) . size(sg,large) .
size(s2, medium) name(s3,PancakeMaker)

;O
g
o
N
Ny
Q

Figure 5.6: A Ritchen scene in ROBOSHERLOCK with segmented regions of interest (clusters)
and their logical annotations created by specialized perception routines.

High-level Attributes represent the current state of the art and have shown promise in
various applications for robot perception (Nyga et al., 2014) and object identification
from natural language (Sun et al., 2013a). They abstract away from low-level
attributes in the way that they aggregate regions in the space of low-level attributes by
assigning a symbolic identifier to those regions, which are used for further processing.
High-level attributes are more general than low-level attributes in the sense that they
can be used to describe object categories in a more abstract way. For example, a
certain region in color space may be assigned to a symbol red, and likewise a region
in gradient space may be assigned a symbol box. This enables to refer to an object
by its attributes on an abstract symbolic level instead of less meaningful histogram
values and has proven superior to low-level features (Farhadi et al., 2009). They are
intuitively human-understandable (Duan et al., 2012) and are typically learned from
a number of examples via classifier learning, manually engineered or are computed
by model fitting algorithms such as RANSAC (Goron et al., 2012).

Knowledge-based Attributes I propose an additional layer of abstraction, which I
call knowledge-based attributes. Knowledge-based attributes add another layer of
abstraction to high-level attributes by grounding the abstract symbols into a taxonomy
of concepts. This comes with the advantage that abstract symbols have a globally
unique and well-defined semantics and are not just unrelated categorical identifiers.
In turn, they can be related to each other in terms of their superconcepts in the
taxonomy. This enables for example, to state that the symbols oval, elliptical, round
and circular are not precisely synonymous, but similar to each other because they
are all subclasses of the concept shape, but more dissimilar to the concepts red, small

174

5.2. Interpretation of NL Object Descriptions

or container. On the internet one can find a number of high-quality taxonomies of
concepts. One of the most popular ones is the WordNet lexical database. A summary
of the different layers of object attributes is depicted in Figure 5.5.

5.2.2 The ROBOSHERLOCK Perception Framework

As a perception framework, the ROBOSHERLOCK system is used as an implemen-
tational basis for performing robot perception. As described in Section 5.1.2, RO-
BOSHERLOCK works in a two-step process which segments the perceived RGB-D
image into multiple regions of interest, i.e. point clusters in the image representing
object hypotheses in the scene, and executes perception routines that attach symbolic
annotations to clusters. Annotators can wrap any arbitrary perception algorithm and
thus can be thought of as an ‘expert’ with respect to the attributes of that algorithm.

The annotator outputs attached to clusters are represented by atomic propositions in
first-order logic. For example,

color(sy,red) shape(s1, cylinder)

color(sy,yellow) logo(s1, Hela)

states that the cluster s; has been identified as a red and yellow cylinder, which has a
‘Hela’ brand logo on it. A typical scene with clusters and their annotations is shown
in Figure 5.6. Having learned a joint probability distribution in the form of an MLN,
the object classification task can be formulated as a probabilistic query

color(sy,red)
color(sy,yellow)
shape(si, cylinder)

object(s1,c1)

object(sa, c2)

argmax P| object(ss,c3)
(s4

(

(5.1)
. logo(s1, Hela
c1,€2,C3,C4,C5 ob]ect s ,C4) g (1)
. color(sy, black)
object(ss, cs5)
i.e. the most probable object class assignments c1, . . ., cs of the 5 exemplary clusters
s1,...,ss given their object attributes as evidence. Like any other classification system,

the MLN performing the classification task in (5.1) needs to be trained with manually
labeled data, i.e. the learning algorithm needs to be provided with real instances of
those objects that the system is to perform reasoning about. This comes with the

175

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

shape(s,, round.a.01)
color(s,, orange.s.01)
color(s,, yellow.s.01)

—— shape(s,, round.a.01) k A
- | ' color(s, red.s.01) J

- hyper(s,, container.01)
’P(Q1|E1) (Q|E)

Learning ob/ect(s‘ orange.n.01)
object(s,, bowl.n.01) 2

—_— ; R
NL Parsing Similarities
orange.n.01:

"Around yellow —
to orange fruit." |-
L — =]

bowl.n.01:
"Around vessel 7
open at the top." |-
T

_

spatula.n.01:
"A hand tool with |
aflexible blade." |~ Attribute Extraction

Wikipedia

Figure 5.7: High-level architecture of the the proposed system system and its interaction
with ROBOSHERLOCK: object descriptions in NL are mined from web pages like Wikipedia.
The parsed NL sentences and ontological knowledge from WordNet serve as evidence E;
in the the proposed system, which performs word sense disambiguation and extraction of
visual attributes Q1. A second probabilistic first-order KB is trained with analyzed object
descriptions, which is used in ROBOSHERLOCK for object recognition on the robot. It receives
object properties of clusters as evidence E, and performs object classification Q.

disadvantage that ROBOSHERLOCK can only identify objects of classes that it has been
provided with during training time.

5.2.3 Identifying Objects from Descriptions

The key idea of this work is to generate the MLN representing the probability
distribution in (5.1) from natural-language descriptions of objects that can be found
on the web instead of scenes with perceived real objects. This adds to a perception
system substantially more generality and flexibility, since the diversity of objects that
a robot can recognize is not fixed at design time, but can be extended during runtime
by describing objects in a naturalistic manner. Consequently, a robot would be able
to recognize objects that it has never seen before and the necessity to acquire large
amounts of data for training is obsolete. To this end I propose the PRAC system to
extract object attributes from natural-language descriptions that in turn serve as
training data for the MLN performing object classification in ROBOSHERLOCK. The
general architecture of the system is depicted in Figure 5.7.

Semantic Similarity

Most of the symbolic perceptual attributes that are assigned to clusters in ROBOSH-
ERLOCK have a natural correspondence in natural-language terms, such as primitive
shapes (box, cylinder, flat, ...), colors (red, blue, ...) or sizes (big, small, ...). It

176

5.2. Interpretation of NL Object Descriptions

appears therefore straightforward to extract these attributes from natural-language
descriptions of objects and match them against the attributes computed by annotators
in ROBOSHERLOCK. However, those symbols as such lack an explicit semantics and
hence do not naturally relate to each other. That is, the terms box, box-like, cuboid
and cube, for example, represent different symbols that are entirely unrelated, though
their implicit meaning is very similar.

Previous works by Sun et al. (2013a) have tackled this problem by collecting large
bodies of textual descriptions from human subjects, and by applying unsupervised
learning techniques in order to find relations between the words contained in the
descriptions to features extracted from images by image processing algorithms.
This approach comes with a few drawbacks. The efforts accompanied by the data
acquisition process are huge and one might run into subtle issues when this process is
not carried out with great care, which can lead to undesired results. For example, it
is crucial that the pictures the subjects are being faced with and asked to describe are
selected carefully to cover the feature space as exhaustively and as evenly as possible
in order to keep the unsupervised learner from overfitting. This approach represents
a rather ‘shallow’ mapping from words to object attributes.

In the proposed system, a different approach is taken, which is less data-intensive,
but instead exploits knowledge that is already available in online dictionaries like
WordNet. By raising the symbols used in ROBOSHERLOCK to the level of knowledge-
based attributes given by ontological concepts, they can be directly related to word
senses that have been assigned by PRAC to words in natural-language descriptions.
As described in Chapter 4, the subsumption relation is_a(, -) induces an order on the
symbols, which enables to exploit their semantic similarity during reasoning. Two
concepts are considered similar if they reside in close areas in the graph spanned by
the is_a relation, i.e. the shorter the path connecting two concepts in the graph is,
the more similar they are assumed to be. Conversely, a long path connecting two
concepts postulates dissimilarity. Hence the WUP similarity introduced in Chapter 4
can be used. The semantic similarities of concepts enable to treat unknown terms,
i.e. concepts that have not been seen during training of the system, in a meaningful
way. If an annotator in ROBOSHERLOCK assigns the attribute color(s, purple.n.01) to a
cluster s, for example, the symbol purple.n.01 can be related to the concept violet.n.02
by means of their similarity purple.n.01 ~c violet.n.02 ~ 0.94 given by the taxonomy,
which means that the two concepts are very similar. Conversely, the similarity of the
concepts box.n.01 and purple.n.01 is only purple.n.01 ~c box.n.01 ~ 0.13. Note that
from now on, WordNet concepts are used instead of plain symbols to denote object
attributes.

177

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

Interpretation of Natural-language Object Descriptions

Natural language is typically severely unstructured and ambiguous, i.e. there may
exist different meanings for one word. As an example, the term ‘orange’ can refer to
a fruit on the one hand and to a color on the other. In order to successfully interpret
an object description in natural language, we thus need a method to determine the
most appropriate sense of a word, depending on the context, i.e. the word sense
disambiguation (WSD) problem. However, for understanding it is insufficient to
merely assign a concept to every word in an object description. It is also necessary to
determine which attribute is denoted by which word, which can be mapped to the
problem of action role labeling in context of the PRAC interpreter.

From a probabilistic point of view, the task of object recognition from natural language
can be formulated as a two step inference process: First, the object description
in NL is analyzed with respect to the objects and their perceptual characteristics
mentioned and second, the respective objects need to be found in a given scene under
consideration, which is done according to (5.1). In this section, I focus on the first
step of extracting visual attributes from NL sentences and present the probabilistic
model that is used to accomplish that. As an example, consider the phrase “A yellow
or orange fruit.” The reasoning task of extracting visual attributes from an object
description into a more semantic representation is given by

S;ZZO‘:((O’ C})l) “A yellow or
arg max P .p 09 orange fruit.” |, (5.2)
sh,c,s, ... Slze(O, 5)

i.e. we infer the most probable attribute assignments given the NL description, among
all possible worlds. For representing the conditional probability distribution in (5.2),
we learn a probabilistic first-order KB, which is encoded in an MLN. The MLN
contains a dedicated predicate for each perceptual attribute of objects we want to
perform reasoning about. In the current implementation, there are five different
attribute types, in particular three property types representing visual attributes
which have also been found informative by other authors (Sun et al., 2013a; Wang
et al., 2009; Alomari et al., 2016) namely the color(, -), the size(-,-) and the shape(-,
-) of an object and two relational attributes has-a(-,-) and hypernym(:,-) denoting
meronym (’part-of’) and hypernym relations, respectively. The hypernym predicate
is used to extract attributes that relate an object to a more abstract super-concept
in an NL description, which may contain valuable information about its perceptual

178

5.2. Interpretation of NL Object Descriptions

characteristics. An example is the term ‘container’, which is commonly used to
describe specializations of the respective concept. ROBOSHERLOCK has a specialized
annotator for detecting objects that can contain stuff. This annotator can, for instance,
be used to directly match this attribute in a scene. The has-a predicate is used to
specify proper physical parts of objects, such as handles, knobs, caps, lids or the like,
for which also specialized annotators exist in ROBOSHERLOCK.

The processing pipeline for computing (5.2), which is depicted in Figure 5.7 and
works as follows. First, an NL sentence subject to reasoning is analyzed for its
syntactic structure using a NL parser such as the Stanford Parser (Klein and Manning,
2003). The result of the parse is a set of logical atoms representing syntactic
dependencies and part-of-speech (POS) tags of the words in the sentence, which are
the initial evidence database E; for the inference process. For each word and its part
of speech, WordNet is then queried for all possible word senses for the respective
word in the sentence, which is added to the query Q; as hypotheses of the form
has_sense(word,sense). Like in PRAC, the possible word senses are linked to the
taxonomy of WordNet via the is_a(sense, concept) predicate. The crucial point in this
step is that word senses that are not contained in the MLN as symbols, i.e. concepts
that have been part of the training data, are asserted as vague evidence in terms
of their semantic similarity to known concepts via the is_a predicate. Subsequently,
for every word in the sentence, we add to Q; every possible atom relating a word
in the sentence to a visual attribute it might represent. The arg max solution is then
the most probable word sense and -attribute assignment in Q; conditioned on the
taxonomic knowledge and the syntactic structure of the sentence in E;.

5.2.4 Semantic Similarity Measures

As described in the previous section, a key feature in the proposed system is its ability
to reason about object attributes stated in natural language in a meaningful way,
even if the respective terms are not contained in the probabilistic KB. This is possible
because every symbol is grounded into the WordNet ontology of senses, which allows
the exploitation of taxonomic knowledge about concepts and in turn enables to refer
to unknown concepts in terms of their similarity to known concepts. As a measure of
similarity, I have already introduced the WUP-similarity ~c.

However, since the WUP similarity only takes into account relative path lengths
between two concepts, it might yield unexpected results when applied to concepts
corresponding to visual attributes. This is based on the peculiarities of the WordNet

179

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

red green ... blue rectangular... square- small large
shaped
~Ny .
color shape size

Figure 5.8: For concepts of the categories shape, size and color, customized similarity
calculations are used, the default measure is the WUP similarity.

ontology which primarily represents hypernym relations, as these do not necessarily
reflect the desired concept relations adequately. As an example, consider the concepts
representing symbolic colors, such as blue.n.01, yellow.n.01, and orange.n.02. For
they all have the concept chromatic_color.n.01 as a direct hypernym, ~c yields

blue.n.01 ~c yellow.n.01
= blue.n.01 ~c orange.n.02

= yellow.n.01 ~c orange.n.02 = 0.875,

i.e. with respect to the taxonomy relation, all colors are equally similar to each other.
This is counter-intuitive, since one would expect the concept of the color orange to be
more similar to yellow than to blue. The same effect can be observed with shapes and
sizes. It thus shows impractical to let the similarity of concepts exclusively depend
on their taxonomic relatedness without further consideration of deeper semantic
meaning. We have therefore developed customized similarity measures for particular
subregions of the taxonomy, which have been carefully designed in order to mitigate
the negative effects of purely path-based similarity measures. In particular, we present
~color» @ customized similarity for color concepts, ~gqpe, @ customized similarity for
shape concepts, and ~;,., a customized similarity for size concepts.

They are combined in a unifying similarity measure ~, which is defined as

0 if —is_a(x,t) v —is_a(y,t)
x~y:=4x~y fifis_a(x,t)Ais_a(y,t) , tE€ {color,shape,size} (5.3)

x ~c y otherwise.

180

5.2. Interpretation of NL Object Descriptions

~ selects the respective customized similarity measure ~, if both objects x and y
are a subtype of t € {color, shape, size}, or assigns 0 similarity if only one is of type
t. ~c is used as the default. (5.3) can easily be extended with additional custom
similarities to account for more diverse perceptual characteristics in the taxonomy.
We will describe our customized variants in the following. A graphical representation
of ~ is shown in Figure 5.8.

Colors The semantic similarity of concepts representing colors is defined in terms of
numeric values in the HSV (Hue-Saturation-Value) color space, which is illustrated
in Figure 5.9. To every color concept in WordNet, we have manually assigned a
representative HSV color value as indicated for a subset in the table in Figure 5.9.

Note that for chromatic colors, the values mostly differ in the hue. Achromatic colors
like white, black and gray on the other hand are easier to discern looking at their
saturation and value. Therefore we treat chromatic and achromatic colors differently.
Intuitively, one would not consider a certain chromatic color, say blue, to be more
similar to gray, white or black. At the same time, another chromatic color is not more
or less similar to white or black than blue. The similarity between a chromatic and an
achromatic color is therefore defined as a fixed value, while the similarity between
two colors of the same type is defined with respect to their assigned values.

The similarity of two chromatic colors x and y is defined as the residual of the
Euclidean distance of their assigned HSV color vectors x = (xp, x5, x,) and y = (yp, ys.,

yz)),

x ~cotor U = 1= Ceh YR+ (5 ~ys)2 + (0~ 1),

where we have introduced a customized difference operator for the hue values, o,

-yl if |x - y| < 180

—y|mod 180 .
1- % otherwise.

xX0y:=

Since the hue (H) value is typically arranged in a circle and ranges in [0,360], &
ensures that maximally dissimilar colors lie on opposite sides of the circle and that
the distance is normalized.

Sizes The size of an object can be regarded as a one-dimensional property. We can
therefore easily assess similarities of size attributes by establishing a total order on
concepts denoting sizes. We do so by assigning a numerical value to each adjectival
concept denoting size in WordNet, where smaller numbers refer to smaller sizes. As

181

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

Color H S v
pink.s.01 335 87 87
blue.s.01 235 87 87
cyan.s.o1 150 87 87
green.s.o1 115 87 87
yellow.s.01 50 87 87
orange.s.o01 20 87 87
brown.s.o1 20 87 97
red.s.o1 o} 87 87

Figure 5.9: Left: HSV Color wheel: The HSV color model can be represented as a wheel,
the hues (H) continuously arranged along the circular region, the saturation (S) along
the vertical axis of the inner triangle and the value (V) along the horizontal axis of the
triangle (Wikimedia Commons, 2017) Right: Feature vectors for colors: each color symbol is
assigned a vector containing the respective values for the corresponding color in the HSv
color model.

an example, the term little is assigned a small value, say 2, and the term huge is
assigned a larger value, such as 8 or 10. The similarity of concepts is then defined
as the residual of the normalized Euclidean distance, x ~gjze y := 1 — ||x,, — yy]|- It is,
of course, only a rough approximation of size values, which does not always reflect
sizes appropriately since statements about object sizes are often relative to the object
type (a small car is larger than a big spoon). However, as the intended application
domain involves mainly objects of daily use, it is sufficient for this specific use case.

Shapes Geometric shapes are more challenging to assess with respect to their sim-
ilarity, since they can be characterized along multiple dimensions. Unfortunately,
there is not a single, coherent similarity measure which is applicable to determine
similarities of concepts of shapes, since the individual manifestations of shapes can
vary a lot. Using only the taxonomic relations of shapes is not suitable to determine
their respective relatedness as their categorization may vary depending on the inter-
pretation of their properties. In our setting we do not discern 2D and 3D shapes as
we found it is common in NL object descriptions to use terms like rectangular and
boxlike or round and spherical interchangeably. Using a path-based similarity calcula-
tion in a taxonomy purely based on hypernym relations does not necessarily reflect
the intuitive relatedness of the incorporated concepts. An example is illustrated in
Figure 5.10. The cylinder in the lower left corner is a subcategory of tapered which
itself is a subclass of round due to its circular base. According to the standard WUP
similarity the cylinder would now be considered closely related to other subclasses

182

5.2. Interpretation of NL Object Descriptions

shapes

curved

| cuboid | | | |octangular| | triangular| |rectangu|ari | round | | crescent |
v V//////////;:::::i/) v k\\\\\\\V
cube | circular || elliptical || tapered || spherkal|
| \\v
) 4 A 4
cylinder | frustum || cone

Figure 5.10: The shapes structured in a taxonomy: shapes can be subordinates of multiple
super-concepts and may be similar to shapes in different taxonomy branches even if the
hypernym relation does not reflect this intuitive relatedness.

of round (e.g. spherical) which does not correspond to the intuitive understanding
of their respective similarity. Therefore we define a relation representing mutually
exclusiveness of certain subcategories, in this case of tapered and spherical shapes.
Conversely, two shapes may be intuitively considered very similar although they are
located in different taxonomy branches so the path-based similarity calculation does
not reflect this relatedness. As an example, a polygon approximates a circle with
increasing number of edges but is considered very dissimilar to any kind of round
shape as its sub-branch is split from the curved sub-branch in the taxonomy. It is
therefore necessary to employ relations linking these concepts together. We manually
define mappings for these special cases and use the WUP similarity as default to
calculate the relatedness of two shapes.

The color, size and shape features can also be learned from data as presented shown
by Kay and Regier (2003), who have learned color terms in different languages by
transferring colors of a certain stimulus array to the CIEL*a*b color space (Hunter,
1958), averaging over color centroids named by speakers of certain languages and
then coerced back to a color most similar to it in the stimulus array. Another approach
would be to learn feature terms from data collected from Amazon’s Mechanical Turk,
as reported by Guadarrama et al. (2013), where the collected data is used to learn
spatial relation propositions to train a multi-class logistic regression model. The focus
of this work, however, is the use of available knowledge and ontological information
to interpret natural-language object descriptions and to align it with the output of a
perception framework used on a real robot which avails itself of the same knowledge

183

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

sources.

5.2.5 Experiments

In this section I report on the experiments that have been conducted in order to
demonstrate as a proof of concept the proposed system’s ability to recognize objects
from natural language.

We trained an MLN representing the conditional distribution in (5.2) with a train-
ing set of 39 descriptions from WordNet labeled with word senses that have been
manually extended with object attributes for performing word sense disambiguation
and extraction of object attributes. 56 object descriptions of 14 different object
classes that have been extracted from different sources on the Web. In particular,
we used descriptions from WordNet, Wikipedia, FreeBase and Wiktionary !. From
these sources, we took object descriptions in natural language, such as “A round
yellow to orange fruit of any of several citrus trees” as a description of an orange
(orange.s.01) and applied the MLN in (5.2) in order to transform them into the
formal, semantic representation in first-order logic, e.g. color(o, yellow.s.01), color (o,
orange.s.01), shape(o,round.a.01). These formal representations of object attributes
serve as training data for the second MLN, which performs the actual object clas-
sification in ROBOSHERLOCK. We performed 10-fold cross-validation on the object
recognition task, the results of which are shown in a confusion matrix in Figure 5.11.
The type of objects have been selected such that they exhibit both very similar objects,
such as forks, knives and spoons, which are hard to distinguish, and object categories
that we expected to be easily separable, such as bananas and plates. It can be seen
that, using the MLN generated from natural language, the system achieves reasonably
high recognition rates among different kinds of object families, such as the fruits,
containers an cutlery. It is interesting to note that the only object classes that are
confused do indeed have very similar descriptions. As an example, consider the
concepts pot.n.01 and bowl.n.01. For pot.n.01, the description in WordNet states
“a round vessel that is open at the top”, and bowl.n.01 is described as a “metal or
earthenware cooking vessel that is usually round and deep”. Our experiments show
that as a proof-of-concept, our approach is able to discern objects only provided with
natural-language descriptions. However, the descriptions that can be typically found
in dictionaries and encyclopedic articles are insufficiently precise in order to separate
similar objects.

lhttp: //www.wikipedia.org, https://www.wiktionary.org, https://www.freebase.com

184

5.2. Interpretation of NL Object Descriptions

Prediction/Ground Truth
banana.n.02
bowl.n.01
cherry.n.03
coffee.n.01
cup.n.01
fork.n.01
knife.n.01
lemon.n.01
orange.n.0l
pan.n.0l
plate.n.04
pot.n.01
spatula.n.02
spoon.n.01

©| 2| cherry.n.03

O] 2| 2| coffee.n.01

S| 2| 2| 2| cup.n.01

OOOOOODOOOp]ate_n.OZL

en]

o

olo|o|o|lo|o|o|o|o|o|o| O Ol banana.n.02

N o o|o|o|o|o|w| oo ool o 2| spoon.n.0l

EI!OOOOOOOOOOOOSpatula.n_(]z

o|o|o|o|o|m|o|o|o|o|o|o| o orange.n.01

olo|r|r|lolololo|o|o|o|olN| o] bowl.n.01
olo|lo|o|o|o|o|k|o|o|o|o|o| O fork.n.01
olo|o|o|o|o|o| NN oo O O| O] knife.n.01
oO|o|o|o|o|r N oo oo o2 lemon.n.01
o|o|o|o|n|o|o|o|o|w| o|o| oo pan.n.01
o|o|n|o|o|o|o|o|o|o|o|o| 8| o pot.n.Ol

(] R en] fenl H o) Hen] Hen] Fen] R en] Nen] Han] Rew]
(=] o] Henl Hen) Hen] fen] Hen] Hen] en] Han}
(=] R en] vl Hen) Jev] Fen] Hen] Hen] Nen)

o

Figure 5.11: Confusion matrix for 10-fold cross validation on our data set of 56 NL object
descriptions of 14 different object categories.

The proof-of-concept implementation has been integrated into ROBOSHERLOCK,
which we run on a PR2 robot to test the system in a real-world setting. Figure 5.12
shows a snapshot of a scene from the perspective of the robot looking at a table. The

robot has not seen any of those objects before.

5.2.6 Related Work

The field of recognizing objects from natural language has gained a lot of attention

in recent years.

Matuszek et al. (2012) present an approach to build a joint model of language
and perception for grounded attribute learning. They learn how natural language
is represented and extract the meaning of it to ground it in the physical world.
Guadarrama et al. (2014) introduce an approach for mapping object images to a set
of descriptive words, which are then compared to a natural-language query. Several
works deal with classification tasks that make use of semantic attributes Jayaraman
et al. (2014); Yu et al. (2013), especially in the context of recognizing unseen
objects Su et al. (2010) or activities Cheng et al. (2013). Duan et al. (2012) exercise
fine-grained recognition of categories closely related to each other. Farhadi et al.
(2009) use descriptions of objects instead of their name to identify one specific
instance. In particular, they categorize objects based on their semantic attributes,
such as color, material or shape. Their system allows them to report the absence

185

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

n.01

r

cojor{c2,yellow.s.01)
st inaisnll)
| on,n

e

men.n,01
olor(c4,black,a.01 '
I‘Z:E > (! kfzed)01}

weelchporkers

atula.n,02

Figure 5.12: Snapshot of a table-top scene from the perspective of the robot. The ROBOSH-
ERLOCK annotator outputs (black) and the object categories inferred by the MLN (blue).
The banana is misclassified since it is described as an “elongated crescent-shaped yellow
fruit with soft sweet flesh,” but ROBOSHERLOCK currently cannot recognize the attribute
crescent.a.on.

of attributes of familiar objects (such as a missing head of a bird) or, on the other
hand, the presence of atypical attributes. Lampert et al. (2009) present methods
to classify unseen objects by using attribute-based classification, using high-level
descriptions of the objects. Wang et al. (2009) use fixed patterns to parse natural-
language descriptions to extract attributes. Classification is then done by maximizing
the likelihood of the given image under each model. Tellex et al. (2014) present
an approach to soften the requirement of annotations specifying mappings between
symbols in natural language instructions and their corresponding groundings in
the external world by unsupervised learning of word meanings from an unaligned
parallel corpus. Sun et al. (2013a) present an attribute-based approach for object
identification and use sparse coding techniques to learn rich RGB-D features from
manually labeled datasets. Alomari et al. (2016) learn visual characteristics of objects,
such as colors and shapes, by connecting language with visual observations of basic
manipulation actions in video sequences. Liang et al. (2013) introduce a semantic
representation highlighting a parallel between dependency syntax and the evaluation
of logical terms to be able to map questions in natural language to answers via latent
logical forms. Kong et al. (2014) use NL descriptions to improve 3D semantic parsing.
They use an MRF to reason about the type of a scene, 3D object classes and which

186

5.3. Conclusions

visual concept a (pro-)noun refers to.

Most of these approaches have in common that they are data-intensive and learn
rather direct shallow mappings between natural-language terms and perceptual
attributes in mostly unsupervised manners. To the best of our knowledge, our
approach is the first that makes heavy use of available knowledge and ontological
information, which leverages costly data acquisition and preprocessing steps. the
proposed system can deal with concepts and terms that they have never encountered
in any perceptual training data, since every term in the system has a well-defined
semantics, and disambiguation, extraction and mapping of visual attributes takes into
account their similarities that are encoded in the underlying taxonomy of concepts.

5.3 Conclusions

In this chapter, I have reported on two extensions of the ROBOSHERLOCK perception
framework for robots acting in everyday human environments.

The first extension is a novel way of combining arbitrary perception routines that are
specialized to particular perceptual cues of objects. In contrast to existing systems,
which mainly focus on employing a specific perceptual algorithm, the novel approach
follows the paradigm of ensembles of experts — sets of diverse and highly specialized
algorithms that are strategically combined in order to draw a well-informed final
conclusion. To this end, the proposed system instead makes use MLNs, a powerful
relational probabilistic learning and reasoning framework allowing to take into
consideration also object-interactions like they are encountered very frequently in
real-world scenarios. I have proven the strength of this approach by a profound
evaluation of our system’s performance on a data set 50 typical kitchen scenarios.
The evaluation shows that the PRMs employed are well-suited for the computation
of posterior beliefs over given queries, though the expressiveness of the individual
perception routines is quite poor.

The second extension is a novel knowledge-driven approach for interpreting object
descriptions in natural language, which are used in the ROBOSHERLOCK system.
Unlike previous approaches, the proposed system makes use of already available
knowledge by raising visual object attributes to the level of concepts in the com-
prehensive taxonomy WordNet, which I call knowledge-based attributes. The use of
knowledge enables to deal with previously unseen concepts in a meaningful way by
referring to them in terms of their similarity to known concepts, which makes the

187

Chapter 5. Probabilistic Knowledge Bases for Robot Perception

proposed system highly efficient for learning from sparse data. The experiments show
that semantic object models for robot perception can be learned from NL descriptions
mined from the web and used for perceiving objects of daily use on a real robot. The
PRM for identifying perceptual properties in instructions is also used in PRAC.

188

Chapter

Evaluation

It is a challenge on its own to come up with an evaluation of an Al system, which is
convincing, objective, and fair. Not least because our notion of intelligence in terms of
“doing the right thing” always leaves room for interpretation and, as I have elaborated
in Chapter 3, intelligent behavior is “something that is compatible with the agent’s
past experience, future intentions, and knowledge of the situation in which the agent
finds itself” (Anderson, 1995). Our ultimate goal is a complete robotic agent that
is able to successfully perform complex real-world manipulation tasks formulated
in vague natural language (cf. Anderson (1995); Barker (1968)). Assessing the
performance of such a robotic system in a quantitative manner, however, is practically
impossible at the current state of the art due to the absence of established benchmarks
or approved evaluation criteria and methods. Commonly used linguistic corpora of
instructions do not account for the behavior that the analyzed instruction produces.
This makes a large-scale corpus-based evaluation of PRAC nearly impossible.

The previous chapters already provided quantitative evaluations of individual sub-
components where available. This chapter examines the contributions of this work on
a larger scale, depicting the current capabilities of the PRAC system and showcasing
its use in some of the real-world demonstrators that have been implemented at the
Institute for Artificial Intelligence.

Chapter 6. Evaluation

Figure 6.1: The browser-based web interface to PRAC on a desktop and a mobile client: the
natural-language instruction “slice the bread” is transformed into the executable robot
plan and executed in the web-based simulator. (courtesy of Mareike Picklum)

61 Open-source Software

PRACWEB The PRAC system has been released as an open-source software project and
made accessible to the public in a browser-based web application called PRACWEB!,
which has been jointly developed with Mareike Picklum. The applications are also
available as mobile-optimized variants for smart phone devices. Figure 6.1 shows
screen shots of the systems in operation. The results of the single inference steps are
visualized in an interactive graph structure representing the semantic networks of
entities and relations as they are presented at several points throughout this thesis.
The overall process of the pipeline can be followed by means of a flowchart diagram
highlighting the PRAC reasoning module which is currently executed. The users can

lhttp: //prac.open-ease.org

190

6.1. Open-source Software

Universitat Bremen ¢ é‘l aligrcs E Upe n EASE

Project [smmpaai P T PR] [roums wakov Random iea
i . =

e [|

MLN: [—— | Load MLN Fie]

1 alarm(person)

2 burglary(person)

3 neighborhood person, domNeighborhood)
4 livesIn(person,place!)

5 tornado(place)

7 domNeighborhood = {Good, Bad, Average}
% person - {James,Stefan}
9 place = {Freiburg, Yorkshire, Austin}

11 2.2 burglary(x) => alarm(x)

12 2.2 livesIn(x,y) ~ tornadoly) => alarn(x)
13 0.4 neighborhood (x,Bad) => burglary (x)

14 -0.4 neighborhood(x,Average) = burglary(x)
15 -6.8 neighborhood(x,Good) => burglary(x)

O renameonedt [use "

[[save]

Evidence: [queian - Load DB Fie.]

1 livesIn(Jaes, Yorkshire) Inference Resut
2 TivesIn(Stefan, Freiburg)
> burglary (James} 00 81 e2 03 e4 w5 65 87 08 03 Lo

4 tornado(Freiburg)
5 neighborhood (Janes, Average) urglaryClanes)
& neighborhood (Stefan, Bad) Sarnistetan)
alarm(aanes)
burglary Stefan)

[

1.000 neighborhood(Stefan,Bad)
0.000 neighborhood(Stefan,Good)

O rename on edi O showthide cond. probabilty | 120 Timeot ©.000 neighborhood(stefan,Average)
d s = <Binaryvariable "tornado(Freiburg)": [tornado(Freiburg)]>

I =

1.600 tornado(Freiburg)

J
Method: Enumeration-Ask (exact) v] <Binaryvariable "tornado(Austin)”: [tornado(Austin)]>
P e | ? tornado(Austin)
X e <Binaryvariable "tornado(Yorkshire)": [tornado(Yorkshire}]>
Params: p=0.6, masteps=1000 | ? ‘tornado(Yorkshire)
€W Preds: 1 oy W s ol B the oy pria Inference engine: EnumerationAsk
verbose OJ_Show Formuas. O UseallCPUs [Ignore Unknown Predicates inference. ..

check hard constraints...
enumerating worlds...
2017-03-36 14:43:30.011 - streamloa - INFO - INFERENCE RESULTS:

preryre—]

g T —

Figure 6.2: Screenshot of the PRACMLN Web Application: The left pane contains the MLN
model specification and evidence, the right pane shows a graph visualization of the ground
MRF as well as the inference results and a console log.

either pick one of the provided exemplary instructions from the drop-down field or
type in an instruction manually. By default, the whole inference process will run
through to the end but it may also be investigated in a step-by-step fashion, allowing
the user to inspect the reasoning problems generated in more detail, view the used
inference settings for a particular step and inspect the trained MLNs and generated
evidence databases. After an inference run has been completed, the generated robot
plan is displayed in a popup window, which can then be executed live in a Gazebo-
based simulation, if plan schemata for the respective plan steps are available in the
PRAC plan library.

WesBMLN The MLN learning and reasoning engine PRACMLN has also been made
available in a web application called WEBMLN?. A user can upload and download
model files or investigate a selection of exemplary MLNs and test different learning
and reasoning algorithms online. The PRACMLN library provides comprehensive
MLN functionality for the Python programming language and is actively used by
the community and used for teaching in Al courses at the Institute for Artificial
Intelligence. A Screenshot of the application is shown in Figure 6.2.

2http: //pracmln.open-ease.org

191

Chapter 6. Evaluation

6.2 Comparison to Related Systems

In this section, I evaluate PRAC with respect to existing Al systems that have garnered
a lot of attention in the recent years.

IBM Watson The Watson system by IBM (Ferrucci et al., 2010b) is targeted at an-
swering questions stated in natural language using knowledge acquired from a huge
amount of unstructured data from the Internet. In 2011, it has received a lot of
publicity also in the mainstream media since it, as the first Al system ever, has beaten
human champions in the quiz Jeopardy!’. To realize Watson, a new implementa-
tional paradigm for the design and programming of Al systems has been introduced,
named DeepQA. In a nutshell, the DeepQA principle abstains from the constructive
generation of an answer to a query, which is in many cases infeasible, but uses a
large collection of very diverse methods to compute candidate solutions (hypotheses),
which are rated and weighted by a confidence estimation component. This is in
contrast to traditional methods in machine learning and Al, where largely monolithic,
self-contained and closed methods are used. More precisely, Ferrucci et al. (2010b)
chart a list of overarching principles in the DeepQA architecture: At first, massive
parallelism is exploited to enable parallel generation of multiple interpretations and
hypotheses. The use of many expert systems facilitates the integration, application,
and contextual evaluation of a wide range of loosely coupled probabilistic question
answering and content analytics methods. Thereby no component commits to an
answer; all components produce features and associated confidences, scoring dif-
ferent question and content interpretations. An underlying confidence-processing
substrate learns how to stack and combine the scores. DeepQA integrates shallow
and deep knowledge as it advocates a balance in the use of strict semantics and
shallow semantics, leveraging many loosely formed ontologies. In contrast, PRAC
uses exclusively strong semantics with defined semantic models. It remains unclear,
however, to what degree Watson makes use of strongly semantic, carefully engineered
models like PRAC.

Virtual Personal Assistants Virtual personal assistants (VPAs) have become popular
applications on modern mobile phones. Having originally started in the CALO (Cogni-
tive Agent That Learns and Organizes) project (Stanford University, 2006), the Siri
agent (Tom Gruber, 2015) was the first mainstream VPA on the consumer market
shipped with Apple’s iPhone devices. Since then, the number of VPAs has grown dras-
tically and nearly all of the world’s biggest IT companies have one in their portfolio,

192

6.2. Comparison to Related Systems

such as Microsoft Cortana, Google Now, or Amazon Echo. The main target application
domain of VPAs is to give access to core functionality of mobile phones by use of
natural language. For instance, speech interfaces to the contacts, SMS, email and
calendar apps, but also to online web services such as ticket booking and traveling
agencies, food delivery services and navigation systems are popular applications.
The systems have also widespread access to sensory information provided by the
device, such as the GPS location and motion sensor, such that the processing of
queries can take into account the current context of the users, like the city they are
currently in, or whether they are at work or at home. Machine learning techniques
are being applied to adapt to user preferences. Since all of the abovementioned
systems are proprietary, only little is known about the internals. I therefore have to
restrict myself to a comparison on feature level. The main targets of VPAs can be split
into three bigger functional areas, i.e. conversational interfaces, personal context
awareness, and service delegation. The most obvious difference to the PRAC system
is that VPAs typically come with voice recognition and generation software, such
that spoken language can be used to operate the systems and feedback to the user
is also given in natural language. It is not known whether current VPAs effectively
use deep knowledge representation and acquisition methods, or if reasoning is being
applied. There is also no evidence that more extensive, connected text sources can
be processed. Therefore, as recent consumer tests indicate, the quality of semantic
analyses of today’s VPAs is not powerful enough to significantly go beyond speech
interfaces to search engines (Michael Rupp, 2015).

Mise en Place is another system that aims at determining which actions are to perform
on which objects and in what order, given instruction sheets or recipes in NL (Kiddon
et al., 2015). Unlike PRAC, it is an unsupervised approach to learn to interpret
instructional recipes using text only. As an underlying semantic representation, the
approach uses action graphs, a network structure similar to action cores. In action
graphs, the nodes represent words or phrases in a recipe and edges represent the
flow of arguments assigning a POS tag, a semantic role, as well as the start and
end points of the phrase in the text. Kiddon et al. consider three types of semantic
roles, namely meronymy relations, locations, and food. They represent a joint
probability distribution over the connections in action graphs C and the textual recipe
R, P(R,C), by a factorization P(R | C)P(C), where P(R|C) can thus be interpreted as
an ‘emission’ model of a human who authors a recipe. P(C) is an a-priori distribution
over the connections. The distribution is learned in an unsupervised Expectation-
Maximization (EM) fashion: Starting from a uniform distribution, a local search
method finds an instantiation of an action graph with the highest likelihood with

193

Chapter 6. Evaluation

respect to all recipes in the training set. Given this action graph, the probability
distributions are adjusted accordingly. These two steps are executed alternatingly,
until the probabilities have converged. In contrast to PRAC, their approach does not
use probabilistic relational models but the representational problems are coerced
to propositional representations with strong independence assumptions. PRAC does
only maintain a joint distribution over the semantic representations of action cores.
Distributions over the syntactic elements of recipes are taken as given observations.
This allows PRAC to fit the semantic representations more flexibly. In addition, Kiddon
et al. do not use background knowledge or upper ontologies, but only plain textual
representations. This makes it hard to handle subtle semantic differences in word
ambiguities, which can be resolved by PRAC. In general, PRAC can be considered as
having available stronger semantic background knowledge and more explicit models.
It is unclear if their approach does account for the incompleteness and executability
of instructions.

Tell Me Dave (Misra et al., 2014a) is a system for learning the meaning of high-
level verbs to execute recipes in natural language. The underlying semantic model
consists of the verbs and the syntactic prepositional relations appearing in the textual
representation of an instruction. The syntax is obtained from the Stanford parser.
A model based on conditional random fields represents sequential dependencies of
actions. Tell Me Dave provides an online simulator, in which humans can perform
sequences of activities in a virtual environment, which are used to train the CRF.
Conceptually, Tell Me Dave and PrRAC differ in the ontological components they
model: While in PRAC, the representation, learning, and reasoning is concerned with
a conceptual account of actions and their parameterization, Tell Me Dave considers
specific instances of a world and the objects therein. However, it does not use deep
semantic models or upper ontologies to account for the ambiguity of language.
Furthermore, in PRAC the goal is not to reason about sequences of actions, but about
how actions are to be parameterized and executed.

194

6.3. Robot Demonstrators

hydrochloric_acid.n.o1 | 0.92 hydrochloric_acid.n.o1 | 1.00
perchloric_acid.n.o1 | 0.92 perchloric_acid.n.o1 | 0.96
perchlorate_.n.o1 | 0.96 perchlorate_.n.o1 | 0.92
sodium_hydroxide.n.o1 | 1.0 sodium_hydroxide.n.o1 | 0.92
© o025 05 075 1 O 025 05 075 1
(A) hydrochloric_acid.n.o1 (B) sodium_hydroxide.n.o1

Figure 6.3: Completion of a Neutralizing instruction with different substances.

6.3 Robot Demonstrators

The methods and systems that have been developed in this thesis have been applied
in the final demonstrators of the four-year European research projects ACAT® and
RoBoHOwW?. In those demonstrators, the PRAC system has been applied to transform
NL instructions into robot plans, which have then been executed in parts on the
real robot platforms ‘Boxy’ and a PR2 robot, which are shown in Figure 1.3, and
in Gazebo-based simulated environments as described in Section 3.9. I will first
evaluate and showcase the performance of PRAC in disambiguating and completing
challenging natural-language instructions. Second, I give estimates of how much
knowledge PRAC comprises at the time I was writing this thesis.

In this section, I demonstrate the capabilities and performance of PRAC by applying it
to a selection of challenging NL instructions. All examples are operational and can
be tested in the online web-applications.

6.31 Chemical Laboratory

In the chemical laboratory scenario, a robotic assistant is to help a human researcher
conducting experiments like making a DNA extraction. As part of the procedure,
the robot has to handle different substances and objects. The robot has to decide,
depending on the command it was given by the human, which actions to take and
which objects to manipulate.

“Neutralize the hydrochloric acid.” Let us consider the instruction “neutralize the hy-
drochloric acid.” Given this task, the robot has to recognize that a base is missing

3http: //www.acat-project.eu
4http: //www. robohow. eu

195

Chapter 6. Evaluation

to neutralize the hydrochloric acid. To determine the correct base, it issues a query
to the PRAC howto library, which provides a ranking of the substances hydrochloric
acid, perchloric acid, perchlorate, and sodium hydroxide. Figure 6.3 shows the list
of substances that are ranked by the matching scheme of the analogical reasoning
engine, which qualify most for serving as a Neutralizer substance for the respective
Neutralizee. According to that, the sodium hydroxide is the most appropriate neutral-
izer for the hydrochloric acid and vice versa, in each case with a matching score of 1,
which means that the system has found the answer to exactly that questions in the
PRAC howto library.

“Start with neutralizing 4 drops of pyridine.” is a complex instruction from the chemical
application domain. It is particularly challenging because there are two verbs in the
instruction (‘start’ and ‘neutralizing’), where the actual action verb is not even given
in its infinite form but in the gerund. In this example, the Neutralizee action role
of the Neutralizing action core is given but the Neutralizer substance, (hydrofluoric
acid), must be inferred. The inference of the most specific instruction involves two
refinement steps, first a mapping from Neutralizing to Adding, and second from
Adding to Pipetting. The final plan call inferred by PRAC is

(an action (type use-pipette)
(source (an object (type container.n.@1)
(contains (a substance (type hydrofluoric_acid.n.91)))))
(count (unit drop.n.02)
(number four.n.01))
(destination (an object (type container.n.@1)
(contains (a substance (type pyridine.n.01))))))

The robot executing the plan is shown in Figure 6.4a.

“Neutralize the methacrylic acid with 100 milliliters of cyanuramide.” Although all ac-
tion roles are specified in this instruction, this is a vivid example of how the effective
manipulation actions can differ fundamentally, though two original NL instructions
are very similar. As in the previous example, the inference of the most specific
executable plan involves two action core refinement steps. In the first step, the
Neutralizing action core is refined to the Adding action core. However, since the
quantity of the substance to be added is larger than before (cmp. 4 drops versus 100
ml) the second refinement step yields a Pouring action instead of a Pipetting action:

196

6.3. Robot Demonstrators

(a) “Start with neutralizing 4 drops of pyri- (b) “Neutralize the methacrylic acid with
dine.” 100 milliliters of cyanuramide.”

(c) “Cut the bread into 4 pieces.” (d) “Slice the pizza.”

Figure 6.4: Simulated execution of plans generated by PRAC from different natural-language
instructions

(an action (type pour-from-container)
(source (an object (type container.n.01)
(contains (a substance (type stuff)))))
(count (unit milliliter.n.@1)
(number hundred.n.01))
(destination (an object (type container.n.@1)
(contains (a substance (type stuff))))))

The robot executing the pouring plan in simulation in shown in Figure 6.4b.

197

Chapter 6. Evaluation

tongs.n.ot1] 0.8 tongs.n.oT] 0.86 [tongs.n.oT] 0.79
spatula.n.o1] 0.95 spatula.n.o1] 0.86 [Spatula.n.01] 0.95
fork.n.o1] 0.81 Ork.n.o1] 0.88 [forkn.o1] 0.69

bowl n.01] 0.78 bowln.o1] 0.83 [(howln.o1] 0.77
plate.n.oz] 0.76 plate.n.oz] 0.82 [plate.n.oz] 0.69
cojfee_marer.n.p®.67 coffee_marer.n.o1] 0.77 cojfee_makrer.n.oo.66

O 025 05 075 1 O 025 05 075 1 O 025 05 075 1
(A) pancake.n.o1 (B) steak.n.o1 (C) omelet.n.o1

Figure 6.5: Completion of a Flipping instruction with different objects and utensils.

6.3.2 Assistive Household

In the assistive household scenario, service robots are investigated, which are able
to perform complex activities in human environments like the kitchen. Therefore,
the scenarios of making pancakes as a part of a breakfast preparation, and preparing
an Italian dinner are considered. The latter involves more complex manipulation
activities such as setting a table, baking a pizza, cutting bread and serving wine.

As a test case, we consider the action of flipping different kinds of food where the
task is to infer an appropriate utensil to be used by using the analogical reasoning
approach described in Section 3.8. Figure 6.5 shows the responses from the PRAC
howto library to queries for (A) a pancake, (B) a steak and (C) and omelet. As the
concepts pancake.n.01 and omelet.n.01 are semantically very similar in the taxonomy,
it is expected that the responses for the two are equal. In this case, the concept
spatula.n.01 is returned as the closest match. For a steak, however, the flipping
utensil with the highest score is the concept fork.n.01.

“Cut the bread into 4 pieces.” is an exemplary query with limited complexity. The
task in this example is to correctly identify the action Cutting and the action roles
ob_to _be_cut, unit, and amount. The utensil, which is not mentioned has to be
inferred from the PRAC howto library using the analogical reasoning module. Given
this instruction, PRAC generates and instantiates the plan call

(an action (type cut-object)
(an object (type bread.n.01))
(count (unit piece.n.01)
(number four.n.01))
(utensil (an object (type knife.n.@1))))

which can be executed in the CRAM simulator. A snapshot of the robot cutting the
bread using a knife is shown in Figure 6.4c.

198

6.3. Robot Demonstrators

“Slice the pizza.” is a slightly more challenging instruction because there are three
action roles missing that need to be inferred, namely the unit and amount determining
the number of cuts to be made, and an appropriate utensil. In addition, the action
verb differs from the original verb ‘cut’. The plan returned by PRAC is

(an action (type cut-object)
(an object (type pizza.n.01))
(count (unit piece.n.01)
(number eight.n.01))
(utensil (an object (type cutter.n.06))))

A screenshot of the robot performing the cutting action in simulation is shown in
Figure 6.4d. Note that it has chosen the cutter wheel as a utensil instead of the knife
and a different number of pieces compared to the previous instruction.

“Put a cooking pot on the stove. Fill with water. Turn it on.” is a challenging example
for coreference resolution and instruction refinement. It consists of three individual
instructions, where the filling action in the second one is lacking information about
the container that is to be filled with water. As there is not even a pronoun referencing
the container, this is a form of latent anaphora that I have described in Section 3.7.
The third step contains an explicit anaphora denoted by the word ‘it’, which refers
to the stove that must be turned on. It is particularly challenging as the referent
word ‘stove’ is mentioned even two sentences before. In addition, reasonable action
refinements need to be found in order to fill the pot and to switch on the stove. To
this end, the PRAC howto library has been provided with a simplistic manual for
operating a centrifuge consisting of only one step,

How to Start the Centrifuge

1. Press the start button on the
centrifuge,

which has been imported using PRAC-TELL. Using this instruction sheet, PRAC is able
to transfer the knowledge of starting a centrifuge to turning on a stove. The inferred
plan steps are

(an action (type put-object)

(an object (type pot.n.01))

(target (a location (on stove.n.02))))
(an action (type operate-tap)

(source (an object (type faucet.n.Q1)

199

Chapter 6. Evaluation

(contains (a substance (type water.n.06)))))
(count (unit nil)
(number nil))
(destination (a location (in pot.n.01))))
(an action (type press-object)
(an object (type push_button.n.01))
(target (a location (on stove.n.02))))

As can be seen, PRAC correctly completes the missing roles in the second and third
instruction. The action of filling the pot is refined to operating the tap, and the action
to turn on the stove is refined to pressing a button on the stove. Note that the amount
specifications in the operating-tap plan call are unspecified (nil). This makes sense
for a filling action as the quantity of the liquid is typically determined by the size of
the container.

“Make an Italian dinner.” is the perhaps most challenging example that the PRAC
system is able to handle at the time of writing this thesis. The challenge is to use
five different instruction sheets and recipes, which have been imported to the PRAC
howto library, namely the following ones.

How to make an How to make a pizza How to serve a drink
Italian dinner
1. Spread tomato sauce 1. Take a glass from
1. Set the table. over the dough. the cupboard.
2. Prepare a pizza. 2. Add the salami. 2. Fill it with the drink.
3. Cut the pizza 3. Sprinkle with cheese. 3. Put the glass
and serve. 4. Season the pizza on the table.
4. Slice the bread with oregano.
and serve it.
5. Serve some wine.
How to serve food How set the table
1. Set the table. 1. Take a glass from
2. Prepare a pizza. the cupboard.
3. Cut the pizza 2. Put it on the table.
and serve. 3. Take a plate from the cupboard.
4. Serve some wine. 4. Put it on the table.
5. Take the cutlery from the drawer.
6. Put it on the table

Obviously, these howtos are not sufficiently complete and detailed enough to actually
prepare a real Italian dinner when being performed in a real environment. However,
interpreting the respective instructions to prepare a dinner and make use of the
knowledge contained in the howtos is extremely challenging for an NL interpreter,

200

6.3. Robot Demonstrators

since they exhibit all kinds of ambiguity, incompleteness and vagueness I have ad-
dressed in this thesis. The PRAC interpreter computes a robot plan comprising 21
action steps in total. I consider this task therefore the ultimate showcase and demon-
stration of the reasoning capabilities I have developed and implemented in PRAC.
Not all of the substeps are currently executable on a robot because implementations
of the respective plan schemata are not available yet. Implementing parameterizable
plans, however, goes beyond the scope of this work and is on the future research
agenda.

The web interface to PRAC offers a few more predefined examples. I have presented
here only the most interesting and the most challenging ones. Walking through all
of them is not possible in this work, but I invite the interested readers to convince
themselves by trying out the online tools presented in Section 6.1.

6.3.3 Statistics

It is very complex, if not impossible to quantitatively compare a system like PRAC to
existing approaches, as neither benchmarks nor established methods exist. In this
section, I present estimates of the representational and computational dimensions of
PRAC to complement the qualitative evaluation in the previous section.

Probabilistic Knowledge Bases First, I give a rough idea of how large the probabilistic
knowledge bases are and how many of them are contained in PRAC. At the time I am
writing this thesis, PRAC contains implementations and probabilistic models for the
recognition, analysis and completion of 25 action cores. The largest number of action
roles for one action core is five, the smallest is two. As there are six reasoning modules
that rely on reasoning in probabilistic first-order models, i.e. ACTIONCOREINFERENCE,
PROPERTYEXTRACTION, ACTIONROLEINFERENCE, COREFERENCERESOLUTION, ACTION-
COREREFINEMENT, and ACTIONROLEREFINEMENT, PRAC requires roughly 25x6=150
probabilistic KBs. The number of training instances used to learn the models vary.
This is due to the fact that the respective action cores reside on different levels of
abstraction: In the applications considered in this work, the Adding action core comes
with many different parameterizations as Adding is a very generic action that needs
to be performed in different ways, depending on which objects it is to be executed
on. In order to learn models that are able to discern multiple cases, more training
data is needed, which in turn implies larger models. By contrast, the Cooking action
core is a fairly domain-specific action, such that only one example suffices to achieve
reasonable accuracy. Likewise, the number of action roles prevailingly influences the

201

Chapter 6. Evaluation

Action Core # Action Roles | Training Examples | # MLN formulas # Howto Lib
Adding 5 30 153 3477
Arranging 2 1 4 62
Cooking 2 1 4 1044
Cutting 5 2 125 299
Evaluating 3 1 9 490
Filling 5 11 63 142
Flavoring 3 176 218
Flipping 3 38 39
Lifting 2 1 4 25
Neutralizing 5 15 400 7
Opening 2 7 y/A
Pipetting 5 266 o]
Pouring 5 10 95 1604
Preheating 5 3 120 224
Pressing 3 1 16 157
Putting 3 5 24 2657
Serving 2 2 6 619
Shaking 4 1 16 349
Spreading 3 1 9 289
Sprinkling 3 1 9 Sh
Starting 2 2 8 77
Storing 3 20 81 176
Taking 3 3 36 311
Turning 2 1 A 47
Waiting 2 1 9 20

Table 6.1: Overview of the sizes of individual MLN knowledge bases (i.e. of ACTIONROLEIN-
FERENCE reasoning module) per action core and the number of instances in the PRAC howto
library.

number of formulas in the MLN. The action roles are attached to an action core, the
more pairwise combinations of concepts need to be captured by logical formulae in
the MLN.

Table 6.1 shows a juxtaposition of the number of action roles, the number of training
examples, the resulting number of formulas in the learned MLNs and the number of
instances of the respective action cores in the howto library. The table only refers to
the models learned for the ACTIONROLEINFERENCE as they are most representative.

202

6.3. Robot Demonstrators

Instruction Reasoning Module @ Runtime | # Calls Total
(in sec) Runtime
(in sec)
NL Parsing 2.01 1 2.01
Action Core Inference 1.93 1 1.93
Property Extraction 0.53 1 0.53 -
“Slice the bread Action Role Inference £4.61 1 £4.61
into 4 pieces.” Coreference Resolution oM 1 0.24
Prob. Refinement 2.31 1 2.31
Analog. Role Refinement 0.38 1 0.38
Plan Generation 0.10 1 0.10
NL Parsing 1.93 1 1.93
Action Core Inference 4.78 1 4.78
“Cut the pizza” Pro'perty Extraction 1.47 1 1.47 2043
Action Role Inference 13.82 1 13.82
Coreference Resolution 0.50 1 0.5
Plan Generation 0.54 1 0.54
NL Parsing 2.06 1 2.06
Action Core Inference 5.22 1 5.22
Property Extraction 7.65 1 15.30
“Start with net_ﬂralizing Action Role Inference 4512 1 4512 8123
4 drops of pyridine.” Coreference Resolution 0.59 1 0.59
Prob. Refinement 6.00 2 12.01
Prob. Role Refinement 0.83 2 0.83
Plan Generation 0.50 1 0.50
NL Parsing 2.01 1 2.01
Action Core Inference 2.87 1 2.87
Property Extraction 0.97 1 0.97
“Ngutrglize the [m'e'ghacrylic Action Role Inference 23.37 1 23.37
acid with 100 milliliters - 41.35
of cyanuramide.” Coreference Resolution 0.24 1 0.24
Prob. Refinement 2.84 2 5.68
Prob. Role Refinement 3.33 2 6.66
Plan Generation 0.20 1 0.20
NL Parsing 2.03 1 2.03
Action Core Inference 4.76 1 4.76
Property Extraction 1.95 1 1.95
Action Role Inference 13.34 1 13.34
“Make an Italian dinner.” Coreference Resolution 0.61 1 0.61 | 43.31
Prob. Refinement 2.82 4 11.29
Prob. Role Refinement 1.82 4 4.29
Analog. Plan Expansion 0.019 6 01
Plan Generation 0.06 21 0.24

Table 6.2: Runtime analysis of five natural-language instructions interpreted with PRAC.

203

Chapter 6. Evaluation

Runtime Statistics With respect to the runtime of the inferences required by PRAC,
five representative exemplary instructions of varying complexity have been analyzed.
To get a more precise picture of the complexity of the reasoning processes in PRAC,
every reasoning module in the pipeline has been measured individually, as the module
can be executed multiple times due to possible action refinement processes.

Table 6.2 shows the five examples, where the processing times are broken down to
the individual respective reasoning modules with regard to the number of calls, the
average processing time per call, the total time consumed by the modules in the
respective instructions, and the total processing time for the instructions as a whole.
The time required for the NL parsing is almost constant by roughly 2 seconds per
instruction, as syntactically, the instructions have similar length.

As expected, the modules performing probabilistic reasoning take most of the pro-
cessing time, of which the ACTIONCOREINFERENCE, and the ACTIONROLEINFERENCE
modules are the most time consuming ones. As the reasoning takes into account all
possible word senses, the time highly depends on the number of WordNet concepts
associated with a word. The word ‘slice’, for example, has only four possible senses,
whereas the word ‘make’ has 49 possible meanings (cmp. Appendix B), which is
reflected in the runtimes for the action core inferences for the two examples.

Table 6.2 also exposes that the action refinement by means of the analogical reasoning
strategy is significantly faster than the probabilistic reasoning. In the third instruction,
“Start with neutralizing 4 drops of pyridine,” the probabilistic reasoning about action
and role refinement has been applied twice. The first refinement step transforms the
Neutralizing action into an Adding action, the second transforms the Adding action
into a Pipetting action. Conversely, in the fifth instruction, “Make an Italian dinner,”
action refinement by means of analogical reasoning has been applied six times to
expand cross-referencing howtos to finer grained steps. Although the reasoning
pipeline in the latter instruction performs 10 refinement steps in total, the overall
processing time is twice as fast. The experiments show that the analogical reasoning
with database indexing can be ~150 times faster than the probabilistic refinement.

204

Chapter

Conclusions

This thesis has proposed PRAC, a probabilistic framework for interpreting natural-
language instructions for everyday activity tasks, which near-future service robots
will have to accomplish. Such instruction sheets constitute a valuable source of
knowledge about how to perform complex high-level activities. They are available
in abundance on the World Wide Web and thus are a promising alternative to
classical approaches to action planning. However, the task of interpreting natural
language is extremely challenging as humans describing activities to other humans
tend to omit lots of information they assume their recipients to know or be able
to infer. Consequently, such instruction sheets are severely vague, unspecific and
even incomplete. I have argued that robots that are to understand and perform such
activities must be equipped with a substantial body of action-specific knowledge
in order to resolve the problems of ambiguity and underspecification, which are
ubiquitous when dealing with natural language. I have reported on a study on a large
corpus of natural-language recipes mined from the wikihow.com web page, which
supports this statement.

This work has presented PRAC (Probabilistic Action Cores), an interpreter for natural-
language instructions which is able to resolve vagueness and ambiguity in natural
language and infer missing information pieces that are required to transform an
instruction into an executable robot plan. I have shown that the interpretation of
ambiguous and incomplete natural-language instructions can be tackled by formulat-
ing it as the problem of computing the most probable complete and unambiguous
instruction in action specific knowledge bases. Within the PRAC framework, the most
probable complete and unique instruction enables robots to find the most appro-

Chapter 7. Conclusions

priate plan with the most general refinement of the formal plan parameters given
the instruction. As an inferential framework, PRAC makes use of two complemen-
tary paradigms, namely reasoning in probabilistic first-order knowledge bases and
reasoning by analogy.

To perform inferences about action core identification, word-sense disambiguation
and action role assignments, the PRAC framework learns joint probability distributions
over the possible ways in which instructions for a given action verb are typically
formulated. The probabilistic knowledge bases are encoded in Markov logic networks
(MLNs), a formalism for uncertain knowledge representation that is particularly
attractive due to its conceptual simplicity and expressiveness. However, the practical
applicability of MLNs often is limited as the models grow exponentially in the number
instances of subject to reasoning. To tackle this problem, I have proposed Fuzzy-
MLNSs, an extension of MLNs that allows to represent probability distributions over
open domains compactly — if complete ontologies are available for these domains.
The basic idea underlying Fuzzy-MLN s is to explicitly represent only the small
subset of formulae that is contained in the training databases. After having learned
the probability distribution, Fuzzy-MLNs can reason about concepts that are not
contained in the graphical model but in the taxonomy. They do so by exploiting the
fact that the relational structure of concepts in the taxonomy is correlated with the
relational structures of the explicitly represented concepts weighted by a notion of
semantic similarity. Fuzzy-MLNs implement this bias by generalizing the taxonomic
assertions for out-of-domain concepts from Boolean truth to real-valued degrees of
truth. The degree of truth is then computed based on the semantic similarity of the
off-domain concept to those concepts contained in the graphical model.

For accomplishing the task of instruction completion and refinement, a novel instance-
based learning approach called PRAC-TELL has been proposed in this work, which
uses the principle of analogical reasoning in a knowledge base of several thousands of
semantically indexed instruction sheets. The underlying assumption is that reasonable
completions of unspecific instructions can be found in a large collection of related
instruction sheets, the knowledge about which can be transferred and adapted to the
needs of a new situation. To this end, I have presented methods to complete action
parameters, expand instructions to finer-grained action sequences and adapt existing
procedures for manipulating objects to similar objects by using fast database queries.
The use of instance-based learning strategies is advantageous in several regards. It
avoids the restriction of purely probabilistic models, which may grow too large in
size and computational expense with increasing numbers of variables and thus can
quickly become intractable. Furthermore, knowledge about how to perform tasks
can be simply accommodated or retracted by adding or removing instruction sheets

206

to or from the collection without the need for expensive relearning.

A pipeline of individual reasoning methods for transforming incomplete and ambigu-
ous natural-language instructions to fully specified, executable plans are implemented
in a single algorithm called PRAC-QUERY, which has been introduced in this work.
The algorithm performs recursive expansion of instructions into sequences of more
specific actions which are analyzed by different reasoning modules of the PRAC
system. Every module is specialized to a particular reasoning task, such that each
instruction is getting incrementally enriched by semantic knowledge until it can be
executed. PRAC-QUERY in turn spans a tree of intermediate reasoning results which
is built up in a breadth-first fashion. The PRAC framework provides an attractive
alternative to other instruction interpretation approaches, in particular for the inter-
pretation of complex manipulation tasks. One important advantage is that PRACs are
not limited to inferring which sequences of actions should be executed but also how
the individual actions are to be executed. A second advantage is that the use of taxo-
nomic reasoning in the PRAC inference results in the inference of the most general
concept refinements of the plan parameters. This generates least commitment calls
of plans that keep maximal flexibility at execution time and avoids the necessity of
grounding symbolic names that are generated in the interpretation process (symbol
grounding problem). The current implementation comprises a set of 25 PRACs and
plan schemata from two application domains, the household/cooking domain and the
domain of conducting chemical experiments, which are being continuously extended.

This thesis has further presented a novel knowledge-driven approach for interpreting
object descriptions in natural language, which is integrated in the PRAC reasoning
pipeline for the identification of perceptual characteristics of objects in instructions,
which can also be used in the ROBOSHERLOCK perception framework for object
detection. To this end, visual attributes of object hypotheses detected by means of
individual specialized perception routines are enhanced to provide their outputs
as concepts in the WordNet taxonomy. Grounding the visual features of objects
into a taxonomy gives abstract symbolic meaning to those features so they share
the same semantics across all components and can be equally referred to by the
natural-language and perception components. The use of these knowledge-based
features enables to deal with previously unseen concepts in a meaningful way by
referring to them in terms of their similarity to known concepts, which makes the
proposed method highly efficient for learning from sparse data and enables a robot
to recognize objects from purely textual descriptions without the need to retrain
statistical models when new objects arise. Our experiments show that using PRAC,
semantic object models for robot perception can be learned from natural-language
descriptions mined from the web and used for perceiving objects of daily use on a

207

Chapter 7. Conclusions

real robot.

Furthermore, a novel strategy for combining multiple diverse perception algorithms
in one coherent perception system using probabilistic relational models has been
introduced. As most perception routines for detecting objects of daily use are strongly
tailored to very specific perceptual cues of objects, none of them shows promise in
robustly detecting all kinds of objects. Markov logic networks are used to learn an
ensemble of sets of diverse and highly specialized algorithms that are strategically
combined in order to draw a well-informed final conclusion. The experiments
show that the MLNs indeed learn probability distributions over the strengths and
weaknesses of the individual algorithms and successfully combine them to come to
globally consistent and probabilistically sound posterior belief. Not only does the
proposed approach leverage synergies among available perception algorithms for
object detection, but it can also be queried for the most descriptive features of an
object. Using the resulting information will enable the systems to choose the feature
detectors that are most appropriate, and use these for detection and tracking. I have
argued the use of ensemble-based systems and specialized perception routines is a
key paradigm for pushing the perceptual capabilities of our today’s robots to more
versatile and advanced applications.

The PRAC system has been implemented and released as an open-source software
framework which is publicly accessible as a browser-based web and smart-phone
application, which allows users to inspect and investigate the reasoning processes in
PRAC and to directly execute the generated sequences of robot plans in a Gazebo-
based simulator, which is connected to PRAC via the CRAM plan executive. The
evaluation shows that the proposed methods indeed scale to realistic domain sizes
and show promise in pushing future robots towards accomplishing more and more
versatile tasks and competent decision making.

In addition, PRACMLN has been released as open source as the standalone learning
and reasoning engine for Markov logic networks.

I believe that equipping robots with action-specific knowledge is a key paradigm
for implementing more flexible, cognitive robot behavior and pushing autonomous
robots to perform more advanced everyday activities. Although several approaches
towards understanding natural-language directives for robots exist, to the best of my
knowledge the PRAC system is the first that implements the whole pipeline starting
from vaguely stated natural-language instructions, disambiguating and completing
them to formally specified plan calls and executing these plans on a real robot
execution system.

208

Appendix

Prior Publications

This thesis is in parts based on prior work that has been published in different
international conferences and books. The parts of this work drawing on content from
prior publications referenced the prior works where appropriate. For the sake of
completeness, this section charts a complete list of my prior publications.

Book Chapters

Daniel Nyga, Michael Beetz,“Cloud-based Probabilistic Knowledge Services for
Instruction Interpretation”, In Springer Proceedings in Advanced Robotics, Vol. 2,
ROBOTICS RESEARCH, Editors: Wolfram Burgard and Antonio Bicchi, 2017.

Michael Beetz, Hagen Langer, Daniel Nyga,“Planning Everyday Manipulation
Tasks—Prediction-based Transformation of Structured Activity Descriptions”, Chapter
in Exploring Cybernetics, Springer, pp. 63-83, 2015.

Michael Beetz, Ferenc Bdlint-Benczédi, Nico Blodow, Christian Kerl, Zoltan-Csaba
Maérton, Daniel Nyga, Florian Seidel, Thiemo Wiedemeyer, Jan-Hendrik
Worch,“RoboSherlock: Unstructured Information Processing Framework for Robotic
Perception”, In Handling Uncertainty and Networked Structure in Robot Control,
Springer International Publishing, Cham, pp. 181-208, 2015.

Appendix A. Prior Publications

Conference Papers

Daniel Nyga, Mareike Picklum, Sebastian Koralewski, Michael Beetz,“Instruction
Completion through Instance-based Learning and Semantic Analogical Reasoning”,
In International Conference on Robotics and Automation (ICRA), Singapore, 2017.
Accepted for publication

Daniel Nyga, Mareike Picklum, Michael Beetz,“What No Robot Has Seen Before —
Probabilistic Interpretation of Natural-language Object Descriptions”, In International
Conference on Robotics and Automation (ICRA), Singapore, 2017. Accepted for

publication

Mihai Pomarlan, Daniel Nyga, Mareike Picklum, Sebastian Koralewski, and Michael
Beetz. “Deeper Understanding of Vague Instructions through Simulated Execution”
(extended abstract). In Proceedings of the 2017 International Conference on
Autonomous Agents & Multiagent Systems, AAMAS ’17. International Foundation for
Autonomous Agents and Multiagent Systems, 2017. Accepted for publication

Daniel Nyga, Michael Beetz,“Cloud-based Probabilistic Knowledge Services for
Instruction Interpretation”, In International Symposium of Robotics Research (ISRR),
Sestri Levante (Genoa), Italy, 2015.

Daniel Nyga, Michael Beetz,“Reasoning about Unmodelled Concepts — Incorporating
Class Taxonomies in Probabilistic Relational Models”, In Arxiv.org, 2015. Preprint

Gheorghe Lisca, Daniel Nyga, Ferenc Bélint-Benczédi, Hagen Langer, Michael Beetz,
“Towards Robots Conducting Chemical Experiments”, In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015.

Michael Beetz, Ferenc Balint-Benczedi, Nico Blodow, Daniel Nyga, Thiemo
Wiedemeyer, Zoltan-Csaba Marton, “RoboSherlock: Unstructured Information
Processing for Robot Perception”, In IEEE International Conference on Robotics and
Automation (ICRA), Seattle, Washington, USA, 2015. Best Service Robotics Paper
Award

Daniel Nyga, Ferenc Balint-Benczedi, Michael Beetz,“PR2 Looking at Things:
Ensemble Learning for Unstructured Information Processing with Markov Logic
Networks”, In IEEE International Conference on Robotics and Automation (ICRA),

210

Hong Kong, China, 2014.

Nicholas Hubert Kirk, Daniel Nyga, Michael Beetz,“Controlled Natural Languages for
Language Generation in Artificial Cognition”, In IEEE International Conference on
Robotics and Automation (ICRA), Hong Kong, China, 2014.

Daniel Nyga, Michael Beetz,“Everything Robots Always Wanted to Know about
Housework (But were afraid to ask)”, In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Vilamoura, Portugal, 2012.

Daniel Nyga, Moritz Tenorth, Michael Beetz,“How-Models of Human Reaching
Movements in the Context of Everyday Manipulation Activities”, In IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China, 2011.

Moritz Tenorth, Daniel Nyga, Michael Beetz,“Understanding and Executing
Instructions for Everyday Manipulation Tasks from the World Wide Web”, In IEEE
International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, pp.
1486-1491, 2010.

Other Publications

Moritz Tenorth, Daniel Nyga, Michael Beetz,“Understanding and Executing
Instructions for Everyday Manipulation Tasks from the World Wide Web”, Technical
report, IAS group, Technische Universitdt Miinchen, Fakultdt fiir Informatik, 2009.

21

Appendix

WordNet Concepts

In this appendix, the full list of possible WordNet synsets are charted for a selection
of frequently used ambiguous words.

Lemma: cup

Part of Speech: n

Synset Definition

cup.n.o1 a small open container usually used for drinking; usually

has a handle (he put the cup back in the saucer;the handle
of the cup was missing)

cup.n.o2 the quantity a cup will hold (he drank a cup of coffee;he
borrowed a cup of sugar)

Ccup.n.o3 any cup-shaped concavity (bees filled the waxen cups with
honey;he wore a jock strap with a metal cup;the cup of her
bra)

Cup.n.os a United States liquid unit equal to 8 fluid ounces ()

cup.n.os cup-shaped plant organ ()

cup.n.o6 a punch served in a pitcher instead of a punch bowl ()

cup.n.o7 the hole (or metal container in the hole) on a golf green

(he swore as the ball rimmed the cup and rolled away;put
the flag back in the cup)

cup.n.o8 a large metal vessel with two handles that is awarded as a
trophy to the winner of a competition (the school kept the
cups is a special glass case)

Appendix B. WordNet Concepts

Lemma: water

Part of Speech: n

Synset Definition

water.n.o1 binary compound that occurs at room temperature as a

body_of_water.n.o1

water.n.o3

water_system.n.o2

clear colorless odorless tasteless liquid; freezes into ice
below o degrees centigrade and boils above 100 degrees
centigrade; widely used as a solvent ()

the part of the earth’s surface covered with water (such
as a river or lake or ocean) (they invaded our territorial
waters;they were sitting by the water’s edge)

once thought to be one of four elements composing the
universe (Empedocles) ()

a facility that provides a source of water (the town debated
the purification of the water supply;first you have to cut
off the water)

urine.n.o1 liquid excretory product (there was blood in his urine;the
child had to make water)

water.n.o6 a liquid necessary for the life of most animals and plants
(he asked for a drink of water)

Lemma: bowl

Part of Speech: n

Synset Definition

bowl.n.o1 a round vessel that is open at the top; used chiefly for
holding food or liquids; ()

bowl.n.02 a concave shape with an open top ()

bowl.n.o3 a dish that is round and open at the top for serving foods
0

bowl.n.o4 the quantity contained in a bowl ()

stadium.n.o1

bowling_ball.n.o1

bowl.n.07

bowl.n.08

roll.n.15

a large structure for open-air sports or entertainments ()

a large ball with finger holes used in the sport of bowling

0

a wooden ball (with flattened sides so that it rolls on a
curved course) used in the game of lawn bowling ()

a small round container that is open at the top for holding
tobacco ()

the act of rolling something (as the ball in bowling) ()

214

Lemma: milk

Part of Speech: n

Synset Definition

milk.n.o1 a white nutritious liquid secreted by mammals and used
as food by human beings ()

milk.n.02 produced by mammary glands of female mammals for feed-
ing their young ()

milk.n.03 a river that rises in the Rockies in northwestern Montana
and flows eastward to become a tributary of the Missouri
River ()

milk.n.oz any of several nutritive milklike liquids ()

Lemma: milliliter

Part of Speech: n

Synset Definition

milliliter.n.o1

a metric unit of volume equal to one thousandth of a liter

0

Lemma: add

Part of Speech: v

Synset Definition

add.v.01 make an addition (to); join or combine or unite with others;
increase the quality, quantity, size or scope of (We added
two students to that dorm room;She added a personal note
to her letter;Add insult to injury;Add some extra plates to
the dinner table)

add.v.02 state or say further (‘It doesn’t matter, he supplied)

lend.v.01 bestow a quality on (Her presence lends a certain cachet to
the company;The music added a lot to the play;She brings
a special atmosphere to our meetings;This adds a light
note to the program)

add.v.o4 make an addition by combining numbers (Add 27 and 49,
please!)

total.v.02 determine the sum of (Add all the people in this town to
those of the neighboring town)

add.v.06 constitute an addition (This paper will add to her reputa-

tion)

215

Appendix B. WordNet Concepts

Lemma:
Part of Speech:
Synset

neutralize
v

Definition

neutralize.v.01

neutralize.v.02

counteract.v.03

neutralize.v.o4

neutralize.v.05

neutralize.v.06

make politically neutral and thus inoffensive (The treaty
neutralized the small republic)

make ineffective by counterbalancing the effect of (Her
optimism neutralizes his gloom;This action will negate the
effect of my efforts)

oppose and mitigate the effects of by contrary actions (This
will counteract the foolish actions of my colleagues)

get rid of (someone who may be a threat) by killing (The
mafia liquidated the informer;the double agent was neu-
tralized)

make incapable of military action ()

make chemically neutral (She neutralized the solution)

Lemma: slice

Part of Speech: v

Synset Definition

slit.v.01 make a clean cut through (slit her throat)

slice.v.02 hit a ball and put a spin on it so that it travels in a different
direction

slice.v.03 cut into slices (Slice the salami, please)

slice.v.os4 hit a ball so that it causes a backspin

Lemma: make

Part of Speech: v

Synset Definition

make.v.01 engage in (make love, not war;make an effort;do re-
search;do nothing;make revolution)

make.v.02 give certain properties to something (get someone

216

mad;She made us look silly;He made a fool of himself at
the meeting;Don’t make this into a big deal;This invention
will make you a millionaire;Make yourself clear)

make.v.03

induce.v.02

cause.v.01

produce.v.02

draw.v.04

make.v.08

Create.v.05

gain.v.08

do.v.08

form.v.02

reach.v.07

make.v.4

make.v.15

make.v.16

make or cause to be or to become (make a mess in one’s
office;create a furor)

cause to do; cause to act in a specified manner (The ads
induced me to buy a VCR;My children finally got me to buy
a computer;My wife made me buy a new sofa)

give rise to; cause to happen or occur, not always intention-
ally (cause a commotion;make a stir;cause an accident)

create or manufacture a man-made product (We produce
more cars than we can sell;The company has been making
toys for two centuries)

make, formulate, or derive in the mind (I draw a
line here;draw a conclusion;draw parallels;make an esti-
mate;What do you make of his remarks?)

compel or make somebody or something to act in a certain
way (People cannot be made to integrate just by passing a
law!;Heat makes you sweat)

create by artistic means (create a poem;Schoenberg cre-
ated twelve-tone music;Picasso created Cubism;Auden
made verses)

earn on some commercial or business transaction; earn
as salary or wages (How much do you make a month in
your new job?;She earns a lot in her new job;this merger
brought in lots of money;He clears $5,000 each month)

create or design, often in a certain way (Do my room in
blue;l did this piece in wood to express my love for the
forest)

to compose or represent:"This wall forms the background
of the stage setting" (The branches made a roof;This makes
a fine introduction)

reach a goal, e.g., "make the first team" (We made it};She
may not make the grade)

be or be capable of being changed or made into (He makes
a great host;He will make a fine father)

make by shaping or bringing together constituents (make
a dress;make a cake;make a wall of stones)

perform or carry out (make a decision;make a move;make
advances;make a phone call)

217

Appendix B. WordNet Concepts

construct.v.01

make.v.18

make.va9

name.v.03

have.v.17

reach.v.01

lay_down.v.01
make.v.24

make.v.25

hold.v.03

make.v.27

take.v.27

stool.v.04

make.v.30

make.v.31
make.v.32

make.v.33

make.v.34

make.v.35

make.v.36

218

make by combining materials and parts (this little pig made
his house out of straw;Some eccentric constructed an elec-
tric brassiere warmer)

change from one form into another (make water into
wine;make lead into gold;make clay into bricks)

act in a certain way so as to acquire (make friends;make
enemies)

charge with a function; charge to be (She was named Head
of the Committee;She was made president of the club)

achieve a point or goal (Nicklaus had a 70;The Brazilian
team got 4 goals;She made 29 points that day)

reach a destination, either real or abstract (We hit Detroit
by noon;The water reached the doorstep;We barely made
it to the finish line;l have to hit the MAC machine before
the weekend starts)

institute, enact, or establish (make laws)
carry out or commit (make a mistake;commit a faux-pas)

form by assembling individuals or constituents (Make a
quorum)

organize or be responsible for (hold a reception;have,
throw, or make a party;give a course)

put in order or neaten (make the bed;make up a room)

head into a specified direction (The escaped convict took
to the hills;We made for the mountains)

have a bowel movement (The dog had made in the flower
beds)

undergo fabrication or creation (This wool makes into a
nice sweater)

be suitable for (Wood makes good furniture)
add up to (four and four make eight)

amount to (This salary increase makes no difference to my
standard of living)

constitute the essence of (Clothes make the man)

appear to begin an activity (He made to speak but said
nothing in the end;She made as if to say hello to us)

proceed along a path (work one’s way through the
crowd;make one’s way into the forest)

make.v.37 reach in time (We barely made the plane)
make.v.38 gather and light the materials for (make a fire)

cook.v.02 prepare for eating by applying heat (Cook me dinner,
please;can you make me an omelette?;fix breakfast for
the guests, please)

seduce.v.01 induce to have sex (Harry finally seduced Sally;Did you
score last night?;Harry made Sally)

make.v.41 assure the success of (A good review by this critic will make
your play!)

make.v.42 represent fictitiously, as in a play, or pretend to be or act
like (She makes like an actress)

make.v.43 consider as being (It wasn’t the problem some people made
it)

make.v.44 calculate as being (I make the height about 100 feet)

make.v.45 cause to be enjoyable or pleasurable (make my day)

make.v.46 favor the development of (Practice makes the winner)

make.v.47 develop into (He will make a splendid father!)

make.v.48 behave in a certain way (make merry)

make.v.49 eliminate urine (Again, the cat had made on the expensive
rug)

219

Appendix B. WordNet Concepts

220

Acronyms

Acronyms

Fuzzy-MLN fuzzy Markov logic network 14-17, 72, 77, 90, 101, 107, 125, 128,
131-137, 140, 142-144, 148-150

PRAC Probabilistic Action Cores ii, 7, 8, 14, 16, 17, 53, 54, 67, 68, 70-74, 80,
83-85, 87, 89

Al Artificial Intelligence 2, 4, 13, 19, 42, 53, 56-59, 61, 137, 145, 187, 189, 190

AMT Amazon Mechanical Turk™ 91, 94-96
BN Bayesian network 34-38, 41, 51
DL description logic 25-27, 51, 52, 126, 129, 145, 148

FL fuzzy logic 50, 51, 130, 131, 133

FOL first-order logic 19, 20, 23-25, 28, 29, 42, 44, 51, 131, 133, 140, 145, 158
ground MRF ground Markov random field 42, 45, 46, 48, 51, 132-135, 143
HIT human intelligence task 94-96

KB knowledge base 3, 5, 7, 14, 15, 19, 21-25, 27-29, 32, 34, 37, 40, 42, 43, 51, 54,
72, 88, 90, 104, 106, 107, 111, 112, 123, 126, 130, 144, 148, 149, 151, 160,
176,177, 199

LCS lowest common superconcept 129

MAP maximum a-posteriori 5, 32
MCMC Markov chain Monte Carlo 40, 45, 47

MLE maximum likelihood estimate 33

221

Acronyms

MLN Markov logic network 20, 42-46, 48, 49, 51, 52, 72, 85, 87, 94, 100, 104, 125,
128, 130, 131, 133-136, 140, 142, 143, 145-147, 149, 150, 157-159,
164-166, 173, 174, 176, 182, 185, 189, 200

MN Markov network 37
MPE most probable explanation 32, 33, 46, 166

MRF Markov random field 37-42, 51, 132, 144, 168, 184

NL natural-language 5-7, 10, 11, 13-15, 17, 50, 53-57, 61, 63-65, 67, 72, 74-76,
92-95,97-99, 104, 105, 111, 115, 119, 120, 123, 142, 145, 151, 170, 176,
177,184, 185, 193, 194, 198, 202

NL natural language 3, 5, 7, 8, 11-14, 54-56, 58, 61, 63, 80, 86, 91, 93, 94, 102,
119, 122, 151, 169, 170, 176, 177, 191

PGM probabilistic graphical model 20, 29, 31, 34, 41, 42, 51, 54, 145
PL propositional logic 20-23, 30, 32, 40, 50, 51, 130, 131

POS part-of-speech 99, 101, 123, 177, 191

POS part of speech 101

PRM probabilistic relational model 7, 19, 20, 42, 51, 52, 91, 105, 126, 130, 137,
156, 157, 185, 192

PRS procedural reasoning system 84
RAP reactive action packages 84

SRL statistical relational learning 19, 145
VPA virtual personal assistant 190, 191

WCSP weighted constraint satisfaction problem 46

WSD word-sense disambiguation 137, 140

222

Bibliography

Bibliography

A. Aldoma, Z.-C. Marton, F. Tombari, W. Wohlkinger, C. Potthast, B. Zeisl, R. B. Rusu,
S. Gedikli, and M. Vincze. Tutorial: Point Cloud Library — Three-Dimensional
Object Recognition and 6 DoF Pose Estimation. Robotics & Automation Magazine,
19(3):80-91, September 2012.

B. Alexander, K. Hsiao, C. Jenkins, B. Suay, and R. Toris. Robot web tools [ros
topics]. IEEE Robotics & Automation Magagzine, 19(4):20-23, 2012.

D. Allouche, S. de Givry, and T. Schiex. Toulbar2, an open source exact cost function
network solver. Technical report, Technical report, INRIA, 2010.

M. Alomari, E. Chinellato, Y. Gatsoulis, D. Hogg, and A. Cohn. Unsupervised
grounding of textual descriptions of object features and actions in video. In KR
2016, pages 505-508. Association for the Advancement of Artificial Intelligence,
March 2016. URL http://eprints.whiterose.ac.uk/95572/. © 2016,
Association for the Advancement of Artificial Intelligence. This is an author
produced version of a paper published in Proceedings, 15th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2016).

J. Anderson. Constraint-directed Improvisation for Everyday Activities. PhD thesis,
1995.

Y. Artzi and L. Zettlemoyer. Weakly supervised learning of semantic parsers for
mapping instructions to actions. Transactions of the Association for Computational
Linguistics, 1(1):49-62, 2013.

F. Baader and W. Nutt. Basic Description Logics. In Description logic handbook, pages
43-95, 2003.

D. Bailey. When push comes to shove: A computational model of the role of motor
control in the acquisition of action verbs. PhD thesis, UNIVERSITY of CALIFORNIA,
1997.

223

Bibliography

C. F. Baker, C. J. Fillmore, and J. B. Lowe. The berkeley framenet project. In
Proceedings of the 36th Annual Meeting of the Association for Computational
Linguistics and 17th International Conference on Computational Linguistics - Volume
1, ACL 98, pages 86-90. Association for Computational Linguistics, 1998. doi:
10.3115/980845.980860. URL http://dx.doi.org/10.3115/980845.980860.

R. Barker. Ecological psychology: Concepts and methods for studying the environment
of human behavior. Stanford Univ Pr, 1968.

M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. M&senlechner, D. Pangercic, T. Riihr,
and M. Tenorth. Robotic Roommates Making Pancakes. In 11th IEEE-RAS
International Conference on Humanoid Robots, Bled, Slovenia, October, 26-28
2011.

M. Beetz, D. Jain, L. Mosenlechner, M. Tenorth, L. Kunze, N. Blodow, and
D. Pangercic. Cognition-enabled autonomous robot control for the realization of
home chore task intelligence. Proceedings of the IEEE, 100(8):2454-2471, 2012.

M. Beetz, F. Balint-Benczedi, N. Blodow, D. Nyga, T. Wiedemeyer, and Z.-C. Marton.
RoboSherlock: Unstructured Information Processing for Robot Perception. In IEEE
International Conference on Robotics and Automation (ICRA), Seattle, Washington,
USA, 2015a. URL
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139395. Best
Service Robotics Paper Award.

M. Beetz, H. Langer, and D. Nyga. Planning everyday manipulation
tasks—prediction-based transformation of structured activity descriptions. In
Exploring Cybernetics, pages 63-83. Springer, 2015b.

M. Beetz, M. Tenorth, and J. Winkler. Open-EASE - a knowledge processing service
for robots and robotics/ai researchers. In IEEE International Conference on Robotics
and Automation (ICRA), Seattle, Washington, USA, 2015c. Finalist for the Best
Cognitive Robotics Paper Award.

M. Beetz, D. Beldler, J. Winkler, J.-H. Worch, F. Balint-Benczedi, G. Bartels, A. Billard,
A. K. Bozcuoglu, Z. Fang, N. Figueroa, A. Haidu, H. Langer, A. Maldonado, A.-L.
Pais, M. Tenorth, and T. Wiedemeyer. Open Robotics Research Using Web-based
Knowledge Services. In International Conference on Robotics and Automation
(ICRA), Stockholm, Sweden, 2016.

I. Beltagy and R. J. Mooney. Efficient markov logic inference for natural language
semantics. In Proceedings of the Fourth International Workshop on Statistical
Relational AI at AAAI (StarAI-2014), pages 9-14, Quebec City, Canada, July 2014.

224

Bibliography

B. Bergen, S. Narayan, and J. Feldman. Embodied verbal semantics: Evidence from
an image-verb matching task. In Proceedings of the Twenty-Fifth Annual Conference
of the Cognitive Science Society, pages 139-144, 2003.

J. Besag. Statistical Analysis of Non-Lattice Data. Journal of the Royal Statistical
Society. Series D (The Statistician), 24(3):pp. 179-195, 1975. ISSN 00390526.
URL http://www. jstor.org/stable/2987782.

C. M. Bishop. Pattern recognition. Machine Learning, 128, 2006.

N. Blodow. Managing Belief States for Service Robots: Dynamic Scene Perception and
Spatio-temporal Memory. PhD thesis, Intelligent Autonomous Systems Group,
Department of Informatics, Technische Universitdt Miinchen, 2014.

M. Bollini, J. Barry, and D. Rus. BakeBot: Baking Cookies with the PR2. In The PR2
Workshop, from International Conference on Intelligent Robots and Systems (IROS),
2011.

A. Boteanu and S. Chernova. Solving and explaining analogy questions using
semantic networks. In AAAI, pages 1460-1466, 2015.

S. R. Branavan, H. Chen, L. S. Zettlemoyer, and R. Barzilay. Reinforcement learning
for mapping instructions to actions. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 1-Volume 1, pages 82-90.
Association for Computational Linguistics, 2009.

E. Brill and R. C. Moore. An improved error model for noisy channel spelling
correction. In Proceedings of the 38th Annual Meeting on Association for
Computational Linguistics, pages 286-293. Association for Computational
Linguistics, 2000.

M. Brocheler, L. Mihalkova, and L. Getoor. Probabilistic similarity logic. Conference
on Uncertainty in Artificial Intelligence, 2010.

C. G. Broyden. The convergence of a class of double-rank minimization algorithms 1.
general considerations. IMA Journal of Applied Mathematics, 6(1):76, 1970. doi:
10.1093/imamat/6.1.76. URL +http://dx.doi.org/10.1093/imamat/6.1.76.

I. C. Cardenas, S. S. Al-jibouri, J. I. Halman, and F. A. van Tol. Capturing and
integrating knowledge for managing risks in tunnel works. Risk analysis, 33(1):
92-108, 2013.

225

Bibliography

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and T. M. Mitchell.
Toward an architecture for never-ending language learning. In AAAI, volume 5,
page 3, 2010.

P. Chang and J. Krumm. Object recognition with color cooccurrence histograms. In
Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference
on., volume 2. IEEE, 1999.

N. Chater, J. B. Tenenbaum, and A. Yuille. Probabilistic Models of Cognition:
Conceptual Foundations. Trends in Cognitive Sciences, Special Issue: Probabilistic
Models of Cognition, 10(7), 2006.

H.-T. Cheng, F.-T. Sun, M. Griss, P. Davis, J. Li, and D. You. Nuactiv: Recognizing
unseen new activities using semantic attribute-based learning. In Proceeding of the
11th annual international conference on Mobile systems, applications, and services,
pages 361-374. ACM, 2013.

K. Chodorow and M. Dirolf. MongoDB: The Definitive Guide. O'Reilly Media, Inc., 1st
edition, 2010. ISBN 1449381561, 9781449381561.

J. Clausen. Branch and bound algorithms-principles and examples. Department of
Computer Science, University of Copenhagen, pages 1-30, 1999.

A. Collet, M. Martinez, and S. S. Srinivasa. The moped framework: Object
recognition and pose estimation for manipulation. The International Journal of
Robotics Research, 30(10):1284-1306, 2011.

J.-B. Coumau, H. Furuhashi, and H. Sarrazin. A smart home is where the bot is.
McKinsey Global Institute, January 2017.

D. Crystal. Dictionary of linguistics and phonetics, volume 30. John Wiley & Sons,
2011.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 1, pages 886-893 vol. 1, June 2005.

J. Davis and P. Domingos. Deep transfer via second-order markov logic. In
Proceedings of the 26th annual international conference on machine learning, pages
217-224. ACM, 2009.

M. De Marneffe, B. MacCartney, and C. Manning. Generating typed dependency
parses from phrase structure parses. In Proceedings of LREC, volume 6, pages
449-454, 2006.

226

Bibliography

M.-C. de Marneffe and C. D. Manning. The Stanford Typed Dependencies
Representation. In Coling 2008: Proceedings of the Workshop on Cross-Framework
and Cross-Domain Parser Evaluation, CrossParser 08, pages 1-8. Association for
Computational Linguistics, 2008. ISBN 978-1-905593-50-7. URL
http://dl.acm.org/citation.cfm?id=1608858.1608859.

J. Decety and F. Michel. Comparative analysis of actual and mental movement times
in two graphic tasks. Brain and cognition, 11(1):87-97, 1989.

P. Domingos and W. Webb. A tractable first-order probabilistic logic. In Proceedings
of the Twenty-Sixth National Conference on Artificial Intelligence, 2012.

K. Doya, S. Ishii, A. Pouget, and R. P. N. Rao, editors. Bayesian Brain. MIT Press,
2007.

K. Duan, D. Parikh, D. Crandall, and K. Grauman. Discovering Localized Attributes
for Fine-grained Recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, 2012.

J. Dzifcak, M. Scheutz, C. Baral, and P. Schermerhorn. What to do and how to do it:
Translating natural language directives into temporal and dynamic logic
representation for goal management and action execution. In Robotics and
Automation, 2009. ICRA09. IEEE International Conference on, pages 4163-4168.
IEEE, 2009.

S. Epping. Web-enabled Learning of Models for Word Sense Disambiguation.
Bachelor’s Thesis, 2011.

O. Etzioni, M. Banko, S. Soderland, and D. S. Weld. Open information extraction
from the web. Communications of the ACM, 51(12):68-74, 2008.

J. Fan, A. Kalyanpur, D. Gondek, and D. A. Ferrucci. Automatic knowledge extraction
from documents. IBM Journal of Research and Development, 56(3.4):5-1, 2012.

Z. Fang, G. Bartels, and M. Beetz. Learning models for constraint-based motion
parameterization from interactive physics-based simulation. In International
Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea, 2016.

A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing Objects by their
Attributes. In CVPR, 2009.

J. Feldman and S. Narayanan. Embodied meaning in a neural theory of language.
Brain and Language, 89(2):385 — 392, 2004. ISSN 0093-934X. doi:
http://dx.doi.org/10.1016/5S0093-934X(03)00355-9. URL

227

Bibliography

http://www.sciencedirect.com/science/article/pii/S0093934X03003559.
Language and MotorIntegration.

C. Fellbaum. WordNet: an electronic lexical database. MIT Press USA, 1998.

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur, A. Lally,
J. W. Murdock, E. Nyberg, J. Prager, N. Schlaefer, and C. Welty. Building Watson:
An overview of the DeepQA project. AI Magazine, 31(3):59-79, 2010a. ISSN
0738-4602. URL
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2303.

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur, A. Lally,
J. W. Murdock, E. Nyberg, J. Prager, et al. Building watson: An overview of the
deepqga project. Al magazine, 31(3):59-79, 2010b.

R. O. Fikes and N. J. Nilsson. STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Technical Report 431, Al Center, SRI
International, 1971. URL http://www.ai.sri.com/shakey/.

C. Fillmore. Frame semantics and the nature of language. Annals of the New York
Academy of Sciences, 280(1):20-32, 1976.

J. Firby. Adaptive Execution in Complex Dynamic Worlds. Technical report 672, Yale
University, Department of Computer Science, January 1989.

D. Gentner and L. Smith. Analogical reasoning. Encyclopedia of human behavior, 130:
130, 2012.

M. Georgeff and F. Ingrand. Decision making in an embedded reasing system, 1989.

S. J. Gershman, E. J. Horvitz, and J. B. Tenenbaum. Computational rationality: A
converging paradigm for intelligence in brains, minds, and machines. Science, 349
(6245):273-278, 2015.

L. Getoor. Introduction to statistical relational learning. MIT press, 2007a.
L. Getoor. Introduction to statistical relational learning. MIT press, 2007b.

W. R. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte Carlo in
practice. CRC press, 1995.

L. C. Goron, Z. C. Marton, G. Lazea, and M. Beetz. Segmenting cylindrical and
box-like objects in cluttered 3D scenes. In 7th German Conference on Robotics
(ROBOTIK), Munich, Germany, 2012.

228

Bibliography

T. L. Griffiths, C. Kemp, and J. B. Tenenbaum. The Cambridge Handbook of
Computational Cognitive Modeling, chapter Bayesian Models of Cognition.
Cambridge University Press, 2008.

S. Guadarrama, L. Riano, D. Golland, D. Gouhring, Y. Jia, D. Klein, P. Abbeel, and
T. Darrell. Grounding spatial relations for human-robot interaction. In Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages
1640-1647. IEEE, 2013.

S. Guadarrama, E. Rodner, K. Saenko, N. Zhang, R. Farrell, J. Donahue, and
T. Darrell. Open-vocabulary object retrieval. RSS, 2014.

S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and V. Lepetit.
Multimodal templates for real-time detection of texture-less objects in heavily
cluttered scenes. In IEEE International Conference on Computer Vision (ICCV),
2011.

R. S. Hunter. Photoelectric color difference meter. Josa, 48(12):985-995, 1958.

International Computer Science Institute. FrameNet Data.
https://framenet.icsi.berkeley.edu/fndrupal/frameIndex, 2017-02-22.
Accessed: 2017-02-22.

A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recognition: A review. [EEE
Transactions on Pattern Analysis and Machine Intelligence, 22(1):4-37, 2000.

D. Jain. Knowledge Engineering with Markov Logic Networks: A Review. In DKB
2011: Proceedings of the Third Workshop on Dynamics of Knowledge and Belief,
2011.

D. Jain. Probabilistic Cognition for Technical Systems: Statistical Relational Models for
High-Level Knowledge Representation, Learning and Reasoning. PhD thesis,
Technische Universitit Miinchen, 2012. URL
http://mediatum.ub.tum.de/node?id=1096684&change_language=en.

D. Jain and M. Beetz. Soft Evidential Update via Markov Chain Monte Carlo
Inference. In KI 2010: Advances in Artificial Intelligence, 33rd Annual German
Conference on Al, volume 6359 of Lecture Notes in Computer Science, pages
280-290. Springer, 2010. ISBN 978-3-642-16110-0.

D. Jain, P. Maier, and G. Wylezich. Markov Logic as a Modelling Language for
Weighted Constraint Satisfaction Problems. In Eighth International Workshop on
Constraint Modelling and Reformulation, in conjunction with CP2009, 2009a.

229

Bibliography

D. Jain, L. Mosenlechner, and M. Beetz. Equipping Robot Control Programs with
First-Order Probabilistic Reasoning Capabilities. In IEEE International Conference
on Robotics and Automation (ICRA), pages 3626-3631, 2009b.

D. Jayaraman, F. Sha, and K. Grauman. Decorrelating semantic visual attributes by
resisting the urge to share. In CVPR, 2014.

H. Kamp. A theory of truth and semantic representation. Formal semantics: The
essential readings, 1:189-222, 2008.

B. Kaup, J. Liidtke, and C. Maienborn. “the drawer is still closed”: Simulating past
and future actions when processing sentences that describe a state. Brain and
Language, 112(3):159-166, 2010.

H. A. Kautz, B. Selman, and Y. Jiang. A general stochastic approach to solving
problems with hard and soft constraints. Satisfiability Problem: Theory and
Applications, 35:573-586, 1996.

P. Kay and T. Regier. Resolving the question of color naming universals. Proceedings
of the National Academy of Sciences, 100(15):9085-9089, 2003.

A. Kemper and A. Eickler. Datenbanksysteme. Oldenbourg Wissenschaftsverlag, 2013.
In German.

C. Kiddon, G. T. Ponnuraj, L. Zettlemoyer, and Y. Choi. Mise en Place: Unsupervised
Interpretation of Instructional Recipes. In EMNLP, pages 982-992, 2015.

A. Kilgarri. Senseval: An exercise in evaluating word sense disambiguation programs.
In Proc. of the first international conference on language resources and evaluation,
pages 581-588, 1998.

J. Kim and R. J. Mooney. Unsupervised pcfg induction for grounded language
learning with highly ambiguous supervision. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pages 433—-444. Association for Computational
Linguistics, 2012.

R. D. King, K. E. Whelan, F. M. Jones, P. G. Reiser, C. H. Bryant, S. H. Muggleton,
D. B. Kell, and S. G. Oliver. Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature, 427(6971):247-252, 2004.

D. Klein and C. D. Manning. Accurate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computational Linguistics-Volume 1, pages
423-430. Association for Computational Linguistics, 2003.

230

Bibliography

D. C. Knill and A. Pouget. The Bayesian Brain: The Role of Uncertainty in Neural
Coding and Computation. Trends in Neurosciences, 27(12), 2004.

N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, volume 3, pages
2149-2154. IEEE, 2004.

D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009.

C. Kong, D. Lin, M. Bansal, R. Urtasun, and S. Fidler. What are you talking about?
text-to-image coreference. In Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on, pages 3558-3565. IEEE, 2014.

S. Koralewski. Scaling Probabilistic Completion of Robot Instructions through
Semantic Information Retrieval. Master’s Thesis, 2016.

E. Krause, M. Zillich, T. Williams, and M. Scheutz. Learning to recognize novel
objects in one shot through human-robot interactions in natural language
dialogues. In Proceedings of Twenty-Eighth AAAI Conference on Artificial Intelligence,
2014.

M. P. Kumar, P. H. S. Torr, and A. Zisserman. Objcut: Efficient segmentation using
top-down and bottom-up cues. IEEE Trans. Pattern Anal. Mach. Intell., pages
530-545.

L. Kunze, M. Tenorth, and M. Beetz. Putting People’s Common Sense into Knowledge
Bases of Household Robots. In 33rd Annual German Conference on Artificial
Intelligence (KI 2010), pages 151-159, Karlsruhe, Germany, September 21-24
2010. Springer.

L. Kunze, M. E. Dolha, and M. Beetz. Logic Programming with Simulation-based
Temporal Projection for Everyday Robot Object Manipulation. In 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), San Francisco,
CA, USA, September, 25-30 2011. Best Student Paper Finalist.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of the eighteenth
international conference on machine learning, ICML, volume 1, pages 282-289,
2001.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332-1338, 2015.

231

Bibliography

ISSN 0036-8075. doi: 10.1126/science.aab3050. URL
http://science.sciencemag.org/content/350/6266/1332.

C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object
classes by between-class attribute transfer. In CVPR, 2009.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444,
2015.

D. Lenat. CYC: A large-scale investment in knowledge infrastructure.
Communications of the ACM, 38(11):33-38, 1995. ISSN 0001-0782.

P. Liang, M. I. Jordan, and D. Klein. Learning dependency-based compositional
semantics. Computational Linguistics, 39(2):389-446, 2013.

G. Lisca, D. Nyga, F. Balint-Benczédi, H. Langer, and M. Beetz. Towards Robots
Conducting Chemical Experiments. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015.

E. Loper and S. Bird. Nltk: The natural language toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics - Volume 1, ETMTNLP 02, pages 63-70,
Stroudsburg, PA, USA, 2002. Association for Computational Linguistics. doi:
10.3115/1118108.1118117. URL http://dx.doi.org/10.3115/1118108.1118117.

D. Lowd and P. Domingos. Efficient Weight Learning for Markov Logic Networks. In
PKDD 2007, 11th European Conference on Principles and Practice of Knowledge
Discovery in Databases, volume 4702 of Lecture Notes in Computer Science, pages
200-211. Springer, 2007.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91-110, 2004. ISSN 0920-5691. URL
http://dx.olddoi.org/10.1023/B%3AVISI.0000029664.99615.94.

T. Lukasiewicz. Expressive probabilistic description logics. Artificial Intelligence, 172
(6-7):852 — 883, 2008. ISSN 0004-3702. doi:
http://dx.doi.org/10.1016/j.artint.2007.10.017. URL
http://www.sciencedirect.com/science/article/pii/S0004370207001877.

I. Lysenkov, V. Eruhimov, and G. Bradski. Recognition and Pose Estimation of Rigid
Transparent Objects with a Kinect Sensor. In Proceedings of Robotics: Science and
Systems, Sydney, Australia, July 2012.

232

Bibliography

J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson, and A. Marrs. Disruptive
technologies: Advances that will transform life, business, and the global economy.
McKinsey Global Institute, May 2013.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313-330,
1993.

K. Markman, J. A. Suhr, and W. M. P. Klein. Handbook of Imagination and Mental
Simulation. Psychology Press, 2008.

Z.-C. Marton, F. Balint-Benczedi, F. Seidel, L. C. Goron, and M. Beetz. Object
Categorization in Clutter using Additive Features and Hashing of Part-graph
Descriptors. In Proceedings of Spatial Cognition (SC), Abbey Kloster Seeon,
Germany, 2012.

C. Matuszek, D. Fox, and K. Koscher. Following directions using statistical machine
translation. In Proceeding of the 5th ACM/IEEE international conference on
Human-robot interaction, pages 251-258. ACM, 2010.

C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and D. Fox. A Joint Model of
Language and Perception for Grounded Attribute Learning. Proceedings of the 29th
International Conference on Machine Learning (ICML 2012), 2012.

C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox. Learning to parse natural
language commands to a robot control system. In Experimental Robotics, pages
403-415. Springer, 2013.

D. McDermott. Robot Planning. 13(2):55-79, 1992.

A. McEnery, I. Tanaka, and S. Botley. Corpus annotation and reference resolution. In
Proceedings of a Workshop on Operational Factors in Practical, Robust Anaphora
Resolution for Unrestricted Texts, ANARESOLUTION 97, pages 67-74, Stroudsburg,
PA, USA, 1997. Association for Computational Linguistics. URL
http://dl.acm.org/citation.cfm?id=1598819.1598829.

F. Meyer. Grounding Words to Objects: A Joint Model for Co-reference and Entity
Resolution Using Markov Logic Networks for Robot Instruction Processing.
Diploma Thesis, 2013.

A. S. Mian, M. Bennamoun, and R. Owens. Three-dimensional model-based object
recognition and segmentation in cluttered scenes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(10):1584-1601, October 2006. ISSN
0162-8828.

233

Bibliography

Michael Rupp. Siri vs. Cortana vs. Google Now: Das Duell. http://www.pc-magazin.
de/vergleich/siri-cortana-google-now-test-vergleich-3195396.html, 2015.
Accessed: 2017-03-31.

G. A. Miller, C. Leacock, R. Tengi, and R. T. Bunker. A semantic concordance. In
Proceedings of the workshop on Human Language Technology, pages 303-308.
Association for Computational Linguistics, 1993.

M. Minsky. A Framework for Representing Knowledge. Technical Report Memo 306,
MIT-AI Laboratory, 1974.

M. L. Minsky. Logical versus analogical or symbolic versus connectionist or neat
versus scruffy. Al magazine, 12(2):34, 1991.

D. Misra, J. Sung, K. Lee, A. Saxena, J. Sung, B. Selman, A. Saxena, J. Sung, C. Ponce,
B. Selman, et al. Tell me dave: Context-sensitive grounding of natural language to
mobile manipulation instructions. In Robotics: Science and Systems, RSS, 2014a.

D. K. Misra, K. Tao, P. Liang, and A. Saxena. Environment-driven lexicon induction
for high-level instructions.

D. K. Misra, J. Sung, K. Lee, and A. Saxena. Tell me dave: Context-sensitive
grounding of natural language to manipulation instructions. In Proceedings of
Robotics: Science and Systems, Berkeley, USA, July 2014b.

R. Moore. A formal theory of knowledge and action. Technical report, DTIC
Document, 1984.

L. Mésenlechner and M. Beetz. Parameterizing Actions to have the Appropriate
Effects. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), San Francisco, CA, USA, September 25-30 2011.

L. Mosenlechner. The Cognitive Robot Abstract Machine. Dissertation, Technische
Universitat Miinchen, Miinchen, 2016.

E. Neo, T. Sakaguchi, and K. Yokoi. A natural language instruction system for
humanoid robots integrating situated speech recognition, visual recognition and
on-line whole-body motion generation. In Advanced Intelligent Mechatronics, 2008.
AIM 2008. IEEE/ASME International Conference on, pages 1176-1182. IEEE, 2008.

A. Newell. The knowledge level. Artificial intelligence, 18(1):87-127, 1982.

A. Newell, H. A. Simon, et al. Human problem solving, volume 104. Prentice-Hall
Englewood Cliffs, NJ, 1972.

234

Bibliography

M. Niepert, J. Noessner, and H. Stuckenschmidt. Log-linear description logics. In
IJCAI, pages 2153-2158, 2011.

D. Nyga and M. Beetz. Everything Robots Always Wanted to Know about Housework
(But were afraid to ask). In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vilamoura, Portugal, October, 7-12 2012.

D. Nyga and M. Beetz. Reasoning about Unmodelled Concepts — Incorporating Class
Taxonomies in Probabilistic Relational Models. In arxiv.org, 2015a. Preprint:
http://arxiv.org/abs/1504.05411.

D. Nyga and M. Beetz. Cloud-based Probabilistic Knowledge Services for Instruction
Interpretation. In International Symposium of Robotics Research (ISRR), Sestri
Levante (Genoa), Italy, 2015b.

D. Nyga, F. Balint-Benczedi, and M. Beetz. PR2 Looking at Things: Ensemble
Learning for Unstructured Information Processing with Markov Logic Networks. In
IEEE International Conference on Robotics and Automation (ICRA), Hong Kong,
China, May 31-June 7 2014.

D. Nyga, M. Picklum, and M. Beetz. What No Robot Has Seen Before — Probabilistic
Interpretation of Natural-language Object Descriptions. In International Conference
on Robotics and Automation (ICRA), Singapore, 2017a. Accepted for publication.

D. Nyga, M. Picklum, S. Koralewski, and M. Beetz. Instruction Completion through
Instance-based Learning and Semantic Analogical Reasoning. In International
Conference on Robotics and Automation (ICRA), Singapore, 2017b. Accepted for
publication.

K. Okada, M. Kojima, S. Tokutsu, T. Maki, Y. Mori, and M. Inaba. Multi-cue 3D object
recognition in knowledge-based vision-guided humanoid robot system. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)., pages
3217-3222, 2007.

Open Source Initiative. The 3-Clause BSD License.
https://opensource.org/licenses/BSD-3-Clause, 2017. Accessed: 2017-02-22.

M. Palmer, D. Gildea, and P. Kingsbury. The proposition bank: An annotated corpus
of semantic roles. Computational linguistics, 31(1):71-106, 2005.

D. Pangercic, M. Tenorth, B. Pitzer, and M. Beetz. Semantic object maps for robotic
housework - representation, acquisition and use. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, October,
7-12 2012.

235

Bibliography

Picklum, Mareike. To see what no robot has seen before - Recognizing objects based
on natural-language descriptions. Master’s Thesis, 2015.

R. Polikar. Ensemble based systems in decision making. IEEE Circuits and Systems
Magazine, pages 21-45, 2006.

M. Pomarlan, D. Nyga, M. Picklum, S. Koralewski, and M. Beetz. Deeper
Understanding of Vague Instructions through Simulated Execution (Extended
Abstract). In Proceedings of the 2017 International Conference on Autonomous
Agents & Multiagent Systems, AAMAS ’17. International Foundation for
Autonomous Agents and Multiagent Systems, 2017.

H. Poon and P. Domingos. Sound and efficient inference with probabilistic and
deterministic dependencies. In AAAI, volume 6, pages 458-463, 2006.

G. Pratt and J. Manzo. The darpa robotics challenge [competitions]. IEEE Robotics &
Automation Magazine, 20(2):10-12, 2013.

A. Pronobis and P. Jensfelt. Large-scale semantic mapping and reasoning with
heterogeneous modalities. In Proceedings of the 2012 IEEE International Conference
on Robotics and Automation (ICRA'12), Saint Paul, MN, USA, 2012. doi:
10.1109/ICRA.2012.6224637. URL
http://www.pronobis.pro/publications/pronobis2012icra.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng. Ros: an open-source robot operating system. In ICRA Workshop on Open
Source Software, 2009.

R. Reiter. A logic for default reasoning. Artificial intelligence, 13(1-2):81-132, 1980.

M. Richardson and P. Domingos. Markov Logic Networks. Machine Learning, 62
(1-2):107-136, 2006. ISSN 0885-6125. doi:
http://dx.doi.org/10.1007/5s10994-006-5833-1.

A. Richtsfeld, T. Morwald, J. Prankl, M. Zillich, and M. Vincze. Segmentation of
unknown objects in indoor environments. In Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pages 4791-4796, 2012. doi:
10.1109/IR0S.2012.6385661.

D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1):
273-302, 1996.

T. Riihr, J. Sturm, D. Pangercic, D. Cremers, and M. Beetz. A generalized framework
for opening doors and drawers in kitchen environments. In IEEE International

236

Bibliography

Conference on Robotics and Automation (ICRA), St. Paul, MN, USA, May 14-18
2012.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, volume 2.
Prentice Hall, 2003.

R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In IEEE
International Conference on Robotics and Automation (ICRA), pages 1-4, Shanghai,
China, May 9-13 2011.

J. Ryu, Y. Jung, K. Kim, and S. Myaeng. Automatic extraction of human activity
knowledge from method-describing web articles. Proceedings of the 1st Workshop
on Automated Knowledge Base Construction, page 16, 2010.

S. Schaal. The new robotics—towards human-centered machines. HFSP journal, 1
(2):115-126, 2007.

U. Schoning. Logik fiir Informatiker. BI Wissenschaftsverlag Mannheim, 1987. In
German.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):
484-489, 2016.

R. F. Simmons. Synthetic language behavior. System Development Corporation, 1963.

H. Simon. Rational choice and the structure of the environment. Psychological review,
63(2):129, 1956.

H. A. Simon. Models of man; social and rational. 1957.
SPARC. Multi-annual Roadmap for Robotics in Europe 2014-2020, 2014a.
SPARC. Strategic Research Agenda for Robotics in Europe 2014-2020, 2014b.

S. Srivastava, S. Zilberstein, A. Gupta, P. Abbeel, and S. J. Russell. Tractability of
planning with loops. In AAAI, 2015.

Stanford University. Siri, a Virtual Personal Assistant.
http://www-ksl.stanford.edu/projects/CALO/, 2006. Accessed: 2017-02-22.

Y. Su, M. Allan, and F. Jurie. Improving object classification using semantic
attributes. In BMVC, pages 1-10, 2010.

237

Bibliography

G. Sukthankar, C. Geib, H. H. Bui, D. Pynadath, and R. P. Goldman. Plan, Activity,
and Intent Recognition: Theory and Practice. Newnes, 2014.

Y. Sun, L. Bo, and D. Fox. Attribute based object identification. In Robotics and
Automation (ICRA), 2013 IEEE International Conference on, pages 2096-2103.
IEEE, 2013a.

Y. Sun, L. Bo, and D. Fox. Attribute Based Object Identification. In IEEE International
Conference on Robotics and Automation, 2013b.

J. Sung, B. Selman, and A. Saxena. Synthesizing manipulation sequences for
under-specified tasks using unrolled markov random fields. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2970-2977. IEEE,
2014.

S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller, and N. Roy.
Understanding natural language commands for robotic navigation and mobile
manipulation. In Proc. Nat’l Conf. on Artificial Intelligence (AAAD), 2011.

S. Tellex, P. Thaker, J. Joseph, and N. Roy. Learning perceptually grounded word
meanings from unaligned parallel data. Machine Learning, 94(2):151-167, 2014.

J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman. How to grow a mind:
Statistics, structure, and abstraction. science, 331(6022):1279-1285, 2011.

M. Tenorth. Knowledge Processing for Autonomous Robots. PhD thesis, Intelligent
Autonomous Systems Group, Department of Informatics, Technische Universitat
Miinchen, 2011.

M. Tenorth, D. Nyga, and M. Beetz. Understanding and Executing Instructions for
Everyday Manipulation Tasks from the World Wide Web. In IEEE International
Conference on Robotics and Automation (ICRA), pages 1486-1491, Anchorage, AK,
USA, May 3-8 2010.

D. Thau and B. Ludédscher. Reasoning about taxonomies in first-order logic.
Ecological Informatics, 2(3):195-209, 2007.

B. J. Thomas and O. C. Jenkins. Roboframenet: Verb-centric semantics for actions in
robot middleware. In 2012 IEEE International Conference on Robotics and
Automation, pages 4750-4755, May 2012. doi: 10.1109/ICRA.2012.6225172.

Tom Gruber. Siri, a Virtual Personal Assistant.
http://tomgruber.org/technology/siri.htm, 2015. Accessed: 2017-02-22.

238

Bibliography

J. Uebersax. Genetic counseling and cancer risk modeling: An application of bayes
nets. Marbella, Spain: Ravenpack International, 2004.

A. C. Varzi. Vagueness, logic, and ontology. The Dialogue. Yearbooks for Philosophical
Hermeneutics, 2001.

D. Vernon. Artificial cognitive systems: A primer. MIT Press, 2014.

S. Vosniadou and A. Ortony. Similarity and analogical reasoning. Cambridge
University Press, 1989.

J. Wang and P. Domingos. Hybrid Markov Logic Networks. In D. Fox and C. P.
Gomes, editors, Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, pages 1106-1111. AAAI Press. ISBN 978-1-57735-368-3. URL
http://dblp.uni-trier.de/db/conf/aaai/aaai2008.html#WangD08.

J. Wang, K. Markert, and M. Everingham. Learning models for object recognition

from natural language descriptions. 2009.

Wikimedia Commons. Ein HSV-Farbwahler. https:
//de.wikipedia.org/wiki/HSV-Farbraum#/media/File:Triangulo_HSV.png,
2017. Accessed: 2017-02-22.

Wikipedia. Uncertainty. https://en.wikipedia.org/wiki/Uncertainty, 2017.
Accessed: 2017-02-22.

K. Williams, E. Bilsland, A. Sparkes, W. Aubrey, M. Young, L. N. Soldatova,
K. De Grave, J. Ramon, M. de Clare, W. Sirawaraporn, S. G. Oliver, and R. D. King.
Cheaper faster drug development validated by the repositioning of drugs against
neglected tropical diseases. Journal of The Royal Society Interface, 12(104), 2015.
ISSN 1742-5689. doi: 10.1098/1sif.2014.1289. URL
http://rsif.royalsocietypublishing.org/content/12/104/20141289.

C. Wu and H. Aghajan. Recognizing objects in smart homes based on human
interaction. In Advanced Concepts in Vision Systems (ACIVS), volume LNCS 6475,
pages 131-142, Sydney, Australia, December 2010. Springer Verlag Berlin. ISBN
978-3-642-17690-6.

Z. Wu and M. S. Palmer. Verb semantics and lexical selection. In ACL, pages
133-138, 1994.

P. R. Wurman and J. M. Romano. The amazon picking challenge 2015. IEEE Robotics
and Automation Magagzine, 22(3):10-12, 2015.

239

Bibliography

F. X. Yu, L. Cao, R. S. Feris, J. R. Smith, and S.-F. Chang. Designing category-level
attributes for discriminative visual recognition. In Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on, pages 771-778. IEEE, 2013.

Z. Zhong and H. T. Ng. It makes sense: A wide-coverage word sense disambiguation
system for free text. In Proceedings of the ACL 2010 System Demonstrations,
ACLDemos 10, pages 78-83. Association for Computational Linguistics, 2010.
URL http://dl.acm.org/citation.cfm?id=1858933.1858947.

240

