2,963 research outputs found

    Mathematical models and GNSS interference

    No full text

    Simulation of Multi-element Antenna Systems for Navigation Applications

    Get PDF
    The application of user terminals with multiple antenna inputs for use with the global satellite navigation systems like GPS and Galileo becomes more and more attraction in last years. Multiple antennas may be spread over the user platform and provide signals required for the platform attitude estimation or may be arranged in an antenna array to be used together with array processing algorithms for improving signal reception, e.g. for multipath and interference mitigation. In order to generate signals for testing of receivers with multiple antenna inputs and corresponding receiver algorithms in a laboratory environment a unique HW signal simulation tool for wavefront simulation has been developed. The signals for a number of antenna elements in a flexible user defined geometry are first generated as digital signals in baseband and then mixed up to individual RF-outputs. The paper describes the principle function of the system and addresses some calibration issues. Measurement set-ups and results of data processing with simulated signals for different applications are shown and discussed

    Radio Frequency Interference Impact Assessment on Global Navigation Satellite Systems

    Get PDF
    The Institute for the Protection and Security of the Citizen of the EC Joint Research Centre (IPSC-JRC) has been mandated to perform a study on the Radio Frequency (RF) threat against telecommunications and ICT control systems. This study is divided into two parts. The rst part concerns the assessment of high energy radio frequency (HERF) threats, where the focus is on the generation of electromagnetic pulses (EMP), the development of corresponding devices and the possible impact on ICT and power distribution systems. The second part of the study concerns radio frequency interference (RFI) with regard to global navigation satellite systems (GNSS). This document contributes to the second part and contains a detailed literature study disclosing the weaknesses of GNSS systems. Whereas the HERF analysis only concerns intentional interference issues, this study on GNSS also takes into account unintentional interference, enlarging the spectrum of plausible interference scenarios.JRC.DG.G.6-Security technology assessmen

    Estimation Techniques and Mitigation Tools for Ionospheric effects on GNSS Receivers

    Get PDF
    Navigation is defined as the science of getting a craft or person from one place to another. The development of radio in the past century brought fort new navigation aids that enabled users, or rather their receivers, to compute their position with the help of signals from one or more radio-navigation system . The U.S. Global Positioning System (GPS) was envisioned as a satellite system for three-dimensional position and velocity determination fulfilling the following key attributes: global coverage, continuous/all weather operation, ability to serve high-dynamic platforms, and high accuracy. It represents the fruition of several technologies, which matured and came together in the second half of the 20th century. In particular, stable space-born platforms, ultra-stable atomic frequency standards, spread spectrum signaling, and microelectronics are the key developments in the realization and success of GPS. While GPS was under development, the Soviet Union undertook to develop a similar system called GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS). Both GLONASS and GPS were designed primarily for the military, but have transitioned in the past decades towards providing civilian and Safety-of-Life services as well. Other Global Navigation Satellite Systems (GNSS) are now being developed and deployed by governments, international consortia, and commercial interests. Among these are the European system Galileo and the Chinese system Beidou. Other regional systems are the Japanese Quasi-Zenith Satellite System and the Indian Gagan. GNSS have become a crucial component in countless modern systems, e.g. in telecommunication, navigation, remote sensing, precise agriculture, aviation and timing. One of the main threats to the reliable and safe operation of GNSS are the variable propagation conditions encountered by GNSS signals as they pass through the upper atmosphere of the Earth. In particular, irregular concentration of electrons in the ionosphere induce fast fluctuations in the amplitude and phase of GNSS signals called scintillations. The latter can greatly degrade the performance of GNSS receivers, with consequent economical impacts on service providers and users of high performance applications. New GNSS navigation signals and codes are expected to help mitigate such effects, although to what degree is still unknown. Furthermore, these new technologies will only come on line incrementally over the next decade as new GNSS satellites become operational. In the meantime, GPS users who need high performance navigation solution, e.g., offshore drilling companies, might be forced to postpone operations for which precision position knowledge is required until the ionospheric disturbances are over. For this reason continuous monitoring of scintillations has become a priority in order to try to predict its occurrence. Indeed, it is a growing scientific and industrial activity. However, Radio Frequency (RF) Interference from other telecommunication systems might threaten the monitoring of scintillation activity. Currently, the majority of the GNSS based application are highly exposed to unintentional or intentional interference issues. The extremely weak power of the GNSS signals, which is actually completely buried in the noise floor at the user receiver antenna level, puts interference among the external error contributions that most degrade GNSS performance. It is then of interest to study the effects these external systems may have on the estimation of ionosphere activity with GNSS. In this dissertation, we investigate the effect of propagation issues in GNSS, focusing on scintillations, interference and the joint effect of the two phenomena

    A Reduced Complexity Cross-correlation Interference Mitigation Technique on a Real-time Software-defined Radio GPS L1 Receiver

    Full text link
    The U.S. global position system (GPS) is one of the existing global navigation satellite systems (GNSS) that provides position and time information for users in civil, commercial and military backgrounds. Because of its reliance on many applications nowadays, it's crucial for GNSS receivers to have robustness to intentional or unintentional interference. Because most commercial GPS receivers are not flexible, software-defined radio emerged as a promising solution for fast prototyping and research on interference mitigation algorithms. This paper provides a proposed minimum mean-squared error (MMSE) interference mitigation technique which is enhanced for computational feasibility and implemented on a real-time capable GPS L1 SDR receiver. The GPS SDR receiver SW has been optimized for real-time operation on National Instruments' LabVIEW (LV) platform in conjunction with C/C++ dynamic link libraries (DLL) for improved efficiency. Performance results of said algorithm with real signals and injected interference are discussed. The proposed SDR receiver gains in terms of BER curves for several interferers are demonstrated

    Adaptive Interference Mitigation in GPS Receivers

    Get PDF
    Satellite navigation systems (GNSS) are among the most complex radio-navigation systems, providing positioning, navigation, and timing (PNT) information. A growing number of public sector and commercial applications rely on the GNSS PNT service to support business growth, technical development, and the day-to-day operation of technology and socioeconomic systems. As GNSS signals have inherent limitations, they are highly vulnerable to intentional and unintentional interference. GNSS signals have spectral power densities far below ambient thermal noise. Consequently, GNSS receivers must meet high standards of reliability and integrity to be used within a broad spectrum of applications. GNSS receivers must employ effective interference mitigation techniques to ensure robust, accurate, and reliable PNT service. This research aims to evaluate the effectiveness of the Adaptive Notch Filter (ANF), a precorrelation mitigation technique that can be used to excise Continuous Wave Interference (CWI), hop-frequency and chirp-type interferences from GPS L1 signals. To mitigate unwanted interference, state-of-the-art ANFs typically adjust a single parameter, the notch centre frequency, and zeros are constrained extremely close to unity. Because of this, the notch centre frequency converges slowly to the target frequency. During this slow converge period, interference leaks into the acquisition block, thus sabotaging the operation of the acquisition block. Furthermore, if the CWI continuously hops within the GPS L1 in-band region, the subsequent interference frequency is locked onto after a delay, which means constant interference occurs in the receiver throughout the delay period. This research contributes to the field of interference mitigation at GNSS's receiver end using adaptive signal processing, predominately for GPS. This research can be divided into three stages. I first designed, modelled and developed a Simulink-based GPS L1 signal simulator, providing a homogenous test signal for existing and proposed interference mitigation algorithms. Simulink-based GPS L1 signal simulator provided great flexibility to change various parameters to generate GPS L1 signal under different conditions, e.g. Doppler Shift, code phase delay and amount of propagation degradation. Furthermore, I modelled three acquisition schemes for GPS signals and tested GPS L1 signals acquisition via coherent and non-coherent integration methods. As a next step, I modelled different types of interference signals precisely and implemented and evaluated existing adaptive notch filters in MATLAB in terms of Carrier to Noise Density (\u1d436/\u1d4410), Signal to Noise Ratio (SNR), Peak Degradation Metric, and Mean Square Error (MSE) at the output of the acquisition module in order to create benchmarks. Finally, I designed, developed and implemented a novel algorithm that simultaneously adapts both coefficients in lattice-based ANF. Mathematically, I derived the full-gradient term for the notch's bandwidth parameter adaptation and developed a framework for simultaneously adapting both coefficients of a lattice-based adaptive notch filter. I evaluated the performance of existing and proposed interference mitigation techniques under different types of interference signals. Moreover, I critically analysed different internal signals within the ANF structure in order to develop a new threshold parameter that resets the notch bandwidth at the start of each subsequent interference frequency. As a result, I further reduce the complexity of the structural implementation of lattice-based ANF, allowing for efficient hardware realisation and lower computational costs. It is concluded from extensive simulation results that the proposed fully adaptive lattice-based provides better interference mitigation performance and superior convergence properties to target frequency compared to traditional ANF algorithms. It is demonstrated that by employing the proposed algorithm, a receiver is able to operate with a higher dynamic range of JNR than is possible with existing methods. This research also presents the design and MATLAB implementation of a parameterisable Complex Adaptive Notch Filer (CANF). Present analysis on higher order CANF for detecting and mitigating various types of interference for complex baseband GPS L1 signals. In the end, further research was conducted to suppress interference in the GPS L1 signal by exploiting autocorrelation properties and discarding some portion of the main lobe of the GPS L1 signal. It is shown that by removing 30% spectrum of the main lobe, either from left, right, or centre, the GPS L1 signal is still acquirable

    The Global Navigation System Scope (GNSScope): a toolbox for the end-to-end modelling simulation and analysis of GNSS

    Get PDF
    The thesis provides a detailed overview of the work carried out by the author over the course of the research for the award of the degree of Doctor of Philosophy at the University of Westminster, and the performance results of the novel techniques introduced into the literature. The outcome of the work is collectively referred to as the Global Navigation System Scope (GNSScope) Toolbox, offering a complete, fully reconfigurable platform for the end-to-end modeling, simulation and analysis of satellite navigation signals and systems, covering the signal acquisition, tracking, and range processing operations that take place in a generic Global Navigation Satellite System (GNSS) receiver, accompanied by a Graphical User Interface (GUI) providing access to all the techniques available in the toolbox. Designed and implemented entirely in the MATLAB mathematical programming environment using Software Defined Radio (SDR) receiver techniques, the toolbox offers a novel new acquisition algorithm capable of handling all Phase-Shift Keying (PSK) type modulations used on all frequency bands in currently available satellite navigation signals, including all sub-classes of the Binary Offset Carrier (BOC) modulated signals. In order to be able to process all these signals identified by the acquisition search, a novel tracking algorithm was also designed and implemented into the toolbox to track and decode all acquired satellite signals, including those currently intended to be used in future navigation systems, such as the Galileo test signals transmitted by the GIOVE satellites orbiting the Earth. In addition to the developed receiver toolbox, three novel algorithms were also designed to handle weak signals, multipath, and multiple access interference in GNSScope. The Mirrored Channel Mitigation Technique, based on the successive and parallel interference cancellation techniques, reduces the hardware complexity of the interference mitigation process by utilizing the local code and carrier replicas generated in the tracking channels, resulting in a reduction in hardware resources proportional to the number of received strong signals. The Trigonometric Interference Cancellation Technique, used in cross-correlation interference mitigation, exploits the underlying mathematical expressions to simplify the interference removal process, resulting in reduced complexity and execution times by reducing the number of operations by 25% per tracking channel. The Split Chip Summation Technique, based on the binary valued signal modulation compression technique, enhances the amount of information captured from compressing the signal to reveal specific filtering effects on the positive and negative polarity chips of the spreading code. Simulation case studies generated entirely using the GNSScope toolbox will be used throughout the thesis to demonstrate the effectiveness of the novel techniques developed over the course of the research, and the results will be compared to those obtained from other techniques reported in the literature

    A Novel Optimization Algorithm for Notch Bandwidth in Lattice Based Adaptive Filter for the Tracking of Interference in GPS

    Get PDF
    The weak signal levels experienced at the reception of the messages transmitted by navigation satellites, makes Global Positioning System (GPS) vulnerable to unintentional and intentional interference. This calls for appropriate modelling of GPS signal sources and jammers to assess the anti-jamming and interference mitigation capabilities of algorithms developed to be implemented for GPS receivers. Using a practical simulation model, this work presents an anti-jamming technique based on a novel algorithm. A fully adaptive lattice based notch filter is presented that provides better performance when compared to existing adaptive notch filter based techniques, chosen from the literature, in terms of convergence speed whilst delivering superior performance in the excision of the interference signal. To justify the superiority of the proposed technique, the noise and interference signal power is varied for in a wide dynamic range assessing jamming-to-noise density versus effective carrier-to-noise density performance at the output of the correlator
    corecore