97 research outputs found

    A multimodel-based screening framework for C-19 using deep learning-inspired data fusion.

    Get PDF
    In recent times, there has been a notable rise in the utilization of Internet of Medical Things (IoMT) frameworks particularly those based on edge computing, to enhance remote monitoring in healthcare applications. Most existing models in this field have been developed temperature screening methods using RCNN, face temperature encoder (FTE), and a combination of data from wearable sensors for predicting respiratory rate (RR) and monitoring blood pressure. These methods aim to facilitate remote screening and monitoring of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and COVID-19. However, these models require inadequate computing resources and are not suitable for lightweight environments. We propose a multimodal screening framework that leverages deep learning-inspired data fusion models to enhance screening results. A Variation Encoder (VEN) design proposes to measure skin temperature using Regions of Interest (RoI) identified by YoLo. Subsequently, the multi-data fusion model integrates electronic records features with data from wearable human sensors. To optimize computational efficiency, a data reduction mechanism is added to eliminate unnecessary features. Furthermore, we employ a contingent probability method to estimate distinct feature weights for each cluster, deepening our understanding of variations in thermal and sensory data to assess the prediction of abnormal COVID-19 instances. Simulation results using our lab dataset demonstrate a precision of 95.2%, surpassing state-of-the-art models due to the thoughtful design of the multimodal data-based feature fusion model, weight prediction factor, and feature selection model

    Robust and Reliable Security Approach for IoMT: Detection of DoS and Delay Attacks through a High-Accuracy Machine Learning Model

    Get PDF
    Internet of Medical Things (IoMT ) refers to the network of medical devices and healthcare systems that are connected to the internet. However, this connectivity also makes IoMT vulnerable to cyberattacks such as DoS and Delay attacks , posing risks to patient safety, data security, and public trust. Early detection of these attacks is crucial to prevent harm to patients and system malfunctions. In this paper, we address the detection and mitigation of DoS and Delay attacks in the IoMT using machine learning techniques. To achieve this objective, we constructed an IoMT network scenario using Omnet++ and recorded network traffic data. Subsequently, we utilized this data to train a set of common machine learning algorithms. Additionally, we proposed an Enhanced Random Forest Classifier for Achieving the Best Execution Time (ERF-ABE), which aims to achieve high accuracy and sensitivity as well as  low execution time for detecting these types of attacks in IoMT networks. This classifier combines the strengths of random forests with optimization techniques to enhance performance. Based on the results, the execution time has been reduced by implementing ERF-ABE, while maintaining high levels of accuracy and sensitivity

    Understanding security risks and users perception towards adopting wearable Internet of Medical Things

    Get PDF
    This thesis examines users’ perception of trust within the context of security and privacy of Wearable Internet of Medical Things (WIoMT). WIoMT is a collective term for all medical devices connected to internet to facilitate collection and sharing of health-related data such as blood pressure, heart rate, oxygen level and more. Common wearable devices include smart watches and fitness bands. WIoMT, a phenomenon due to Internet of Things (IoT) has become prevalent in managing the day-to-day activities and health of individuals. This increased growth and adoption poses severe security and privacy concerns. Similar to IoT, there is a need to analyse WIoMT security risks as they are used by individuals and organisations on regular basis, risking personal and confidential information. Additionally, for better implementation, performance, adoption, and secured wearable medical devices, it is crucial to observe users’ perception. Users’ perspectives towards trust are critical for adopting WIoMT. This research aimed to understand users’ perception of trust in the adoption of WIoMT, while also exploring the security risks associated with adopting wearable IoMT. Employing a quantitative method approach, 189 participants from Western Sydney University completed an online survey. The results of the study and research model indicated more than half of the variance (R2 = 0.553) in the Intention to Use WIoMT devices, which was determined by the significant predictors (95% Confidence Interval; p < 0.05), Perceived Usefulness, Perceived Ease of Use and Perceived Security and Privacy. Among these two, the domain Perceived Security and Privacy was found to have significant outcomes. Hence, this study reinforced that a WIoMT user intends to use the device only if he/she trusts the device; trust here has been defined in terms of its usefulness, easy to use and security and privacy features. This finding will be a steppingstone for equipment vendors and manufacturers to have a good grasp on the health industry, since the proper utilisation of WIoMT devices results in the effective and efficient management of health and wellbeing of users. The expected outcome from this research also aims to identify how users’ security and perception matters while adopting WIoMT, which in future can benefit security professionals to examine trust factors when implementing new and advanced WIoMT devices. Moreover, the expected result will help consumers as well as different healthcare industry to create a device which can be easily adopted and used securely by consumers

    IoMT-based biomedical measurement systems for healthcare monitoring: a review

    Get PDF
    Biomedical measurement systems (BMS) have provided new solutions for healthcare monitoring and the diagnosis of various chronic diseases. With a growing demand for BMS in the field of medical applications, researchers are focusing on advancing these systems, including Internet of Medical Things (IoMT)-based BMS, with the aim of improving bioprocesses, healthcare systems and technologies for biomedical equipment. This paper presents an overview of recent activities towards the development of IoMT-based BMS for various healthcare applications. Different methods and approaches used in the development of these systems are presented and discussed, taking into account some metrological aspects related to the requirement for accuracy, reliability and calibration. The presented IoMT-based BMS are applied to healthcare applications concerning, in particular, heart, brain and blood sugar diseases as well as internal body sound and blood pressure measurements. Finally, the paper provides a discussion about the shortcomings and challenges that need to be addressed along with some possible directions for future research activities.</p

    Statistical Review of Health Monitoring Models for Real-Time Hospital Scenarios

    Get PDF
    Health Monitoring System Models (HMSMs) need speed, efficiency, and security to work. Cascading components ensure data collection, storage, communication, retrieval, and privacy in these models. Researchers propose many methods to design such models, varying in scalability, multidomain efficiency, flexibility, usage and deployment, computational complexity, cost of deployment, security level, feature usability, and other performance metrics. Thus, HMSM designers struggle to find the best models for their application-specific deployments. They must test and validate different models, which increases design time and cost, affecting deployment feasibility. This article discusses secure HMSMs' application-specific advantages, feature-specific limitations, context-specific nuances, and deployment-specific future research scopes to reduce model selection ambiguity. The models based on the Internet of Things (IoT), Machine Learning Models (MLMs), Blockchain Models, Hashing Methods, Encryption Methods, Distributed Computing Configurations, and Bioinspired Models have better Quality of Service (QoS) and security than their counterparts. Researchers can find application-specific models. This article compares the above models in deployment cost, attack mitigation performance, scalability, computational complexity, and monitoring applicability. This comparative analysis helps readers choose HMSMs for context-specific application deployments. This article also devises performance measuring metrics called Health Monitoring Model Metrics (HM3) to compare the performance of various models based on accuracy, precision, delay, scalability, computational complexity, energy consumption, and security

    Medical Image Classification Using Transfer Learning and Chaos Game Optimization on the Internet of Medical Things

    Full text link
    The Internet of Medical Things (IoMT) has dramatically benefited medical professionals that patients and physicians can access from all regions. Although the automatic detection and prediction of diseases such as melanoma and leukemia is still being researched and studied in IoMT, existing approaches are not able to achieve a high degree of efficiency. Thus, with a new approach that provides better results, patients would access the adequate treatments earlier and the death rate would be reduced. Therefore, this paper introduces an IoMT proposal for medical images classification that may be used anywhere, i.e. it is an ubiquitous approach. It was design in two stages: first, we employ a Transfer Learning (TL)-based method for feature extraction, which is carried out using MobileNetV3; second, we use the Chaos Game Optimization (CGO) for feature selection, with the aim of excluding unnecessary features and improving the performance, which is key in IoMT. Our methodology was evaluated using ISIC-2016, PH2, and Blood-Cell datasets. The experimental results indicated that the proposed approach obtained an accuracy of 88.39% on ISIC-2016, 97.52% on PH2, and 88.79% on Blood-cell. Moreover, our approach had successful performances for the metrics employed compared to other existing methods.Comment: 22 pages, 12 figures, journa

    Edge Devices for Internet of Medical Things: Technologies, Techniques, and Implementation

    Get PDF
    The health sector is currently experiencing a significant paradigm shift. The growing number of elderly people in several countries along with the need to reduce the healthcare cost result in a big need for intelligent devices that can monitor and diagnose the well-being of individuals in their daily life and provide necessary alarms. In this context, wearable computing technologies are gaining importance as edge devices for the Internet of Medical Things. Their enabling technologies are mainly related to biological sensors, computation in low-power processors, and communication technologies. Recently, energy harvesting techniques and circuits have been proposed to extend the operating time of wearable devices and to improve usability aspects. This survey paper aims at providing an overview of technologies, techniques, and algorithms for wearable devices in the context of the Internet of Medical Things. It also surveys the various transformation techniques used to implement those algorithms using fog computing and IoT devices

    Evidence and recommendations on the use of telemedicine for the management of arterial hypertension:an international expert position paper

    Get PDF
    Telemedicine allows the remote exchange of medical data between patients and healthcare professionals. It is used to increase patients’ access to care and provide effective healthcare services at a distance. During the recent coronavirus disease 2019 (COVID-19) pandemic, telemedicine has thrived and emerged worldwide as an indispensable resource to improve the management of isolated patients due to lockdown or shielding, including those with hypertension. The best proposed healthcare model for telemedicine in hypertension management should include remote monitoring and transmission of vital signs (notably blood pressure) and medication adherence plus education on lifestyle and risk factors, with video consultation as an option. The use of mixed automated feedback services with supervision of a multidisciplinary clinical team (physician, nurse, or pharmacist) is the ideal approach. The indications include screening for suspected hypertension, management of older adults, medically underserved people, high-risk hypertensive patients, patients with multiple diseases, and those isolated due to pandemics or national emergencies

    Intra-Body Communications for Nervous System Applications: Current Technologies and Future Directions

    Full text link
    The Internet of Medical Things (IoMT) paradigm will enable next generation healthcare by enhancing human abilities, supporting continuous body monitoring and restoring lost physiological functions due to serious impairments. This paper presents intra-body communication solutions that interconnect implantable devices for application to the nervous system, challenging the specific features of the complex intra-body scenario. The presented approaches include both speculative and implementative methods, ranging from neural signal transmission to testbeds, to be applied to specific neural diseases therapies. Also future directions in this research area are considered to overcome the existing technical challenges mainly associated with miniaturization, power supply, and multi-scale communications.Comment: https://www.sciencedirect.com/science/article/pii/S138912862300163
    • 

    corecore