339 research outputs found

    A Low-Complexity SLM PAPR Reduction Scheme for OFDMA

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, selected mapping (SLM) techniques are widely used to minimize the peak to average power ratio (PAPR). The candidate signals are generated in the time domain by linearly mixing the original time-domain transmitted signal with numerous cyclic shift equivalents to reduce the amount of Inverse Fast Fourier Transform (IFFT) operations in typical SLM systems. The weighting factors and number of cyclic shifts, on the other hand, should be carefully chosen to guarantee that the elements of the appropriate frequency domain phase rotation vectors are of equal magnitude. A low-complexity expression is chosen from among these options to create the proposed low-complexity scheme, which only requires one IFFT. In comparison to the existing SLM technique, the new SLM scheme achieves equivalent PAPR reduction performance with significantly less computing complexity. MATLAB tool is used for simulating the proposed work

    A Low-Complexity SLM PAPR Reduction Scheme for OFDMA

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, selected mapping (SLM) techniques are widely used to minimize the peak to average power ratio (PAPR). The candidate signals are generated in the time domain by linearly mixing the original time-domain transmitted signal with numerous cyclic shift equivalents to reduce the amount of Inverse Fast Fourier Transform (IFFT) operations in typical SLM systems. The weighting factors and number of cyclic shifts, on the other hand, should be carefully chosen to guarantee that the elements of the appropriate frequency domain phase rotation vectors are of equal magnitude. A low-complexity expression is chosen from among these options to create the proposed low-complexity scheme, which only requires one IFFT. In comparison to the existing SLM technique, the new SLM scheme achieves equivalent PAPR reduction performance with significantly less computing complexity. MATLAB tool is used for simulating the proposed work

    Computationally Efficient Modified PTS for PAPR Reduction in MIMO-OFDM

    Get PDF
    Nowadays wireless communication has taken its leap for a high data rate using the multi-carrier transmission technique.Orthogonal frequency division multiplexing(OFDM) is one of such popular method for achieving this high information rate.OFDM has several advantages,but one of the main drawbacks is its high peak-to-average power ratio(PAPR).This is due to a large number of the subcarrier,which leads to distortion problem at receiver. An OFDM signal with the high PAPR requires power amplifier’s(PAs)with large dynamic ranges.Such PAs are less efficient,costly to manufacture and very much difficult to design.There have been a large number of techniques are available in the literature to reduce the PAPR, such as Partial transmit sequence,Selective mapping,Block Coding, Tone rejection,etc.However,the challenging part is that most of the PAPR reduction schemes come with high computational complexity.Recent PAPR reduction techniques such as partial transmit sequence(PTS)has been considered as most popular for PAPR reduction.This research work explores to find a solution for the PAPR reduction by using PTS technique, which has been implemented by using sub-blocks partitioning.In sub-block partition consists of OFDM data frame which is partitioned into several sub-blocks.An adjacent partitioning(AP)method can be perceived as the best of the existing partitioning method when the cost and PAPR reduction performance are considered together.A new technique is based on modified PTS using phase rotation and circular shifting to attain the overall reduction of PAPR in MIMO-OFDM system, but computational complexity does not decrease for the same.A Co-operative PTS technique which is mainly based on alternative PTS technique is applied.In this technique although a slight loss of PAPR reduction performance is there but with much lower computational complexity

    PAPR Reduction with Amplitude Clipping & Filtering, SLM & PTS Techniques for MIMO-OFDM System: A Brief Review

    Get PDF
    Nowadays MIMO-OFDM has become a popular technique for 4G wireless communications. OFDM technique combined with multiple antennas at transmitter and receiver point to high data rate, low complexity and diversity. One of the major drawbacks in the MIMO-OFDM is high peak-to-average power ratio (PAPR).Clipping & Filtering, Selective Mapping (SLM), Partial Transmit Sequence (PTS) are some of the techniques which minimizes the PAPR. In this review paper, different techniques of PAPR reduction have been studied

    Median codeword Shift (MCS) technique for PAPR reduction with low complexity in OFDM system

    Get PDF
    With the rapid development of today’s communication technology, the need for a system capable to improve spectral efficiency, high data rates and at the same time can reduce inter-symbol interference (ISI) is necessary. Orthogonal Frequency Division Multiplexing (OFDM) meet all the requirements needed. However, the high peak to average power ratio (PAPR) has become its major obstacle. This paper is focusing on the development of Median Codeword Shift (MCS), which a new PAPR reduction technique with the capability to reduce the computational complexity of the system. This can be achieved through codeword structure alterization and bit position manipulation by utilizing the circulant shift process. The simulation results revealed that the proposed technique overwhelm conventional OFDM and SCS with 24% improvement and 0.5 dB gap from SCS. In fact, the proposed technique possess a lower computational complexity by reducing 16.67% of the use of IFFT block in the system in contrast with SCS technique

    Generalized DFT: extensions in communications

    Get PDF
    Discrete Fourier Transform (DFT) is a restricted version of Generalized DFT (GDFT) which offers a very limited number of sets to be used in a multicarrier communication system. In contrast, as an extension on Discrete Fourier Transform (DFT) from the linear phase to non-linear phase, the proposed GDFT provides many possible carrier sets of various lengths with comparable or better performance than DFT. The availability of the rich library of orthogonal constant amplitude transforms with good performance allows people to design adaptive systems where user code allocations are made dynamically to exploit the current channel conditions in order to deliver better performance. For MIMO Radar systems, the ideal case to detect a moving target is when all waveforms are orthogonal, which can provide an accurate estimation. But this is not practical in distributed MIMO radars, where sensors are at varying distances from a target. Orthogonal waveforms with low auto- and cross-correlations are of great interest for MIMO radar applications with distributed antennas. Finite length orthogonal codes are required in real-world applications where frequency selectivity and signal correlation features of the optimal subspace are compromised. In the first part of the dissertation, a method is addressed to design optimal waveforms which meets above requirements for various radar systems by designing the phase shaping function (PSF) of GDFT framework with non-linear phase. Multicarrier transmission such as orthogonal frequency-division multiplexing (OFDM) has seen a rise in popularity in wireless communication, as it offers a promising choice for high speed data rate transmission. Meanwhile, high peak-to-average power ratio (PAPR) is one of the well-known drawbacks of the OFDM system due to reduced power efficiency in non-linear modules. Such a situation leads to inefficient amplification and increases the cost of the system, or increases in interference and signal distortion. Therefore, PAPR reduction techniques play an essential role to improve power efficiency in the OFDM systems. There has been a variety of PAPR reduction methods emphasizing different aspects proposed in the literature. The trade-off for PAPR reduction in the existing methods is either increased average power and/or added computational complexity. A new PAPR reduction scheme is proposed that implements a pre-designed symbol alphabet modifier matrix (SAM) to jointly modify the amplitude and phase values of the original data symbol alphabets prior to the IFFT operation of an OFDM system at the transmitter. The method formulated with the GDFT offers a low-complexity framework in four proposed cases devised to be independent of original data symbols. Without degrading the bit error rate (BER) performance, it formulates PAPR reduction problem elegantly and outperforms partial transmit sequences (PTS), selected mapping technique (SLM) and Walsh Hadamard transform (WHT-OFDM) significantly for the communication scenarios considered in the dissertation

    Review on PAR Reduction Techniques for MIMO-OFDM

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier communication scheme Plays a prominent role in wireless communication technology as multicarrier transmission scheme. The combination of multiple-input multiple-output (MIMO) technology with orthogonal frequency division multiplexing is an attractive solution for next generation of wireless network. However, practical implementation of OFDM introduced a major drawback known as high Peak-to-Average Power ratio (PAR). This paper inclusion detail of peak-to-Average Power ratio and its reduction techniques

    The Bit Error Rate (BER) Performance in Multi-Carrier (OFDM) and Single-Carrier

    Get PDF
    The spectacular growth of wireless communication tools has escalated the number of mobile subscribers from almost 700 million in 2000 to more than 4 billion in 2009. The huge number of subscribers has led to several issues with how service is provided. The high user demand has forced developers to overcome the problems of the old analog systems and to introduce OFDM as a promising technique that can fulfill users\u27 high demands. This technique matches well with high data rate connection and provides a higher capacity for the subscribers\u27 usage. The OFDM, as a multi-carrier, is more complex than the single-carrier transmission scheme. However, the OFDM technique maintains better performance for high data rate in terms of bit error rate (BER). In this thesis a comparison has been presented between the multi-carrier OFDM and the single-carrier to prove, in a simulation form, the theoretical point of view. Despite the advantages of using the OFDM scheme, there are several drawbacks. One of these negatives is the high peak to average power ratio (PAPR). To overcome this problem, there are power reduction techniques that can be applied to the signal to reduce the high power. One of these techniques is the clipping and filtering technique. A maximum level is sited for the transmitted signal to reduce the power and afterward, the signal goes through a filter to remove the influence of the in-band distortion and out-of-band radiation
    corecore