562,650 research outputs found

    A New Key-Agreement-Protocol

    Full text link
    A new 4-pass Key-Agreement Protocol is presented. The security of the protocol mainly relies on the existence of a (polynomial-computable) One-Way-Function and the supposed computational hardness of solving a specific system of equations.Comment: 4 page

    Key Agreement for Large-Scale Dynamic Peer Group

    Get PDF
    Many applications in distributed computing systems,such as IP telephony, teleconferencing, collaborative workspaces,interactive chats and multi-user games, involve dynamic peergroups. In order to secure communications in dynamic peergroups, group key agreement protocols are needed. In this paper,we come up with a new group key agreement protocol, composedof a basic protocol and a dynamic protocol, for large-scaledynamic peer groups. Our protocols are natural extensions ofone round tripartite Diffie-Hellman key agreement protocol. Inview of it, our protocols are believed to be more efficient thanthose group key agreement protocols built on two-party Diffie-Hellman key agreement protocol. In addition, our protocols havethe properties of group key secrecy, forward and backwardsecrecy, and key independence

    Cryptanalysis of group-based key agreement protocols using subgroup distance functions

    Full text link
    We introduce a new approach for cryptanalysis of key agreement protocols based on noncommutative groups. This approach uses functions that estimate the distance of a group element to a given subgroup. We test it against the Shpilrain-Ushakov protocol, which is based on Thompson's group F

    Secret Key Agreement: General Capacity and Second-Order Asymptotics

    Full text link
    We revisit the problem of secret key agreement using interactive public communication for two parties and propose a new secret key agreement protocol. The protocol attains the secret key capacity for general observations and attains the second-order asymptotic term in the maximum length of a secret key for independent and identically distributed observations. In contrast to the previously suggested secret key agreement protocols, the proposed protocol uses interactive communication. In fact, the standard one-way communication protocol used prior to this work fails to attain the asymptotic results above. Our converse proofs rely on a recently established upper bound for secret key lengths. Both our lower and upper bounds are derived in a single-shot setup and the asymptotic results are obtained as corollaries

    Fundamental limits on key rates in device-independent quantum key distribution

    Get PDF
    In this paper, we introduce intrinsic non-locality as a quantifier for Bell non-locality, and we prove that it satisfies certain desirable properties such as faithfulness, convexity, and monotonicity under local operations and shared randomness. We then prove that intrinsic non-locality is an upper bound on the secret-key-agreement capacity of any device-independent protocol conducted using a device characterized by a correlation pp. We also prove that intrinsic steerability is an upper bound on the secret-key-agreement capacity of any semi-device-independent protocol conducted using a device characterized by an assemblage ρ^\hat{\rho}. We also establish the faithfulness of intrinsic steerability and intrinsic non-locality. Finally, we prove that intrinsic non-locality is bounded from above by intrinsic steerability.Comment: 44 pages, 4 figures, final version accepted for publication in New Journal of Physic

    Security of a key agreement protocol based on chaotic maps

    Get PDF
    Kacorev et al. proposed new public key encryption scheme using chaotic maps. Subsequently, Bergamo et al. has broken Kacorev and Tasev?s encryption scheme and then applied the attack on a key agreement protocol based on Kacorev et al.?s system. In order to address Bergamo et al.? attack, Xiao et al. proposed a novel key agreement protocol. In this paper, we will present two attacks on Xiao et al.?s key agreement protocol using chaotic maps. Our new attack method is different from the one that Bergamo et al. developed. The proposed attacks work in a way that an adversary can prevent the user and the server from establishing a shared session key even though the adversary cannot get any private information from the user and the server?s communications
    corecore