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Abstract—Many applications in distributed computing systems,
such as IP telephony, teleconferencing, collaborative workspaces,
interactive chats and multi-user games, involve dynamic peer
groups. In order to secure communications in dynamic peer
groups, group key agreement protocols are needed. In this paper,
we come up with a new group key agreement protocol, composed
of a basic protocol and a dynamic protocol, for large-scale
dynamic peer groups. Our protocols are natural extensions of
one round tripartite Diffie-Hellman key agreement protocol. In
view of it, our protocols are believed to be more efficient than
those group key agreement protocols built on two-party Diffie-
Hellman key agreement protocol. In addition, our protocols have
the properties of group key secrecy, forward and backward
secrecy, and key independence.

Index Terms—Group key agreement, tripartite Diffie-Hellman
key agreement, Weil pairing.

I. INTRODUCTION

With increasing use of distributed computing systems, dy-
namic peer group communications have become an important
feature offered by distributed computing technology [1][2].
In general, peer group communications in distributed com-
puting systems involve a group of peer members connected
via wired or wireless communications. In such a group,
no specific communication paradigm (e.g., PRC) is favored
and no assumptions are made about either the topology or
technology of the underlying network. All members have the
same status. Communications among members are authentic
but not private. Adversaries are restricted to be passive, i.e.,
they can eavesdrop but cannot interfere communications. Peer
group communications are dynamic if members are allowed
to join or quit the group with freedom.

A typical example of dynamic peer group communications
is teleconferencing - a synchronous collaborative session in
which conferees at remote locations cooperate in an interactive
procedure, such as a board meeting, a task force, a scientific
discussion or even a virtual classroom, through wired or wire-
less communications. In such a teleconferencing, a conferee
can join late or quit early.

The major feature of dynamic peer group communications
lies in decentralization. None of group members undertakes
special duty for the group and thus any member can join or quit
the group with freedom. Once network failure, congestion or
hostile attack occurs, each subgroup can recover and continue
to function independently.

In group communications, when a group member broadcasts
a message through the communication channel, the rest of the
group can receive the message. However, in the same time,
an adversary can also eavesdrop the message and this kind of

eavesdropping is virtually undetectable. The best solution to
this problem is to encrypt broadcasting messages. Encryption
is achieved by either secret-key or public-key cryptosystems.
State-of-the-art public-key cryptosystems with high security,
such as RSA [3], are usually much slower than secret-key
cryptosystems, such as DES [4], IDEA [5] and AES [6].
In practice, secret-key cryptosystems are commonly used to
encrypt long messages in communications.

Secret-key cryptosystems are designed according to Shan-
non’s secure communication system model [7]. Based on this
model, all group members must share a common secret group
key before starting secure group communications. Thus, the
problem of group key agreement comes out. In general, a
group key agreement for dynamic peer group is composed
of a basic protocol and a dynamic protocol. With the basic
protocol, an initial secret group key is derived by all members
of a peer group as a function of information contributed
by, or associated with, each of them, (ideally) such that no
member can predetermine the resulting value [8]. By the
dynamic protocol, the group key can be updated whenever
any membership changes.

A secure group key agreement should have some de-
sired properties, such as group key secrecy, forward secrecy,
backward secrecy and key independence [9][10][11]. Several
group key agreement protocols for dynamic peer groups have
been surveyed in [12]. Steer et al.’s protocol [13], aiming
at teleconferencing, is well-suited for adding new members
as only two rounds and two modular exponentiations are
required in this case. Member leave, however, is relatively
inefficient. Burmester and Desmedt [14] proposed an efficient
protocol which takes only two rounds and three modular
exponentiations per member to generate a group key. But
this protocol is not well-suited for any membership change
because all existing members actually rerun this protocol to
obtain a new group key. Furthermore, it requires to broadcast
2n messages to all members, which is expensive on a wide
area network.

Steiner et al. [15] addressed dynamic membership issues
in group key agreement as part of developing a family of
Group Diffie-Hellman (GDH) protocols based on straight-
forward extensions of the two-party Diffie-Hellman protocol.
GDH protocols are relatively efficient for member or mass
leave and even group partition operations, but the mass join
protocol requires the number of rounds equal to the number of
new members. Since GDH is performed in series, it becomes
impractical with the increasing of n. GDH is only appropriate
for small dynamic peer groups with less than a hundred
members.
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Follow-on work by Kim et al. yielded a tree-based Group
Diffie-Hellman (TGDH) protocol [9][10][11]. Because TGDH
performs the two-party Diffie-Hellman key agreement protocol
in parallel, it is more efficient than GDH in both communica-
tion and computation.

In this paper, we come up with a more efficient group key
agreement protocol for large-scale dynamic peer group based
on the state-of-the-art one round tripartite Diffie-Hellman key
agreement protocol. It is composed of a basic protocol and
a dynamic protocol. With our basic protocol, an initial group
key can be established. By our dynamic protocol, a new group
key can be reestablished when key refresh, member or mass
join, member or mess leave, group mergence and partition
occur. The total communication costs of our protocols are less
than half of those in TGDH. In addition, our protocols have
the properties of group key secrecy, forward and backward
secrecy, and key independence.

II. PRELIMINARIES

A. Weil Pairing

Let p be a prime such that p = 12q − 1 for some prime q
and E a supersingular elliptic curve defined by the Weierstrass
equation y2 = x3 + 1 over Fp. The group of rational points
E(Fp) = {(x, y) ∈ Fp × Fp : (x, y) ∈ E} forms a cyclic
group of order p + 1 [16]. Furthermore, because p + 1 = 12q
for some prime q, the group of points of order q in E(Fp) form
a cyclic subgroup, denoted as G1. Let G be the generator of
G1 and G2 be the subgroup of Fp2 containing all elements
of order q. A modified Weil pairing [17] is a map

ê : G1 ×G1 → G2

which has the following properties:
1) Bilinear: For any P,Q ∈ G1 and a, b ∈ Z, we have

ê(aP, bQ) = ê(P,Q)ab.
2) Non-degenerate: ê(G,G) ∈ F ∗p2 is a generator of G2.
3) Computable: Given P,Q ∈ G1, there is an efficient

algorithm to compute ê(P,Q) ∈ G2 [17][18].

B. Two-Party Diffie-Hellman Key Agreement

The two-party Diffie-Hellman key agreement protocol [19]
over G1 can be described as follows:

1) Alice and Bob select random integers a, b ∈ Z∗q .
2) They exchange aG and bG.
3) They each obtain (ab)G by computing one of a(bG) or

b(aG). This is used as a common secret key.
Security of the two-party Diffie-Hellman key agreement is

built on difficulty of the two-party Diffie-Hellman problem,
i.e., given 〈G, aG, bG〉 for some a, b ∈ Z∗q , compute (ab)G.

C. One Round Tripartite Diffie-Hellman Key Agreement

Using the Weil pairing, Joux [20][21] proposed the one-
round tripartite Diffie-Hellman key agreement protocol as
follows:

1) Alice, Bob and Charlie select random integers a, b, c ∈
Z∗q .

2) They respectively broadcast aG, bG, cG.
3) They each obtain ê(G,G)abc by computing one of

ê(aG, bG)c, ê(bG, cG)a or ê(aG, cG)b. This is used as
a common secret key.

Security of the one round tripartite Diffie-Hellman key
agreement protocol is based on hardness of the bilinear Diffie-
Hellman problem [17], i.e., given 〈G, aG, bG, cG〉 for some
a, b, c ∈ Z∗q , compute ê(G,G)abc ∈ G2.

III. DESCRIPTION OF OUR BASIC PROTOCOL

A. Setup

Our system chooses the two prime order groups G1 and G2

and the modified Weil pairing map ê as described in Section
2.1. Then it publishes {G1,G2,G, ê, h, p, q} where h stands
for a cryptographic hash function h : {0, 1}∗ → {0, 1}` for
` = blog2 qc, which transforms a variable-size input to a fixed-
size string.

Our basic protocol is used to establish an initial group key
in a large-scale peer group G = {U1, U2, · · · , Un}.

B. Special Case

When n = 3m (m ≥ 1), our basic protocol runs as follows:

Step 1.(Initialization) Let G
(1)
j = {U3j−2, U3j−1, U3j}, j =

1, 2, · · · , 3m−1. In each G
(1)
j ,

1) Ul (l = 3j − 2, 3j − 1, 3j) chooses a random
integer rl ∈ Z∗q as his own secret key and
broadcasts rlG in G

(1)
j .

2) According to the one round tripartite Diffie-
Hellman key agreement protocol described in
Section II.C, Ul (l = 3j − 2, 3j − 1, 3j)
derives a subgroup key for G

(1)
j , i.e., k

(1)
j =

h(ê(G,G)
∏3j

l=3j−2
rl). Then let i = 2.

Step 2.(Subgroup Merge) Three smaller subgroups G
(i−1)
3j−2 ,

G
(i−1)
3j−1 , G

(i−1)
3j merge to form a bigger subgroup G

(i)
j

for j = 1, 2, · · · , 3m−i.
Step 3.(Subgroup Key Establish) In each G

(i)
j (j =

1, 2, · · · , 3m−i),
1) The first member of G

(i−1)
l (l = 3j − 2, 3j −

1, 3j) broadcasts k
(i−1)
l G in G

(i)
j .

2) According to the one round tripartite Diffie-
Hellman key agreement protocol described in
Section II.C, each member in G

(i)
j derives a

subgroup key for G
(i)
j , i.e.,

k
(i)
j = h(ê(G,G)

∏3j

l=3j−2
k
(i−1)
l ) (1)

Then let i = i + 1. If i ≤ m, go to Step 2.
The above process is iterated until an initial group key

KG is reached in G = G
(m)
1 , i.e., KG = k

(m)
1 =

h(ê(G,G)
∏3

l=1
k
(m−1)
l ).

When n = 33 = 27, our basic protocol in this special case
can be illustrated in Fig. 1.
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Fig. 1. Our basic protocol (n = 27).

C. Generic Case
When n = am3m + am−13m−1 + · · · + a13 + a0 (m ≥ 1,

aj ∈ {0, 1, 2}, am 6= 0), our basic protocol runs as follows:
Step 1.(Partition) The peer group G is partitioned into

subgroups at first.
1) Let i = 0 and j = 1.
2) If am−i = 1, let Hj be the subgroup of the

3m−i members right after Hj−1 if any and j =
j + 1. If am−i = 2, let Hj be the subgroup
of the 3m−i members right after Hj−1 if any,
Hj+1 be the subgroup of the 3m−i members
right after Hj and j = j + 2.

3) Let i = i + 1. If i ≤ m, go to 2.
At the end of Step 1, G is partitioned into
N(=

∑m
l=0 al) subgroups H1, H2, · · · , HN such that

|Hj | = 3lj (lj ≥ 0) and |Hj1 | ≥ |Hj2 | for any
j1 ≤ j2, where |Hj | stands for the number of
members in Hj .

Step 2.(Subgroup Key Establish) For Hj such that |Hj | =
3lj with lj > 0, members of Hj reach a subgroup key
KHj

for Hj based on our basic protocol in special
case at first. For Hj such that |Hj | = 1, the unique
member in Hj chooses a random integer KHj

∈ Z∗q
as his own secret key. Subgroup keys are established
from HN to H1 as follows:

1) Let i = 1, S0 = HN and KS0 = KHN
.

2) Case 1. If N − 2i ≥ 1, let Si = HN−2i ∪
HN−2i+1 ∪ Si−1. The first member of Hl

(l = N − 2i, N − 2i + 1) broadcasts KHl
G

in Si while the first member of Si−1 broad-
casts KSi−1G in Si, then each member of Si

derives a subgroup key for Si, i.e., KSi
=

h(ê(G,G)KHN−2i
KHN−2i+1KSi−1 ).

Case 2. If N − 2i = 0, i.e., i = N/2, let
SN/2 = H1 ∪ SN/2−1. The first member of
H1 broadcasts KH1G in SN/2 while the first
member of SN/2−1 broadcasts KSN/2−1G in
SN/2, then according to the two-party Diffie-
Hellman key agreement protocol described in
Section II.B, each member of SN/2 derives a
subgroup key for SN/2, i.e., KSN/2 = h((KH1 ·
KSN/2−1)G).

3) Let i = i + 1. If N − 2i ≥ 0, go to 2.
The above process is iterated until an initial group key

KG = KS
dN−3

2 e+1
is reached in the peer group G. For

example, if n = 17 = 32 + 2 · 3 + 2, then N = 5,
H1 = {U1, U2, · · · , U9}, H2 = {U10, U11, U12}, H3 =
{U13, U14, U15}, H4 = {U16}, H5 = {U17}, S0 = H5,
S1 = H3 ∪H4 ∪ S0, S2 = H1 ∪H2 ∪ S1. This generic case
can be illustrated in Fig. 2.
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Fig. 2. Our basic protocol (n = 17).

For example, if n = 16 = 32 + 2 · 3 + 1, then N = 4,
H1 = {U1, U2, · · · , U9}, H2 = {U10, U11, U12}, H3 =
{U13, U14, U15}, H4 = {U16}, S0 = H4, S1 = H2 ∪H3 ∪S0,
S2 = H1 ∪ S1. Our basic protocol in this generic case can be
illustrated in Fig. 3.
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Fig. 3. Our basic protocol (n = 16).

IV. DESCRIPTION OF OUR DYNAMIC PROTOCOLS

As supplement to our basic protocol, our dynamic protocol
is used to update group keys whenever key refresh, member
or mass join, member or mass leave, or group mergence and
partition occurs.

A. Notions

For clear description of our dynamic protocol, we introduce
some notions at first. Informally, a graph is a finite set of dots
called nodes connected by links called edges. A directed graph
is a graph in which the edges are directed. A directed edge has
an initial node and a terminal node. The in-degree of a node
is the number of edges with the node as their terminal nodes.
The out-degree of a node is the number of edges with the node
as their initial nodes. A path is a sequence of consecutive
directed edges in a graph and the length of the path is the
number of directed edges traversed.

Key agreement for a peer group can be illustrated with a
pyramidal directed graph, called key agreement graph, e.g.,
Fig. 1 and Fig. 2. In our key agreement graph for a peer group,
the in-degree of a node is at most three while the out-degree
of a node is at most one. A node is called a member node,
simply a member, if its in-degree is zero. For example, in
Fig. 1, nodes corresponding to 1, 2, · · · , 27 are member nodes
(members). A node is called the root node if its out-degree
is zero. The root node is unique. For example, in Fig. 1, the
node corresponding to k

(3)
1 is the root node.

All members under a node form a subgroup under the
node. For example, in Fig. 1, {U1, U2, U3} is a subgroup under



node k
(1)
1 . A subgroup under a member node contain only the

member. When a member is under a node, the information
of the node to the member is a set of messages whereby
the member derives the secret key of the subgroup under the
node. For example, in Fig. 1, the information of the node k

(2)
1

is a triple tuple (k(1)
1 , k

(1)
2 G, k

(1)
3 G) to members 1, 2, 3. The

information of a member node to the member is defined as
the random integer that the member chooses.

A coordinator for a subgroup is a member who broad-
casts messages on behalf of the subgroup. Each member can
undertake the coordinator for his subgroup. A member may
undertake the coordinator for a few nesting subgroups. When
a subgroup has single member, the coordinator of the subgroup
is the member.

In order to run our dynamic protocol, each member needs to
keep all his subgroup keys, the information of all nodes on his
path to the root node. For example, in Fig. 1, U1 needs to keep
all his subgroup keys r1, k

(1)
1 , k

(2)
1 , k

(3)
1 and the information

of three nodes corresponding to k
(1)
1 , k

(2)
1 , k

(3)
1 . In addition,

the dynamic key agreement graph for a peer group is supposed
to be maintained in a public server which can be accessed by
all users.

B. Key Refresh

Our dynamic protocol for key refresh runs as follows.
Step 1.(Refresh Broadcast) In a key agreement graph, let

the last member with the shortest path to the root
node undertake the refresh coordinator. Assume that
{N0,N1, · · · ,Nr} are nodes on the path from the
refresh coordinator N0 to the root node Nr. The in-
degree of node Ni (1 ≤ i ≤ r) is either 3 or 2
and so the information Ii of node Ni to the refresh
coordinator is either (ai, biG, ciG) or (ai, biG). The
refresh coordinator chooses a new random integer
a∗1 ∈ Z∗q as his own new secret key and computes

a∗i+1 =
{

h(ê(biG, ciG)a∗i ) if Ii = {ai, biG, ciG}
h(a∗i (biG)) if Ii = {ai, biG}

(2)
for i = 1, 2, · · · , r. The refresh key K∗G for the peer
group is a∗r+1, i.e., K∗G = a∗r+1.
Next, the refresh coordinator broadcasts R =
{a∗1G, a∗2G, · · · , a∗rG} to the peer group.
For example, in Fig. 2, there are three nodes 17,
KS1 and KS2 on the path from the refresh coordi-
nator U17 to the root node. The information of two
nodes KS1 and KS2 to U17 are (KS0 , KH3G, KH4G)
and (KS1 , KH1G, KH2G), respectively. To refresh
the group key, U17 chooses a new random number
a∗1 ∈ Z∗q , computes a∗2 = h(ê(KH3G, KH4G)a∗1 ) and
the refresh key K∗G = a∗3 = h(ê(KH1G, KH2G)a∗2 ),
broadcasts R = {a∗1G, a∗2G} to the peer group.

Step 2.(Key Refresh) In the key agreement graph, a member
and the refresh coordinator are under at least one
common node, e.g., the root node. Assume that their
paths share nodes from Ni, i.e., Ni is the first
common node under which the member and the

refresh coordinator are, then based on the refresh
message R broadcasted by the refresh coordinator,
the member who knows bi is able to compute

a∗i+1 =
{

h(ê(a∗iG, ciG)bj ) if Ii = {aiG, bi, ciG}
h(bi(a∗iG)) if Ij = {aiG, bi}

(3)
and then a∗j for any i + 2 ≤ j ≤ r + 1 according
to (2). Therefore, the member can also derive the
refresh key K∗G = a∗r+1 of the peer group.
At last, each member updates his subgroup keys and
the information of nodes on his path to the root node.
For example, in Fig. 2, based on R broadcasted by
U17, members U1, · · · , U9 can derive the refresh key
by computing K∗G = a∗3 = h(ê(a∗2G, KH2G)KH1 ),
U10, U11, U12 can derive the refresh key by com-
puting K∗G = a∗3 = h(ê(a∗2G, KH1G)KH2 ),
U13, U14, U15 can derive a∗2 = h(ê(a∗1G, KH4G)KH3 )
and then K∗G = a∗3 = h(ê(KH1G, KH2G)a∗2 ), U16

can derive a∗2 = h(ê(a∗1G, KH3G)KH4 ) and then
K∗G = a∗3 = h(ê(KH1G, KH2G)a∗2 ).

C. Member or Mass Join

Member or mass join happen when one or several new
members J = {Un+1, · · · , Un+m} join the peer group G =
{U1, · · · , Un} to form a new peer group G∗ = G ∪ J . Our
dynamic protocol for mass join runs as follows.

Step 1.(Mass Key Agreement) According to our basic pro-
tocol, a mass key KJ is reached in the mass J =
{Un+1, · · · , Un+m} at first.

Step 2.(Mass Join)
Case 1. In the case when the in-degree of the root
node in G is two, G is composed of two subgroups
G1, G2 which are under two nodes, respectively.
Mass join is connecting J to the root node and then
there are three subgroups, G1, G2, J , right under the
root node. Next, coordinators of the three subgroups
broadcast KG1G, KG2G and KJG, respectively. Now
each member in G∗ = G∪J can derive a new group
key KG∗ = h(ê(G,G)KG1KG2KJ ). When n = 6,
mass join can be illustrated in Fig. 4.
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Fig. 4. Mass join (n = 6).
Case 2. In the case when the in-degree of the root
node in G is three, G is composed of three subgroups
G1, G2, G3 which are under three nodes N1,N2,N3,
respectively.
Case 2.1. In the case when the in-degree of one
of nodes N1,N2,N3 is two, e.g., N3, mass join is
connecting J to N3. Similar to Case 1, a subgroup
key KG3∪J for G3 ∪ J can be achieved. Next
the coordinator of G3 broadcast KG1G, KG2G and



KG3∪JG in G∗ = G ∪ J . Then each member in
G∗ is able to derive a new group key KG∗ =
h(ê(G,G)KG1KG2KG3∪J )
Case 2.2. In the case when the in-degrees of all nodes
N1,N2,N3 are not two and the smallest subgroup of
G1, G2, G3 is G3, mass join is connecting J to N3.
At first, the coordinator of J broadcasts KJG in G3.
Next the coordinator of G3 derives a subgroup key
KG3∪J = h(KG3(KJG)) for G3 ∪J and broadcasts
KG1G, KG2G and KG3∪JG in G∗ = G ∪ J . Then
each member in G∗ is able to derive a new group
key KG∗ = h(ê(G,G)KG1KG2KG3∪J ). When n = 9,
mass join can be illustrated in Fig. 5.

Step 3.(Information Update) At last, the key agreement
graph maintained in a public server is updated ac-
cordingly. In addition, each member updates his
subgroup keys and the information of nodes on his
path to the root node.
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D. Member or Mass Leave

Member or mass leave occurs when single member or
multiple members leave an existing peer group. Member leave
is a special case of mass leave. After mass leaving, a new
group key for the rest of the peer group is reached in two
steps.

Step 1 . (Graph Reconstruct) After mass leaving, the key
agreement graph for the rest of the group is recon-
structed according to the three rules: (1) After a
member leaves, remove the member node and the
edge with the member node as an initial node as
well; (2) If there is no member under a node, remove
the node and all edges with the node as the initial
node or the terminal node; (3) If the in-degree of
a node is one, remove the node. After that, the key
agreement graph maintained in the public server is
updated accordingly.
For example, in Fig. 2, after
U2, U3, U5, U10, U11, U12, U13, U15 leave the peer
group, the key agreement graph for the rest of the
group is reconstructed as shown in Fig. 6.
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Step 2 . (Subgroup Key Reestablish) In the reconstructed

key agreement graph, if no member leaves a sub-
group, e.g., the subgroup under node k

(1)
3 in Fig.

6, the subgroup key will not change. If one or
several members leave a subgroup under a node, the
subgroup key is reestablished as follows.
Case 1. In the case when the in-degree of the node
is two, the subgroup under this node is composed of
two subgroups G1, G2 under two nodes, respectively.
Assume that the subgroup key KGi of Gi (i = 1, 2)
has been established, then the coordinator of Gi (i =
1, 2) broadcasts KGi

G in another subgroup if it is
unknown to them. After that, each member in G1 ∪
G2 is able to derive a new subgroup key KG1∪G2 =
h((KG1KG2)G). For example, in Fig. 6, the secret
key k

(1)
2 = h((r4r6)G) for the subgroup {4, 6} under

2-in-degree node k
(1)
2 can be derived by U4 and U6

without information exchange because r4G and r6G
are known to one another.
Case 2. In the case when the in-degree of the node
is three, the subgroup under this node is composed
of three subgroups G1, G2, G3 under three nodes,
respectively. Assume that the subgroup key KGi (i =
1, 2, 3) of Gi has been established, then the coordi-
nator of Gi (i = 1, 2, 3) broadcasts KGi

G in other
subgroups if it is unknown to them. After that, each
member in G1∪G2∪U3 is able to derive a new sub-
group key KG1∪G2∪G3 = h(ê(G,G)KG1KG2KG3 ).
For example, in Fig. 6, the secret key k

(2)
1 =

h(ê(G,G)r1k
(1)
2 k

(1)
3 ) for the subgroup under 3-in-

degree node k
(2)
1 can be established after U1 and U4

broadcast r1G and k
(1)
2 G, respectively, because k

(1)
3 G

is known to U1, U4, U6.
The above process is iterated from the bottom to
the top until a new group key is reached in all
remaining members. Finally, all remaining members
update their subgroup keys and the information of
nodes on their paths to the root node.

E. Group Mergence and Partition

Group mergence happens when two peer groups merge to a
new peer group. Before group mergence, one group is chosen
as the main group and another group is thought as a mass.
Then the secondary group can join the main group with mass
join protocol described in Section IV.C.

Because of network failures, congestion or hostile attacks,
a peer group G is often partitioned into smaller peer groups.



Such a smaller peer group P can be thought as the result of
a mass G − P leaving G. According to mass leave protocol
described in Section IV.D, a new group key can be reached in
P .

V. SECURITY ANALYSIS

A. Analysis of Group Key Secrecy

Group key secrecy means that it is computationally infeasi-
ble for a passive adversary to discover any group key. In either
our basic or dynamic protocol with n members, a passive
adversary who attempts to determine the secret group key by
simply recording data and thereafter analyzing it is able to
intercept

view(n, R)
4
= {kiG|ki ∈ K} (4)

where R = {r1, r2, · · · , rn} (r1, · · · , rn are distinct integers
randomly chosen from Z∗q ) and K is the set of all subgroup
keys excluding the group key KG.

In order to analyze how hard for the passive adversary to
discover the group key K(n, R)

4
= KG in any polynomial

time after given view(n, R), we define n-party key agreement
problem as follows.

Definition. n-party key agreement problem: given view(n, R)
where R = {r1, r2, · · · , rn}, determine K(n, R) without
knowledge of any ri.

In the case when n = 2, view(2, r1, r2) = {r1G, r2G} and
K(2, r1, r2) = h((r1r2)G). When p has 175 bits, it is believed
that 2-party key agreement problem, similar to the 2-party
Diffie-Hellman key agreement problem [19], is hard. Experts
in this area estimate that the discrete logarithm problem (DLP)
over an elliptic curve group with a 175-bit size has a security
equivalent to RSA [3] with a 1024 modulus, or to systems
based on DLP over Zp with p a 1024-bit prime [22][23].

In the case when n = 3, view(3, r1, r2, r3) =
{r1G, r2G, r3G} and K(3, r1, r2, r3) = h(ê(G,G)r1r2r3).
When p has 512 bits, it is believed that 3-party key agreement
problem, similar to the bilinear Diffie-Hellman key agreement
problem [20], is hard. 512-bit prime p may provide sufficient
security because Menezes-Okamoto-Vanstone reduction [24]
in this case leads to a discrete logarithm problem in a finite
field Fp2 of size approximately 21024 [17][25].

Therefore, when p has 512 bits, it is believed that there is
no polynomial-time algorithm which can determine (r1r2)G
or ê(G,G)r1r2r3 and further K(2, r1, r2) or K(3, r1, r2, r3)
simply based on view(2, r1, r2) or view(3, r1, r2, r3) without
knowledge of any ri. Based on this assumption, we prove that
there is no polynomial-time algorithm to solve n-party key
agreement problem.

Theorem 1. There is no polynomial-time algorithm to solve
n-party key agreement problem (n ≥ 2) if there is no
polynomial-time algorithm to solve 2 and 3-party key agree-
ment problem.

In order to prove Theorem 1, we prove the following lemma
at first.

Lemma. There is no polynomial-time algorithm to solve
n-party key agreement problem (n ≥ 4) if there is no
polynomial-time algorithm to solve m-party key agreement
problem for any 2 ≤ m < n.

Proof. (by contradiction) Assume that there is no polynomial-
time algorithm to solve m-party key agreement problem for
any 2 ≤ m < n, but there is polynomial-time algorithm An to
solve n-party key agreement problem, i.e., given view(n, R),
without knowledge of any ri, the group key K(n, R) can be
determined with An in a polynomial time.

Let us consider a key agreement graph for a peer group
with n members.

Case 1. In the case when the in-degree of the root node
is two, the group is composed of two subgroups G1, G2

under two nodes N1 and N2. Suppose that the subgroup
keys for G1 and G2 are KG1 and KG2 , respectively, then
K(2, KG1 , KG2) = h((KG1KG2)G) = K(n, R) can be
determined with view(2, KG1 , KG2) ⊆ view(n, R) in a
polynomial time by running An. According to the assumption,
this 2-party key agreement problem cannot be solved in any
polynomial time without knowledge of KG1 or KG2 . Hence, at
least one of KG1 and KG2 must be known. Suppose that KG1

is known and the subgroup under N1 consist of m members,
then 1 ≤ m < n. If m = 1, it means that given KG1G,
KG1 can be determined in a polynomial time. It is impossible
because the DLP is hard. If 2 ≤ m < n, it mean that
given view(m, r1, · · · , rm) ⊆ view(n, R) without knowledge
of r1, · · · , rm, K(m, r1, · · · , rm) = KG1 can be determined
in a polynomial time. It contradicts with the assumption.

Case 2. In the case when the in-degree of the root node
is three, the group is composed of three subgroups G1, G2,
G3 under three nodes N1, N2, N3. Suppose that the subgroup
key for Gi (i=1,2,3) is KGi , then K(3, KG1 , KG2 , KG3) =
h(ê(G,G)KG1KG2KG3 ) = K(n, R) can be determined with
view(2, KG1 , KG2 , KG3) ⊆ view(n, R) in a polynomial time
by running An. According to the assumption, this 3-party
key agreement problem cannot be solved in any polynomial
time without knowledge of one of KG1 , KG2 , KG3 . Hence,
at least one of KG1 , KG2 , KG3 must be known. Suppose
that KG1 is known and the subgroup under N1 consist of
m members, then 1 ≤ m < n. If m = 1, it means that
given KG1G, KG1 can be determined in a polynomial time.
It is impossible because the DLP is hard. If 2 ≤ m < n, it
mean that given view(m, r1, · · · , rm) ⊆ view(n, R) without
knowledge of r1, · · · , rm, K(m, r1, · · · , rm) = KG1 can be
determined in a polynomial time. It also contradicts with the
assumption.

Both the above two cases result in contradictions to the as-
sumption and so the assumption do not hold. By contradiction,
the theorem holds. 4

Based on this lemma, Theorem 1 can be proved by induction
on n. Due to Theorem 1, our basic protocol and dynamic
protocol for key refresh, member or mass join, and member
or mass leave, group mergence and partition have the property
of group key secrecy.



B. Analysis of Forward and Backward Secrecy, Key Indepen-
dence

Forward secrecy means that a passive adversary who knows
a contiguous subset of old group keys cannot discover subse-
quent group keys. Let us consider a key agreement graph for a
peer group G in which the in-degree of the root node is fixed.

Case 1. In the case when the in-degree of the root node
is two, the group G is composed of two subgroups
G1, G2 under two nodes. Suppose that the passive
adversary has known a contiguous subset of old group keys
{K(1)

G = h((K(1)
G1

K
(1)
G2

)G), · · · , K(m)
G = h((K(m)

G1
K

(m)
G2

)G)}
plus (K(i)

G1
G, K

(i)
G2
G) (i = 1, 2, · · · , m) in view(n, R). For

a subsequent group key K
(m+1)
G = h((K(m+1)

G1
K

(m+1)
G2

)G),
the most favorable case for the passive adversary
is: K

(i)
G1

= K
(j)
G1

for 1 ≤ i, j ≤ m + 1 and
K

(m+1)
G2

G =
∑m

i=1 ai(K
(i)
G2
G) where ai is an integer

which can be determined by the passive adversary. In
this case, (K(m+1)

G1
K

(m+1)
G2

)G =
∑m

i=1 ai(K
(i)
G1

K
(i)
G2

)G.
However, K

(m+1)
G = h((K(m+1)

G1
K

(m+1)
G2

)G) 6=∑m
i=1 aih((K(i)

G1
K

(i)
G2

)G) =
∑m

i=1 aiK
(i)
G .

Case 2. In the case when the in-degree of the root node
is three, the group G is composed of three subgroups
G1, G2, G3 under three nodes. Suppose that the passive
adversary has known a contiguous subset of old group
keys {K(1)

G = h(ê(G,G)K
(1)
G1

K
(1)
G2

K
(1)
G3 ), · · · , K(m)

G =

h(ê(G,G)K
(m)
G1

K
(m)
G2

K
(m)
G3 )} and (K(i)

G1
G, K

(i)
G2
G, K

(i)
G3
G)

(i = 1, 2, · · · , m) in view(n, R). For a subsequent

group key K
(m+1)
G = h(ê(K(m+1)

G1
G, K(m+1)

G2
G)K

(m+1)
G3 ),

the most favorable case for the passive adversary is:
K

(i)
G1

= K
(j)
G1

, K
(i)
G2

= K
(j)
G2

for 1 ≤ i, j ≤ m + 1
and K

(m+1)
G3

G =
∑m

i=1 ai(K
(i)
G3
G) where ai is an

integer which can be determined by the passive
adversary. In this case, ê(K(m+1)

G1
G, K(m+1)

G2
G)K

(m+1)
G3 =∏m

i=1 ê(K(i)
G1
G, K(i)

G2
G)aiK

(i)
G3 . However,

K
(m+1)
G = h(ê(K(m+1)

G1
G, K(m+1)

G2
G)K

(m+1)
G3 ) 6=∏m

i=1 h(ê(K(i)
G1
G, K(i)

G2
G)K

(i)
G3 )ai =

∏m
i=1(K

(i)
G )ai .

In view of application of hash function, the linear relations
among group keys are broken. Thus, the knowledge of a
contiguous subset of old group keys cannot help to discover
subsequent group keys with the linear approach. It is believed
that there is no other approach better than the linear approach.
Therefore, our dynamic protocol is believed to have the
property of forward secrecy.

Backward secrecy means that a passive adversary who
knows a contiguous subset of group keys cannot discover
preceding group keys. Based on the same reason explained in
the above discussion about forward secrecy (simply replacing
the subsequent group key with the preceding group key), our
dynamic protocol is believed to have the property of backward
secrecy as well.

Key independence means that a passive adversary who
knows any proper subset of group keys cannot discover any
other group key. In fact, in the above discussion about forward

secrecy, the contiguous subset of group keys can be also
thought as a proper subset of group keys. Therefore, based
on the same reason, our dynamic protocol is also believed to
have the property of key independence.

It is observed that our dynamic protocol is more se-
cure than TGDH in terms of forward, backward secrecy
and key independence. Because TGDH does not employ a
hash function, the risk of a passive adversary who knows
a contiguous subset or a proper subset of group keys dis-
covering a secret group key in TGDH is higher than that
in our dynamic protocol. For example, in TGDH, sup-
pose that the group G is composed of two subgroups
G1, G2 and a passive adversary has known some group keys
K

(i)
G = g

K
(i)
G1

K
(i)
G2 (mod p) (where K

(i)
G1

, K
(i)
G2

are subgroup

keys) and the broadcasted (gK
(i)
G1 (mod p), gK

(i)
G2 (mod p))

(i = 1, 2, · · · , m). For a subsequent or preceding group
key K

(m+1)
G = g

K
(m+1)
G1

K
(m+1)
G2 (mod p), if K

(i)
G1

= K
(j)
G1

for 1 ≤ i, j ≤ m + 1 and g
K

(m+1)
G2 (mod p) happens

to be
∏m

i=1(g
K

(i)
G2 )ai (where ai is an integer which can

be determined by the passive adversary), then K
(m+1)
G can

be discovered by the passive adversary with
∏m

i=1(K
(i)
G )ai

(= g
∑m

i=1
aiK

(i)
G1

K
(i)
G2 = g

K
(m+1)
G1

K
(m+1)
G2 = K

(m+1)
G ).

VI. PERFORMANCE COMPARISONS

In this section, we compare performance of GDH [15],
TGDH [9] and our basic and dynamic protocols at the same
security level. When the modulus p used by GDH and TGDH
has about 1024 bits and our protocols choose prime p with
about 512 bits, GDH, TGDH and our protocols are believed
to be at the same security level because Menezes-Okamoto-
Vanstone reduction [24] in our protocols leads to a discrete
logarithm problem in a finite field Fp2 of size approximately
21024 [17][25]. In this case, the result of a modular exponen-
tiation in GDH and TGDH has 2L = 1024 bits while the
x-coordinate of a point in our protocols has only L = 512
bits.

Based on the above assumption, comparisons of communi-
cation rounds and cost, storage cost and computation cost of
GDH, TGDH and our basic protocol are listed in Tab. 1. In
Tab. 1, (e), (w), (p) stand for modular exponentiation, Weil
pairing and point multiplication, respectively, and L = 512
bits.

Remark 1: In GDH, user Ui needs to keep i modular expo-
nentiation results in order to perform member or mass leave
protocol and thus the average storage cost is n/2(2L) = nL
bits.

Remark 2: In TGDH, for a peer group with n = 2m

members, the total communication cost is (2m + 2m−1 +
· · · + 2)(2L) = 4(n − 1)L bits, the average storage cost is
2m(2L)/2 = 2 log2 nL and the average computation cost is
2m/2 = log2 n modular exponentiations.

From Tab. 1, we can see that: (1) Our basic protocol needs
less communication rounds than GDH and TGDH; (2) Our
basic protocol’s total communication cost is much less than
GDH’s and even less than half of TGDH’s;



GDH TGDH Ours
Rounds n dlog2 ne dlog3 ne

Total comm. cost n(n + 1)L 4(n− 1)L 3(n− 1)L/2
Average storage cost nL 2dlog2 neL 3dlog3 neL/2
Average comp. cost n/2 (e) dlog2 ne (e) dlog3 ne/2 (w+2p+2e)

Tab. 1 Performance comparison of GDH, TGDH and our
basic protocol

Rounds Total comm. cost Avg. comp. cost
Key refresh 1 2(n− 1)L 1, n (e)

GDH Mass join m+1 2(mn+ m(m+1)
2

)L 1, n + m
2

(e)
Mass leave 1 2(l − 1)L 1, l (e)
Key refresh 1 2HL H (e)

TGDH Mass join dlog2 me+ 1 4mL 1, dlog2 me+ 1 (e)
Mass leave ≤ dlog2 le ≤ 4lL ≤ dlog2 le (e)
Key refresh 1 HL H/2 (w+2p+2e)

Ours Mass join dlog3 me+ 1 3(m + 1)L/2 1,
dlog3 me+2

2
(w+2p+2e)

Mass leave ≤ dlog3 le ≤ 3lL/2 ≤ dlog3 le/2 (w+2p+2e)

Tab. 2. Performance comparison of GDH, TGDH and our
dynamic protocol

(3) Our basic protocol’s average storage cost is much less
than GDH’s and even less than half of TGDH’s; (4) Our basic
protocol’s average computation cost is not less than TGDH’s,
but is much less than GDH’s. According to [27][28], the
timing of computing a 512-bit Weil pairing plus two point
multiplications is about 4.5 times that of computing a 1024-bit
modular exponentiation with a random exponent. In addition,
the cost for computing a 512-bit modular exponentiation is
about one quarter of the cost for computing a 1024-bit modular
exponentiation.

When n = 81, the average computation cost of our basic
protocol is 2(w+2p+2e) which amounts to 2(4.5+2/4) = 10
1024-bit modular exponentiations. In this case, the average
computation costs of GDH and TGDH are 40 and 7 1024-
bit modular exponentiations, respectively. This example shows
that our basic protocol’s average computation cost is only
slightly more than TGDH’s and much less than GDH’s.

At last, it should be pointed out that both TGDH and
our basic protocol run in parallel, but GDH runs in series.
Therefore, both TGDH and our basic protocol is much fast
than GDH.

In addition, comparisons of communication rounds and cost,
storage cost and computation cost of GDH, TGDH and our
dynamic protocol are listed in Tab. 2. In Tab. 2, m stands
for the number of new members in mass join, l represents
the number of remaining members after mass leaving and H
denotes the length of the shortest path to the root node. For
GDH’s average computation costs, 1, n (e) in key fresh stand
for the average computation costs of a general member and
the refresh coordinator, respectively; 1, n + m/2 (e) in mass
join are the average computation costs of an old member
and a new member, respectively; 1, l (e) in mass leave are
the average computation costs of a general member and the
coordinator, respectively. Same notations are used in TGDH
and our dynamic protocol for mass join.

From Tab. 2, we can see that: (1) Our dynamic proto-
col needs less communication rounds than TGDH; (2) Our
dynamic protocol’s total communication costs are less than
half of those in TGDH. The total communication cost of our
dynamic protocol for mass leave in the worst case is even
less than that of GDH for mass leave after l ≥ 4; (3) Our
dynamic protocol’s average computation costs are believed to
be slightly more than those in TGDH.

VII. CONCLUSION

To minimize the communication overload, we have pro-
posed a new key agreement protocol, composed of a basic
protocol and a dynamic protocol, for large-scale dynamic peer
groups in this paper. Our protocols are nature extensions of
the state-of-the-art one round tripartite Diffie-Hellman key
agreement protocol. Therefore, they are believed to be more
efficient than those built on two-party Diffie-Hellman key
agreement protocol.
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