10 research outputs found

    A new dependency and correlation analysis for features

    Full text link

    A New Approach of Detecting Network Anomalies using Improved ID3 with Horizontal Partioning Based Decision Tree

    Get PDF
    In this paper we are proposing a new approach of Detecting Network Anomalies using improved ID3 with horizontal portioning based decision tree. Here we first apply different clustering algorithms and after that we apply horizontal partioning decision tree and then check the network anomalies from the decision tree. Here in this paper we find the comparative analysis of different clustering algorithms and existing id3 based decision tree

    New Trends in Network Anomaly Detection

    Get PDF

    Comparative Analysis of Selected Filtered Feature Rankers Evaluators for Cyber Attacks Detection

    Get PDF
    An increase in global connectivity and rapid expansion of computer usage and computer networks has made the security of the computer system an important issue with the industries and cyber communities being faced with new kinds of attacks daily The high complexity of cyberattacks poses a great challenge to the protection of cyberinfrastructures Confidentiality Integrity and availability of sensitive information stored on it Intrusion detection systems monitors network traffic for suspicious Intrusive activity and issues alert when such activity is detected Building Intrusion detection system that is computationally efficient and effective requires the use of relevant features of the network traffics packets identified by feature selection algorithms This paper implemented K-Nearest Neighbor and Na ve Bayes Intrusion detection models using relevant features of the UNSW-NB15 Intrusion detection dataset selected by Gain Ratio Information Gain Relief F and Correlation rankers feature selection technique

    A New Deep Learning Approach for Anomaly Base IDS using Memetic Classifier

    Get PDF
    A model of an intrusion-detection system capable of detecting attack in computer networks is described. The model is based on deep learning approach to learn best features of network connections and Memetic algorithm as final classifier for detection of abnormal traffic.One of the problems in intrusion detection systems is large scale of features. Which makes typical methods data mining method were ineffective in this area. Deep learning algorithms succeed in image and video mining which has high dimensionality of features. It seems to use them to solve the large scale of features problem of intrusion detection systems is possible. The model is offered in this paper which tries to use deep learning for detecting best features.An evaluation algorithm is used for produce final classifier that work well in multi density environments.We use NSL-KDD and Kdd99 dataset to evaluate our model, our findings showed 98.11 detection rate. NSL-KDD estimation shows the proposed model has succeeded to classify 92.72% R2L attack group

    Approaches to Feature Identification and Feature Selection for Binary and Multi-Class Classification

    Get PDF
    University of Minnesota Ph.D. dissertation. 2007. Major: Electrical Engineering. Advisor: Keshab Parhi. 1 computer file (PDF); 182 pages.In this dissertation, we address issues of (a) feature identification and extraction, and (b) feature selection. Nowadays, datasets are getting larger and larger, especially due to the growth of the internet data and bio-informatics. Thus, applying feature extraction and selection to reduce the dimensionality of the data size is crucial to data mining. Our first objective is to identify discriminative patterns in time series datasets. Using auto-regressive modeling, we show that, if two bands are selected appropriately, then the ratio of band power is amplified for one of the two states. We introduce a novel frequency-domain power ratio (FDPR) test to determine how these two bands should be selected. The FDPR computes the ratio of the two model filter transfer functions where the model filters are estimated using different parts of the time-series that correspond to two different states. The ratio implicitly cancels the effect of change of variance of the white noise that is input to the model. Thus, even in a highly non-stationary environment, the ratio feature is able to correctly identify a change of state. Synthesized data and application examples from seizure prediction are used to prove validity of the proposed approach. We also illustrate that combining the spectral power ratios features with absolute spectral powers and relative spectral powers as a feature set and then carefully selecting a small number features from a few electrodes can achieve a good detection and prediction performances on short-term datasets and long-term fragmented datasets collected from subjects with epilepsy. Our second objective is to develop efficient feature selection methods for binary classification (MUSE) and multi-class classification (M3U) that effectively select important features to achieve a good classification performance. We propose a novel incremental feature selection method based on minimum uncertainty and feature sample elimination (referred as MUSE) for binary classification. The proposed approach differs from prior mRMR approach in how the redundancy of the current feature with previously selected features is reduced. In the proposed approach, the feature samples are divided into a pre-specified number of bins; this step is referred to as feature quantization. A novel uncertainty score for each feature is computed by summing the conditional entropies of the bins, and the feature with the lowest uncertainty score is selected. For each bin, its impurity is computed by taking the minimum of the probability of Class 1 and of Class 2. The feature samples corresponding to the bins with impurities below a threshold are discarded and are not used for selection of the subsequent features. The significance of the MUSE feature selection method is demonstrated using the two datasets: arrhythmia and hand digit recognition (Gisette), and datasets for seizure prediction from five dogs and two humans. It is shown that the proposed method outperforms the prior mRMR feature selection method for most cases. We further extends the MUSE algorithm for multi-class classification problems. We propose a novel multiclass feature selection algorithm based on weighted conditional entropy, also referred to as uncertainty. The goal of the proposed algorithm is to select a feature subset such that, for each feature sample, there exists a feature that has a low uncertainty score in the selected feature subset. Features are first quantized into different bins. The proposed feature selection method first computes an uncertainty vector from weighted conditional entropy. Lower the uncertainty score for a class, better is the separability of the samples in that class. Next, an iterative feature selection method selects a feature in each iteration by (1) computing the minimum uncertainty score for each feature sample for all possible feature subset candidates, (2) computing the average minimum uncertainty score across all feature samples, and (3) selecting the feature that achieves the minimum of the mean of the minimum uncertainty score. The experimental results show that the proposed algorithm outperforms mRMR and achieves lower misclassification rates using various types of publicly available datasets. In most cases, the number of features necessary for a specified misclassification error is less than that required by traditional methods
    corecore