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Abstract

In this dissertation, we address issues of (a) feature identification and extraction, and

(b) feature selection. Nowadays, datasets are getting larger and larger, especially due to

the growth of the internet data and bio-informatics. Thus, applying feature extraction

and selection to reduce the dimensionality of the data size is crucial to data mining.

Our first objective is to identify discriminative patterns in time series datasets. Using

auto-regressive modeling, we show that, if two bands are selected appropriately, then

the ratio of band power is amplified for one of the two states. We introduce a novel

frequency-domain power ratio (FDPR) test to determine how these two bands should be

selected. The FDPR computes the ratio of the two model filter transfer functions where

the model filters are estimated using different parts of the time-series that correspond

to two different states. The ratio implicitly cancels the effect of change of variance

of the white noise that is input to the model. Thus, even in a highly non-stationary

environment, the ratio feature is able to correctly identify a change of state. Synthesized

data and application examples from seizure prediction are used to prove validity of the

proposed approach. We also illustrate that combining the spectral power ratios features

with absolute spectral powers and relative spectral powers as a feature set and then

carefully selecting a small number features from a few electrodes can achieve a good

detection and prediction performances on short-term datasets and long-term fragmented

datasets collected from subjects with epilepsy.

Our second objective is to develop efficient feature selection methods for binary clas-

sification (MUSE) and multi-class classification (M3U) that effectively select important

features to achieve a good classification performance. We propose a novel incremental

feature selection method based on minimum uncertainty and feature sample elimination

(referred as MUSE) for binary classification. The proposed approach differs from prior

mRMR approach in how the redundancy of the current feature with previously selected

features is reduced. In the proposed approach, the feature samples are divided into a

pre-specified number of bins; this step is referred to as feature quantization. A novel

uncertainty score for each feature is computed by summing the conditional entropies of

the bins, and the feature with the lowest uncertainty score is selected. For each bin, its
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impurity is computed by taking the minimum of the probability of Class 1 and of Class

2. The feature samples corresponding to the bins with impurities below a threshold are

discarded and are not used for selection of the subsequent features. The significance of

the MUSE feature selection method is demonstrated using the two datasets: arrhythmia

and hand digit recognition (Gisette), and datasets for seizure prediction from five dogs

and two humans. It is shown that the proposed method outperforms the prior mRMR

feature selection method for most cases.

We further extends the MUSE algorithm for multi-class classification problems. We

propose a novel multiclass feature selection algorithm based on weighted conditional

entropy, also referred to as uncertainty. The goal of the proposed algorithm is to select

a feature subset such that, for each feature sample, there exists a feature that has a low

uncertainty score in the selected feature subset. Features are first quantized into different

bins. The proposed feature selection method first computes an uncertainty vector from

weighted conditional entropy. Lower the uncertainty score for a class, better is the

separability of the samples in that class. Next, an iterative feature selection method

selects a feature in each iteration by (1) computing the minimum uncertainty score

for each feature sample for all possible feature subset candidates, (2) computing the

average minimum uncertainty score across all feature samples, and (3) selecting the

feature that achieves the minimum of the mean of the minimum uncertainty score.

The experimental results show that the proposed algorithm outperforms mRMR and

achieves lower misclassification rates using various types of publicly available datasets.

In most cases, the number of features necessary for a specified misclassification error is

less than that required by traditional methods.
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Chapter 1

Introduction

1.1 Motivation

This dissertation addresses issues of (a) feature identification and extraction, and (b)

feature selection. Data mining has been widely used in many areas, such as decision

making, marketing, artificial intelligence, pattern recognition, and financial forecasts

[1, 2, 3]. Fig. 1.1 illustrates a general framework for machine learning, which includes

preprocessing, feature identification and extraction, feature selection, learning, and per-

formance evaluation. Nowadays, datasets are getting larger and larger, especially due

to the growth of the internet data and bio-informatics. However, high dimensionality

of data may cause the curse of dimensionality problem [4, 5, 6]. Thus, applying feature

extraction and selection to reduce the dimensionality of the data size is a crucial step

in data mining.

Feature Identification and Extraction

The problem of finding discriminative patterns in time series datasets has received much

attention in past decades [7, 8, 9]. Time series are collected in a variety of applications

such as electrocardiogram (ECG) [10, 11], electroencephalogram (EEG) [12, 13], hourly

temperature and humidity [14], lung sounds [15], and stock prices [16], etc. A time series

usually contains a lot of redundancy between consecutive samples as these samples are

typically highly correlated. Feature extraction can be applied to extract discriminative

features to extract useful information from the original signal and to reduce the data

1



2

Figure 1.1: General framework for machine learning.

size. The discriminative features can be input to classifiers to identify state of the time

series.

In a typical pattern recognition problem for time series, we are faced with classifying

the time series into different states. For instance, seizure prediction using EEG signals

can be viewed as a binary classification problem where one class consists of preictal

signals corresponding to the signal right before an occurrence of the seizure, and the

other class consists of normal EEG signals, also referred as interictal signals [17, 18,

19, 20, 21]. Identifying features that can differentiate or discriminate the preictal state

(time period before a seizure) from the inter-ictal state (time period between seizures)

is the key to seizure prediction [22, 23, 24, 25, 26, 27, 28]. In a related but different

problem of seizure detection, the EEG signal is classified into ictal (during seizure)

and inter-ictal (baseline) [29, 30, 31]. In another example of the arrhythmia detection

from ECG signals [32, 33], the aim is to distinguish between the presence and absence

of cardiac arrhythmia. As another example, consider the Sensorless Drive Diagnosis

problem [34, 35] using electric current drive signals. The drive has intact and defective

components. This results in 11 different classes with different conditions. Each condition
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has been measured several times by 12 different operating conditions such as different

speeds, load moments and load forces. The current signals are measured with a current

probe and an oscilloscope on two phases. The time series corresponding to the current

signals are analyzed to classify whether a component is intact or defective. In another

example, signals from the magnetoencephalogram (MEG) can be used to discriminate

schizophrenia [36]. Seismograms also correspond to time-series that can be used to

predict earthquakes.

Feature Selection

In the feature subset selection problem, a learning algorithm is faced with the problem

of selecting a subset of features upon which to focus its attention, while ignoring the

rest [37, 38, 39, 40]. Feature selection is the process of selecting a subset of relevant fea-

tures for model construction. In contrast to other dimensionality reduction techniques

like projection (e.g., principal component analysis) or compression (e.g., information

theory), feature selection techniques do not change the original representations of the

variables, but merely select a subset of them [41, 42]. Thus, they preserve the original

meanings of the variables, offering explanations for the data and the models.

While feature selection can be applied to both supervised and unsupervised learning,

we focus here on the problem of supervised learning (classification), where the class

labels are known beforehand [43, 44, 45]. The importance of feature selection techniques

are manyfold which include: (1) avoid overfitting, (2) reduce time consumption of model

training, (3) reduce energy consumptions in devices providing real-time classifications,

and (4) simplify interpretations of different models [46].

1.2 Prior Works

This section reviews the prior works on feature identification, feature selection, and

classification.

1.2.1 Prior Works on Feature Identification and Extraction

Popular feature extraction techniques for time series include the discrete wavelet trans-

form (DWT) [26], the discrete Fourier transform (DFT) [47], power spectral density
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(PSD) [22, 23, 24], empirical mode decomposition (EMD) [48], eigenvectors [49], au-

toregressive models [50], statistical values [51], instantaneous amplitude, frequency, or

phase [52].

However, these features may not achieve a good classification performance for non-

stationary signals. For instance, in the problem of seizure prediction, the preictal and

interictal patterns vary substantially over different patients. Even for a single patient,

preictal and interictal patterns may vary substantially from seizure to seizure and from

hour to hour. For example, Fig. 1.2 illustrates the mean power of the whitened EEG

signal from electrode No. 1 for patient No. 19 in the MIT physionet EEG database

[53, 54], where a 10 second sliding window with no overlap is used. The EEG signal

from electrode No. 1 is divided into 10-seconds-long segments and is then whitened for

each segment. The variance of the whitened signal in each segment is computed as the

mean power. As shown in the figure, the signal is very non-stationary as the variance

of whitened signal changes significantly during the whole 29 hours. Mean power of

the whitened signal during interictal period sometimes can be significantly higher than

that of preictal signals. Therefore, extracting discriminative features from this signal

to separate the preictal signal (60 minutes data prior to the seizure onsets) and the

interictal signal is very challenging.
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Figure 1.2: Mean power of the whitened EEG signal from electrode No. 1 for patient
No. 19 in the MIT physionet EEG database.

Window-based Signal Processing

Before feature extraction, the input signal, s(n), is divided into the input segments and

the signal is processed segment by segment. Let M denote the length of each segment
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and L denote the total number of segments. Let

sl(n) = s(n+ (l − 1)M/2) (1.1)

n = 0, . . . ,M − 1, l = 1, . . . , L (1.2)

denote the windowed signal in the l-th segment. Each segment has a 50% overlap with

its neighbour segment. Features can then be extracted from each segment.

Absolute spectral power

Absolute spectral power in a particular frequency band represents the power of a signal

in that frequency band. To compute the (absolute) spectral powers in the above eight

frequency bands, PSD of the input signal needs to be estimated. The PSD of a signal

s(n) describes the distribution of the signal’s total average power over frequency. The

spectral power of a signal in a frequency band is computed as the logarithm of the sum

of the PSD coefficients within that frequency band. Mathematically, the spectral power

in the i-th frequency band is computed as

Pi = log
∑

ω∈ band i

PSDs(ω), i = 1, 2, ..., 8. (1.3)

For window-based signal processing, spectral power needs to be computed for each

windowed segment sl(n):

Pi(l) = log
∑

ω∈ band i

PSDsl(ω), i = 1, 2, ..., 8. (1.4)

Therefore, Pi(l) is a time series whose l-th element represents the spectral power of the

input signal in the l-th segment in band i.

Relative spectral power

The relative spectral power measures the ratio of the total power in the i-th band to

the total power of the signal in logarithm scale, which is computed as follows

Qi(l) = log

∑
ω∈ band i

PSDsl(ω)∑
all ω

PSDsl(ω)
, i = 1, 2, ..., 8. (1.5)
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Spectral power ratio

Let Ri,j(l) = Pi(l) − Pj(l) represent the spectral power ratio of the spectral power in

band i over that in band j in the l-th window. These ratios indicate the change of power

distribution in frequency domain from interictal to preictal periods, which have been

shown in [30] to be good features for seizure detection and can also be used to predict

seizures [55].

Cross-correlation coefficients

Cross-correlation is a measure of similarity of two time series. Let si,l(n) and sj,l(n)

denote the l-th segments from the i-th electrode and from the j-th electrode respectively.

The correlation coefficient between the two segments is computed as follows:

ρi,j(l) =
∑

n in l-th segment

si,l(n)sj,l(n) (1.6)

Discrete wavelet decomposition

The purpose of wavelet decomposition is to decompose the original signal into three dis-

joint sub-bands [56]. Discrete wavelet transform (DWT) decomposes discrete sequences

into discrete wavelets coefficients. The structure of a 2-level wavelet decomposition tree

is shown in Fig. 1.3. The input signal is first passed through a low-pass (LPF) and

a high-pass (HPF) filter. Then each filter is followed by a down-sampler with factor

of 2. At the next level, the approximation coefficients are further decomposed into

approximate and detail coefficients.

1.2.2 Prior Works on Feature Selection

Feature selection techniques, in general, can be organized into three categories: filter

methods, wrapper methods and embedded methods.

Filter feature selection methods apply a statistical measure to assign a score to each

feature. The features are ranked by the score and then selected to be either kept or

removed from the feature set. These methods are often univariate and consider each

feature independently [38, 57].
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Figure 1.3: Structure of a 2-level wavelet decomposition

In a typical filter method, features can be ranked according to various means such

as Fisher score [58], f -information[59], Bayes Error [60], Kolmogorov-Smirnov test [61],

Pearson correlation [62], mutual information [63], Gini index [64], dependency [65],

Henze-Penrose divergence [66], and consistency [44, 67]. Selection based on such a

ranking method does not ensure weak dependency among features, and often can lead

to redundancy and thus a less informative feature subset.

Wrapper methods consider the selection of a set of features as a search problem,

where different combinations are obtained, evaluated and compared to other combina-

tions [68, 69, 70]. A predictive model is trained to evaluate each combination of features

and assign a score based on model accuracy or other scores. As wrapper methods train

a new model for each subset, they are very computationally intensive [68, 69].

The subset search process may include a methodical process such as best-first search

or branch and bound search [62, 71], stochastic optimization approaches such as a

random hill-climbing algorithm, and heuristics approaches such as sequential forward

and sequential backward selection (SFS and SBS) to add and remove features [72, 73].

Embedded methods identify which features best contribute to the accuracy of the

model after the model is trained [74, 75, 76, 77]. The most common type of embedded

feature selection methods are regularization methods.

Regularization methods are also called penalization methods that introduce addi-

tional constraints into the optimization of a predictive algorithm (such as a regression

algorithm) that bias the model toward lower complexity (less coefficients).

Examples of regularization algorithms are LASSO, and decision tree [78, 79, 80].
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For example, features can be selected using a tree classifier and a model can then be

trained on the selected features [29, 81]. In LASSO, a penalty term is added to the mean

squared error to reduce the number features selected while minimizing the regression

error. The drawbacks of such a method are its computational cost and sensitivity to

overfitting.

Approaches of information-theoretic feature selection in machine learning have ad-

vanced a lot over the past 15-20 years. Well-known criteria for feature selection include

(1) Mutual Information Based Feature Selection (MIFS) [82], (2) Maximum-Relevance

Minimum-Redundancy (mRMR) [83], (3) Joint Mutual Information (JMI) [84], (4)

MIFS-U [85], (5) Conditional Infomax Feature Extraction (CIFE) [86], (6) Conditional

Mutual Information Maximization (CMIM) [87], and (7) Informative Fragments (IF)

[88].

The study in [89] illustrates that the less complex criteria manage to resist over-

fitting. Among all these criteria, mRMR achieves the lowest leave-one-out test error.

The mRMR makes use of mutual information to select features [83]. The aim is to

penalize a feature’s relevancy by its redundancy based on the presence of the other se-

lected features. The mRMR algorithm is an approximation of the theoretically-optimal

maximum-dependency feature selection algorithm that maximizes the mutual informa-

tion between the joint distribution of the selected features and the classification vari-

able [90]. In general, this algorithm is more efficient than the theoretically-optimal

max-dependency selection and produces a feature set with small pairwise redundancy.

Feature Selection by Regression Tree

Classification and Regression Trees (CART) is one of the predictive modeling approaches

and represents a flexible method that can unveil nonlinear relationships [80]. The tree

creation approach has been proposed in [80] and can be described as follows:

1) Examine all possible binary splits on all features.

2) Select a split with least squared error.

3) Impose the split.

4) Repeat recursively for the two child nodes until a stopping rule is satisfied.
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mRMR Feature Selection Algorithm

The mutual information between two random variables X taking particular values of x

and Y taking particular values of y is defined as follows:

I(X;Y ) = H(X)−H(X|Y )

where

H(X) = −
∑
x

P (X = x) logP (X = x)

and

H(X|Y ) =
∑
y

P (Y = y)H(X|Y = y)

Using the notations and symbols in [83], the goal of max relevance feature selec-

tion scheme is to find a feature set Sm with m features {xi, i = 1, 2, ...,m} such that

these features jointly have the largest relevance with class label c. Mathematically, the

objective is to find the m features such that the following criterion is maximized:

max
xi∈X

D(S, c) =
1

m

m∑
i=1

I(xi; c)

where X represents the whole feature set containing all features. To avoid redundant

features, the minimum redundancy criterion is added. Mathematically, it finds the m

features such that the following criterion is minimized:

minR(S) =
1

m2

∑
i

∑
j

I(xi;xj)

The mRMR algorithm combines the two criteria and can be described as selecting m

features such that D−R is maximized. The mRMR selection method uses an iterative

algorithm such that in each step the following is maximized:

max
xj∈X−Sm−1

[I(xj ; c)−
1

m− 1

∑
i

I(xi;xj)]
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1.2.3 Classifiers

Naive Bayes

Naive Bayes is a classification algorithm that applies the Bayes theorem with the as-

sumption that the predictors are conditionally independent given the class [91]. Given a

feature observation, it assigns to this feature observation a probability of P (cl|X1, ..., Xm)

for each of the l-th class. One common rule is the maximum a posteriori or MAP de-

cision rule which predicts this feature vector as class k whose posterior probability

P (Cl|X1, ..., Xm) achieves the maximum value.

LDA

LDA is one of the most popular linear classifiers that learns a linear classification bound-

ary in the input feature space [92].

SVM

Recently, among all linear classifiers, Support Vector Machine (SVM) has attracted

significant attention. Detailed descriptions of cost-sensitive linear SVM (c-LSVM) can

be found in [5]. Generally speaking, the SVM seeks to find the solution to the following

optimization problem:

min J(w, w0, ξ) =
1

2
∥w∥2 + C+

N∑
i∈C1

ξi + C−
N∑

j∈C2

ξj (1.7)

subject to yi(w
Txi + w0) ≥ 1− ξi, i = 1, 2, ..., N (1.8)

ξi ≥ 0, i = 1, 2, ..., N (1.9)

where xi represents the r-dimensional feature vector, N represents the total number

of feature vectors used for training the classifier, w represents the orientation of the

discriminating hyperplane and w0 represents the offset of the plane from the origin, yi

represents the class indicator (yi = +1 if xi is from class 1, otherwise yi = −1), ξi

represents the slack variable, and C+, C− represent the misclassification costs for two
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classes, respectively. After training, the decision function of a linear SVM is given by:

f(x) = sign(

N∑
i=1

αiyix
T
i x+ b) (1.10)

where x represents a new feature vector. The above equation can be simplified as

follows:

f(x) = sign(wTx+ b) (1.11)

where w =
∑

i αiyixi. The penalty parameter C+ and C− are usually determined by

the cross-validation step [6]. Leave-one-out cross-validation strategy, which refers to

leaving feature vectors corresponding to a randomly selected seizure out of the training

set, is widely used to avoid overfitting of the model. After the test data are classified, the

hyperplane decision function is smoothed by a moving-average filter in a postprocessing

step in the proposed algorithm.

kernel SVM

Detailed descriptions of kernel SVM can be found in [5]. The decision variable of the

kernel SVM classifier is given by

f(x) =

N∑
i=1

αiyiK(xi,x) + b (1.12)

where x represents a testing feature vector, xi represent the feature vectors, αi represent

the Lagrangian coefficients, N represents the total number of feature vectors used for

training the classifier, yi represents the class indicator (yi = +1 if xi is from class 1,

otherwise yi = −1). The parameters αi and b are computed during the training process.

K represents the kernel function. As CART unveils nonlinear relationships, polynomial

SVM with degree of 2 and radial basis function kernel SVM (RBF-SVM) are used and

their performance characteristics are compared.

ADABOOST

Boosting, formulated by Freund and Schapire [93], has been very successful in feature

classification and seizure prediction [94]. Its advantages include adaptivity and strong
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resistance to overfitting. Given a set of training data, {(x1, y1), (x2, y2), ..., (xN , yN )},
where xi belongs to a d-dimensional space X and yi is in the label set {−1. + 1},
and given the weak classifiers, the algorithm calls the weak learning algorithm T times

(iterations) for constructing a strong classifier as a linear combination of them:

H(x) = sign(

T∑
1

αtht(x)) (1.13)

where ht(x) is the weak or base classifiers generated during the t-th iteration and H(x)

is the final strong classifier. In our algorithm, the base classifier is defined as a decision

stump:

f(x) =

1, x < v

−1, x ≥ v
(1.14)

where v is the threshold.

AdaBoost is adaptive as each new weak classifier is built in favor of the misclassified

samples. In each iteration, AdaBoost generates a new weak classifier and updates the

distribution weights representing the importance of the feature samples. The weights

of the misclassified samples are increased, so the new weak classifier focuses more on

samples that previous classifiers have missed.

Neural Network

In machine learning, artificial neural networks (ANNs) represent a family of classifier

models. The feedforward neural network uses the following decision function:

f(x) =

T∑
i=1

wih(x
Tvi) + w0 (1.15)

where h(t) represents a logistic sigmoid function and T represents the number of hidden

neurons.

1.3 Dissertation topics and structure

In this section, we discuss the main topics and the structure of the dissertation.
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1.3.1 PART I

PART I discusses the methods and effects of discriminative features.

Chapter 2 develops an automated algorithm that can reliably detect seizures [31]

for short-term EEG recordings. The algorithm also has a low hardware complexity.

In the proposed approach, only a single channel EEG signal is analyzed for seizure

detection. We first filter the EEG signal by a prediction error filter, also known as a

whitening filter, to compute an error signal. A 19th-order prediction error filter (PEF)

computes the error signal as the difference between the current input sample and the

estimate of it. A window based processing is used with a 2-second sliding window with

half overlap. The predictor coefficients are recomputed every one second. A two-level

wavelet decomposition of the error signal computes the approximate signal and two

detail signals. The total energies in a window of the error signal and the three signals

from the wavelet decomposition are extracted in two different ways. The features are

input to two types of classifiers: a linear support vector machine (SVM) classifier and

an AdaBoost classifier. The performance of each classifier is evaluated and compared

against the other.

Chapter 3 proposes a novel frequency-domain model ratio (FDMR) test to determine

how these two bands should be selected [95]. Using autoregressive modeling, this paper

shows that, if two bands are selected appropriately, then the ratio of band power is

amplified for one of the two states. The paper introduces a novel frequencydomain

model ratio (FDMR) test to determine how these two bands should be selected. The

FDMR computes the ratio of the two model filter transfer functions where the model

filters are estimated using different parts of the time-series that correspond to two

different states. The ratio implicitly cancels the effect of change of variance of the white

noise that is input to the model. Thus, even in a highly non-stationary environment,

the ratio feature is able to correctly identify a change of state.

Chapter 4 to Chapter 6 develop algorithms for seizure detection and prediction using

spectral power ratios for various datasets [29, 27, 81, 96].

Chapter 4 develops a seizure detection algorithm for long-term fragmented EEG

recordings [29]. In the proposed approach, we first compute the spectrogram of the input

fragmented EEG signals from three or four electrodes. Spectral powers and spectral

ratios are extracted as features. The features are then subjected to feature selection
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using classification and regression tree (CART). The selected features are then subjected

to a polynomial support vector machine (SVM) classifier with degree of 2. Since all these

features can be extracted by performing the fast Fourier transform (FFT) on the signals

and the classifier requires low hardware complexity [97], the proposed algorithm can be

implemented by the hardware with low complexity and low power consumption.

Chapter 5 develops a patient-specific algorithm that can reliably predict seizures

using either one or two electrodes [27] for short-term dataset. The proposed algorithm

achieves an overall sensitivity higher than 90% and a false positive (FP) rate less than

0.125 FP/hour. The algorithm also requires a low hardware complexity in extracting

features and classification. In the proposed approach, we first compute the spectrogram

of the input EEG signals from one or two electrodes. A window based PSD computation

is used with a 4-second sliding window with half overlap. Thus, the effective window

period is 2 second. Spectral powers and spectral ratios are extracted as features and are

input to a classifier. A postprocessing step is used to remove undesired fluctuations of

the decision output of the classifier. The feature signals are then subjected to feature

selection and classification where two strategies are used. One is the single feature selec-

tion and the other is the multi-dimensional feature selection. While a seizure prediction

system using a single feature requires low hardware complexity and power consumption,

systems using multi-dimensional features achieve a higher prediction reliability. Multi-

dimensional features are selected for patients where systems using a single feature can

not achieve a predetermined requirement.

Chapter 6 develops a patient-specific algorithm that can reliably predict seizures

with high area under curve (AUC) for long-term fragmented EEG recordings [81, 96].

The proposed algorithm compares the performance of different feature sets and different

classifiers for different canine or human subject. In the proposed approach, we first

extract two sets of features. A window based feature extraction is used, where the

window size is 4 second for spectral feature set and is 10 second for the correlation

feature set, respectively. The 10-second window for correlation is chosen for an accurate

estimate of the correlation coefficient. The first feature set includes spectral powers

and spectral ratios. The second feature set includes correlation coefficients between all

possible pairs of electrodes. The two feature sets are then subjected to feature selection

and classification independently. Three classifiers are used and tested on the selected
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features, which include AdaBoost, radial basis function kernel support vector machine

(RBF-SVM), and artificial neural netwroks (ANN).

1.3.2 PART II

PART II discusses feature selection methods for binary classification and multicalss

classification.

Chapter 7 proposes a new feature selection algorithm based on minimum uncertainty

and sample elimination (referred as MUSE) [98]. The three-step algorithm first quan-

tizes features into bins, ranks the features based on an uncertainty score, selects the

feature with the lowest uncertainty score, and then discards samples based on an im-

purity metric. The discarded samples are not used for selection of subsequent features.

The process is repeated until a stopping criterion is satisfied.

Chapter 8 proposes a new multi-class feature selection criterion based on minimum

uncertainty (referred as M3U) [99]. In this chapter, we propose a three-step algorithm

that first quantizes features into bins, computes an uncertainty vector for each feature

and all sample in each feature, and finally iteratively selects features that achieves the

minimum mean minimum uncertainty (M3U). The proposed iterative feature selection

algorithm includes two minimization steps and one expectation step, which include (1)

find the minimum uncertainty (MU) score for each feature sample given a feature subset,

(2) compute the mean minimum uncertainty score (M2U) for the feature subset, and (3)

select the feature that achieves the minimum mean minimum uncertainty score (M3U).

1.4 Contributions of the dissertation

In this section, main contribution of each part is discussed.

First, Part I introduces a novel frequency-domain model ratio (FDMR) test to

identify the discriminative ratio features from a single-channel signal. Although the

ratios in [30, 27] were chosen using band definitions from neuroscience, such as δ, θ, α,

β, and γ, and ranking algorithms from machine learning, the actual bands do not need

to coincide with these bands. Several theoretical questions remain unanswered. Why

the ratio features amplify the discrimination remains unexplained. How the two bands

should be chosen to maximize the discrimination remains unknown. These questions
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are answered in this Chapter 3. Using an auto-regressive model, we argue that a state

change in a time-series corresponds to a change in the filter model. From the ratio

of the frequency-domain characteristics of these two models, i.e., one frequency-domain

response normalized with respect to the other, we can determine two bands such that for

one band the ratio is much higher than 1 and for the other much less than 1. We show

that the ratio of spectral powers of a single time-series in these two bands is amplified

for one of the two states. This chapter shows that the effect of the non-stationarity

of the noise power can be eliminated by using the ratio of spectral powers when the

signal-to-noise ratio (SNR) is high. This chapter also shows that, even when the SNR

is low, the ratio of spectral power ratios can significantly discriminate the state of the

time-series if a postprocessing step such as a second-order Kalman filter is applied to

the ratio feature. Thus, ratio of spectral powers can be used for identifying state of a

non-stationary time-series assuming the model filters for the two states are different.

Second, Part I shows that combining the PSD features such as absolute spectral

powers, relative spectral powers and spectral power ratios as a feature set and then

carefully selecting a small number features from a few electrodes can achieve a good de-

tection and prediction performances on short-term datasets and long-term fragmented

datasets. Since only a few features from a few electrodes are carefully selected us-

ing various feature selection method, the proposed algorithms also have a low-power

and low-complexity hardware design. In low-power and low-complexity hardware de-

sign, the first key consideration is the number of sensors used to collect EEG signals.

Electrode selection is an essential step before feature selection as sensors and analog-to-

digital converters (A/D) can be highly power consuming for an implantable or wearable

biomedical device. The second key consideration is selecting useful features that are

computationally simple and are indicative of upcoming seizure activities. The third key

consideration is the choice of classifier. Based on the selection of the classifier, a criteria

for electrode and feature selection should be chosen accordingly in order to achieve the

best classification performance.

Part II proposes novel feature selection methods for binary classification (MUSE)

and multi-class classification (M3U). The main contribution of MUSE is that a new

feature selection algorithm based on minimum uncertainty and sample elimination (re-

ferred as MUSE) is proposed. The sample elimination process reduces redundancy and
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the selection of a feature with the least uncertainty score increases relevance. The dis-

carding of the samples and the selection of the feature are both nonlinear operations

and are ideal for general machine learning applications where feature samples may not

necessarily be linearly separable. The main contribution of M3U is a new multi-class

feature selection criterion based on minimum uncertainty. To the best of our knowledge,

the one-versus-all (OVA) uncertainty vector is defined in M3U is is a new sample-wise

criterion that has not been proposed before. Given a feature sample in a particular

feature, this uncertainty score illustrates how good the bin (corresponding to the fea-

ture sample) is to separate the class (corresponding to the feature sample) from the

remaining classes.



Part I

Feature Identification, Extraction

and Classification

18



Chapter 2

Seizure Detection from

Short-Term EEG Recordings

using Wavelet Decomposition of

the Prediction Error Signal

Our main objective is to develop an automated algorithm that can reliably detect

seizures. The algorithm should also have a low hardware complexity. In the proposed

approach [31], only a single channel EEG signal is analyzed for seizure detection. We

first filter the EEG signal by a prediction error filter, also known as a whitening filter,

to compute an error signal. A 19th-order prediction error filter (PEF) computes the

error signal as the difference between the current input sample and the estimate of it. A

window based processing is used with a 2-second sliding window with half overlap. The

predictor coefficients are recomputed every one second. A two-level wavelet decompo-

sition of the error signal computes the approximate signal and two detail signals. The

total energies in a window of the error signal and the three signals from the wavelet de-

composition are extracted in two different ways. The features are input to two types of

classifiers: a linear support vector machine (SVM) classifier and an AdaBoost classifier.

The performance of each classifier is evaluated and compared against the other.

19
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2.1 Materials and Methods

2.1.1 Patients Database

We have trained and tested our algorithm on the Freiburg EEG database [100], which

is available to any lab by request. According to [100], this database contains electrocor-

ticogram (ECoG) or iEEG from 21 patients with medically intractable focal epilepsy.

We have chosen 18 of the available datasets of 21 patients, who have three or more

seizures (the minimum number for cross-validation). Each 2-s-long window of iEEG

has been categorized as ictal (containing a seizure), interictal (at least 1 h preceding or

postceding a seizure), preictal (in 60 min preceding a seizure onset), or artifact. Half

an hour of iEEG recordings preceding preictal and an hour of those postceding seizure

offset are excluded in training. The Freiburg database contains six of iEEG recordings

from grid, strip, or depth-electrodes, three near the seizure focus (focal) and the oth-

er three distal to the focus (afocal). Seizure onset times and artifacts were identified

by certified epileptologists. The data were collected at 256 Hz (Patient 12 at 512 Hz)

sampling rate with 16 bit analog-to-digital converters.

2.1.2 System Architecture

Classifier

Prediction

Error

Filter

w(n)

Wavelet

Decomposition

EEG

signal

s(n)

Error

Signal

e(n)

+1
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e(n),or Wavelet

Coefficients
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Error

Filter

Coeffcients
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Figure 2.1: System architecture for seizure detection

Fig. 2.1 shows the overall system for seizure detection. Let s(n) denote the single-

channel iEEG signal. First the signal s(n) is windowed and filtered by a prediction error

filter to compute the error signal e(n). A two-level wavelet decomposition is applied

to the error signal to obtain one approximate signal and two detail signals. An 8-

dimensional feature vector f(l) = [f1(l), f2(l), ..., f8(l)]
T is extracted by computing the
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total power for the error signal and the three signals obtained by wavelet decomposition

inside the sliding window. The feature vectors are then subjected to training and

classification. The output of the system y(l) represents the detection signal. Two types

of classifiers are considered. These include: the linear SVM and the AdaBoost. The

training follows leave-one-out procedure, where the seizure to be tested is not used for

training.

2.1.3 Feature Extraction

This section describes the method for feature extraction, which includes prediction error

filter, a 2-level wavelet decomposition and power computation.

Window-based signal processing

The input signal is divided into the input segments (or windows) and the signal is

processed segment by segment. Each segment has a 50% overlap with its neighbour

segment.

Preprocessing

In the first step, EEG data is preprocessed to remove its mean. The demeaned signal is

then filtered by a PEF to remove the predictable component of the EEG signal. Each

window is 2 seconds long and has 50% overlap. The PEF is then used to compute the

error signal for next one second. Thus, effective feature computation rate is one per

second.

Let wf represent tap-weights vector of an m-tap predictor (or a mth-order PEF).

Coefficients of the PEF can be computed by solving the Wiener-Hopf equation: wf =

R−1r, where R represents the autocorrelation matrix of the input sample vector of a

window, and r represents the cross-correlation vector between the input sample vector

and its delayed versions. Levinson-Durbin algorithm is used to solve the above equation

[101].

A 19th-order PEF is chosen for this dataset. A singular value decomposition of

the covariance matrix is performed for patient No. 1 to find the optimal order of the

predictor. Fig. 2.2(a) and Fig. 2.2(b) show the plots of the percentage of total energy
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captured by the predictor versus the predictor’s order using (a) an hour’s inter-ictal

data from patient No. 1 while the patient is awake and (b) an hour’s inter-ictal data

from patient No. 1 while the patient is sleeping, respectively. A 19-tap predictor

(equivalently, 19th order or 20-tap PEF) can capture about 95% of the total energy of

the signal.
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Figure 2.2: Percentage of total energy captured by the predictor versus the predictor’s
order using (a) an hour’s inter-ictal data from patient No. 1 while the patient is awake
and (b) an hour’s inter-ictal data from patient No. 1 while the patient is sleeping.

Figure 2.3: Spectrograms of the EEG signal (left) and its error signal (right) using
interictal recordings for the 16th hour from patient No. 1.

Fig. 2.3 shows the spectrograms of the EEG signal and its error signal corresponding

to the interictal recordings for patient No. 1 in the 16th hour, where undesired harmonics

in the interictal period are filtered and the dominance of the low frequencies on the total

power is eliminated after prediction error filtering.
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Discrete wavelet decomposition

A two-level wavelet decomposition is applied to the error signal to compute wavelet

coefficients at different levels.

Feature extractor

Two types of features are extracted from the error signal and the wavelet coefficients:

one is the total power and the other is the sum of the logarithm of the absolute feature

values (also equivalently, logarithm of the product of the absolute feature values). Total

power for each segment is obtained by computing the sum of the squared value of the

wavelet coefficients (or the error signal). Mathematically, these are computed as:

f ′(l) =
∑
n∈Il

log|e(n)| (2.1)

f ′′(l) =
∑
n∈Il

e2(n) (2.2)

where Il = {(l − 1)fs + 1, ..., lfs} represents the samples of the l-th window. Fig. 2.4

shows the block diagram of feature extraction, where a total number of 8 features (f1(l)

to f8(l)) are extracted from the error signal, e(n), and the wavelet coefficients, a2(n),

d2(n), and d1(n); four of these features represent the mean power and the remaining

four represent the logarithm of the product of the absolute values. For the AdaBoost

classifier, all 8 features are input to the classifier. The classifier always selects between

1 to 4 out of the 8 features.
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Figure 2.4: Feature extraction.
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2.1.4 Seizure Detection Classification

Two classification methods are used and their performances are compared. One is

classification using a linear Support Vector Machine (SVM) and the other by using

AdaBoost. These classifiers can be easily implemented in hardware with low power

consumption.

2.2 Experimental Results

Table 2.1: Detection Performance of The System using linear SVM
Patient electrode Total No. Sensi- No. of FP
No. No. of SZ tivity FP rate

1 1 4 100 1 0.042
3 1 5 100 4 0.167
4 1 5 100 0 0
5 1 5 100 14 0.583
6 2 3 100 13 0.542
7 1 3 100 0 0
9 1 5 100 3 0.125
10 2 5 100 0 0
11 1 4 100 1 0.042
12 1 4 100 0 0
14 1 4 100 0 0
15 1 4 75 0 0
16 3 5 80 8 0.333
17 1 5 100 0 0
18 1 5 100 5 0.208
19 1 4 50 2 0.083
20 1 5 100 1 0.042
21 1 5 100 0 0

Overall 80 95 53 0.124

The parameters for the system are described as follows:

1) For each patient, we apply our algorithms on all electrodes. We select the electrode

with best performance.

2) Leave-one-out cross validation is used where one seizure is left out for testing

and the classifier is trained using features corresponding to the remaining seizures that

constitute the training set. This is repeated with each seizure left out once for testing.

The classifier with the best performance over the entire data is selected.

3) A refractory period, which specifies a time period during which the system ignores
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Table 2.2: Detection Performance of The System using Adaboost
Patient electrode Total No. Sensi- No. of FP
No. No. of SZ tivity FP rate

1 1 4 100 0 0
3 1 5 100 0 0
4 2 5 100 0 0
5 2 5 100 5 0.208
6 2 3 100 7 0.292
7 1 3 100 0 0
9 1 5 100 3 0.125
10 2 5 100 0 0
11 1 4 100 0 0
12 1 4 100 0 0
14 3 4 100 1 0.042
15 3 4 75 0 0
16 2 5 100 8 0.333
17 1 5 100 0 0
18 1 5 100 7 0.292
19 1 4 100 1 0.042
20 5 5 100 0 0
21 3 5 100 0 0

Overall 80 98.75 32 0.075
∗ Features for patient No. 19 are computed as the time difference of the original features.

all the subsequent triggers once it’s triggered, is introduced. The refractory period is

set to be 10 minutes.

Test Results using linear SVM classifier are shown in Table 2.1. Only the first 4

features {f1(n), .., f4(n)} are used in the training phase. The average sensitivity is 95%

and the average FP rate is 0.124 FP per hour.

Test Results using AdaBoost and all 8 features are shown in Table 2.2. The perfor-

mance is improved as the sensitivity is increased to 98.75% and the FP rate reduces to

0.075 FP per hour. For patient No. 19, in order to detect all seizures, a new feature

was derived by taking the difference of the log features at certain time and at 30s prior

to that time point.

2.3 Discussion

Many approaches have been presented for detecting seizures in epileptic patients. A

seizure detection algorithm that utilizes 3 focus channels was proposed in [102]. In

[103], this proposed algorithm was tested on the Freiburg database [100] and achieved
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a high sensitivity of 96.4% and a false positive rate (FPR) of 0.20 per hour.

Another detection algorithm which utilizes 4 bipolar channels and extracts four

different types of features was proposed in [104]. Their proposed algorithm was tested

on the Freiburg database and achieved a high sensitivity of 98.7% and a FPR of 0.27

per hour.

Another detection algorithm which uses a single channel signal and 5-level wavelet

decomposition was proposed in [105]. Their proposed algorithm was also tested on the

Freiburg database and achived a sensitivity of 91.29%.

Many other detection algorithms have also been proposed and tested on differen-

t databases. A wavelet based automatic seizure detection algorithm with four-level

wavelet coefficients was proposed in [102] and achieved a sensitivity of 94.2% and a false

detection rate of 0.25 per hour.

Another algorithm, proposed in [106], achieves a 100% sensitivity and a FP rate of

0.37 per hour. It should also be noted that this algorithm was trained using only the

first recorded seizure in each patient and, therefore, has its own limitations.

Table 2.3 compares the system performance of the proposed algorithm with prior

works. The proposed algorithm for seizure detection has the highest sensitivity (except

for the results in [106]) and a significantly lower FP rate than all other prior works

when AdaBoost classifier is used. Furthermore, the proposed algorithm uses the least

number of features and electrodes. Future work will be directed towards applicability

of the proposed method for scalp EEG recordings and long-term recordings.

Table 2.3: Comparison to prior work
Reference Sensi- FPR No. of No. of

tivity electrodes features

[105] 91.3 - 1 24
[104] 98.7 0.27 4 16
[103] 96.4 0.20 3 24
[102] 94.2 0.25 21 84
[106] 100 0.37 - 6/channel

proposed (SVM) 95.0 0.12 1 4
proposed (AdaBoost) 98.75 0.075 1 1∼4



Chapter 3

FDMR: Frequency-Domain

Model Ratio for Identifying

Change of State from a Single

Time-Series

Although the ratios in [30, 27] were chosen using band definitions from neuroscience,

such as δ, θ, α, β, and γ, and ranking algorithms from machine learning, the actual

bands do not need to coincide with these bands. Several theoretical questions remain

unanswered. Why the ratio features amplify the discrimination remains unexplained.

How the two bands should be chosen to maximize the discrimination remains unknown.

These questions are answered in this chapter [95]. Using an auto-regressive model, we

argue that a state change in a time-series corresponds to a change in the filter model.

From the ratio of the frequency-domain characteristics of these two models, i.e., one

frequency-domain response normalized with respect to the other, we can determine two

bands such that for one band the ratio is much higher than 1 and for the other much

less than 1. We show that the ratio of spectral powers of a single time-series in these

two bands is amplified for one of the two states. This chapter shows that the impact of

the non-stationarity of the noise power can be eliminated by using the ratio of spectral

powers when the signal-to-noise ratio (SNR) is high. This paper also shows that, even

27
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when the SNR is low, the ratio of spectral power ratios can significantly discriminate

the state of the time-series if a postprocessing step such as a second-order Kalman filter

is applied to the ratio feature. Thus, ratio of spectral powers can be used for identifying

state of a non-stationary time-series assuming the model filters for the two states are

different.

3.1 Ratio of Spectral Powers of Two Different Bands

Consider a discrete-time system described by an auto-regressive model as shown in Fig.

3.1. This system changes from one state to a second state. Our goal is to identify

the two states from the time-series. Note that the same time-series corresponds to two

different states at different time instances. We first make the following assumptions:

(1) Assume the system is driven by a white noise w1(n) with zero mean and variance

σ2
w1

at State 1, and is driven by a white noise w2(n) with zero mean and variance σ2
w2

at State 2.

(2) Assume the system has an impulse response of h1(n) at State 1 and an impulse re-

sponse of h2(n) at State 2. The frequency responses of h1(n) and h2(n) are represented

by H1(e
jω) and H2(e

jω), respectively.

(3) Assume the signals s1(n) and s2(n) correspond to the outputs of H1 and H2, re-

spectively.

(4) The measured signals are x1(n) and x2(n). s1(n) and s2(n) are never measured.

(5) Assume x1(n) and x2(n) are obtained by adding a white gaussian noise v1(n) (with

zero mean and variance σ2
v1) to s1(n) and by adding a white gaussian noise v2(n) (with

zero mean and variance σ2
v2) to s2(n), respectively. x1(n) and x2(n) correspond to the

measured time-series from a single sensor at two different states.

Identifying the two states of the system is, therefore, equivalent to identifying and

extracting discriminative features from the outputs of the system.

To illustrate how the ratio of two spectral powers cancels the effect of the change

of variance at the input of the auto-regressive model, we consider an example. Suppose

the magnitudes of frequency responses for the system with two states are shown in Fig.

3.2, where the system in both states is a low-pass filter. However, note that H1 is an

ideal low-pass filter with a constant pass-band gain while H2 is not. The frequency
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Figure 3.1: System models at (a) State 1 and (b) State 2.

response of the system in State 2, referred as H2, has twice the magnitude of H1 in the

frequency band of [0, 0.2π]; and the magnitude of H2 is only half of H1 in the frequency

band of [0.3π, 0.4π].
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Figure 3.2: magnitudes of frequency responses for the system in two states.

3.1.1 Stationary case

First, we assume a stationary case where the variances of the input noises of the two

states remain the same and are equal to a constant, i.e., σ2
w1

= σ2
w2

= c1. We also

assume that the variances of the additive white Gaussian noise (AWGN) at the two

states also remain the same and are equal to a constant, i.e., σ2
v1 = σ2

v2 = c2 Then the

power spectral density (PSD) of x1(n) and x2(n) can be calculated as follows:

Sx1(ω) = σ2
w1
|H1(e

jω)|2 + σ2
v1 = c1|H1(e

jω)|2 + c2 (3.1)

Sx2(ω) = σ2
w2
|H2(e

jω)|2 + σ2
v2 = c2|H2(e

jω)|2 + c2 (3.2)

(3.3)
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Since |H2(e
jω)| ≈ 2|H1(e

jω)| for w in [0, 0.2π], the band power in [0, 0.2π] can be used

as a discriminative feature to separate the signals s1(n) and s2(n). Mathematically, let

Px1([0, 0.2π]) and Px2([0, 0.2π]) represent the band powers for x1 and x2 in the frequency

band [0, 0.2π], respectively. This band power for x1 and x2 can be computed as follows:

Px1([0, 0.2π]) =

∫ 0.2π

0
(c1|H1(e

jω)|2 + c2)dω (3.4)

= Ps1([0, 0.2π]) + 0.2πc2 (3.5)

Px2([0, 0.2π]) =

∫ 0.2π

0
(c1|H2(e

jω)|2 + c2)dω (3.6)

= Ps2([0, 0.2π]) + 0.2πc2 (3.7)

=

∫ 0.2π

0
(4c1|H1(e

jω)|2 + c2)dω (3.8)

= 4Ps1([0, 0.2π]) + 0.2πc2 (3.9)

Since the band power of s1(n) in the frequency band of [0, 0.2π] is approximately four

times of the band power of s2(n) in the same frequency band, the band power of the

output signal x1(n) in the frequency band of [0, 0.2π, ] is significantly higher than the

band power of the output signal x2(n) in the same frequency band. Theoretically, this

band power is a discriminative feature to separate x1 and x2.

Assume that the outputs, x1 and x2, are both divided into 200 segments and the

two signals are processed segment by segment. Each segment is 10 seconds long and

contains 2560 samples. PSD and band power in the frequency band of [0, 0.2π] are

computed for each segment. Fig. 3.3 illustrates the histogram of the natural logarithm

of the band power in the frequency band of [0, 0.2π] for segments of x1 and x2, where

c1 = 1 and the signal-to-noise-ratio (SNR) is chosen as SNR=
σ2
s1

σ2
v1

=
σ2
s2

σ2
v2

= 20dB. This

corresponds to c2 = 0.0475. As shown in the figure, the mean of the band power in the

frequency band of [0, 0.2π] for State 1 is much lower than that of State 2 and such a

feature is indeed a discriminative feature to separate the two states.

Similarly, since |H2(e
jω)| ≈ 0.5|H1(e

jω)| for w in [0.3π, 0.4π], we have the following
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Figure 3.3: Histogram of the logarithm of the band power in the frequency band of
[0, 0.2π] for segments of x1 and x2..

relationship:

Px2([0.3π, 0.4π]) =

∫ 0.4π

0.3π
(c1|H2(e

jω)|2 + c2)dω (3.10)

= Ps2([0.3π, 0.4π]) + 0.1πc2 (3.11)

=

∫ 0.4π

0.3π
(0.25c1|H1(e

jω)|2 + c2)dω (3.12)

= 0.25Ps1([0.3π, 0.4π]) + 0.1πc2 (3.13)

Thus, the band power in [0.3π, 0.4π] can also be used as a discriminative feature to

separate the signals s1(n) and s2(n).

3.1.2 Non-stationary case

However, the band powers may not be as discriminative as shown in Fig. 3.3 when

the input noise variances change considerably. In many cases, the input noise variance

remains same for a certain period of time and then changes during next period of time.

We still assume that the outputs, x1 and x2, are both divided into 200 segments, and

the two signals are processed segment by segment. Each segment is 10 seconds long

and contains 2560 samples. The input noise variance is fixed for each segment, but

it is different for different segments. This means that the noise variance remains the

same for 10 seconds, and changes to a different value in the next 10 seconds. Therefore,

each segment is stationary, but the entire signal is not. Assume that the input noise

variances for w1(n) and w2(n) for different segments are distributed uniformly between

1 and 16, i.e., σ2
w1
, σ2

w2
∼ U(1, 16). Suppose that the signal to noise ratios (SNR) at
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two states are defined as SNR1=
σ2
s1

σ2
v1

and SNR2=
σ2
s2

σ2
v2

and we assume that SNR1=SNR2.

Band powers in the frequency band of [0, 0.2π] and in the frequency band of [0.3π, 0.4π]

are computed for each segment.
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Figure 3.4: Histogram of the band powers in (a) frequency band of [0, 0.2π], and in (b)
frequency band of [0.3π, 0.4π].

Fig. 3.4 illustrates the histogram of the band powers in (a) frequency band of

[0, 0.2π], and in (b) frequency band of [0.3π, 0.4π] for each segment. As shown in the

figure, the same two features that are very discriminative in the stationary case no

longer have the predictive powers to identify the state of the system.

However, suppose that the SNR between the signals, x1 or x2, and the AWGN, v1

or v2 is high enough. Then we can compute the ratio between the band power in the

frequency band of [0, 0.2π] and the band power in the frequency band of [0.3π, 0.4π] for

x1 as follows:

Px1([0, 0.2π])

Px1([0.3π, 0.4π])
=

∫ 0.2π
0 (σ2

w1
|H1(e

jω)|2 + σ2
v1)dω∫ 0.4π

0.3π (σ
2
w1
|H1(ejω)|2 + σ2

v1)dω
(3.14)

≈
∫ 0.2π
0 σ2

w1
|H1(e

jω)|2dω∫ 0.4π
0.3π σ2

w1
|H1(ejω)|2dω

(3.15)

=

∫ 0.2π
0 |H1(e

jω)|2dω∫ 0.4π
0.3π |H1(ejω)|2dω

(3.16)
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Similarly, we can compute the ratio between the band power in the frequency band

of [0, 0.2π] and the band power in the frequency band of [0.3π, 0.4π] for x2 as follows:

Px2([0, 0.2π])

Px2([0.3π, 0.4π])
≈
∫ 0.2π
0 |H2(e

jω)|2dω∫ 0.4π
0.3π |H2(ejω)|2dω

(3.17)

Such a spectral power ratio for x2 is significantly higher than x1 for the following reason:

(
Px2 ([0,0.2π])

Px2 ([0.3π,0.4π])

)
(

Px1 ([0,0.2π])

Px1 ([0.3π,0.4π])

) =

( ∫ 0.2π
0 |H2(ejω)|2dω∫ 0.4π
0.3π |H2(ejω)|2dω

)
( ∫ 0.2π

0 |H1(ejω)|2dω∫ 0.4π
0.3π |H1(ejω)|2dω

) (3.18)

=

(∫ 0.2π
0 |H2(e

jω)|2dω∫ 0.2π
0 |H1(ejω)|2dω

)(∫ 0.4π
0.3π |H1(e

jω)|2dω∫ 0.4π
0.3π |H2(ejω)|2dω

)
(3.19)

≈

(∫ 0.2π
0 4|H1(e

jω)|2dω∫ 0.2π
0 |H1(ejω)|2dω

)(∫ 0.4π
0.3π 4|H2(e

jω)|2dω∫ 0.4π
0.3π |H2(ejω)|2dω

)
(3.20)

=16 (3.21)

The spectral power ratio between the band power in the frequency band of [0, 0.2π]

and the band power in the frequency band of [0.3π, 0.4π] for x2 is 16 times that of

x1. Equations (3.16) to (3.21) illustrate that the spectral power ratio feature not only

cancels the input noise variance under high SNR assumption, but also amplifies the

differences between the outputs from two states.

Therefore, in general, we propose the following algorithm to identify discriminative

spectral power ratios to identify the system states:

Algorithm 1 Algorithm for identifying discriminative spectral power ratios using trans-
fer functions

(1) Plot the filter ratios as RH(ejω) = |H2(ejω)|
|H1(ejω)|

(2) Identify the frequency band 1 as B1 where RH(ejω) > 1
(3) Identify the frequency band 2 as B2 where RH(ejω) < 1
(4) Compute the band power in frequency band 1 as Px(B1)
(5) Compute the band power in frequency band 2 as Px(B2)
(6) Compute the spectral power ratio between the power in B1 and the power in B2

as Rx(B1, B2) = Px(B1)
Px(B2)

for each state.
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Theorem 1. The ratio of Spectral powers obtained from Algorithm 1 amplifies the

discrimination between the two states.

Proof. Suppose Rx1(B1, B2) =
Px1 (B1)

Px1 (B2)
and Rx2(B1, B2) =

Px2 (B1)

Px2 (B2)
represent the spec-

tral power ratios between the power in B1 and the power in B2 for x1 and x2, respec-

tively. We can prove that this ratio feature increases significantly for x2, regardless of

the change of the input noise variances. We first compute the ratio between the band

power in the frequency band of B1 and the band power in the frequency band of B2 for

x1 as follows:

Rx1(B1, B2) =
Px1(B1)

Px1(B2)
(3.22)

=

∫
B1

(σ2
w1
|H1(e

jω)|2 + σ2
v1)dω∫

B2
(σ2

w1
|H1(ejω)|2 + σ2

v1)dω
(3.23)

≈
σ2
w1

∫
B1

|H1(e
jω)|2dω

σ2
w1

∫
B2

|H1(ejω)|2dω
(3.24)

=

∫
B1

|H1(e
jω)|2dω∫

B2
|H1(ejω)|2dω

(3.25)

Similarly, this spectral power ratio for x2 can be computed as follows:

Rx2(B1, B2) =

∫
B1

|H2(e
jω)|2dω∫

B2
|H2(ejω)|2dω

(3.26)

By comparing the two spectral power ratios for x1 and x2, we have the following

relationship:

Rx2(B1, B2)

Rx1(B1, B2)
=

(
Px2 (B1)

Px2 (B2)

)
(
Px1 (B1)

Px1 (B2)

) (3.27)

=

(∫
B1

|H2(ejω)|2dω∫
B2

|H2(ejω)|2dω

)
(∫

B1
|H1(ejω)|2dω∫

B2
|H1(ejω)|2dω

) (3.28)

=

(∫
B1

|H2(e
jω)|2dω∫

B1
|H1(ejω)|2dω

)(∫
B2

|H1(e
jω)|2dω∫

B2
|H2(ejω)|2dω

)
(3.29)
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Since RH(ejω) = |H2(ejω)|
|H1(ejω)| > 1 in B1, the first term in Eq. (3.29) is greater than 1,

i.e.,

∫
B1

|H2(ejω)|2dω∫
B1

|H1(ejω)|2dω
> 1. Similarly, since RH(ejω) = |H2(ejω)|

|H1(ejω)| < 1 in B2, the second

term in Eq. (3.29) is also greater than 1, i.e.,

∫
B2

|H1(ejω)|2dω∫
B2

|H2(ejω)|2dω
> 1. Thus, taking the

product of these two expressions further amplifies the differences of Rx1(B1, B2) and

Rx2(B1, B2). This proves that the spectral power ratio feature is indeed much more

discriminative.

Fig. 3.5 illustrates the magnitude of the ratio betweenH1 andH2, i.e., |H2(e
jω)|/|H1(e

jω)|
from 0 to 0.4π. As shown in the figure, RH(ejω) > 1 for 0 < ω < 0.2π, and RH(ejω) < 1

for 0.3π < ω < 0.4π. Therefore, we can chooose B1 and B2 as B1 = [0, 0.2π] and

B2 = [0.3π, 0.4π]. Fig. 3.6 illustrates the histogram of the spectral power ratio between

the band powers in frequency band of [0, 0.2π] and the band power in the frequency

band of [0.3π, 0.4π] for the segments from x1 and x2 , where the SNR is chosen as S-

NR1=SNR2=20dB. In contrast to the band powers shown in Fig. 3.4, this ratio feature

is a discriminative feature to separate the two parts of the time series corresponding to

two different states.
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Figure 3.5: Magnitude of the ratio between H1 and H2, i.e., |H2(e
jω)|/|H1(e

jω)| from 0
to 0.4π.

3.2 Application to Real Data

In practical applications, the transfer functions H1 and H2 are typically unknown and

only the measured output x1 and x2 are available. We propose that the reciprocals of

prediction error filters (PEFs) can be used as approximations of the transfer functions
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Figure 3.6: Histogram of the ratio between the band powers in frequency band of
[0, 0.2π], and the band power in the frequency band of [0.2π, 0.4π].

for the systems. Linear prediction is a mathematical operation where future values of a

discrete-time signal are estimated as a linear function of previous samples. As shown in

Fig. 3.7(a), the prediction error, e1(n), can be viewed as the output of the prediction

error filter G1(z), where A1(z) is the optimal linear predictor, x1(n) is the input signal

in State 1, and x̂1(n) is the predicted signal. As shown in Fig. 3.7(b), the prediction

error, e2(n), can be viewed as the output of the prediction error filter G2(z), where

A2(z) is the optimal linear predictor, x2(n) is the input signal in State 2, and x̂2(n) is

the predicted signal.
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Figure 3.7: PEF for the system at (a) State 1, and (b) State 2.

The optimal linear predictor finds the coefficients of a p-th order linear predictor

(FIR filter) that predicts the current value of the real-valued time series x(n) based on

past samples as follows:

x̂(n) = a(1)x(n− 1) + a(2)x(n− 2) + ...+ a(p)x(n− p) (3.30)

For any signal x(n), the linear predictor A(z) = a(1)z−1 + a(1)z−2 + ....+ a(p)z−p, can
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be estimated using the Yule-Walker equations [107, 101]. The Yule-Walker equations

are given by:


rx(0) rx(1) · · · rx(p− 1)

rx(1) rx(0)
. . .

...
...

. . .
. . . rx(1)

rx(p− 1) · · · rx(1) rx(0)




a(1)

a(2)
...

a(p)

 =


rx(1)

rx(2)
...

rx(p)

 (3.31)

where rx = [rx(0), rx(1), ..., rx(p)] represents the autocorrelation estimate for x. After

computing the optimal predictor coefficients, the coefficients of the PEF can be found

as G(z) = 1− a(1)z−1 − a(2)z−2 + ....− a(p)z−p.

In theory, if the order of the filter is high enough, a PEF is capable of whitening a

stationary discrete-time stochastic process from the input [101]. Thus, the prediction

error at the output is approximately white Gaussian noise. After the PEF is obtained,

the PSD of the input signal can be estimated as follows:

Sx(ω) =
σ2
e

|1−
∑p

k=1 a(k)e
−jωk|2

(3.32)

=
σ2
e

|G(ejω)|2
(3.33)

Using Eq. (3.33), we can create the auto-regressive models for x1 and x2 as shown in

Fig. 3.8, where G1(z) and G2(z) represent the PEFs computed using the Yule-Walker

equations.
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Figure 3.8: Auto-regressive models for (a) x1, and (b) x2.

Now if we let H1(z) = 1
G1(z)

and let H2(z) = 1
G2(z)

, Algorithm 1 can be used to

identify discriminative ratio feature to separate x1 and x2 with minor Changes. The

resulting method is summarized as Algorithm 2.
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Algorithm 2 Algorithm for identifying discriminative spectral power ratios using PEFs

(1) Compute the PEFs G1(z) and G2(z) for x1 and x2, respectively

(2) Plot the PEF ratio as RH(ejω) = |H2(ejω)|
|H1(ejω)| =

|G1(ejω)|
|G2(ejω)|

(3) Identify the frequency band 1 as B1 where RH(ejω) > 1
(4) Identify the frequency band 2 as B2 where RH(ejω) < 1
(5) Compute the band power in frequency band 1 as Px(B1)
(6) Compute the band power in frequency band 2 as Px(B2)
(7) Compute the spectral power ratio between the power in B1 and the power in B2

as Rx(B1, B2) = Px(B1)
Px(B2)

for each state

3.3 Experimental Results

3.3.1 Synthesized Data

First, we synthesize a signal as the output of an autoregressive process of order 19

(AR(19)) driven by white Gaussian noise as shown in Fig. 3.1, where H1(z) = 1
G1(z)

and H2(z) =
1

G2(z)
. Thus, we can synthesize the signal data according to the following

euqations:

s1(n) = w(n)+

19∑
i=1

a1(i)s1(n− i) (3.34)

x1(n) = s1(n) + v1(n) (3.35)

s2(n) = w(n)+

19∑
i=1

a2(i)s2(n− i) (3.36)

x2(n) = s2(n) + v2(n) (3.37)

(3.38)

Let G1(z) = 1 − a1(1)z
−1 − .... − a1(p)z

−p and G2(z) = 1 − a2(1)z
−1 − .... − a2(p)z

−p

represent the PEFs for State 1 and State 2, respectively. Suppose that G1(z) and G2(z)

have frequency responses whose magnitudes are illustrated in Fig. 3.9.

Following the proposed method in Algorithm 2, we can compute and identify the

following variables:

(1) Compute the ratio PEF ratio as RH(ejω) = |H2(ejω)|
|H1(ejω)| =

|G1(ejω)|
|G2(ejω)| . Fig. 3.10 plots the

RH(ejω) versus frequency ω, where the blue horizontal line represents the value of 1.

(2) As shown in the figure, RH(ejω) > 1 when ω > 0.8π and RH(ejω) < 1 when
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Figure 3.9: Magnitude of the AR(19) PEF for the synthesized signals in State 1 and
State 2.

ω < 0.1π. Thus B1 is identified as [0.8π, π] and B2 is identified as [0, 0.1π].

(3) Compute the band power in frequency band 1 as Px(B1).

(4) Compute the band power in frequency band 2 as Px(B2).

(5) Compute the spectral power ratio between the power in B1 and the power in B2 as

Rx(B1, B2) = Px(B1)
Px(B2)

.
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Figure 3.10: RH(ejω) versus frequency ω, where the blue horizontal line represents the
baseline.

We use the same settings described in the previous section where each state contains

200 segments and the two signals are processed segment by segment. Each segment

is 10 seconds long and contains 2560 samples. The input noise variance is fixed for

each segment, but it is different for different segments. The input noise variances for

w1(n) and w2(n) for different segments are distributed uniformly between 1 and 16, i.e.,

σ2
w1
, σ2

w2
∼ U(1, 16). The signal to noise ratio (SNR) at the output is constant for each

segment, i.e.,
σ2
s1

σ2
v1

=
σ2
s2

σ2
v2

.

Fig. 3.11 illustrates (a) the spectral power ratio between the band power in the
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frequency band of [0.8π, π] and the band power in the frequency band of [0, 0.1π] for each

segment and (b) the input noise variance for each segment, where the SNR=20dB. Fig.

3.12 illustrates the histogram of (a) the band power in the frequency band of [0.8π, π],

(b) the band power in the frequency band of [0, 0.1π], and (c) the ratio between these

the band powers. As shown in the figure, although the band powers in both frequency

bands cannot separate the two states, their ratio can perfectly separate them. Fig. 3.13

illustrates the scatter plot of the natural logarithm of the band power in the frequency

band of [0.8π, π] and the natural logarithm of the band power in the frequency band of

[0, 0.1π] for all the segments in two states. As shown the figure, although data points

in the figure are linearly separable, the margin between the two clusters is very small.
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Figure 3.11: (a) Spectral power ratio between the band power in the frequency band
of [0.8π, π] and the band power in the frequency band of [0, 0.1π] for each segment and
(b) the input noise variance for each segment.

One important criterion for performance evaluation of a particular feature is the

area under curve (AUC) [108, 109]. Fig. 3.14 illustrates the AUC versus the SNR in dB

scale for (a) the band power in the frequency band of [0.8π, π], (b) the band power in the

frequency band of [0, 0.1π], and (c) their ratio. As shown in the figure, the spectral power

ratio feature has a much higher AUC than the band powers under different SNR. This

figure also shows that under the assumption of high SNR (SNR>15dB), the proposed

spectral power ratio indeed cancels the effect of the input noise variances and achieves

an AUC of 1.
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Figure 3.12: Histogram of (a) the band power in the frequency band of [0.8π, π], (b)
the band power in the frequency band of [0, 0.1π], and (c) the ratio between the above
2 band powers.
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Figure 3.13: Scatter plot of the logarithm of the band power in the frequency band of
[0.8π, π] and the logarithm of the band power in the frequency band of [0, 0.1π] for each
segment in 2 states.
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Figure 3.14: AUC versus the SNR in dB scale for the band power in the frequency band
of [0.8π, π], the band power in the frequency band of [0, 0.1π], and their ratio..

3.3.2 Improvement by Kalman Filter for Low SNR Environments

To further remove the fluctuations and noises of the spectral power ratios when SNR is

low, we propose to use a second-order Kalman filter to improve the results. The noise

of a process, which degrades the prediction capabilities, can be reduced by smoothing

its irregular effects. Kalman filter was shown in [22] to be very effective in smoothing

undesired fluctuations. The Kalman filter is a statistical method that can estimate

the state of a linear system by minimizing the variance of the estimation error, so the

estimates tend to be close to the true values of measurements. In order to apply the

Kalman filter to remove the noise from a signal, the process must be described as a linear

system. We propose to apply the same state-space model as the model described in [50]

and in supplementary document of [22] to the spectral power ratio features. Detailed

algorithm for a second-order Kalman filter is described in [101].

Fig. 3.15 illustrates the same spectral power ratio between the band power in the

frequency band of [0.8π, π] and the band power in the frequency band of [0, 0.1π] as

shown in Fig. 3.11 for State 1 and State 2, before and after post-processing in a low-

SNR case, where SNR=2dB. As shown in the figure, the ratio feature without Kalman

filter has many irregular fluctuations when SNR is low. However, Kalman fitler generates

a much smoother output feature and amplifies the differences between different states.

The AUC is improved from 0.7936 to 0.9980 after the Kalman filter is applied.

Fig. 3.16 illustrates the AUC versus the SNR in dB scale for the band power in the
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Figure 3.15: The same spectral power ratio between the band power in the frequency
band of [0.8π, π] and the band power in the frequency band of [0, 0.1π] as shown in Fig.
3.11 for State 1 and State 2 before and after post-processing in a low-SNR case, where
SNR=2dB.

frequency band of [0.8π, π], the band power in the frequency band of [0, 0.1π], and their

ratio after Kalman filter. As shown in the figure, AUCs of ratio feature is significantly

improved after the Kalman filter is applied when the SNR is low. The ratio feature with

Kalman filter even achieves an AUC higher than 0.99 when SNR is 0dB. However, the

band powers don’t benefit from the Kalman filter as the AUCs are even decreased after

the Kalman filter.

3.3.3 Choices of different bandwidths

Fig. 3.17 illustrates the impact of the choices of different bandwidths by plotting the

AUC versus the SNR in dB scale for different spectral power ratios using different

frequency bandwidths, where, for instance, the symbol [0.8π, π]/[0, 0.1π] represents the

spectral power ratio between the band power in high-frequency band [0.8π, π] and the

band power in low-frequency band [0, 0.1π]. As illustrated in the figure, the bandwidth

of the high-frequency band has a very small effect on the AUC. However, the bandwidth

for the low-frequency band has a huge impact on the performance of the ratio feature.

When SNR is low, the AUC decreases significantly after the bandwidth of the low-

frequency band is increased from 0.05π (or 0.1π) to 0.2π (or 0.4π). When SNR is high
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Figure 3.16: AUC versus the SNR in dB scale for the band power in the frequency
band of [0.8π, π], the band power in the frequency band of [0, 0.1π], and their ratio after
Kalman filter.

enough, all ratio features achieve a perfect AUC of 1.
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Figure 3.17: AUC versus the SNR in dB scale for different choices of frequency bands.

3.4 State Identification in EEG Data from Subjects with

Epilepsy

We tested the performance of ratio features for identifying preictal vs. interictal states

from EEG of subjects with epilepsy using the MIT Physionet EEG database [54]. Ac-

cording to [54], the MIT Physionet EEG database, collected at the Children’s Hospital

Boston, consists of EEG recordings from pediatric subjects with intractable seizures.
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The International 10-20 system of EEG electrode positions and nomenclature were used

for these recordings. Recordings are grouped into 23 cases. Each case contains between 9

and 42 hours’ continuous recordings from a single subject. In order to protect the priva-

cy of the subjects, all protected health information (PHI) in the original files have been

replaced with bipolar signals (one channel minus another). All signals were sampled at

256 samples per second with a 16-bit resolution. Most files contain 23 bipolar-channel

EEG signals. The rhythmic activity in an EEG signal is typically described in terms

of the standard frequency bands, but the γ band is further split into 5 sub-bands. The

bands considered include: (1) θ (4-8 Hz), (2) α (8-13 Hz), (3) β (13-30 Hz), (4) γ1

(30-50 Hz), (5) γ2 (50-70 Hz), (6) γ3 (70-90 Hz), (7) γ4 (90-110 Hz), (8) γ5 (110-128

Hz). In our experiment, an hour’s EEG data preceding each seizure onset are marked

as preictal (Class 1) and the remaining EEG data which are far away from the seizures

are marked as interictal (Class 0).

Following the proposed method the proposed method in Algorithm 2, we can com-

pute the 100th-order PEFs for the EEG signal as follows:

(1) Divide interictal and preictal signals into 10-seconds-long segments, where each seg-

ment contains 256*10=2560 samples.

(2) Compute PEFs for all interictal segments.

(3) Compute frequency responses (FFTs) of the PEFs for all interictal segments.

(4) Compute G1(z) as the mean of the magnitude of the FFT coefficients of the PEFs

for all interictal segments.

(5) Repeat (2) to (4) for preictal segments to obtain G2(z).

As shown in [27], a single spectral power ratio from a single electrode achieved 100%

sensitivity for Patient No. 1, No. 8, No.11, No. 18, No. 19, No. 20, and No. 21 in the

MIT database. Fig. 3.18 to Fig. 3.24 illustrate the magnitudes of the ratio between

the frequency response of G1(z) (interictal) and G2(z) (preictal) in electrode numbers

17, 20, 4, 1, 1, 12, 1 for Patient numbers 1, 8, 11, 18, 19, 20, 21, respectively. For

instance, as shown in the Fig. 3.22, this frequency-domain PEF ratio in electrode No. 1

for Patient No. 19 is significantly greater than 1 for 0.45π < ω < 0.5π, and is less than

1 for 0.5π < ω < 0.7π. Thus, we can choose B1 as B1 = γ2 = [0.42π, 0.5π] and choose

B2 as B1 = γ3 = [0.5π, 0.7π]. As a result, the spectral power ratio between the band

powers the in above 2 bands can be used for predicting seizures for Patient No. 19.
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Figure 3.18: The magnitude of the ratio between the frequency response of the PEF
for preictal signal and the frequency response of the PEF for the interictal signal in
electrode No. 17 for Patient No. 1.
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Figure 3.19: The magnitude of the ratio between the frequency response of the PEF
for preictal signal and the frequency response of the PEF for the interictal signal in
electrode No. 20 for Patient No. 8.

ω (in π)
0 0.2 0.4 0.6 0.8 1

m
ag

ni
tu

de

0

0.5

1

1.5

2

baseline
|G

1
|/|G

2
|

Figure 3.20: The magnitude of the ratio between the frequency response of the PEF
for preictal signal and the frequency response of the PEF for the interictal signal in
electrode No. 4 for Patient No. 11.
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Figure 3.21: The magnitude of the ratio between the frequency response of the PEF
for preictal signal and the frequency response of the PEF for the interictal signal in
electrode No. 1 for Patient No. 18.
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Figure 3.22: The magnitude of the ratio between the frequency response of the PEF
for preictal signal and the frequency response of the PEF for the interictal signal in
electrode No. 1 for Patient No. 19.
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Figure 3.23: The magnitude of the ratio between the frequency response of the PEF
for preictal signal and the frequency response of the PEF for the interictal signal in
electrode No. 1 for Patient No. 20.
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Figure 3.24: The magnitude of the ratio between the frequency response of the PEF
for preictal signal and the frequency response of the PEF for the interictal signal in
electrode No. 1 for Patient No. 21.



48

Fig. 3.25 illustrates band power in γ2 band (top pannel), band power in γ3 band

(middle pannel) and the spectral power ratio of γ2−to−γ3 after Kalman filter using the

EEG recordings in electrode No. 1 of Patient No. 19 in the MIT Physionet database,

where the red vertical lines represent the seizure onsets. A seizure is predicted if the

ratio feature exceeds a certain threshold before the seizure is onset. This feature predicts

all seizures and achieves 0 false positives in 29 hours. Note that the reduction in γ3

power amplies the ratio for the first two seizures. However, for the third, both band

powers go down; however, γ3 power goes down at a far steeper rate than γ2 power, thus

amplifying the ratio.
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Figure 3.25: Band power in γ2 band (top pannel), band power in γ3 band (middle
pannel) and the spectral power ratio of γ2− to− γ3 after Kalman filter using the EEG
recordings in electrode No. 1 of Patient No. 19 in the MIT Physionet database.

Test results using a single spectral power ratio for these 7 patients are shown in

Table 3.1, where ”SZ” stands for seizures, ”FPR” stands for false positive rate, and

”SPH” represent seizure prediction horizon. Details about the spectral power ratio

used for prediction are shown in the third column, where the symbol α/γ1, for instance,

indicates that the spectral power ratio between power in α band and power in γ1 band is

used. For the rest of the patients, single feature classification cannot achieve a minimum

sensitivity of 80% or a FPR less than 0.125. The model ratio illustrated from Fig. 3.18

to Fig. 3.24 confirm that these spectral power ratios satisfy the constraint that the ratio

is greater than 1 in each case.



49

Table 3.1: Prediction Performance of The Proposed System using a single feature for
MIT Database

Patient electrode Power # of
SS FPR

Max/Min
# # ratio SZ SPH(min.)

1 17 α/γ1 6 100 0.024 60/3

8 20 γ4/α 5 100 0.1 60/30

11 4 γ4/α 3 100 0.086 18/12

18 1 γ3/θ 4 100 0.114 75/3

19 1 γ2/γ1 3 100 0 48/18

20 12 θ/β 6 100 0.071 60/20

21 1 γ1/β 3 100 0.065 78/3

3.5 Discussion

The experimental results illustrate that spectral power ratio features can achieve sig-

nificantly better performance for non-stationary processes. The ratio feature without

prostprocessing by Kalman filter can achieve a better performance than other spectral

features in high-SNR cases. Its performance can be further improved if the spectral

power ratio feature is smoothed by a Kalman filter. For the MIT Physionet database,

the spectral power ratios achieved a sensitivity of 100% and an average FPR of 0.07

FP/hour for 7 out 21 patients. However, since the EEG signals are too non-stationary

for the remaining patients, the proposed method which identifies a single spectral power

ratio from a single electrode cannot achieve a sensitivity of higher than 80% or a FPR

less than 0.125. Multiple feature selection method should be used for the remaining

patients [27].

The proposed method can achieve a good performance if the PEF for the signal

remains about the same at each state, regardless of the change of the noise variance.

For instance, if the coefficients of the PEF during the interictal period changes dra-

matically at different times stamps, then the proposed method can not achieve a good

performance. In such cases, a non-linear feature selection method such minimum Re-

dundancy Maximum Relevance (mRMR) feature selection should be considered.

One key advantage of using ratio feature is to reduce the computation complexity for

feature extraction. Once discriminative spectral power ratio feature and the two bands

are identified, fast Fourier transform (FFT) can be used for Periodogram PSD estimate

or Welch’s PSD estimate. Another key advantage of the spectral power ratio is that it

reduces the complexity of the subsequent classifier. For instance, when a decision tree
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is used to separate the data points as shown in Fig. 3.13, large number of nodes are

needed as each node can only evaluate a single threshold. Using the ratio feature, a

single threshold is sufficient to separate the 2 classes.

3.6 Conclusion

In [36], several ratio features were identified to discriminate schizophrenia subjects from

healthy control from MEG. It can be verified that the selected bands indeed satisfy the

constraints of the frequency-domain model ratio. This paper proves the significance of

spectral power ratio between the band powers in two different frequency bands because

such a feature cancels the effect of the non-stationarity caused by the dramatic change

in the noise power when the signal-to-noise ratio (SNR) is high. When the SNR is

low, the performance of the spectral power ratios can be improved significantly if a

postprocessing step such as a second-order Kalman filter is applied. Experimental results

using synthesized data and the MIT Physionet database illustrate that the spectral

power ratios can achieve a much better performance than traditional spectral features.

This paper has derived a theory of the ratio of spectral power for a single time-series that

can span two states. However, in many applications, multiple time-series are available.

Future work will be directed towards deriving theory of ratio of spectral or cross-spectral

power for multi-channel applications.



Chapter 4

Seizure Detection from

Long-Term EEG Recordings

using Regression Tree Based

Feature Selection and Polynomial

SVM Classification

This chapter shows that combining the PSD features such as absolute spectral powers,

relative spectral powers and spectral power ratios as a feature set and then carefully

selecting a small number of these features from three or four electrodes can achieve a

better detection performance with low detection horizon. In the proposed approach [29],

we first compute the spectrogram of the input fragmented EEG signals from three or four

electrodes. Spectral powers and spectral ratios are extracted as features. The features

are then subjected to feature selection using classification and regression tree (CART).

The selected features are then subjected to a polynomial support vector machine (SVM)

classifier with degree of 2. Since all these features can be extracted by performing the

fast Fourier transform (FFT) on the signals and the classifier requires low hardware

complexity [97], the proposed algorithm can be implemented by the hardware with low

complexity and low power consumption.

51
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4.1 Materials and Methods

4.1.1 Patients Database

The dataset for testing the proposed algorithm is from the UPenn and Mayo Clinic’s

Seizure Detection Challenge database [110]. The experimental procedures involving

human subjects were approved by the Institutional Review Board. The Institutions

Ethical Review Board approved all experimental procedures involving human subjects.

The experimental procedures involving animal models were approved by the Institu-

tional Animal Care and Ethics Committee.

According to [110], intracranial EEG was recorded from dogs with naturally oc-

curring epilepsy using an ambulatory monitoring system. EEG was sampled from 16

electrodes at 400 Hz, and recorded voltages were referenced to the group average. The

canine data are from an implanted device acquiring data from 16 subdural electrodes

[111]. Two 4-contact strips are implanted over each hemisphere in an antero-posterior

orientation. In addition, datasets from patients with epilepsy undergoing intracranial

EEG monitoring to identify a region of the brain that can be resected to prevent future

seizures are included [112]. These datasets have varying numbers of electrodes and are

sampled at 500 Hz or 5000 Hz, with recorded voltages referenced to an electrode out-

side the brain. The human data are from patients with temporal and extra-temporal

lobe epilepsy undergoing evaluation for epilepsy surgery. The iEEG recordings are from

depth electrodes implanted along anterior-posterior axis of hippocampus, and from sub-

dural electrode grids in various locations.

The training data is organized into 1-second EEG clips labeled ”Ictal” for seizure

data segments, or ”Interictal” for non-seizure data segments. Training data are arranged

sequentially while testing data are in random order. Ictal training and testing data

segments are provided covering the entire seizure, while interictal data segments are

provided covering approximately the mean seizure duration for each subject. Starting

points for the interictal data segments were chosen randomly from the full data record,

with the restriction that no interictal segment be less than one hour before or after a

seizure.
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Figure 4.1: Flow chart of the proposed algorithm for seizure detection

4.1.2 Flow Chart of Proposed Algorithm

Fig. 4.1 shows the proposed algorithm for seizure detection. Let s(n) denote the single

channel EEG signal. First, spectral features are extracted from each electrode. These

features include absolute spectral powers in specific bands, relative spectral powers in

specific bands, and all possible spectral power ratios between the spectral powers. Then

the feature set is subjected to a feature selection step by classification and regression

tree (CART). The selected features are then subjected to training and classification

using polynomial support vector machine (SVM) with degree of 2. A sigmoid function

is used to to convert the decision variables from the output of the classifier to probability

representations y(l).

4.1.3 Feature Extraction

Three types of features are extracted from each electrode, which include absolute spec-

tral power, relative spectral power and spectral power ratio.

The rhythmic activity in an EEG signal is typically described in terms of the stan-

dard frequency bands, but the γ band is further split into a number of sub-bands. For

the canine objects whose sampling frequency is 400 Hz, we split the frequency band

into the following 10 subbands: θ (3-8 Hz), α (8-13 Hz), β (13-30 Hz), γ1 (30-55 Hz),

γ2 (55-80 Hz), γ3 (80-105 Hz), γ4 (105-130 Hz), γ5 (130-150 Hz), γ6 (150-170 Hz), γ7

(170-200 Hz). For the human objects whose sampling frequency is 5000 Hz, we split the

frequency band into the following 13 subbands: θ (3-8 Hz), α (8-13 Hz), β (13-30 Hz),

γ1 (30-50 Hz), γ2 (50-80 Hz), γ3 (80-100 Hz), γ4 (100-130 Hz), γ5 (130-160 Hz), γ6

(160-200 Hz), γ7 (200-250 Hz), γ8 (250-300 Hz), γ9 (300-350 Hz), γ10 (350-400 Hz). To

eliminate power line hums at 60 Hz and its harmonics, spectral powers in the band of

57-63 Hz, 117-123 Hz, 177-183 Hz, 237-243 Hz, 297-303 Hz and 357-363 Hz are excluded
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in spectral power computation.

For canine objects, all possible combinations of ten spectral powers lead to a total

number of
(
10
2

)
= 45 ratios from a single channel EEG signal. For human patients, that

number is increased to
(
13
2

)
= 78.

Fig. 4.2 illustrates the normalized (between 0 and 1) absolute spectral power in band

[13, 30] Hz (top pannel), the spectral power in band [160, 200] Hz (middle pannel) and

the spectral power ratio of P8,13-to-P160,200 using the EEG recordings in electrode No.

10 of patient No. 8 from the Upenn and Mayo Clinic database, where the red vertical

lines represent the seizure onsets. While the spectral power features in both bands are

indiscriminate of the ictal and interictal periods, the ratio between them shows strong

detectability of the seizures as this ratio increases significantly after the seizure onsets.
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Figure 4.2: Spectral power in in band [13, 30] Hz (top pannel), spectral power in band
[160, 200] Hz (middle pannel) and the spectral power ratio of P8,13-to-P160,200 using the
EEG recordings in electrode No. 10 of patient No. 8 from the Upenn and Mayo Clinic’s
database.

4.1.4 Feature Selection by Regression Tree

A three-node regression tree is created using CART. Fig. 4.3 shows a regression tree

with 3 nodes for Patient No. 7 from the Upenn and Mayo Clinic’s database. This
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  0.93151

  0.92157

0.0046397   0.88889

e28,P[13,30]/P[160,200] < 1.95353

e27,P[30,50]/P[200,250] < 4.25702

e26,P[8,13]/P[160,200] < 3.44675

  e28,P[13,30]/P[160,200] >= 1.95353

  e27,P[30,50]/P[200,250] >= 4.25702

  e26,P[8,13]/P[160,200] >= 3.44675

Figure 4.3: A three-node regression tree for patient No. 7 from the Upenn and Mayo
Clinic’s seizure detection contest.

tree predicts probabilities of seizures based on three features, P13,30-to-P160,200 ratio of

electrode No. 28, P30,50-to-P200,250 ratio of electrode No. 27, and P8,13-to-P160,200 ratio

of electrode No. 26. For instance, the first decision is whether P8,13-to-P160,200 ratio of

electrode No. 28 is greater than the threshold 1.95. If so, follow the right branch and

such data are classified as ictal with probability equal to 0.9315. If not, then follow the

left branch to the next triangle node. Here a second decision needs to be made.
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Figure 4.4: 3D scatter plot of the interictal and ictal feature vectors (left pannel) and
the 3D scatter plot of the testing feature vectors after feature selection by CART using
the EEG recordings Patient No. 7 from the Upenn and Mayo Clinic’s database.

Fig. 4.4 illustrates the 3D scatter plot of the interictal and ictal feature vectors (left
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pannel) and the 3D scatter plot of the testing feature vectors after feature selection by

CART using the EEG recordings of Patient No. 7 from the Upenn and Mayo Clinic

database, where the blue cross dots represent the interictal feature vectros, the red

circled dots represent the ictal feature vectors, and the green circled dots represent the

testing feature vectors.

4.1.5 Seizure Detection Classification

As CART unveils nonlinear relationships, polynomial SVM with degree of 2 is used.

After computing the decision variable, a sigmoid function, S(p(t − c)), is used to

convert its values into probabilities, where c represents the center of the function and

p represents spread of the function, respectively. Fig. 4.5 illustrates the input decision

variable and output seizure probability of the sigmoid function.
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Figure 4.5: Conversion form decision variable to seizure probability for Pat. No. 8.

4.2 Experimental Results

Half of the training data are selected randomly for feature selection and training the

classifier. Parameters such as αi, b, p, and c are selected such that the probabilities of

the testing data achieve the maximum area under curve (AUC).

Test Results of the proposed algorithm are shown in Table 4.1, where ”SS” stands

for sensitivity and ’SZ’ stands for seizures. Details of the features used to detect seizures

are shown in the second column. For instance, three features are used for Patient No.
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Table 4.1: Detection Performance of The Proposed System
Object

Feature Details
# of

SS AUC
Name SZ

Dog 1
Electrode 3 8 16

5 100 0.9773
Feature P80,105 P105,130

P80,105

P170,200

Dog 2
Electrode 8 7 16

3 100 0.9975
Feature

P3,8

P150,170

P3,8

P170,200

P3,8

P150,170

Dog 3
Electrode 14 7 8

12 100 0.9876
Feature P3,8 P13,30 P150,170

Dog 4
Electrode 7 8 10 15

2 100 0.9549
Feature P30,55 P55,80 Q150,170 P3,8

Pat. 1
Electrode 19 19 6

2 100 0.9878
Feature P105,130

P55,80

P170,200
Q105,130

Pat. 2
Electrode 1 4 4

3 100 0.9852
Feature

P8,13

P350,400

P80,100

P160,200
Q30,55

Pat. 3
Electrode 5 13 35 9

7 100 0.9506
Feature P3,8 P160,200 Q50,80

P50,80

P350,400

Pat. 4
Electrode 36 36 36

2 100 1.0000
Feature

P30,50

P80,100

P30,50

P100,130

P30,50

P130,160

Pat. 5
Electrode 25 13 35 2

3 100 0.9723
Feature P13,30 P50,80

P130,160

P350,400

P160,200

P350,400

Pat. 6
Electrode 15 24 16

4 100 0.9973
Feature

P3,8

P80,100

P8,13

P80,100

P8,13

P30,50

Pat. 7
Electrode 28 27 26

3 100 0.9897
Feature

P13,30

P160,200

P30,50

P200,250

P8,13

P200,250

Pat. 8
Electrode 2 10 7

2 100 0.9818
Feature P300,350

P8,13

P160,200

P8,13

P130,160
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1 to detect seizures which include absolute spectral power in frequency band [105, 130]

Hz of electrode No. 19, spectral power ratio between the frequency band [55, 80] Hz

and frequency band [170, 200] Hz of electrode No. 19, and the relative spectral power in

frequency band [105, 130] Hz of electrode No. 6. For Dog No. 3, Pat. No. 3, and Pat.

No. 5, four features from four electrodes are selected because three features could not

achieve an AUC greater than 0.9500 on the training dataset. The proposed algorithm

achieves a sensitivity of 100% and an average AUC of 0.9818.

Different thresholds are performed on the final seizure probability, y(l), to compute

the specificity and mean detection horizon. Fig. 4.6 illustrates the relationship between

mean detection horizon and specificity at different thresholds. For instance, a threshold

at 0.78 can achieve a detection horizon of 5.8 seconds and a specificity of 99.9%. It

should be noted that sensitivity remains 100% for all selected thresholds shown in the

figure.
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Figure 4.6: Relationship between detection horizon and specificity at different thresh-
olds.

4.3 Discussion

Many approaches have been presented for detecting seizures in epileptic patients us-

ing the Freiburg database [100]. A detection algorithm which uses instantaneous area

of analytic intrinsic mode functions was proposed in [113] and achieved a sensitivity

of 90.00% and a specificity of 89.31%. Another detection algorithm which uses vari-

ous types of features was proposed in [105] and achieved a sensitivity of 91.29% and

specificity of 99.19%. Another detection algorithm which uses fractal intercept and rel-

ative fluctuation index was proposed in [114] and achieved a sensitivity of 91.72% and
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a specificity of 94.89%. Another detection algorithm which uses multiscale principal

component analysis and eigenvectors was proposed in [115] and achieved a sensitivity

of 99.80% and a specificity of 99.40%.

Table 4.2 compares the system performance of the proposed algorithm with prior

works. The proposed algorithm for seizure detection has the highest sensitivity and

the highest specificity than all other prior works. Furthermore, the proposed algorithm

uses the least number of features and electrodes. However, applicability of the pro-

posed algorithm for seizure detection in long-term EEG recordings needs to be further

investigated.

Table 4.2: Comparison to prior work
Sensi- Speci- No. of No. of
tivity ficity electrodes features

[113] 90.00 89.31 6 18
[105] 91.29 99.19 6 144
[114] 91.72 94.89 6 12
[115] 99.80 99.40 6 14

proposed 100.00 99.90 3-4 3-4



Chapter 5

Seizure Prediction from

Short-Term EEG Recordings

using Sparse Features

In low-power and low-complexity hardware design, the first key consideration is the

number of sensors used to collect EEG signals. Electrode selection is an essential step

before feature selection as sensors and analog-to-digital converters (A/D) can be highly

power consuming for an implantable or wearable biomedical device. The second key con-

sideration is selecting useful features that are computationally simple and are indicative

of upcoming seizure activities. The third key consideration is the choice of classifier.

Based on the selection of the classifier, a criteria for electrode and feature selection

should be chosen accordingly in order to achieve the best classification performance. It

is shown in [97] that linear classifiers have significantly lower power consumptions than

the nonlinear ones and are dependent on the feature dimensions only. Therefore, only

linear classifiers are considered. Thus, instead of selecting electrodes by their locations,

which has been used in other studies, we select electrodes and features in a way such that

the preictal features are as linearly separable from the interictal features as possible.

In the proposed approach [27], we first compute the spectrogram of the input EEG

signals from one or two electrodes. A window based PSD computation is used with

a 4-second sliding window with half overlap. Thus, the effective window period is 2

60
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second. Spectral powers and spectral ratios are extracted as features and are input to a

classifier. A postprocessing step is used to remove undesired fluctuations of the decision

output of the classifier. The feature signals are then subjected to feature selection and

classification where two strategies are used. One is the single feature selection and the

other is the multi-dimensional feature selection. While a seizure prediction system using

a single feature requires low hardware complexity and power consumption, systems using

multi-dimensional features achieve a higher prediction reliability. Multi-dimensional

features are selected for patients where systems using a single feature can not achieve a

predetermined requirement.

5.1 Materials and Methods

5.1.1 EEG Databases

We have trained and tested our algorithm on the two databases: Freiburg intracranial

EEG (iEEG) database [100] and MIT Physionet scalp EEG (sEEG) database [54].

Details about the Freiburg intracranial EEG (iEEG) database are described in 2.1.1.

Details of the MIT Physionet scalp EEG (sEEG) database are described in 3.4.

For both databases, patients who have less than three seizures are not analyzed. The

reason for not including these patients is that training using preictal data from only one

seizure is likely to lead to a model overfitting to that particular seizure and may not be

able to predict the other ones. Therefore, at least two seizures must be selected in the

training set and another seizure is used for testing.

For both databases, we use the following categorization: 60 minutes’ recordings

preceding seizure onsets are categorized as preictal (C1); 3 minute’s and 30 minutes’

recordings postceding seizure onsets are categorized as ictal (C2) and post-ictal (C3),

respectively; the rest of the recordings are categorized as interictal (C0). The goal of

seizure prediction is to separate C1 from C0, regardless of C2 and C3.

5.1.2 Feature Extraction

This section describes the method for feature extraction, feature selection and postpro-

cessing, which include spectral power computation, spectral power ratio computation



62

and Kalman filter.

Window-based Signal Processing

The window size is chosen as four seconds (M = 4 ∗ fs) and each segment is categorized

as interictal (C0), preictal (C1), ictal (C2), or post-ictal (C3).

Spectral Power and Spectral Power Ratios

Three types of features are extracted from the windowed signal. These include absolute

spectral power, relative spectral power and spectral power ratio. The rhythmic activity

in an EEG signal is typically described in terms of the standard frequency bands, but

the γ band is further split into 5 sub-bands. The bands considered include: (1) θ (4-8

Hz), (2) α (8-13 Hz), (3) β (13-30 Hz), (4) γ1 (30-50 Hz), (5) γ2 (50-70 Hz), (6) γ3

(70-90 Hz), (7) γ4 (90-110 Hz), (8) γ5 (110-128 Hz). For Freiburg database, to eliminate

power line hums at 50 Hz and its harmonics, spectral powers in the band of 47-53 Hz

and 97-103 Hz are excluded in spectral power computation. For MIT database, spectral

powers in the band of 57-63 Hz and 117-123 Hz are excluded. For a single channel

EEG signal, all possible combinations of eight spectral powers lead to a total number

of
(
8
2

)
= 28 possible ratios.

In summary, for each electrode, 44 features which include 8 absolute spectral power,

8 relative spectral powers and 28 spectral power ratios are extracted every 2 seconds.

The key advantage of spectral power ratio features over the spectral power features

is that certain ratio features are strong indicators of an upcoming seizure activity while

the latter are not indicative of such activity at all as the spectral power usually fluctu-

ates a lot during both interictal and preictal periods. The ratio feature amplifies the

simultaneous increase in the spectral power of one band and decrease in that of another

band. For instance, Fig. 5.1 illustrates the spectral power in γ2 band (top pannel),

the spectral power in γ1 band (middle pannel) and the spectral power ratio of γ2-to-γ1

after postprcossing using the EEG recordings in electrode No. 1 of Patient No. 19 in

the MIT Physionet database, where the red vertical lines represent the seizure onsets.

While the spectral power features in both bands are indiscriminate of the preictal and

interictal periods, the ratio between them shows strong predictability of the upcoming

seizure activities as this ratio always increases significantly prior to the seizure onsets.
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Figure 5.1: Spectral power in γ2 band (top pannel), spectral power in γ1 band (middle
pannel) and the spectral power ratio of γ2-to-γ1 after postprcossing using the EEG
recordings in electrode No. 1 of Patient No. 19 in the MIT Physionet database.

Postprocessing

The noise of a process, which degrades the prediction capabilities, can be reduced by

smoothing its irregular effects. Kalman filter was shown in [22] to be very effective

in smoothing undesired fluctuations. The Kalman filter is a statistical method that

can estimate the state of a linear system by means of minimizing the variance of the

estimation error, so the estimates tend to be close to the true values of measurements.

In order to apply the Kalman filter to remove the noise from a signal, the process

must be described as a linear system. We use the same state-space model as the model

described in [50] and in supplementary document of [22]. Detailed algorithm for a

second-order Kalman filter is described in [101]. As a result, Kalman fitler generates a

much smoother output feature.

5.1.3 Single Feature Selection and Classification

Flow chart of a single feature selection is shown is Fig. 5.2, where f(l) represents the

l-th feature sample. The feature basis selection step is followed by electrode selection.

The best electrode is selected using scatter matrix method. A second round of feature

selection is performed to further reduce the number of features. The linear separability
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criteria J is computed for all features from all electrodes and the best feature is selected

whose J is the maximum. Its corresponding electrode is then used for seizure prediction.

Feature selection is important in limiting the number of the features input to a

classifier in order to achieve a good classification performance and a less computationally

intense classifier. In this section, features are ranked and a single feature is selected in

a patient-specific manner. A universal spectral power ratio such as δ-to-α ratio (DAR)

has been explored in [116, 117] for abnormality detection. However, ratio features or

PSD features have to be chosen in a patient-specific manner. One feature that works

well for one patient may not work well for another patient.

A single feature is first selected for seizure prediction. The key reason for finding a

single feature that provides acceptable prediction results is that systems using a single

feature have the lowest hardware complexity and power consumption. To extract a

single spectral power ratio feature from a single electrode, only one sensor needs to

be implanted or placed and only spectral powers in two frequency bands need to be

computed from the sensor. Therefore, this section describes the criteria used for the

single feature selection and the classification method.

Single-channel or 

Bipolar channel

EEG signal

Feature selection 

by F-score

Feature selection

Post-

processing

Feature Signal

28 band power ratios

8 absolute bands PSD

8 relative bands PSD

Feature extraction

Figure 5.2: Flow chart of single feature selection.

Feature Selection Criteria

Class separability is introduced to select the suboptimal group of linearly independent

features. Let f = [f1, f2, ..., fm]T represents an m-dimensional feature vector. Define
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within-class scatter matrix (Sw) and between-class scatter matrix (Sb) as follows

Sw =

i=c∑
i=1

piΣi (5.1)

Sb =

i=c∑
i=1

pi(µi − µ0)(µi − µ0)
T (5.2)

where c represents the number of classes, Σi = E[(f − µi)(f − µi)
T ] represents the

covariance matrix for class i, pi represents the probability of class i, µ0 represents the

global mean vector, and µi represents the mean vector for class i, respectively. The

criterion

J =
|Sw + Sb|

|Sw|
(5.3)

takes a large positive value when samples in the m-dimensional space are well clustered

within each class, and the clusters of the different classes are well separated [5]. The

notation |A| represents the determinant of the matrix A. To select a single feature, J is

computed for all features from all electrodes and the feature that achieves the maximum

J is selected.

The application of the class separability criteria is illustrated for Patient No. 1 from

Freiburg database. For this patient, γ5-to-γ4 ratio of electrode No. 1 was selected as

the best feature. Fig. 5.3 illustrates the γ5-to-γ4 ratio of electrode No. 1 before and

after postprocessing using the (a) ictal and (b) interictal recordings of Patient No. 1 in

the Freiburg EEG database, where the blue curves represent the feature signals before

Kalman filter, the orange curves represent the outputs of the Kalman filter, and the

red lines represent the thresholds and the black dashed lines represent seizure onsets,

respectively. The feature in Fig. 3.15(a) corresponds to four different seizures where

each seizure onset occurs at exactly 3000 second time stamp. The feature in Fig. 3.15(b)

corresponds to interictal period of about 1 day duration. This particular ratio feature

is shown to be a good seizure predictor for this patient as the feature always exceeds

the threshold before seizure onset and is always below the threshold during interictal

period.
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Figure 5.3: Examples to illustrate the single ratio feature selected for seizure predition
and the power of the Kalman filter using the (a) ictal and (b) interictal recordings from
Patient No. 1 in the Freiburg database.
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Single Feature Classification

Since a feature input to the classifier is a one-dimensional signal, thresholding is used as

the classifier. Receiver operating characteristic (ROC) is used to achieve the threshold.

This classifier can be easily implemented in hardware with low power consumption.
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Figure 5.4: ROC analysis using Patient No. 1’s feature signal from the MIT EEG
database.

The receiver operating characteristic (ROC) curve in classification theory finds the

optimal thresholds by a plot of true positives (or sensitivity) versus false positives (or

1-speciticity). Regardless of the distribution of the two classes of data, the ROC tries

to find optimal threshold between the two sets of data [5]. The reason for choosing

this classification is that although finding the optimal threshold may take a long time

during the training phase, the time to make a decision during the testing phase is very

fast once the threshold is found by the algorithm.

During ROC analysis, the sensitivity is plotted as a function of false positive rate

for each possible cut-off point. Therefore, each point on the curve corresponds to a

particular cut-off threshold and specific values of sensitivity and specificity. A perfect

classifier has an ROC curve that passes through the upper left corner or coordinate

(0,1), which represents 100% sensitivity and 100% specificity. In general, the optimal

point on the curve should be the one that is closest to the coordinate (0,1) on the curve

and the optimal threshold is the one that corresponds to that point. Fig. 5.4 shows
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an example of ROC analysis where Patient No. 1’s feature signal from the MIT EEG

database is trained. The circled point on the figure corresponds to the optimal cut-off

point found by the ROC algorithm.

5.1.4 Multi-dimensional Feature Selection and Classification

EEG

signals

Feature selection 

by BAB

Feature selection

Post-

processing

Feature vector

28 band power ratios

8 absolute bands PSD

8 relative bands PSD

Feature extraction

Feature basis 

selection

Electrode

selection

Figure 5.5: Flow chart of single feature selection.

While a single feature from a single electrode requires low hardware complexity

and low power consumption, it only achieves good prediction results for patients whose

seizures originate from the same location of the brain and are of the same type. For

patients who have multiple types of seizures that originate from multiple locations of the

brain, multi-dimensional features from multiple electrodes need to be used to predict

seizures. This section describes a novel two-step feature selction method for finding

patient-specific multi-dimensional features that achieve acceptable prediction results

for these patients. The multi-dimensional feature selection process is shown in Fig. 5.5,

which includes feature basis selection, electrode selection, and optimal feature selection.

The feature basis selection and optimal feature selection steps form the two steps of

the proposed method. The electrode selection step is carried out before the second step

and after the first step. Branch and bound (BAB) algorithm is used for optimal feature

selection whose performance is then compared with that of the least absolute shrinkage

and selection operator (LASSO) method. The output f(l) represents the l-th feature

vector with dimension equal to r. The classifier used for prediction corresponds to a

cost-sensitive linear support vector machine (c-LSVM) [118, 119].



69

Feature basis selection

This section describes the method for selecting feature basis for each electrode. The goal

is to select R linearly independent features that achieve the maximum linear separabil-

ity criteria for each electrode, where R is determined by eigenvalue analysis. Feature

basis selection is an essential step before electrode selection and before optimal feature

selection for the reason that the input vectors to the BAB algorithm are required to be

linearly independent. As described before, for each electrode, 44 features (8 absolute

spectral powers, 8 relative spectral powers and 28 spectral power ratios) are extracted.

An eigenvalue analysis of the covariance matrix of the features from each electrode is

performed to find the maximum number of features that are linearly independent of

each other. Fig. 5.6 shows the eigenvalues of the covariance matrix of the features

sorted in a descending order from electrode No. 1 using patient No. 14’s data from

the MIT sEEG database. The largest nine eigenvalues are significantly higher than the

remaining eigenvalues, which indicates that only nine out of the 44 features are linearly

independent and the remaining features are redundant. Therefore, R is chosen to be 9.
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Figure 5.6: Eigenvalues of the covariance matrix of the features using Patient No. 14’s
data from the MIT sEEG database.)

The class separability method described in Section 7.1.2 is used to select linearly

independent features. The linearly independent features are selected sequentially in a

greedy manner, which can be described as starting from an empty feature set, sequen-

tially adding each of the features not yet selected such that the new feature combined
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with the selected features maximizes the objective function J until R features are se-

lected. This process is repeated for each electrode. Such sequential selection scheme

will produce a suboptimal group of features that are linearly independent. Detailed

feature reduction scheme is described in Algorithm 3, where k represents the electrode

number, K represents the total number of electrodes, f represents a feature selected out

of the remaining features from electrode k only, and J(k) represents the criteria value

for electrode k. Algorithm 3 selects the R best features for each electrode such that the

J value is maximized for each electrode.

Algorithm 3 Algorithm for feature basis selection

for electrode number k = 1 to K do
Start with the empty set S0 = {ϕ}, i = 0
for i = 1 to R do

Select the next best feature f∗ = arg max
f ̸∈Si−1

J(Si−1 ∪ {f})

Si = Si−1 ∪ {f∗}
end for
Compute J(k)

end for

However, it should be noted that this criterion takes infinite value when features are

linearly dependent as Sw is rank-insufficient or ill-conditioned. To address this issue,

the following modified criterion is used:

J =


|Sw+Sb|

|Sw| if Sw is well-conditioned

0 otherwise
(5.4)

where J is set to zero if the selected features are not linearly independent.

Electrode Selection

Electrode selection is then performed to limit the power consumed in sensing the signals

from different locations of the brain. The criteria for electrode selection considered can

be described as selecting k electrodes such that features computed from the selected

k electrodes satisfy maximum linear separability criteria J , where k represents the

number of electrodes selected out of total electrodes, K. For example, if k = 2 and

K = 16, J is computed for all possible pairs of electrodes out of 16 electrodes and the
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pairs with highest J is selected. The electrode selection and the second-step feature

selection followed by classification are repeated iteratively until the classifier meets the

specifications. The experimental results presented in Section 5.2 demonstrate that two

iterations always suffice, i.e., no more than two electrodes need to be selected.

Optimal Feature Selection by Branch and Bound

This section describes the method for the second round of feature selection after feature

reduction and electrode selection to further reduce the number of features from R to

r using branch and bound algorithm. Let f(l) = [f1(l), f2(l), ..., fR(l)]
T represent the

l-th column feature vector that consists of R selected feature samples computed from

l-th windowed signal. Let yl represent the class label for segment l. The goal of optimal

feature selection is to select a subset of features (with dimension equal to r) that can

produce the best classification result or achieve the maximum separability criteria. Such

a problem could be extremely computationally intensive and usually, in practice, the

number r is not even known a priori.

To simplify the proposed problem, a regression problem is introduced to select the

subset of the features. Define y = [y1, y2, ...yL]
T as the class label vector and define the

feature matrix F as follows

F = [f(1),f(2), ...,f(L)]T (5.5)

=


f1(1) f2(1) ... fR(1)

f1(2) f2(2) ... fR(2)

. . ... .

f1(L) f2(L) ... fR(L)

 (5.6)

= [f1,f2, ...,fR] (5.7)

where fi(j) represents the feature i corresponding to segment j. Each row of F cor-

responds to the feature vector for segment l and each column of F represents a time

series of a feature variable. Let Gr = [fi1 ,fi2 , ...,fir ] represent an r-variable subset of

F where i1, i2, ..., ir represent the feature indices. The criteria used for feature selection

is described as selecting a subset of features such that the least square fitting y = Gr ∗q
achieves the minimum error. Mathematically, it can be described as finding i1, i2, ..., ir
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such that the following objective function

ε(Gr) = ∥y −Gr ∗ q∥ (5.8)

is minimized, where q = (GTG)−1GTy is the optimal projection vector.

In [78], an efficient branch and bound (BAB) algorithm is developed to solve the

problem of selection of the globally optimal variables. The proposed BAB algorithm

identifies the globally best feature variable subset such that the regression error ε is

minimized.
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Figure 5.7: Linear separability criteria J of the subset of features with different fea-
ture dimensions using Patient No. 14’s recordings in electrode No. 14 from the MIT
database.

As mentioned, the number of features r is not known a priori. The following steps

are used to find r:

(1) for each possible value of r, (r ∈ {1, 2, .., R}), use BAB to find the optimal subset

of features with dimension equal to r.

(2) evaluate the linear separability criteria J for all subsets of features.

(3) select the subset of features with the minimum dimension of r∗ such that its linear

separability criteria J is greater than a predetermined threshold.

Fig. 5.7 shows the plot of linear separability criteria J versus feature dimension r using

Patient No. 14’s recordings in electrode No. 14 from the MIT database, where the red

line represents the threshold equal to min{3, 0.9max(J)}. The value of r is chosen such
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that J exceeds the minimum of predetermined value of J0 (J0=3) and 0.9Jmax, where

Jmax is the maximum value of J over R features. As shown in the figure, the minimum

r which achieves an objective function J greater than the threshold is 7. Therefore, the

number of optimal features used for prediction is 7 (r∗ = 7).

Optimal Feature Selection by LASSO

Least absolute shrinkage and selection operator (LASSO) is one of the widely used

selection methods for linear regression problem. It minimizes the total squared error

with a penalty added to the number of the variables [79]. We propose to use LASSO as a

baseline for feature variable selection and compares the performance of the BAB feature

variable selection algorithm with LASSO. Therefore, the number of feature variables

selected by LASSO is chosen to be same as the number chosen by the BAB algorithm.

For a given value of λ, a nonnegative parameter, LASSO solves the problem

min J(q) =
1

2L
∥y − F ∗ q∥2 + λ|q| (5.9)

where L represents the number of observations, λ represents a nonnegative regularization

parameter, and |q| represents the L1 norm of the vector q. As λ increases, less feature

variables are selected as the number of nonzero components of q decreases. λ is increased

until the number of the nonzero components is the same as the number of feature

variables selected by the BAB algorithm. This ensures a fair comparison between BAB

and LASSO with respect to feature selection.

Comparison of BAB and LASSO

Fig. 5.8 compares the feature selection results of (a) LASSO and (b) BAB for Pa-

tient No. 15 in the Freiburg database. Fig. 5.8(a) illustrates the scatter plot of the

2-dimensional feature of γ2 spectral power versus β-to-γ1 spectral power ratio of elec-

trode No. 2 selected by LASSO, where the cross points, cirle points and the black line

represent the interictal features, preictal features and separating line, respectively. The

2-dimensional feature achieved a sensitivity of 100% and 3 FPs with a 30-minute refrac-

tory period. Fig. 5.8(b) illustrates the scatter plot of the 2-dimensional feature of γ2

spectral power versus θ-to-γ1 spectral power ratio of electrode No. 2 selected by BAB.

The 2-dimensional feature achieved a sensitivity of 100% and 0 FPs for same refractory
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Figure 5.8: Comparison the feature selection results of (a) LASSO and (b) BAB for
Patient No. 15 in the Freiburg database.

period. This example demonstrates that BAB performs better than LASSO with a

30-minute refractory period. A refractory period, which specifies a time period during

which the system ignores all the subsequent alarms once it’s triggered, is introduced to

reduce the number of FPs in a short time period. The refractory period is set to be 30

minutes.

SVM and classification.

Cost-sensitive linear SVM (c-LSVM) [5] is used for classification.

5.2 Experimental Results

The details for the proposed algorithm are described as follows:

1) Due to the imbalance between the data size of the preictal features and the

interictal features, random subsampling, which refers to randomly selecting a subset of

the feature objects, are performed on the interictal features. In our experiments, 20%

of the interictal feature objects are randomly selected for training and the rest of the

data are used for testing.

2) Leave-one-out cross validation is used in the training phase to (a) train a number

of classifiers with feature vectors preceding the seizure left out in each turn (b) test

on the remaining data. Final classifier which has the lowest FP rate on the interictal

dataset is selected.
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3) Three important criteria for performance evaluation include sensitivity (SS), false

positive rate (FPR, the number of FP per hour) and seizure prediction horizon (SPH,

time interval before a seizure when it’s predicted). Min. SS and Max. FPR for each

patient are predetermined as 80% and 0.125/hr, respectively. Multi-dimensional feature

selection and classification is performed for patients where a single feature is not able

to achieve the predetermined requirements.

4) Window size is chosen as 4 seconds. Since sampling frequency is 256Hz for both

databases, each segment contains 4 ∗ fs = 1024 samples.

5) The cost value C in SVM is selected from the set {4−6, 4−5, 4−4, ..., 45, 46}. The

cost ratio C+/C− is selected from the set {2−3, 2−2, ..., 22, 23}.

Table 5.1: Prediction Performance of The Proposed System using a single feature for
Freiburg Database

Patient electrode Power # of
SS FPR

Max/Min
# # ratio SZ SPH(min.)

1 1 γ5/γ4 4 100 0 47/33

3 6 γ4/β 5 100 0 47/16

4 1 γ5/β 5 100 0 50/40

7 4 γ5/β 3 100 0 50/50

9 5 γ4/γ3 5 100 0.083 50/50

10 5 α/θ 5 100 0.083 47/33

11 1 γ1/β 4 100 0.125 47/25

12 6 γ4/γ5 4 100 0 50/24

14 6 γ1/γ2 4 100 0.042 50/25

16 1 γ4/α 5 100 0.042 40/16

17 4 θ/γ1 5 100 0 45/25

21 5 β/α 5 100 0.083 27/20

Systems using a single feature achieved a sensitivity of 100% and FPR less than

0.1 for 12 patients in the Freiburg database and for 7 patients in the MIT database.

Test Results for these 12 patients in the Freiburg database and for the 7 patients in

the MIT database are shown in Table 5.1 and in Table 5.2, respectively, where ”SZ”

stands for seizures. Details about the spectral power ratio used for prediction are shown

in the third column, where the symbol α/γ3, for instance, indicates that the spectral

power ratio between power in α band and power in γ3 band is used. For the rest of the

patients, single feature classification can not achieve a minimum sensitivity of 80% or a

FPR less than 0.125.

Test Results using multi-dimensional features for the remaining 6 patients in Freiburg
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Table 5.2: Prediction Performance of The Proposed System using a single feature for
MIT Database

Patient electrode Power # of
SS FPR

Max/Min
# # ratio SZ SPH(min.)

1 17 α/γ4 6 100 0.024 60/3

8 20 α/γ4 5 100 0.1 60/30

11 14 γ5/γ3 3 100 0.086 18/12

18 1 γ3/θ 4 100 0.114 75/3

19 1 γ2/γ1 3 100 0 48/18

20 12 θ/β 6 100 0.071 60/20

21 1 γ1/β 3 100 0.065 78/3

Table 5.3: Prediction Performance of The Proposed System using BAB for Freiburg
Database

Patient electrode Power Rel. Abs. # of
SS FPR

Max/Min

# No. ratio power Power SZ SPH(min.)

5
1 θ

β
, γ2
γ5

, γ3
γ4

γ1
5 100 0.039 54/39

6 θ
α
, α
γ2

, α
γ4

θ

6 2 θ
α
, β
γ3

, γ1
γ2

γ2 3 100 0.042 46/30

15 2 θ
γ1

γ2 4 100 0 50/36

18 2 γ1
γ5

γ4 5 100 0 50/50

19
1 θ

γ5
,α
β
, β
γ2

, β
γ5

, γ2
γ3

θ γ4
4 100 0.042 50/41

2 θ
γ4

, β
γ5

, γ1
γ3

, γ4
γ5

γ5

20
1 α

β
, γ3
γ4

γ2
5 100 0 50/43

2 θ
α
, θ
γ3

, γ1
γ5

γ1,γ4 β,γ2
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Table 5.4: Prediction Performance of The Proposed System using BAB for MIT
Database

Patient electrode Power Rel. Abs. # of
SS FPR

Max/Min

# No. ratio power Power SZ SPH(min.)

2 18 γ1
γ4

, γ2
γ5

θ,α 3 100 0.029 60/39

3
7 β

γ2
, γ1
γ4

, γ3
γ4

θ γ4
5 100 0 68/15

8 γ1
γ4

, γ2
γ3

γ2

5 8 θ
α
, θ
γ2

, θ
γ3

, β
γ1

, β
γ4

, γ4
γ5

θ,γ2 5 100 0.051 60/10

6
8 γ1

γ2
, γ3
γ4

γ2
6 83.3 0.045 72/21

21 α
β
, α
γ5

, γ2
γ3

, γ4
γ5

γ1,γ5

9
12 θ

γ3
,α
β
, γ1
γ5

, γ2
γ4

γ4
3 100 0.046 69/33

18 γ1
γ3

, γ2
γ4

α

10
1 β

γ3
, γ3
γ4

, γ3
γ5

γ2 α,γ2
7 100 0.060 69/24

18 θ
γ4

,α
β
, α
γ2

γ5 θ,γ3

13
1 γ1

γ2
, γ3
γ4

γ2,γ5 θ
6 100 0.030 68/18

18 γ1
γ2

, γ3
γ4

γ2,γ5 θ

14 14 θ
α
, θ
γ4

, γ3
γ4

, γ4
γ5

θ β,γ2 5 100 0.039 60/6

16 27 β
γ3

, γ1
γ4

, γ1
γ5

, γ2
γ5

θ 3 100 0 58/42

22 11 θ
γ3

, β
γ2

, γ1
γ5

, γ2
γ4

, γ3
γ5

θ 3 100 0.032 78/11

database and for the remaining 10 patients in MIT database are shown in Table 5.3 and

in Table 5.4, respectively. Details about the spectral power ratios, relative spectral

powers, absolute spectral powers used for prediction are shown in the 3rd, 4th and 5th

columns, respectively.

Summary of the overall prediction performance for both databases is shown in Table

5.5. For Freiburg intra-cranial EEG database, the proposed algorithm achieved a sensi-

tivity of 100% and a FPR of 0.032 using 1.167 electrodes and 2.78 features on average.

For MIT scalp EEG database, the proposed algorithm achieved a sensitivity of 98.68%

and a FPR of 0.0465 using 1.29 electrodes and 5.05 features on average. Table 5.6

Table 5.5: Overall Prediction Performance of The Proposed System for Freiburg and
MIT Databses

Database
EEG Mean # of Mean# of

SS FPR
type electrodes features

Freiburg iEEG 1.167 2.78 100 0.0324
MIT sEEG 1.294 5.05 98.68 0.0465

and Table 5.7 compare the prediction performance between LASSO and BAB for the
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Table 5.6: Comparison of Prediction Performance between BAB and LASSO for
Freiburg Database

Patient # of SS # of FP # of SVs

# SZ BAB LASSO BAB LASSO BAB LASSO

5 5 100 100 1 3 4191 6391

6 3 100 100 1 2 2526 2482

15 4 100 100 0 3 1699 4411

18 5 100 100 0 0 2244 5012

19 4 100 100 1 1 2123 2540

20 5 100 100 0 0 3679 4471

Table 5.7: Comparison of Prediction Performance between BAB and LASSO for MIT
Database

Patient # of SS # of FP # of SVs

# SZ BAB LASSO BAB LASSO BAB LASSO

2 3 100 100 1 3 3719 4771

3 5 100 100 0 0 5027 5470

5 5 100 100 2 2 6780 6751

6 6 83.3 83.3 3 5 4454 4524

9 3 100 100 2 2 3988 3921

10 7 100 85.71 3 3 8212 8546

13 6 100 100 1 3 9696 10452

14 5 100 100 1 1 7727 7643

16 3 100 100 0 0 3331 3412

22 3 100 100 1 2 4943 4307
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Freiburg database and MIT database, respectively. Three criteria are used to measure

the prediction performance, which include sensitivity, number of false positives (FP)

and number of support vectors (SV). As shown in Table 5.6 for the Freiburg database,

the LASSO method not only leads to a larger number of FPs, but also requires a sig-

nificantly larger number of SVs except for patient No. 6. As shown in Table 5.7 for the

MIT database, LASSO has about the same number of SVs as BAB, but has a lower

sensitivity and a larger number of FPs.

5.3 System Architecture

This section describes the system architecture using the methods described in the pre-

vious sections. Based on the methods proposed in the previous sections, the seizure

prediction system contains 3 parts which include (1) PSD estimation, (2) feature ex-

traction, and (3) classifier.

5.3.1 PSD estimation

Fig. 5.9 illustrates the system architecture for PSD estimation. The PSD of the input

signal is estimated by first computing the fast Fourier transform (FFT) of the input

segmented signal and then computing the magnitude square of the FFT coefficients. A

1024-point real FFT is required in the system as each input segment is 4 seconds long

and thus contains 4 ∗ 256 = 1024 samples.

EEG signal

FFT |·|2
PSD 

estimation

Figure 5.9: System architecture for PSD estimation.

Fig. 5.10 shows the proposed fully-real serial 1024-point FFT architecture in [120].

Table 5.8 presents the synthesis results obtained for the proposed real FFT architectures

in [120]. The two designs were synthesized using a clock speed of 100 MHZ in Synopsys

Design Compiler with 45 nm NCSU PDK. The interleaved architecture can process

FFT computations of two electrodes using same pipelined hardware in an interleaved
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manner. The proposed 1024-point real number FFT (RFFT) architecture in [120] reuires

log2 512−3 = 6 complex multipliers and 3∗1024/2−5 = 1531 delay elements to compute

the FFT coefficients. It requires an area of 0.284327mm2 and a power of 14.8012 mW .

Therefore, computing FFT coefficients for a single input segment requires a total energy

of 14.8 mW/100 MHz ∗ 1531 = 226.6 nJ as the operations are completed in 1531 clock

cycles.

Figure 5.10: Fully real serial FFT architecture.

Table 5.8: Synthesis Results Of 1024-Point Serial Rfft For 100 MHz Clock Frequency
Fully real 0.284327 mm2 14.8012 mW

Fully real-Interleaved by factor 2 0.375221 mm2 17.7314 mW

5.3.2 Feature Extractor

Fig. 5.11 illustrates the system architectures for extracting (a) a single absolute spectral

power in a specific band, (b) a relative spectral power in a specific band, and (c) a ratio

of spectral powers in two bands from the PSD coefficients computed in the previous step.

As shown in Fig. 5.11, extracting these features from the PSD coefficients requires far

less number of multipliers than the PSD estimation.

5.3.3 Classifier

This section illustrates the architecture for linear SVM, computes the approximate en-

ergy for linear SVM and RBF-SVM, and shows the reason why kernel SVM such as

radial basis function kernel SVM (RBF-SVM) is not preferred. Fig. 5.12 illustrates

the system architectures for a linear SVM. In [97], a low-energy architecture based on

approximate computing by exploiting the inherent error resilience in the SVM compu-

tation was proposed. According to [97], the computational complexity of a linear SVM
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Figure 5.11: System architectures for extracting (a) a single absolute spectral in a
specific band, (b) a relative spectral power in a specific band, and (c) a ratio of spectral
powers in two bands from the PSD coefficients.

only depends on the feature dimension. However, the computational complexity of a

RBF-SVM consists of 2 parts, which include kernel computation and decision variable

computation. The computational complexity of a RBF-SVM classifier is not only pro-

portional to the feature dimension, but also to the number of support vectors (SVs).

Table 5.9 compares the number of support vectors after training using linear SVM and

RBF-SVM for Patient No. 10 and Patient No. 13 in the MIT database. The fourth

and fifth columns of Table 5.9 show the approximate estimates of the energy in kernel

computation and decision variable computation per test vector using the results in [97].

The last column shows the total energy per test vector. As shown in the table, even

though RBF-SVM requires significantly less number of SVs than the linear SVM, its

energy requirement is 3 orders of magnitude larger than the linear SVM.

Thus, regardless of the energy required in sensors and analog-to-digital converters

(ADC), the total energy required in feature extraction and classification using a single

electrode is approximately 227 nJ when linear SVM is used. That number is increased

to 2∗227 = 454 nJ for Patient No. 10 and for Patient No. 13 in the MIT database as the
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Figure 5.12: System architecture for linear SVM.

interleaved architecture requires twice the number of clock cycles for feature extraction.

When RBF-SVM is used, the energy consumption increases to 586 nJ and 490 nJ per

test vector for Patient No. 10 and for Patient No. 13 in the MIT database, respectively.

These energy consumption estimates are obtained by interpolating the energy estimates

in [97, 120]. The energy consumption of the Kalman filter is not included in this analysis.

The RBF-SVM not only requires more energy consumption, it also requires additional

hardware for approximately 23900 multiplications and 1992 RBF kernel computations

for Patient No. 10, and for 6000 multiplications and 585 RBF kernel computations for

Patient No. 13. The number of multiplications increases by a factor of Nsv for RBF-

SVM, where Nsv represents the number of support vectors. Furthermore, Nsv additional

kernel evaluation are needed in the RBF-SVM.

Table 5.9: Comparison of Energy Consumption between Linear SVM and RBF-SVM
for MIT Database.
Patient # of # of SVs kernel decision variable classifier energy total energy

# features SVMRBF-SVM SVMRBF-SVM SVM RBF-SVM SVM RBF-SVM SVM RBF-SVM

10 12 8212 1992 – 108 nJ 32 pJ 24 nJ 32 pJ 132 nJ 454 nJ 586 nJ

13 10 9696 585 – 30 nJ 30 pJ 6 nJ 30 pJ 36 nJ 454 nJ 490 nJ

5.4 Discussion

Many approaches have been presented for predicting seizures in epileptic patients. Var-

ious types of linear and nonlinear features have been used for seizure prediction. Our
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Table 5.10: Comparison to prior work

Reference EEG Sensi- FPR Feature No. of

type tivity Type features

Chisci et al. 2010 iEEG 100 0.17 AR coeff. 36

Wang et al. 2014 iEEG 98.80 0.054Amplitude and Frequency 125

Park et al. 2011 iEEG 97.5 0.27 PSD 36

Ozdemir et al. 2014 iEEG 96.55 0.21 Hilbert Spectrum 14.49

Ayinala et al. 2012 iEEG 94.37 0.14 PSD 4.8

Aarabi et al. 2014 iEEG 92.60 0.15 Model parameters 72

Williamson et al. 2011 iEEG 90.8 0.095 correlation 36

Aschenbrenner et al. 2003 iEEG 84.2 1.0 correlation 25

Zheng et al. 2013 iEEG 80 0.17 Phase Coherence 3

Maiwald et al. 2004 iEEG 41.5 0.15 correlation 25

Bandarabadi et al. 2014 iEEG 75.8 0.1 PSD 9.9

Alexandre et al. 2014 iEEG 50 0.15 Various 22

Khammari et al. 2012 sEEG 85 – PSD 30

proposed
iEEG 100 0.032 PSD ratio 2.78

iEEG

proposed
sEEG 98.68 0.047 PSD ratio 5.05

sEEG
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results are compared directly to several other studies that have tested prediction algo-

rithms using the same Freiburg EEG database [121, 50, 22, 94, 122, 123, 124, 52, 125,

126] or MIT EEG database [127]. Our results may also be compared to studies using

other databases [51, 28]. We demonstrate high sensitivity, low FPR, and low feature

dimension for these two databases.

Table 5.10 compares the system performance of the proposed algorithm with prior

works. The proposed algorithm for seizure prediction, using the least number of features

selected by the BAB algorithm (for iEEG), achieves the highest sensitivity (for iEEG)

and the lowest FPR.

Even though the proposed algorithm has been tested on short duration EEG data,

future work will be directed towards analysis on long term EEG recordings.

Another evaluation criterion, successful patient rate, was proposed in [128] and is

used to evaluate the success of a seizure prediction algorithm. A patient is considered

as a successful patient if the sensitivity is 100% and the FP rate is lower than 0.2. We

achieved a FPR of 0 for 10 out of 19 patients in the Freiburg database and for 3 out of

17 patients for the MIT database. We also achieved a successful patient rate of 100%

for the Freiburg database and a successful patient rate of 94.1% for the MIT database.

System performance is degraded for the scalp EEG recordings as the MIT (sEEG)

database has a lower sensitivity, a lower successful patient rate, and a higher FP rate

than the Freiburg (iEEG) database. This is caused by the fact that intracranial EEG

recordings usually have a higher spatial resolution and signal-to-noise ratio due to

greater proximity to neural activity. Therefore, sEEG is a much noisier measurement

of the neural activity and is highly suspectable to the interferences from the outer en-

vironment than the iEEG, which leads to the decrease of sensitivity and the increase

of FP rate. However, since iEEG is an invasive signal, the process to obtain invasive

EEG recordings brings the risk of infections. Furthermore, the patient’s hospital stay

for surgery to implant these electrodes can be expensive. In addition, the sEEG has a

larger coverage of the brain than iEEG.

In addition, the proposed seizure prediction algorithm using BAB for feature selec-

tion has several advantages over using LASSO for feature selection. The BAB algorithm

achieves a higher sensitivity and a lower FPR for both databases. The BAB algorithm

also requires a smaller number of SVs than LASSO on the Freiburg database.
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Finally, the total energy consumption of the system using linear SVM is reduced by

8% to 23% compared to system using RBF-SVM. In analysis of long-term EEG data,

number of support vectors will increase proportionally to the number of total feature

vectors. Thus, the energy consumption of a RBF-SVM will be greatly increased when

long-term EEG is analyzed, and the reduction in total energy consumption of the system

using linear SVM will be greatly increased compared to the system using RBF-SVM.

5.5 Conclusion

In this chapter, a patient-specific algorithm for seizure prediction using unipolar or

bipolar EEG signals from either one or two channels has been proposed. This algorithm

achieves a sensitivity of 100%, a successful patient rate of 100% a FP rate of 0.032 per

hour on average for iEEG recordings, and achieves a sensitivity of 98.68%, a successful

patient rate of 94.1% and a FP rate of 0.047 per hour on average for iEEG recordings.

Compared with the results in [121, 50, 22, 94, 122, 123, 124, 52, 125, 126, 127], the

proposed algorithm uses the fewest number of features and achieves a high sensitivity

and a lower FP rate. The proposed approach reduces the complexity and area by about

2 to 3 orders of magnitude. We conclude that using discriminative sparse important

features and using a simple classifier such as linear SVM can lead to higher sensitivity

and specificity compared to processing hundreds of features with a complex classifier

such as RBF-SVM.

Many algorithms that work well on short EEG recordings (like one day) fail to work

on longer recordings (i.e., several days to weeks). Future work will be directed towards

validating the proposed approach on longer term recordings. The spectral powers in

eight subbands are sufficient for signals sampled at 256 Hz. However, further research

needs to be directed to find out how many subbands are sufficient for high-frequency

recordings such as 1 kHz or 2 kHz.



Chapter 6

Seizure Prediction from

Long-Term Fragmented EEG

Recordings

In the proposed approach [81, 96], we first extract two sets of features. A window based

feature extraction is used, where the window size is 4 second for spectral feature set

and is 10 second for the correlation feature set, respectively. The 10-second window for

correlation is chosen for an accurate estimate of the correlation coefficient. The first

feature set includes spectral powers and spectral ratios. The second feature set includes

correlation coefficients between all possible pairs of electrodes. The two feature sets are

then subjected to feature selection and classification independently. Three classifiers are

used and tested on the selected features, which include AdaBoost, radial basis function

kernel support vector machine (RBF-SVM), and artificial neural netwroks (ANN).

6.1 Patients Database

We consider the dataset from the recent American Epilepsy Society Seizure Prediction

Challenge database [129]. The experimental procedures involving human subjects were

approved by the Institutional Review Board. The Institutions Ethical Review Board

86
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approved all experimental procedures involving human subjects. The experimental pro-

cedures involving animal models were approved by the Institutional Animal Care and

Ethics Committee.

According to [129], intracranial EEG was recorded from five dogs with naturally

occurring epilepsy using an ambulatory monitoring system. EEG was sampled from 16

electrodes at 400 Hz, and recorded voltages were referenced to the group average. These

are fragmented long duration recordings, spanning multiple months up to a year and

recording up to a hundred seizures in some dogs [130, 131]. In addition, datasets from

patients with epilepsy undergoing intracranial EEG monitoring to identify a region of

brain that can be resected to prevent future seizures are included in the contest. These

datasets have varying numbers of electrodes and are sampled at 5000 Hz, with recorded

voltages referenced to an electrode outside the brain.

The training data is organized into ten minute EEG clips labeled ”Preictal” for

pre-seizure data segments, or ”Interictal” for non-seizure data segments. Training data

segments are numbered sequentially, while testing data are in random order. Preictal

training and testing data segments are provided covering one hour prior to seizure with

a five minute seizure horizon.

Ten percent of the training data are selected randomly for feature selection and

training the classifier. The remaining 90% of data are used for testing.

6.2 Methods

Two sets of features are considered independently : (1) spectral features including relative

spectral power in specific bands and ratios between them, and (2) cross correlation

coefficients between different EEG signals from different electrodes.

Feature extraction

)(ns
Spectral features:

Relative Spectral Powers

Spectral Power Ratios

Correlation features:

Cross Correlation Coefficients

CART

Feature selection

RBF-SVM/

Adaboost/

ANN

Classification

Sigmoid

Precital 

prob.
EEG 

signal

Figure 6.1: Flow chart of the proposed algorithm for seizure prediction
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Fig. 6.1 shows the proposed algorithm for seizure prediction. Features are extracted

from the EEG signal s(n). The spectral feature set include relative spectral powers in

specific bands and all possible ratios of the spectral powers between the spectral powers.

The correlation feature set includes correlation coefficients between all possible pairs of

electrodes. The two feature sets are subjected to a feature selection step independently

by classification and regression tree (CART). The selected spectral features or the cor-

relation features are then subjected to training and classification independently using

AdaBoost, radial basis function kernel support vector machine (RBF-SVM), or artificial

neural network (ANN). A sigmoid function is used to convert the decision variables from

the output of the classifier to probability representations y(l).

Window-based Signal Processing

The signal is divided into the segments with 50% overlap and each segment is categorized

as interictal (C0), preictal (C1), ictal (C2), or post-ictal (C3).

Spectral Power and Spectral Power Ratios

Two types of features are extracted from each electrode, which include relative spectral

powers and ratios of spectral powers.

The rhythmic activity in an EEG signal is typically described in terms of the stan-

dard frequency bands, but the γ band is further split into a number of sub-bands. For

the canine subjects whose sampling frequency is 400 Hz, we split the frequency band

into the following 10 subbands: θ (3-8 Hz), α (8-13 Hz), β (13-30 Hz), γ1 (30-55 Hz),

γ2 (55-80 Hz), γ3 (80-105 Hz), γ4 (105-130 Hz), γ5 (130-150 Hz), γ6 (150-170 Hz), γ7

(170-200 Hz). For the human subjects whose sampling frequency is 5000 Hz, two extra

subbands are used which include γ8 (200-225 Hz) and γ9 (225-250 Hz). To eliminate

power line hums at 60 Hz and its harmonics, spectral powers in the band of 57-63 Hz,

117-123 Hz, 177-183 Hz and 237-243 are excluded in spectral power computation. For

canine objects, all possible combinations of ten spectral powers lead to a total num-

ber of
(
10
2

)
= 45 ratios from a single channel EEG signal and, thus, a total number of

45 + 10 = 55 spectral features are extracted for each electrode. For human patients,

these two number are increased to
(
12
2

)
= 66 and 66 + 12 = 78, respectively.
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Fig. 6.2 illustrates the normalized (between 0 and 1) relative spectral power in band

[8, 13] Hz (top pannel), the spectral power in band [13, 30] Hz (middle pannel) and

the spectral power ratio of P8,13-to-P13,30 using the EEG recordings in electrode No.

13 of Patient No. 1 from the American Epilepsy Society Seizure Prediction Challenge

database, where the red vertical lines represent the preictal onsets. While the spectral

power features in both bands are indiscriminate of the preictal and interictal periods,

the ratio between them shows strong detectability of the seizures as this ratio increases

significantly after the precital onsets.
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Figure 6.2: Spectral power in in band [8, 13] Hz (top pannel), spectral power in band
[13, 30] Hz (middle pannel) and the spectral power ratio of P8,13-to-P13,30 using the EEG
recordings in electrode No. 13 of Patient No. 1 from the American Epilepsy Society
Seizure Prediction Challenge database.

Cross-correlation coefficients

Cross-correlation coefficients between all pairs of electrodes are extracted as another

feature set. Fig. 6.3 illustrates the cross correlation coefficient between electrode No.

1 and electrode No. 10 using the EEG recordings of Patient No. 2 from the American

Epilepsy Society Seizure Prediction Challenge database, where the red vertical line

represents the preictal onsets. The similarity between these 2 electrodes shows strong

predictability of the seizures as this coefficient increases after the precital onsets.
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Figure 6.3: Cross correlation coefficient between electrode No. 1 and electrode No. 10
using the EEG recordings of Patient No. 2 from the American Epilepsy Society Seizure
Prediction Challenge database.

Postprocessing

Kalman filter was shown in [22] to be very effective in smoothing undesired fluctuations.

We propose to use the same state-space model as the model described in [50] and in

supplementary document of [22]. As a result, Kalman fitler generates a much smoother

output feature.

6.2.1 Electrode and Feature Selection by Regression Tree

In the first step, regression tree is created. Fig. 6.4 shows a truncated regression tree

with 3 nodes for Patient No. 1 from the American Epilepsy Society Seizure Prediction

Challenge database. This tree predicts probabilities of precital based on three features,

P8,13-to-P13,30 ratio of electrode No. 13, P55,80-to-P225,250 ratio of electrode No. 15, and

P170,200-to-P225,250 ratio of electrode No. 2. For instance, the first decision is whether

P8,13-to-P13,30 ratio of electrode No. 13 is less than the threshold 0.2258. If so, follow

the left branch and such data are classified as preictal with probability equal to 0.9661.

If not, then follow the right branch to the next triangle node. Here a second decision

needs to be made.

After tree creation, estimates of input feature importance for tree are computed by

summing changes in the risk due to splits on every feature. At each node, the risk

is estimated as node impurity. Next, electrode importance is computed by averaging

the feature importance for features from each electrode. Fig. 6.5 illustrates the feature

importance and electrode importance for Dog No. 1 from the American Epilepsy Society
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Figure 6.4: A three-node regression tree for Patient No. 1 from the American Epilepsy
Society Seizure Prediction Challenge database.
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Figure 6.5: Feature importance and electrode importance for Dog No. 1 from the
American Epilepsy Society Seizure Prediction Challenge database.
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Seizure Prediction Challenge database. As shown in Fig. 6.5, five most important

electrodes for classification include electrode No. 1, 3, 5, 8 and 11.

After electrode selection, feature selection is further performed on the features from

the selected electrodes using CART. Features are then sorted according to their im-

portance in the tree and the most important features are selected. For instance, the

most important electrodes for Dog No. 1 from the American Epilepsy Society Seizure

Prediction Challenge database include electrode No. 1, 3, 5, 8, and 11. A total of

5 ∗ 55 = 275 features can be extracted from these 5 electrodes. After tree creation

on these 275 features, importance for each feature is estimated. Fig. 6.6 shows the

sorted feature importance for Dog No. 1 in a descending order, where the 50th most

important feature is less than 2% of the most important feature. As a result, 50 most

important features are selected and features whose importance are less than 2% of the

most important one are discarded.
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Figure 6.6: Sorted feature importance for Dog No. 1 from the American Epilepsy
Society Seizure Prediction Challenge database in a descending order.

6.2.2 Seizure Prediction Classification

AdaBoost, polynomial SVM with degree of 2, radial basis function kernel SVM (RBF-

SVM), and artificial neural networks (ANNs) are used for classification and their per-

formance characteristics are compared.

After computing the decision variable, a sigmoid function, S(p(t − c)), is used to

convert its values into probabilities, where c represents the center of the function and

p represents spread of the function, respectively. Fig. 6.7 illustrates the input decision

variable and output seizure probability of the sigmoid function.
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Figure 6.7: Conversion form decision variable to seizure probability for Dog. No. 1.

6.3 Experimental Results

6.3.1 Comparison between RBF-SVM and Polynomial-SVM

Details of the experiment results for comparing RBF-SVM and the proposed method

with Polynomial-SVM (degree of 2) using training data only are described as follows:

(1) Two sets of results are compared. The baseline results are obtained using all

features from selected electrodes and uses RBF-SVM as the classifier. The proposed

method uses selected features according to their importance from selected electrodes

and uses polynomial SVM with degree of 2 as the classifier.

(2) Window size is selected as 2 seconds with 50% overlap. For each 10 minutes

data clip, a total of 599 feature vector samples can be computed. After computing

the pre-seizure probability for each feature vector, a pre-seizure probability for the 10

minutes data clip is obtained by averaging the probabilities of all feature vectors.

(3) Parameters such as αi, b, p, and c are selected such that the probabilities of the

testing data achieve the maximum area under curve (AUC).

Test Results of the proposed algorithm are shown in Table 6.1, where ’SZ’ stands

for seizures. Details of the electrodes and number of features used to predict seizures

are shown in the second column. The baseline achieves a sensitivity of 100%, and an
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Table 6.1: Comparing the Prediction Performance of The System using RBF-SVM and
the proposed method with Polynomial-SVM
Object Feature Details # of Data

Name Electrodes # Features Classifier AUC SZ Size

baseline proposed baseline proposed baseline proposed baseline proposed (hours)

Dog 1 1 3 5 8 11 1 3 5 8 11 275 50
RBF- Polynomial

0.9975 0.9929 4 84
SVM SVM (d=2)

Dog 2 9 11 12 15 9 11 12 15 220 13
RBF- Polynomial

1.0000 0.9933 7 90
SVM SVM (d=2)

Dog 3 7 9 10 15 7 9 10 15 220 44
RBF- Polynomial

0.9978 0.9333 12 252
SVM SVM (d=2)

Dog 4 3 6 7 3 6 7 155 33
RBF- Polynomial

0.9984 0.9676 17 150
SVM SVM (d=2)

Dog 5 12 13 14 12 13 14 155 19
RBF- Polynomial

0.9961 0.9698 5 80
SVM SVM (d=2)

Pat. 1 2 13 15 2 13 15 155 7
RBF- Polynomial

1.0000 1.0000 3 11
SVM SVM (d=2)

Pat. 2 1 12 14 1 12 14 155 13
RBF- Polynomial

1.0000 1.0000 3 10
SVM SVM (d=2)

average AUC of 0.9985. The proposed algorithm achieves a sensitivity of 100%, a mean

false positive (FP) rate of 0.073 FP/hour, a mean prediction horizon of 58 minutes, and

an average AUC of 0.9795.

6.3.2 Comparison between different classifiers and different feature

sets

Table 6.2: Comparison of Prediction Performance using Different Feature Sets and
Classifiers on the Testing Dataset

Subject AUC(PSD) AUC(correlation)

# # fea. AdaBoost SVM ANN # fea. AdaBoost SVM ANN

Dog 1 22 0.7337 0.8055 0.7838 33 0.8007 0.8359 0.9046

Dog 2 15 0.8197 0.8515 0.8533 32 0.5245 0.5985 0.7282

Dog 3 15 0.6421 0.8118 0.8153 83 0.7540 0.7393 0.7757

Dog 4 15 0.8794 0.8731 0.9044 21 0.7467 0.7812 0.8144

Dog 5 13 0.7665 0.5102 0.5791 13 0.5205 0.8953 0.9022

Pat 1 5 0.8689 0.8406 0.9413 5 0.5103 0.5096 0.4896

Pat 2 4 0.5665 0.7248 0.6875 7 0.7914 0.8225 0.8981

Mean – 0.7538 0.7739 0.7948 – 0.6640 0.7403 0.7875

The details of the experiment results for the proposed algorithm using testing data
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are described as follows:

1) Due to the imbalance between the data size of the preictal features and the

interictal features, 10% of the interictal feature objects are randomly selected for training

and the rest of the data are used for testing.

2) The criterion for performance evaluation is the area under curve (AUC).

3) Window size is chosen as 4 seconds with 50% overlap for PSD features. Window

size is chosen as 10 second with 50% overlap for cross correlation coefficients.

4) The number of iterations for AdaBoost is chosen from { # of features, 1.5*# of

features, 2*# of features}.
5) The cost value C in SVM is selected from the set {4−6, 4−5, 4−4, ..., 45, 46}. The

cost ratio C+/C− is selected from the set {2−3, 2−2, ..., 22, 23}.
6) The number of hidden layers used in ANN is selected as 10, 20, or 30.

Table 6.2 compares the prediction performance using different feature sets and clas-

sifiers. The spectral feature set including relative spectral powers and spectral power

ratios achieves a mean AUC of 0.7538, 0.7739, and 0.7948 for AdaBoost, SVM, and

ANN, respectively. The correlation coefficients feature set achieves a mean AUC of

0.6640, 0.7403, and 0.7875 for AdaBoost, SVM, and ANN, respectively. However, more

features are selected by CART for the correlation feature set than the spectral feature

set.

Table 6.3: Best Prediction Performance on Testing Data
Subject Type of AUC
# features AdaBoost SVM ANN

Dog 1 Correlation 0.8007 0.8359 0.9046

Dog 2 Band power and ratios 0.8197 0.8515 0.8533

Dog 3 Band power and ratios 0.6421 0.8118 0.8153

Dog 4 Band power and ratios 0.8794 0.8731 0.9044

Dog 5 Correlation 0.5205 0.8953 0.9022

Pat 1 Band power and ratios 0.8689 0.8406 0.9413

Pat 2 Correlation 0.7914 0.8225 0.8981

Mean – 0.7603 0.8472 0.8884

Table 6.3 shows the best prediction performance for each subject using a patient-

specific feature set and all three classifiers. The combined best results achieve a mean

AUC of 0.7603, 0.8472, and 0.8884 for AdaBoost, SVM, and ANN, respectively. The

ANN classifier achieves the highest AUC for all patients as shown in Table 6.3. A
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stochastic logic implementation of the ANN classifiers has been presented in [132].

6.4 Conclusion

A patient-specific algorithm for seizure prediction using a small number of EEG signals

has been proposed. The baseline experiment using a large number of features and

RBF-SVM achieves a 100% sensitivity and an average AUC of 0.9985. The proposed

algorithm using only a small number of features and polynomial SVM with degree of 2

achieves a 100% sensitivity, a mean false positive (FP) rate of 0.073 FP/hour, a mean

prediction horizon of 58 minutes, and an average AUC of 0.9795. Therefore, combining

the PSD features and then carefully selecting a small number of these features from a

few electrodes can improve the prediction performance.

Using the testing data provided by the Mayo clinic, it is also shown that the spectral

feature set achieves a mean AUC of 0.7538, 0.7739, and 0.7948 for AdaBoost, SVM,

and ANN, respectively. The correlation coefficients feature set achieves a mean AUC of

0.6640, 0.7403, and 0.7875 for AdaBoost, SVM, and ANN, respectively. The combined

best results which use patient-specific feature sets achieve a mean AUC of 0.7603, 0.8472,

and 0.8884 for AdaBoost, SVM, and ANN, respectively.
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Chapter 7

MUSE: Minimum Uncertainty

and Sample Elimination Based

Binary Feature Selection

A new feature selection algorithm based on minimum uncertainty and sample elimi-

nation (referred as MUSE) is proposed [98]. The three-step algorithm first quantizes

features into bins, ranks the features based on an uncertainty score, selects the feature

with the lowest uncertainty score, and then discards samples based on an impurity met-

ric. The uncertainty score and the impurity metric are defined in Section 7.1.2 and

Section 7.1.3, respectively. The discarded samples are not used for selection of sub-

sequent features. The process is repeated until a stopping criterion is satisfied. The

sample elimination process reduces redundancy and the selection of a feature with the

least uncertainty score increases relevance. These steps are new to the proposed algo-

rithm. The discarding of the samples and the selection of the feature are both nonlinear

operations and are ideal for general machine learning applications where feature samples

may not necessarily be linearly separable.

98
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7.1 Proposed Method: MUSE

In this chapter, a novel method for binary (2-class) feature selection is proposed. Fea-

tures are quantized into different bins at the first step. The proposed feature selection

method uses conditional entropy as its criterion. The proposed method iteratively se-

lects a feature that achieves the minimum conditional entropy for only part of the data

since in many applications features may only have predictive powers for only part of the

data. Suppose a feature whose histogram is shown in Fig. 7.1 is selected according to

a certain criterion. The right panel represents the histogram for each bin after quanti-

zation for the feature shown in the left panel. As shown in the figure, if the samples in

this feature are less than -1.2 or is greater than -0.6, these samples should be classified

as Class 2. Intuitively, if this feature is selected in the first step, then samples that

are classified as Class 2 can be discarded and not considered in the next iteration as

they have already been correctly classified by this feature. Thus, the next feature only

focuses on the samples between -1.2 and -0.6.
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Figure 7.1: Histograms of (a) the original feature No. 939 and (b) quantized feature
No. 939 for Patient No. 1 in the American Seizure Prediction Challenge database. The
details of this dataset are described in Section 7.4.

Similar to boosting, we propose a feature selection method where after a feature

is selected by the proposed algorithm, feature samples (observations) within certain

bins with low impurities are discarded. This step emphasizes the importance of the

feature samples that cannot be correctly separated by the selected features in previous

iterations. The discarded feature samples will not be considered in the next round of

feature selection. The feature selection and the feature sample (observation) discarding
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process are repeated until certain stopping rules are satisfied.

In summary, the proposed algorithm is illustrated in Fig. 7.2, which includes feature

quantization, selecting a feature according to the proposed criterion and then discarding

the feature samples that are correctly classified. The last two steps are repeated until

m features are selected.

Feature

Set

Feature

Quantization

  Select a feature

achieving the maximal

proposed criterion

Selected

featureDiscard feature

samples

(observations)

Repeat for m-1 times

Figure 7.2: Flow chart of the proposed algorithm.

7.1.1 Feature quantization

Continuous feature

Quantization is the procedure of constraining the feature from a continuous set of values

to a relatively small discrete set [42]. In signal processing, if the amplitude of a signal

s takes on values over an interval from smin to smax, quantization of this signal into

K levels can be thought of as dividing the interval into K bins. All values that lie in

a given bin are rounded to the reconstruction value associated with that bin. In our

method, each continuous-valued feature is divided into K bins ({B1, B2, ..., BK}) with
equal probability such that each bin contains approximately the same number of feature

samples (observations) and each feature sample is represented by its corresponding bin

number afterwards.

Nominal or Categorical feature

Suppose a nominal or categorical feature X takes on discrete values from the set

{d1, d2, ...dK}; equal-probability quantization cannot be performed on these features.

However, in our method, each unique value of such a feature is regarded as a bin, e.g.,

Bk = dk, and the feature samples that take on the k-th unique value are quantized into

the k-th bin and the corresponding bin number is assigned to these feature samples.
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7.1.2 Criterion

This section starts with analyzing the criterion used for mRMR and then presents

our new criterion. Since features are quantized first, the new features are discrete

variables. For the purpose of disambiguation, we define S = {X1, ...Xm} as a feature

set with m quantized feature variable (attribute) where X1, ...Xm take particular values

of x1, ...., xm, respectively.

In the first step, the mRMR finds a feature that maximizes the following criterion:

max
Xj∈S

[I(Xj ; c)] = H(c)−H(c|Xj) (7.1)

Note that in the first step,
∑

i,j I(Xi;Xj) = 0 as no prior feature has been selected.

Let X represent an arbitrary feature and let Bk represent the k-th bin after the first

step of data quantization. Then the mutual information between the class label c and

the feature X can be written as:

I(X; c) = H(c)−
∑
k

P (Bk)H(c|Bk) (7.2)

where H(c) represents the entropy of the class label and is defined as follows:

H(c) =
∑
l

−P (cl) logP (cl), (7.3)

cl represents the l-th class label, P (Bk) represents the probability of k-th bin (Bk),

H(c|Bk) represents the conditional entropy of class label given Bk and is defined as

follows:

H(c|Bk) =
∑
l

−P (cl|Bk) logP (cl|Bk). (7.4)

Since given the class label, H(c) is a fixed number for all features, finding a feature that

maximizes the above equation is equivalent to finding a feature such that the following

criterion is minimized:

max
Xj∈S

[I(Xj ; c)] ⇔ min
Xj∈S

∑
k

P (Bk)H(c|Bk) (7.5)

Therefore, a feature selected in the first step of mRMR is the feature such that the

mean of the conditional entropies of the class labels for all bins is minimized.
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However, such a criterion ignores the fact that for some features, certain bins may

have strong predictive power and the remaining bins may not have any predictive power.

Features that have strong predictive power within only a number of the bins should be

considered good if two classes are hard to separate using any feature in the total feature

set.

Without loss of generality, we suppose that the conditional entropy of the class label

within each bin is sorted in an ascending order such that

H(c|B1) < H(c|B2) < ... < H(c|BK) (7.6)

We propose a new criterion to select a feature such that the conditional entropy of the

class label for only a part of the feature samples is minimized. More specifically, this

can be described as selecting a feature such that the sum of the smallest K ′ conditional

entropies of all the K conditional entropies of their corresponding bins is minimized,

subject to the condition that the sum of the probabilities of the K ′ bins exceeds a pre-

defined value p which represents the percentage of the feature samples. Mathematically,

the above algorithm can be described by the following 3 steps:

1. For each feature, sort the conditional entropies of the class labels across all bins in

an ascending order such that

H(c|B1) < H(c|B2) < ... < H(c|BK) (7.7)

2. For each feature, find the smallest K ′ such that

K′∑
k=1

P (Bk) > p (7.8)

3. Define an uncertainty score for each feature Xi given by:

J(Xi) =

K′∑
k=1

P (Bk)H(c|Bk) (7.9)

4. Select a feature such that the sum of the conditional entropies of the K ′ bins are

minimized

min
Xi∈S

J(Xi) =

K′∑
k=1

P (Bk)H(c|Bk) (7.10)

(7.11)
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For instance, if p is equal to 0.2, the proposed criterion selects the feature such that

the smallest conditional entropies corresponding to at least 20% of the feature samples

are minimized. Note that changing the value of p will select a different feature.
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Figure 7.3: Proposed criteria (score) for each feature for the Gisette dataset.

Fig. 7.3 illustrates the proposed criteria for each feature in the Gisette dataset,

where feature No. 569 achieves the minimum value among all features and is selected

in the first iteration. The details of this dataset are described in Section 7.4.
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Figure 7.4: Stacked histogram of the feature samples for Class 1 and Class 2 selected
by the proposed criterion for the Gisette dataset.

Fig. 7.4 illustrates the stacked histogram of the feature samples for Class 1 and

Class 2 using feature No. 569 selected by the proposed criterion (with p = 0.2) for the

Gisette dataset. This feature contains a large number of zero values and thus the bins

do not have an equal size after quantization. As shown in the figure, bin No. 2 to bin

No. 6 contain feature samples that are mostly from Class 1 and almost all of the feature

samples for Class 2 are located within bin No. 1. Thus, feature samples of Class 1

within bin No. 2 to bin No. 6 are considered as well separated from Class 2 with very

high accuracy.
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Fig. 7.1 illustrates the histograms of (a) original feature No. 939 and (b) quantized

feature No. 939 selected by the proposed algorithm in the first iteration using Patient

No. 1 in the American Seizure Prediction Challenge database (see Section 7.4). As

opposed to the features in the Gisette dataset, this is a continuous feature and thus is

quantized into 20 different bins with equal size. As shown in the figure, bin No. 1-2

and bin No. 15-20 contain feature samples mostly from Class 2. Thus, feature samples

within these bins are considered as well separable from Class 1.

7.1.3 Elimination of feature samples

Similar to Adaboost which assigns more weights to the feature samples that are mis-

classified in the previous steps [93], after feature selection according to the proposed

criterion, feature samples within certain bins with a small conditional entropy of the

class label are discarded.

We first define the impurity of each bin as the minimum of the probability of Class

1 and the probability of Class 2 for each bin [80]. Suppose an impurity threshold is

predefined as T , then feature samples within the bins whose bin impurity is less than

T are discarded and are not considered in the next feature selection step. This step

guarantees that feature samples surviving after each iteration are harder to classify

using previously selected features and each iteration focuses on these feature samples

only. This is a key aspect of the proposed algorithm. Note that while p affects what

feature selected, T affects which samples are eliminated at a certain step.
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Figure 7.5: Bin impurities for the feature selected by the proposed criterion for the
Gisette dataset.
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Fig. 7.5 illustrates the corresponding bin impurities of the feature shown in Fig. 7.4

for the Gisette dataset. The first bin has the highest bin impurity and the bin impurities

for bins No. 3-6 are all less than 0.1. If we predefine the impurity threshold T as 0.1,

then all feature samples within bin No. 3-6 are discarded and are not considered in the

next iteration.
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Figure 7.6: Bin impurities of the feature selected by the proposed criterion for Patient
No. 1 in the American Seizure Prediction Challenge database.

Fig. 7.6 illustrates the corresponding bin impurities for the feature shown in Fig. 7.1

for Patient No. 1 in the American Epilepsy Society (AES) Seizure Prediction Challenge

database . More than half of the bins have an impurity less than 0.1. If we predefine the

impurity threshold T as 0.1, then feature samples within these 16 bins whose impurities

are less than 0.1 are discarded and are not considered in the next iteration. Thus, ap-

proximately 80% of the feature samples will be discarded and remaining feature samples

are subjected to the next iteration of feature selection and elimination.

7.1.4 Repetition

Using the criterion proposed in Section 7.1.2 and the discarding rule in Section 7.1.3,

m features are selected by repeating the proposed two steps for m times.

Fig. 7.7. illustrates the stacked histogram of the feature samples for Class 1 and

Class 2 in the second feature selection iteration using the proposed algorithm (with

p = 0.2) for the Gisette dataset, where x axis represents the bin number and y axis

represents the number of feature samples. Bin No. 2-5 contain feature samples mostly

from Class 2 and almost all of the feature samples for Class 1 are located within bin
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Figure 7.7: Stacked histogram of the feature samples for Class 1 and Class 2 selected by
the proposed algorithm (with p = 0.2) in the second iteration for the Gisette dataset.
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Figure 7.8: Histograms of (a) feature No. 3 and (b) quantized feature No. 3 selected in
the second iteration with sample elimination using Dog No. 1 in the American Seizure
Prediction Challenge database.

Fig. 7.8 illustrates the histograms of (a) feature No. 3 and (b) quantized feature

No. 3 selected in the second iteration with sample elimination using Dog No. 1 in the

American Seizure Prediction Challenge database. Fig. 7.9 illustrates the histograms

of the original feature No. 3 without sample elimination. Compared with Fig. 7.8,

a large number of samples which are less than -1.6 or in the range of [−0.9,−0.7] are

eliminated in the first iteration after feature No. 939 is selected. The eliminated samples

correspond to the samples in the ”good” bins as illustrated in Fig. 7.6. This example

illustrates that feature No. 3 focuses on the samples that can not be correctly classified

by feature No. 939, regardless of the samples that already have been correctly classified

by feature No. 939. Note that the histograms shown in Fig. 7.8(b) and Fig. 7.9,
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Figure 7.9: Histograms of the original feature No. 3 without sample elimination.

respectively, correspond to 39375 and 7875 samples.

7.1.5 Summary

Algorithm 4 Algorithm for MUSE feature selection

Predefine p and T
Start with the empty set S0 = {ϕ}, i = 0
for i = 1 to m do

1. For each feature, compute and sort the conditional entropy such thatH(c|B1) <
H(c|B2) < ... < H(c|BK)

2. For each feature, find the smallest K ′ such that
K′∑
k=1

P (Bk) > p

3. Select the next best feature x∗ = argmin
x∈S

J(x) =
K′∑
k=1

P (Bk)H(c|Bk)

4. Si = Si−1 ∪ {x∗}
5. Discard feature samples within the bins whose impurity is less than T

end for

In summary, the proposed feature selection algorithm is described in Algorithm 4.

Let pi represent the percentage of feature samples eliminated in the i-th iteration. The

parameter pi depends on T , and should not be confused with p. Denote bins whose

impurities are less than T as ”good”, and denote bins whose impurities are greater than

T as ”bad”. The proposed sample elimination process is illustrated in Fig. 7.10, where

at the i-th iteration, for samples that have not yet been eliminated, pi
∏i−1

k=1(1 − pk)

feature samples are quantized into ”good” bins, and the remaining
∏i

k=1(1−pk) feature

samples are quantized into ”bad” bins. Then at the i-th iteration of feature selection,
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Figure 7.10: Flow chart of the proposed iterative feature sample elimination process.

we have the following relationship:

H(c|X1, ..., Xi)

=
∑

x1,x2,...xi

H(c|x1, x2, ..., xi)P (x1, .., xi)

=
∑

x1 in good
x2,...xi

H(c|x1, x2, ..., xi)P (x1, .., xi)

+
∑

x1 in bad
x2 in good
x3,...xi

H(c|x1, x2, ..., xi)P (x1, .., xi)

+...

+
∑

x1,x2...,xi−1 in bad
xi in good

H(c|x1, x2, ..., xi)P (x1, .., xi)

+
∑

x1,x2...,xi−1 in bad
xi in bad

H(c|x1, x2, ..., xi)P (x1, .., xi) (7.12)
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The upper bound for the first term in Equation (7.12) can be found as follows:∑
x1 in good
x2,...xi

H(c|x1, x2, ..., xi)P (x1, .., xi) (7.13)

≤
∑

x1 in good
x2,...xi

H(c|x1)P (x1, .., xi) (7.14)

≤
∑

x1 in good
x2,...xi

H(T )P (x1, .., xi) (7.15)

= p1H(T ) (7.16)

where H(T ) = −T log T − (1 − T ) log(1 − T ). Note that
∑

x1 in good
x2,...xi

p(x1, .., xi) =

P (x1 in good) = p1.

By the same token, the upper bound for the j-th term in Equation (7.12) can be

found as follows: ∑
x1,x2...,xj−1 in bad

xj in good
xj+1,...xi

H(c|x1, x2, ..., xi)P (x1, .., xi) (7.17)

≤
∑

x1,x2...,xj−1 in bad
xj in good
xj+1,...xi

H(c|xj)P (x1, .., xi) (7.18)

= pj

j−1∏
k=1

(1− pk)H(T ) (7.19)

The last term in Equation (7.12) needs to be treated differently, and its upper bound

can be found as follows: ∑
x1,x2...,xi−1 in bad

xi in bad

H(c|x1, x2, ..., xi)P (x1, .., xi) (7.20)

≤
∑

x1,x2...,xi−1 in bad
xi in bad

H(c|xi)P (x1, .., xi) (7.21)

Since given a ”bad” bin, the worst case occurs when P (c1) = P (c2) = 0.5. Thus, the
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upper bound of the last term in Equation (7.12) can be found as follows:∑
x1,x2...,xi−1 in bad

xi in bad

H(c|x1, x2, ..., xi)P (x1, .., xi) (7.22)

≤
∑

x1,x2...,xi−1 in bad
xi in bad

H(0.5)P (x1, .., xi) (7.23)

=

i∏
k=1

(1− pk) (7.24)

In summary, the upper bound of H(c|X1, ..., Xi) can be written as follows:

H(c|X1, ..., Xi) (7.25)

≤
i∑

j=1

pj

j−1∏
k=1

(1− pk)H(T ) +
i∏

k=1

(1− pk) (7.26)

=H(T ) + (1−H(T ))
i∏

k=1

(1− pk) (7.27)

Since 1−H(T ) is always greater than 0 and I(c;X1, X2, ..., Xi) = H(c)−H(c|X1, ..., Xi),

the proposed algorithm iteratively increases the mutual information between selected

features and the class label as the upper bound of H(c|X1, ..., Xi) converges to H(T )

linearly with a rate equal to (1− pmin), where pmin = min{p1, p2, ..., pi}.

Table 7.1: Conditional Entropy for mRMR and the Proposed Method and its Estimated
Value.

# of features (i) 1 2 3 4

H(c|X1, ..., Xi) (mRMR) 0.2335 0.1159 0.0182 0.0016

H(c|X1, ..., Xi) (Proposed) 0.2335 0.1125 0.0064 0.0014

Estimated H(c|X1, ..., Xi) 0.2335 0.1401 0.0813 0.03941

Table 7.1 illustrates (a) the conditional entropy, referred as H(c|X1, ..., Xi), for m-

RMR, (b) the conditional entropy for the proposed method, and (c) the estimated

conditional entropy for the proposed method using Equation (27) after each iteration

of feature selection for Patient No. 1 in the American Seizure Prediction Challenge

dataset. The conditional entropy converges much faster to 0 than its estimated value

and the proposed method achieves a lower value than the mRMR. Note that the esti-

mated conditional entropy in the last row of Table 7.1 is an upper bound of the actual

conditional entropy in the row above the last row.
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Fig. 7.11 illustrates the scatter plot of interictal features (represented by blue cross-

es) and preictal features (represented by red dots) using three features selected by the

proposed algorithm. As shown in the figure, the feature samples in the feature space

selected by the proposed algorithm are typically non-linearly separable for the following

reasons:

(1) The proposed criterion or score used for feature ranking in each iteration is a

non-linear metric that measures the non-linear relationship between the feature and

class label.

(2) Feature samples are also discarded in a non-linear way. As shown in Fig. 7.6,

after feature selection, feature samples within the lowest 2 bins and the highest 6 bins

are discarded.
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Figure 7.11: Scatter plot of interictal features (blue crosses) and preictal features (red
circles) using the features selected by the proposed algorithm for Patient No. 1 in the
American Seizure Prediction Challenge dataset.

7.2 Classifiers

To test the performance of the proposed algorithm, we consider four widely used classi-

fiers which include Naive Bayes (NB), Linear Discrimant Analysis (LDA), classification

and regression tree (CART), and artificial neural network (ANN).
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7.3 Practical Issues

7.3.1 Quantization level

Since features need to be quantized into finite discrete values in the first step, the level

of quantization, i.e., the number of bins, needs to be determined first. In the mRMR

algorithm, different datasets use different discretization levels.

The data set HDR (Multiple Features Data Set) [133, 134, 135, 136] contains 649

features of 2,000 handwritten digits (from 0 to 9). To discretize the data set, each

feature variable was binarized at the mean value, i.e., it takes 1 if it is larger than the

mean value and -1 otherwise.

However, for the arrhythmia dataset, each feature variable was discretized into three

states at the positions µ±σ (µ represents the mean value and σ represents the standard

deviation): it takes -1 if it is less than µ−σ, 1 if larger than µ+σ, and 0 if otherwise.

We propose that the discretization level can be determined by estimating the error

rate first for different levels and then selecting a quantization level that achieves the

lowest error rate as the final level. Fig. 7.12 illustrates the classification error rate of

the Arrhythmia dataset for different quantization levels using (a) Naive Bayes classifier,

(b) LDA classifier, and (c) CART classifier. As shown in the figure, when Naive Bayes

classifier and LDA classifier are used, the proposed algorithm achieves the minimum

classification error rate when data is quantized into 9 bins. If CART is used as the

classifier, then the proposed algorithm achieves the 3rd minimum classification error rate

when data is quantized into 9 bins. Therefore, for this dataset, features are discretized

into 9 levels.

To guarantee a fair comparison, the quantization level for mRMR is the same as the

proposed algorithm.

7.3.2 Number of features

Even though an algorithm for selecting m features are proposed, in practice, the number

of features to select is usually unknown at the beginning until a classifier is trained. In

mRMR, to select the candidate feature set, the cross-validation classification error is first

computed for a large number of features and then the number of features is determined

so as to achieve a relatively stable range of small error. This requires the algorithm
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Figure 7.12: Classification error rate of the Arrhythmia dataset for different quantization
levels using (a) Naive Bayes classifier, (b) LDA classifier, and (c) CART classifier.
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to train n cross-validation classifiers, which can be incredibly computationally intensive

when dealing with big data.

In our proposed algorithm, since feature samples are discarded after each iteration

of selection, the number of feature samples that survive for the next round of feature

selection is less and less. An intuitive method for the stopping criterion is to use the

number of the feature samples that survive after each iteration. Suppose N1(i) and

N2(i) represent the number of feature samples that survive after the i-th iteration of

feature selection and feature sample discard process for Class 1 and Class 2, respectively,

where N1(0) and N2(0) represent the total number feature samples for Class 1 and Class

2 at the very beginning, respectively. Then N1(i)/N1(0) and N2(i)/N2(0) represent the

percentage of feature samples that survive after the i-th iteration of feature selection.

If any of these numbers is below a predefined stopping threshold Ts, then the selection

procedure stops.
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Figure 7.13: Percentage of feature samples that survive for Class 1 and Class 2, respec-
tively, after each iteration using the Gisette dataset, where the black dashed horizontal
line represents the stopping threshold (Ts = 0.1 in this case).

Fig. 7.13 illustrates the percentage of surviving feature samples for Class 1 and Class

2, respectively, after each iteration using the Gisette dataset, where the black dashed

horizontal line represents the stopping threshold (Ts = 0.1 in this case). It is shown

in the figure that after 12 features are selected, the percentage of feature samples that

survive for Class 1 is less than 10%, which indicates that more than 90% of the feature

samples for Class 1 can be correctly separated from Class 2.
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Figure 7.14: Percentage of feature samples that survive for Class 1 (interictal) and Class
2 (preictal), respectively, after each iteration for Patient No. 1 in the American Seizure
Prediction Challenge database.

Fig. 7.14 illustrates the percentage of surviving feature samples for Class 1 (in-

terictal) and Class 2 (preictal), respectively, after each iteration for Patient No. 1 in

the AES Seizure Prediction Challenge database, where the black dashed horizontal line

represents the stopping threshold (Ts = 0.01 in this case). It is shown in the figure that

after 4 features are selected, the percentage of feature samples that survive for Class 1

is less than 1%, which indicates that more than 99% of the interictal feature samples of

Class 1 can be correctly separated from preictal features of Class 2. The threshold is

selected as small as 0.01 because of the large size of the interictal data.

7.4 Datasets

Three datasets are used in this chapter. These include the Arrhythmia and Gisette

datasets from UCI and the seizure prediction contest dataset containing data from 5

dogs and 2 humans from Kaggle. All data are publicly available. These datasets are

described below.

7.4.1 Arrhythmia dataset

The first dataset is the Arrhythmia dataset from UCI [137, 138, 139]. According to

[137], this database contains 279 attributes, 206 of which are linear valued and the rest

are nominal. The aim is to distinguish between the presence and absence of cardiac

arrhythmia and to classify it in one of the 16 groups. Class 01 refers to ’normal’ ECG
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classes 02 to 15 refer to different classes of arrhythmia and Class 16 refers to the rest of

unclassified ones. The class label has two states with 237 and 183 samples, respectively.

7.4.2 Gisette dataset

The second dataset is the Gisette digit recognition dataset from UCI [140, 141, 142].

According to [140], the digits have been size-normalized and centered in a fixed-size

image of dimension 28x28. The original data were modified for the purpose of the

feature selection challenge. In particular, pixels were sampled at random in the middle

top part of the feature containing the information necessary to disambiguate 4 from 9

and higher order features were created as products of these pixels to plunge the problem

in a higher dimensional feature space. A number of distractor features called ’probes’

having no predictive power were also added to this dataset. The order of the features

and patterns were randomized.

Table 7.2 summarizes feature types, feature numbers, and number of feature samples

for the Arrhythmia dataset and the Gisette dataset.

Table 7.2: Description of Arrhythmia and Gisette datasets.

Dataset Arrhythmia Gisette

Source UCI UCI

Raw feature type Continuous integer

Quatization level 9 6

# of features 278 5000

# of samples 420 6000

Class # Name # of sample Name # of sample

Class 1 Normal 237 ”4” 3000

Class 2 Abnormal 183 ”9” 3000

Testing method 5-fold cross validation with permutations

7.4.3 American Epilepsy Society Seizure Prediction Challenge database

The third dataset is the American Epilepsy Society (AES) Seizure Prediction Challenge

database [129, 143]. Details of this dataset are described in Section 6.1. Table 7.3

summarizes the number of features, number of feature samples and number of dataclips

of the training set and testing set for each subject.
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Two types of features are extracted from the EEG signals. These features include

relative spectral power and spectral power ratio. We use the same feature extraction

process as explained in detail in [27]. For the 5 canine subjects, 10 relative spectral

powers are extracted and
(
10
2

)
= 45 spectral power ratios are computed from these

spectral powers from each electrode. For the 2 canine subjects, 13 relative spectral

powers are extracted and
(
13
2

)
= 78 spectral power ratios are computed from these

spectral powers from each electrode.

Table 7.3: Seizure Prediction Dataset from Kaggle Contest.

Dataset
American Epilepsy Society Seizure Prediction Challenge

Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Pat. 1 Pat. 2

Source [129]

Raw feature type Continuous

Quatization level 20

# of electrodes 16 16 16 16 16 15 24

# of features/electrode 55 55 55 55 55 91 91

Total # of features 880 880 880 880 880 1365 2184

# of feature samples/clip 598 598 598 598 598 599 599

Training Set (# of clips)

Total 504 542 1512 901 480 68 60

Class 1 (Interictal) 480 500 1440 804 450 50 42

Class 2 (Preictal) 24 42 72 97 30 18 18

Testing Set (# of clips)

Total 502 1000 907 990 191 195 150

Class 1 (Interictal) 478 910 865 933 179 183 14

Class 2 (Preictal) 24 90 42 57 12 12 136

7.5 Experimental Results

7.5.1 Arrhythmia dataset

The details for testing the proposed algorithm on this dataset are described as follows:

1) Two important criteria for performance evaluation are used for this dataset which

include sensitivity and specificity. The sensitivity of a clinical test refers to the ability

of the test to correctly identify those patients with the disease and is defined as follows:

Sensitivity=True Positives/Positives

The specificity of a clinical test refers to the ability of the test to correctly identify those

patients without the disease and is defined as follows:
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Specificity=True Negatives/Negatives

2) Five-fold cross-validation with permutation is used to achieve the averaged value

of sensitivity and specificity versus different number of features. Feature samples are

permuted first and partitioned into five equal size folds. Of the 5 folds, a single fold is

retained as the validation data for testing the model, and the remaining 4 folds are used

for training. The cross-validation process is then repeated 5 times, with each of the 5

folds used exactly once as the validation data. The 5 results from the folds can then

be averaged (or otherwise combined) to produce a single estimation. Such a process is

repeated for 500 times to achieve an ensemble results of the sensitivity and specificity

by averaging the 500 estimations.

Fig. 7.15(a), (b), and (c) compare the sensitivity (left panel) and specificity (right

panel) of the proposed algorithm and the mRMR algorithm for the Arrhythmia dataset

from UCI using (a) Naive Bayes classifier, (b) LDA classifier, and (c) CART, respec-

tively. As shown in the figures, when 5 features are selected, the proposed algorithm

achieves a significantly higher sensitivity than mRMR. The proposed algorithm achieves

30% higher sensitivity when Naive Bayes classifier is used and achieves approximately

20% higher sensitivity when CART classifier is used. On the other hand, the proposed

algorithm only achieves 7% less specificity when Naive Bayes classifier is used and 5%

less specificity when CART classifier is used.

7.5.2 Gisette dataset

The details for testing the proposed algorithm on this dataset are described as follows:

1) The criterion for performance evaluation used for this dataset is the classification

accuracy for Class 1 and Class 2.

2) Five-fold cross-validation with permutation is used to achieve the averaged value

of sensitivity and specificity versus different number of features. Feature samples are

permuted randomly first and partitioned into five equal size folds. Of the 5 folds, a

single fold is retained as the validation data for testing the model, and the remaining 4

folds are used for training. The cross-validation process is then repeated 5 times, with

each of the 5 folds used exactly once as the validation data. The 5 results from the folds

can then be averaged (or otherwise combined) to produce a single estimation. Such a
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Figure 7.15: Sensitivity (left panel) and specificity (right panel) for the Arrhythmia
dataset from UCI for the proposed algorithm and mRMR using (a )Naive Bayes classi-
fier, (b) LDA classifier, and (c) CART classifier.
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process is repeated for 500 times to achieve an ensemble results of the sensitivity and

specificity by averaging the 500 estimations.

Fig. 7.16 (a), (b), and (c) compare the classification accuracies of Class 1 (left panel)

and Class 2 (right panel) of the proposed algorithm and the mRMR for the Arrhythmia

dataset from UCI using (a) Naive Bayes classifier, (b) LDA classifier, and (c) CART,

respectively.

As shown in the figures, the proposed algorithm always starts with a high accuracy

for Class 1 and a low accuracy for Class 2. As the number of features increases, the

proposed algorithm achieves approximately the same accuracy as the mRMR for both

Class 1 and Class 2 when the LDA and CART classifiers are used. However, when Naive

Bayes classifier is used, the proposed algorithm has a 3% lower accuracy for Class 1 and

15% higher accuracy for Class 2.

7.5.3 American Epilepsy Society Seizure Prediction Challenge database

Table 7.4: Classification Performance on the American Epilepsy Society Seizure Predic-
tion Challenge database Using CART

Dataset
American Epilepsy Society Seizure Prediction Challenge database
Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Pat. 1 Pat. 2

# of feature 10 10 10 10 10 4 4

AUC(proposed) 0.7708 0.8359 0.7095 0.8499 0.6311 0.8272 0.7629

AUC(mRMR) 0.7495 0.7528 0.6304 0.7670 0.4774 0.6430 0.6179

SS(proposed) 0.6667 0.7556 0.5952 0.7719 0.6667 0.7500 0.6429

SS(mRMR) 0.6715 0.6667 0.6190 0.7719 0.5000 0.5833 0.5714

SP(proposed) 0.6667 0.8077 0.7341 0.8006 0.6313 0.7760 0.7647

SP(mRMR) 0.7197 0.7549 0.6220 0.6613 0.5307 0.5847 0.7426

The details for the proposed algorithm are described as follows:

1) Three important criteria for performance evaluation are used for this dataset

which include sensitivity, specificity, and area under curve (AUC).

2) Training set is used for feature selection and classifier training. Ground truth

for testing is known beforehand and thus are used for validation, i.e., selecting the best

feature subset selected by the proposed algorithm and mRMR and then a corresponding

classifier.

3) Due to the imbalance between the data size of the preictal features and the

interictal features, random subsampling, which refers to randomly selecting a subset of
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Figure 7.16: Classification accuracies for Class 1 (left) and Class 2 (right) for the Gisette
dataset from UCI between the proposed algorithm and mRMR using (a )Naive Bayes
classifier, (b) LDA classifier, and (c) CART classifier.
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the feature observations, are performed on the interictal features during training phase.

On the other hand, upsampling, which refers to duplicating the feature observations, are

performed on the preictal features. The two techniques are used together to ensure that

the preictal features contain approximately the same amount of feature observations as

the initerictal features.

4) Different feature sample subsets after random subsampling may lead to different

feature sets selected by mRMR or the proposed algorithm. Therefore, such random

sampling and feature selection steps are repeated for 100 times and the feature set that

achieves the highest AUC after training is selected as the final feature set.

5) Feature samples in each dataclip is classified as 0 (interictal) or 1 (preictal) after

classification. The probability for each data clip to be a preictal clip is computed as

averaging the class labels for all feature observations from the clip:

P (data clip=preictal) = Mean[class label of feature observations in the data clip]

6) CART and ANN are trained as the classifier for the this dataset and the perfor-

mance are evaluated.

Table 7.4 shows the highest AUC of the 100 experiments and its corresponding

sensitivity (SS) and specificity (SP) on the testing dataset for each subject when CART

is used. Fig. 7.17(a), (b), and (c) plot the AUC, sensitivity and specificity for each

subject, respectively. The proposed algorithm achieves a higher AUC for all subjects in

this dataset. The proposed algorithm achieves higher sensitivities for 5 out of 7 subjects

and achieves higher specificities for 6 out of 7 subjects in the dataset. In addition, the

proposed algorithm has a better overall classification accuracy than mRMR. When

CART is used, the proposed method achieves a higher AUC of 10.70% on average, a

higher sensitivity of 6.65% on average, and a higher specificity of 8.07% on average. A

two-sample t-test for the null hypothesis that the proposed algorithm achieves the same

AUC as mRMR is performed at the 5% significance level, where alternative hypothesis

is to evaluate whether mean AUC for the proposed algorithm is significantly higher than

mRMR. The test results achieve a p-value of 0.0258 that is low enough to reject the

null alternative and accept the alternative hypothesis.

Table 7.5 shows the highest AUC of the 100 experiments and its corresponding

sensitivity (SS) and specificity (SP) on the testing dataset for each subject when ANN
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Figure 7.17: Comparison of (a) AUC, (b) sensitivity, and (c) specificity, for proposed
algorithm and mRMR for the American Epilepsy Society Seizure Prediction Challenge
database when CART is used.

Table 7.5: Classification Performance on the American Epilepsy Society Seizure Predic-
tion Challenge database Using ANN

Dataset
American Epilepsy Society Seizure Prediction Challenge database
Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Pat. 1 Pat. 2

# of feature 10 10 10 10 10 4 4

# of neurons 10 10 10 10 10 5 5

AUC(proposed) 0.7739 0.8397 0.8032 0.8983 0.7076 0.8802 0.8655

AUC(mRMR) 0.7478 0.7703 0.6637 0.8671 0.6741 0.5824 0.6922

SS(proposed) 0.7917 0.7556 0.6667 0.7895 0.7500 0.7500 0.7857

SS(mRMR) 0.6250 0.7667 0.7619 0.8246 0.6667 0.6667 0.5714

SP(proposed) 0.6381 0.8066 0.7584 0.8360 0.5978 0.8415 0.7721

SP(mRMR) 0.7573 0.6484 0.5353 0.7814 0.6145 0.4372 0.7794
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is used. Fig. 7.18(a), (b), and (c) plot the AUC, sensitivity and specificity listed in Table

7.2 for each subject, respectively. As shown in the table and the figures, the proposed

algorithm achieves a higher AUC for all subjects in this dataset. The proposed algorithm

achieves higher sensitivities for 4 out of 7 subjects and achieves higher specificities for

4 out of 7 subjects in the dataset. In addition, the proposed algorithm has a better

overall classification accuracy than mRMR. When ANN is used, the proposed method

achieves a higher AUC of 11.01% on average, a higher sensitivity of 5.80% on average,

and a higher specificity of 9.96% on average. A two-sample t-test for the null hypothesis

that the proposed algorithm achieves the same AUC as mRMR is performed at the 5%

significance level, where alternative hypothesis is to evaluate whether mean AUC for

the proposed algorithm is significantly higher than mRMR. The test results achieve

a p-value of 0.0129 that is low enough to reject the null alternative and accept the

alternative hypothesis.

7.6 Discussion

In our approach, we stressed the importance for selecting a feature that focuses on the

samples that previously selected features are unable to separate into different classes.

In each step, surviving feature samples are ranked according to an uncertainty score

based on conditional entropies. In the next step, feature samples are further discarded

according to the bin impurities. Feature samples within the bins that have strong

predictive power to separate different classes are discarded. Thus, the proposed method

is more and more efficient and requires significantly less storage space after each iteration

since more and more samples are eliminated.

Our experimental results show that the proposed algorithm has different perfor-

mances depending on the dataset size and the types of classifiers.

For small datasets such as the Arrhythmia and Gisette datasets that contain only

hundreds or thousands of feature samples, the proposed algorithm, in general, may not

achieve a better classification performance when small number of features are selected.

The key reason is that classification variances for small datasets are very high. When

more and more features are selected, the proposed algorithm achieves approximately

the same classification performance as mRMR. The explanation for this is that as more
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Figure 7.18: Comparison of (a) AUC, (b) sensitivity, and (c) specificity, for proposed
algorithm and mRMR for the American Epilepsy Society Seizure Prediction Challenge
database when ANN is used.
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and more feature samples are discarded, the new selected feature focuses only on a very

small portion of the original dataset. Thus, selected features may lead to overfitting if

the surviving data size is too small.

For big datasets such as the American Epilepsy Society Seizure Prediction Chal-

lenge database that contains hundreds of thousands of feature samples, the proposed

algorithm has a much better classification performance than mRMR in terms of AUC,

sensitivity and specificity when the same number of features are selected. Since hun-

dreds or even thousands of feature samples can survive further selection after a few

iterations of feature selection, over-fitting will not be a major concern for big data ap-

plications. Experimental results shows that for both CART and ANN classifiers, the

proposed algorithm achieves a significantly higher AUC on average. Statistical tests

illustrate that the proposed algorithm achieves a p-value low enough to conclude the

proposed algorithm has a better performance than mRMR.

In addition, the proposed algorithm achieves a better classification performance

when a non-linear classifier such as Naive Bayes classifier or CART is used.

7.7 Conclusion

A new recursive feature selection method has been presented in this chapter. Our

feature selection method places more emphasis on feature samples that are harder to

separate using selected features and thus avoids redundancy with selected features. We

show that the feature samples in the selected features space are non-linearly separable.

We also address the practical issues with regard to selecting data quantization level and

the number of features to select for given a dataset.

The performance analysis shows that for small datasets, the proposed algorithm

the proposed algorithm may not achieve better performance than mRMR when few

features are selected. As more and more features are selected, performance of the

proposed algorithm is approximately the same as mRMR. However, for big datasets

that contain hundreds of thousands or even millions of feature samples, our proposed

algorithm achieves a much better performance than mRMR in terms of AUC, sensitivity

and specificity. The proposed method is also more efficient and requires significantly

less storage space after each iteration than mRMR.



Chapter 8

M3U: Minimum Mean Minimum

Uncertainty Feature Selection For

Multiclass Classification

A new multi-class feature selection criterion is proposed based on minimum uncertain-

ty [99]. Fig. 8.1 illustrates a typical flow chart for machine learning, where f(n) =

[f1(n), ..., fL(n)]
T represents the n-th feature vector (feature observation) with L fea-

tures extracted at time step n, and fi(n) is defined as the n-th feature sample of the

i-th feature. In this chapter, we propose a three-step algorithm that first quantizes

features into bins, computes an uncertainty vector for each feature and all sample in

each feature, and finally iteratively selects features that achieves the minimum mean

minimum uncertainty (M3U). The one-versus-all (OVA) uncertainty vector is defined

in Section 8.1.2. Given a feature sample in a particular feature, this uncertainty score

illustrates how good the bin (corresponding to the feature sample) is to separate the

class (corresponding to the feature sample) from the remaining classes. To the best of

our knowledge, this is a new sample-wise criterion that has not been proposed before.

The proposed iterative feature selection algorithm includes two minimization steps and

one expectation step, which include (1) find the minimum uncertainty (MU) score for

each feature sample given a feature subset, (2) compute the mean minimum uncertainty

score (M2U) for the feature subset, and (3) select the feature that achieves the minimum

127
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mean minimum uncertainty score (M3U).

Input

signals

Classification
Feature

Extraction

 Decision

Figure 8.1: A typical flow chart for machine learning.

8.1 Proposed Method

In this chapter, a novel multiclass feature selection algorithm that outperforms mRMR

is proposed. The ultimate goal of the proposed algorithm is to select a feature subset

such that, for each feature vector, there exists a feature that has a low uncertainty

value in the selected feature subset. Fig. 8.2 illustrates the flow chart for the proposed

feature selection algorithm. The proposed algorithm includes two minimization steps

and one expectation step. Features are quantized into different bins at the first step.

The proposed feature selection method uses sample-wise uncertainty vector defined in

Section 8.1.2 (using weighted conditional entropy) as its criterion. A low uncertainty

score for a feature sample in a particular feature implies that this feature sample can

be well separated from feature samples from other classes. The proposed method then

computes the uncertainty vector for each feature. Starting with an empty feature subset,

the iterative feature selection method selects a feature in each iteration by (1) computing

the minimum uncertainty score for each feature sample for all possible feature subset

candidates, (2) computing the average minimum uncertainty score across all feature

samples, and (3) selecting the feature that achieves the minimum of the average value

of the minimum uncertainty score.

8.1.1 Feature quantization

Continuous feature

Quantization is the procedure of constraining the feature from a continuous set of val-

ues to a relatively small discrete set [42]. Suppose the amplitude of a signal x takes on

values over an interval from xmin to xmax, quantization of this signal into K levels can
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Figure 8.2: Flow chart for the proposed feature selection algorithms.

be thought of as dividing the interval into K bins. All values that lie in a given bin

are rounded to the reconstruction value associated with that bin. In our method, each

continuous-valued feature is divided into K bins ({B1, B2, ..., BK}) with equal proba-

bility such that each bin contains approximately the same number of feature samples

(observations) and each feature sample is represented by its corresponding bin number

after quantization.

Nominal or Categorical feature

Suppose a nominal or categorical feature x takes on discrete values from the set {a1, a2, ...aK};
equal-probability quantization cannot be performed on these features. Each unique val-

ue of such feature is regarded as a bin, e.g., Bi = ai, and the feature samples that

take on the i-th unique value are quantized into the i-th bin and the corresponding bin

number is assigned to these feature samples.

8.1.2 Uncertainty Vector

After quantization, each sample of a particular feature has two attributes. One is the

bin number, and the other is the class label. A bin is considered good for the m-th class

if the the percentage of the samples from the m-th class is much higher or much lower

than the probability of the m-th class label in the total dataset. Suppose we have a
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total number of M different classes. Then, uncertainty values for each of the M classes

for each of the K bins are computed. On the other hand, since each sample has its

own class label, only the bin quality corresponding to its class label is meaningful. The

uncertainty value should reflect how good the bin is for each sample in the bin. This

section proposes a sample-wise criteria, referred as uncertainty vector, to reflect the

separability of samples of a certain class in a specified bin. The process for computing

the proposed uncertainty vector is illustrated in Fig. 8.3, where Hw(c|Bi) represents

the weighted entropy for the i-th bin introduced in this section.
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Figure 8.3: Block diagram for computing the proposed uncertainty vector.
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Let Bj represent the j-th bin after quantization in the first step. The mutual infor-

mation between the class label and the feature x can be written as:

I(x; c) = H(c)−H(c|x) (8.1)

= H(c)−
∑
j

H(c|x ∈ Bj)P (x ∈ Bj) (8.2)

where H(c) represents the entropy of the class label and is defined as follows:

H(c) =
∑
j

−P (cj) logP (cj), (8.3)

cj represents the j-th class label, and H(c|Bi) represents the conditional entropy of class

label given Bi and is defined as follows:

H(c|Bi) =
∑
j

−P (cj |x ∈ Bi) logP (cj |x ∈ Bi) (8.4)

Since given the class label, H(c) is a fixed number for all features, finding a feature

that maximizes equation (10) is equivalent to finding a feature such that the following

criterion is minimized:

max
xj∈X

[I(xj ; c)] (8.5)

⇔ min
xj∈X

∑
i

P (Bi)H(c|Bi) (8.6)

Therefore, a feature selected in the first step of mRMR is the feature such that the

expectation of the conditional entropies of the class labels for all bins is minimized.

However, this criterion suffers from inherent limitation of an imbalanced dataset. As

shown in Fig. 8.3, the entropy is computed for each feature sample for its corresponding

class (positive class) versus the remaining classes (negative class). In multiclass classifi-

cation problem, the two opposite classes are always very imbalanced. Suppose that the

dataset contains N1 and N2 feature samples from the positive class and the negative

class, respectively. Then H(c|Bi) can be computed as follows:

H(c|Bi) = −P (c+|x ∈ Bi) logP (c+|x ∈ Bi) (8.7)

− P (c−|x ∈ Bi) logP (c−|x ∈ Bi) (8.8)
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Figure 8.4: Binary entropy.

The relationship between conventional binary entropy and the probability for one class

is shown in Fig. 8.4, where the entropy value achieves the maximum when Pr(X =

1) = 0.5.

Suppose that data are very imbalanced such that N1 << N2, then H(c|Bi) has a

small value for all i, causing all bins to have a low entropy value. Therefore, we propose a

weighted entropy as the criterion in evaluating the predictive power of a bin. In general,

this criterion considers the imbalance between feature samples from two different classes

and is mathematically computed as follows:

Hw(c) = − wP+

wP+ + P−
log(

wP+

wP+ + P−
) (8.9)

− P−
wP+ + P−

log(
P−

wP+ + P−
) (8.10)

where P+, P− represent the probabilities for the positive class and the negative class,

respectively, and w represents the weight factor and can be set as w = N2/N1. Figure

8.5 illustrates the relationship between the modified entropy and the probability for

class 1 with w = N2/N1 = 4, where the entropy value achieves the maximum at P (c =

1) = 0.2 = 1
1+w . Thus, a bin is considered bad for the positive class if the percentage

of the positive class is approximately equal to the probability of that class (expected

occurrence rate) in the entire dataset, and is considered good if the percentage of the

positive class is much higher or lower than its expected occurrence rate. For a given

feature x[n], n = 1, ..., N , containing N samples, we propose an algorithm as shown in

Fig. 8.3 to compute a one-versus-all (OVA) uncertainty vector u[n], n = 1, ..., N for

multi-class feature selection. The OVA uncertainty vector has the same size as the

given feature and each element in the vector represents the uncertainty value for each

sample against all the remaining samples from other classes. The detailed algorithm is
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Algorithm 5 Algorithm for Computing the Uncertainty Vector for a Given Feature

Given a quantized feature x[n], n = 1, ..., N (with quantization level K) and the class
label c with M different classes
for i = 1 to M do

Take feature samples from ci as one class (C+) and all the remaining feature
samples from other classes as the opposite class (C−)

for j = 1 to K do
Compute Ji,j = Hw(C|Bi)

end for
end for
for n = 1 to N do

Find uncertainty value u[n] for the n-th feature sample x[n] using its corresponding
class label and bin number.
end for

illustrated in Algorithm 5.

Table 8.1 shows an example for a quantized feature with 5 bins and 4 classes. Each

class has 100 data points and each bin contains 80 samples since equal-size quantization

is used. Thus, the expected occurrence or observations in each bin for any class is 20.

As shown in the table, 50% of the samples of this feature in bin No. 1 are from class

1, which is significantly higher than its probability, i.e., 25%. Therefore, for samples of

class 1, bin No. 1 should be considered a good bin. However, for class 2 and class 3 in

this bin, their proportions are approximately the same as their expected probabilities.

Thus, bin No. 1 should be considered bad for class 2 and class 3. Similarly, bin No. 2,

bin No. 3, and bin No. 4 should be considered good for class 2, class 3, and class 4,

respectively. In summary, for this feature, the majority samples in the i-th bin come

from the i-th class.
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Table 8.1: An Example For A Quantized Feature With 5 Bins And 4 Classes.
No. of samples Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Total

Class1 40 10 10 10 30 100

Class2 15 45 10 10 20 100

Class3 15 10 45 10 20 100

Class4 10 15 15 50 10 100

Total 80 80 80 80 80 400

Table 8.2: Entropy With Weighting For The Features Shown in Table 8.1.

j
i

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

Class 1 0.8113 0.8813 0.8813 0.8813 0.9402

Class 2 0.9760 0.7335 0.8813 0.8813 1

Class 3 0.9760 0.8813 0.7335 0.8813 1

Class 4 0.8813 0.9760 0.9760 0.6500 0.8813

The proposed entropy with weighting for the i-th bin and the j-th class, referred as

Ji,j , for this feature is shown in Table 8.2. For instance, for samples from Class 1 in bin

No. 1, J1,1 is evaluated for Class 1 against the remaining classes (i.e., { Class 2, Class

3, Class 4}) using w = 300/100 = 3 as the size of { Class 2, Class 3, Class 4} in the

total dataset is 3 times the size of Class 1 in the total dataset. As shown in the table,

Ji,j achieves a low score (shown in green) for the green samples in Table 8.1. On the

other hand, Ji,j achieves a high score (shown in red) for the red samples in Table 8.1.

The entropy without weighting for the i-th bin and the j-th class for this feature is

shown in Table 8.3. However, as shown in the table, Ji,j has a high uncertainty score

for the green samples in Table 8.1. Such values are counter intuitive as a high value

indicates that the i-th bin has low predictive power for the i-th class. In contrast, the

corresponding values obtained using weighted entropy in Table 8.2 are low; therefore,

these are more predicable as expected. This simple example illustrates the motivation

for the new uncertainty based method.

Table 8.3: Entropy Without Weighting For The Features Shown in Table 8.1.

j
i

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

Class 1 1 0.5436 0.5436 0.5436 0.9544

Class 2 0.6962 0.9887 0.5436 0.5436 0.8113

Class 3 0.6962 0.5436 0.9887 0.5436 0.8113

Class 4 0.5436 0.6962 0.6962 0.9544 0.5436
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8.1.3 Iterative Feature Selection

This section describes the proposed iterative feature selection method. Assume that

the total number of features is L. The selection goal is to select a subset of features

such that more and more feature vectors have a low uncertainty value. Let um[n],m =

1, ..., L, n = 1, ..., N represent the uncertainty vector for the m-th feature and the n-

th feature sample. This vector is computed using Algorithm 1 for each feature. Let Si

represent the feature subset selected in the i-th iteration. The iterative feature selection

algorithm can be described as follows:

(a) In the i-th iteration, each of the candidate features that has not yet been selected

is grouped with the selected feature subset to form a temporary feature subset Si,l

as Si = {Si−1, l}.

(b) Compute minimum uncertainty (MU) for each feature sample as the minimum

uncertainty score of the selected features.

(c) Compute the mean minimum uncertainty (M2U) for the feature Si,l by averaging

the minimum uncertainty (MU) score of all feature samples.

(d) Select the feature that achieves the minimum mean minimum uncertainty (M3U).

The detailed description of proposed selection method is illustrated in Algorithm 6.

An example for the proposed iterative feature selection algorithm is illustrated in

Fig. 8.6 using the weighted conditional entropies, where feature No. 1 is selected in

the first iteration as it achieves the minimum mean uncertainty score. In the second

iteration, feature No. 2 is grouped with feature No. 1 and the minimum is taken

between the two uncertainty vectors to compute a minimum uncertainty vector for the

2 features. Same process is repeated for feature No. 1 and feature No. 3. Since the

mean of the minimum uncertainty vector for feature No. 1 and feature No. 2 is lower

than that of feature No. 1 and feature No. 3, feature No. 2 is selected in the second

iteration.
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Algorithm 6 Algorithm for the Proposed Iterative Feature Selection Method

Start with the empty set S0 = {ϕ}, i = 0
for i = 1 to L do

for l /∈ Si−1 do
Group Si−1 and l-th feature as a new temporary feature set and denote this

feature set as Si,l = {Si−1, l}
for n = 1 to N do

Compute minimum uncertainty (MU) for n-th feature sample as
MUSi,l

[n] = minm∈Si,l
um[n]

end for
Compute the mean MUSi,l

[n] value for all n as M2USi,l
= E[MUSi,l

] =∑N
n=1MU(Si,l)(n)/N
end for
Select the feature that achieves the minimum mean minimum uncertainty (M3U),

i.e., l∗ = argminl M2USi,l

Group l∗ with the selected feature set: Si+1 = {Si, l
∗}

end for
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Figure 8.6: An example for the proposed iterative feature selection algorithm.
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8.2 Classifiers

Error-Correcting Output Code Multiclass Model (ECOC) classification is considered as

the multiclass classifier. This method defines a coding matrix, trains a number binary

learners (basic learners) according to the coding matrix, and combines the results from

these basic learners to achieve an aggregated result. The basic learners considered in

this chapter include support vector machine (SVM) [5] and classification and regression

trees (CART) [80].

8.2.1 Basic Learners

The basic classifier considered in this in this chapter for small dataset is the linear sup-

port vector machine (SVM). Although SVMs have good performance, they have a high

algorithmic complexity and extensive memory requirements for solving the quadratic

programming optimization problem and have poorer performance when the datasets are

too large. Therefore, for large-scale data, CART is considered as the binary learner.

8.2.2 Error-Correcting Output Code Multiclass Model

Error-Correcting Output Code Multiclass Model (ECOC) classification is an ensemble

method designed for multi-class classification problem [144]. This method combines

the results from a number of binary classifiers (basic learners). Suppose that there are

three classes, the coding design is one-versus-one, and the basic learners are SVMs. To

build this classification model for a particular feature observation, ECOC follows the

following steps.

1. A one-versus-one (OVO) coding is designed. In a one-versus-one coding matrix,

for each binary learner, one class is positive, another is negative, and the remaining

classes are ignored. This OVO design finds all combinations of class pairs and a basic

learner is trained on each pair. An example for 3 classes is shown in Table 8.4, where

Learner 1 trains on observations from Class 1 and Class 2 (Class 3 is ignored), and

treats Class 1 as the positive class and Class 2 as the negative class; Learner 2 trains

on observations from Class 1 and Class 3, and treats Class 1 as the positive class and

Class 3 as the negative class; and Learner 3 trains on observations having Class 2 and

Class 3, and treats Class 2 as the positive class and Class 3 as the negative class. We
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Table 8.4: Coding Example for a 3-class OVO multclass classification.
Learner 1 Learner 2 Leaner 3

Class1 1 1 0

Class2 -1 0 1

Class3 0 -1 -1

denote this matrix by M and denote element (k, j) of the coding design matrix M by

mkj (i.e., the code corresponding to class k of binary learner j).

2. A binary loss function of the class and classification score is defined to determine

how well a binary learner classifies an observation into the class. We define the following

variables:

(a) Let sj be the score of binary learner j for a feature observation.

(b) Let g be the binary loss function.

(c) Let k̂ be the predicted class for the observation.

A Hinge loss function is used and is defined as follows:

g(mkj , sj) = max(0, 1−mkjsj)/2 (8.11)

3. In loss-weighted decoding [145], the class producing the minimum average of the

binary losses over binary learners determines the predicted class of an observation:

k̂ = argk min

∑L
j=1 |mkj |g(mkj , sj)∑L

j=1 |mkj |
(8.12)

8.3 Datasets

Four datasets are considered. These include the Smartphone-Based Recognition of

Human Activities and Postural Transitions Data Set, Sensorless Drive Diagnosis Data

Set, Forest Cover Type Data Set from UCI [35] and the Otto Group Product Dataset

from Kaggle [146]. All data are publicly available. These datasets are described below.

8.3.1 Smartphone-Based Recognition of Human Activities and Postu-

ral Transitions Data Set

The first dataset is the Smartphone-Based Recognition of Human Activities and Pos-

tural Transitions Data Set from UCI [147, 148, 149, 35]. The experiments were carried
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out with a group of 30 volunteers. They performed a protocol of activities composed

of six basic activities: standing, sitting, lying, walking, walking downstairs (D.S.), and

walking upstairs (U.S.). The experiment also included postural transitions which in-

clude stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie, and lie-to-stand. All

the participants were wearing a smartphone (Samsung Galaxy S II) on the waist. The

experiment captured 3-axial linear acceleration and 3-axial angular velocity at a con-

stant rate of 50Hz using the embedded accelerometer and gyroscope of the device. The

data are labeled manually.

The sensor signals were pre-processed by applying noise filters and then sampled in

fixed-width sliding windows of 2.56 sec and 50% overlap. The sensor acceleration signal

was separated using a Butterworth low-pass filter. The gravitational force is assumed

to have only low frequency components. Therefore, a filter with 0.3 Hz cutoff frequency

was used.

8.3.2 Sensorless Drive Diagnosis Data Set

The second dataset is the Sensorless Drive Diagnosis Data Set from UCI [34, 35]. Fea-

tures are extracted from electric current drive signals. The drive has intact and defective

components. This results in 11 different classes with different conditions. Each con-

dition has been measured several times by 12 different operating conditions such as

different speeds, load moments and load forces. The current signals are measured with

a current probe and an oscilloscope on two phases.

Empirical Mode Decomposition (EMD) [48] was used to generate a new database

for the generation of features. The first three intrinsic mode functions (IMF) of the two

phase currents and their residuals (RES) were used and broken down into sub-sequences.

For each sub-sequence, the statistical features such as mean, standard deviation, skew-

ness and kurtosis were calculated.

8.3.3 Otto Group Product Dataset

The third dataset is the Otto Group Product Dataset from Otto Group Product Clas-

sification Challenge hosted by Kaggle [146]. For this competition, Otto Group provided

a dataset with 93 features for more than 200,000 products. The objective is to build
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Table 8.5: Description of The Four Datasets.

Dataset Smartphone Drive Otto Forest

Source UCI UCI Kaggle Kaggle, UCI
Raw feature type Continuous integer integer integer
Quatization level 9 6 9 30
# of features 561 48 93 54
# of samples 7767 58509 61878 581012
Class # Name # of samples Name # of samples Name # of samples Name # of samples
Class 1 Walk 1226 1 5319 1 1929 S/F 211840
Class 2 Walk U.S. 1073 2 5319 2 16122 L.P. 283301
Class 3 Walk D.S. 987 3 5319 3 8004 P.P. 35754
Class 4 Sit 1293 4 5319 4 2691 C/W 2747
Class 5 Stand 1423 5 5319 5 2739 A. 9493
Class 6 Lay 1413 6 5319 6 14135 Df 17367
Class 7 Stand to Sit 47 7 5319 7 2839 K. 20510
Class 8 Sit to Stand 23 8 5319 8 8464
Class 9 Sit to Lie 75 9 5319 9 4955
Class 10 Lie to Sit 60 10 5319
Class 11 Stand to Lie 90 11 5319
Class 12 Lie to Stand 57
Classifier ECOC (SVM/Tree) ECOC (SVM/Tree) ECOC (SVM/Tree) ECOC (Tree)
Testing method 3-fold cross validation with permutations

a predictive model which is able to distinguish between the main product categories.

There are a total of 93 numerical features, which represent counts of different events.

All features have been obfuscated. There are nine categories for all products. Each

target category represents one of the most important product categories (like fashion,

electronics, etc.).

8.3.4 Forest Cover Type Dataset

The fourth dataset considered is the Forest Cover Type dataset from the Forest Cover

Type Prediction Competition hosted by Kaggle [150]. This dataset is hosted by UCI

[35]. The study area includes four wilderness areas located in the Roosevelt National

Forest of northern Colorado. Each observation is a 30m x 30m patch. The seven types of

the forest cover include (1) Spruce/Fir (S/F), (2) Lodgepole Pine (L.P.), (3) Ponderosa

Pine (P.P.), (4) Cottonwood/Willow (C/W), (5) Aspen (A.), (6) Douglas-fir (Df), and

(7) Krummholz (K.). Details of the features for this dataset can be found at [150] and

[35].

Table 8.5 summarizes feature types, feature numbers, and number of feature samples

for the four datasets.
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8.4 Experimental Results

The criterion used to evaluate the performance is the classification error rate.

8.4.1 Comparison of weighted and conventional entropy

Fig. 8.7 compares the classification error rate versus number of features for the Otto

Group Product Dataset using mRMR, proposed algorithm with weighted conditional

entropy, and proposed algorithm with conventional conditional entropy. As shown in

the figure, the proposed algorithm using the proposed weighted conditional entropy

achieves the lowest classification error rate and the proposed algorithm using the con-

ventional conditional entropy achieves highest classification error rate. This illustrates

the importance for the weighted entropy.
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Figure 8.7: Classification error rate versus No. of features for the Otto Group Prod-
uct Dataset using mRMR, proposed algorithm with weighted conditional entropy, and
proposed algorithm with conventional conditional entropy.

8.4.2 Smartphone-Based Recognition of Human Activities and Postu-

ral Transitions Data Set

Fig. 8.8 illustrates the classification error rate versus number of features for the Smartphone-

Based Recognition of Human Activities and Postural Transitions Data Set. The pro-

posed algorithm achieves a 1.8557% lower classification error rate on average than the

mRMR when SVM is used as the basic learner. The proposed algorithm achieves a
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Table 8.6: Misclassification Rate for the Proposed Algorithm and mRMR for the
Smartphone-Based Recognition of Human Activities and Postural Transitions Data Set
using Decision Tree.

# of Feature 1 4 7 10 13 15

Error rate 0.4284 0.1121 0.0771 0.0730 0.0744 0.0734
(proposed)

Error rate 0.5712 0.1172 0.0938 0.0796 0.0784 0.0793
(mRMR)

Improve by (%) 25.01 4.39 17.83 8.40 5.09 7.46

2.0728% lower classification error rate on average than the mRMR when decision tree is

used as the basic learner. Table 8.6 illustrates the improvement of the misclassification

rate for the proposed algorithm over mRMR when decision tree is used as the basic

learner, where the mean improvement is 11.27%.
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Figure 8.8: Classification error rate versus No. of features for the Smartphone-Based
Recognition of Human Activities and Postural Transitions Data Set using (a) SVM and
(b) decision tree.
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8.4.3 Sensorless Drive Diagnosis Data Set

Fig. 8.9 illustrates the classification error rate versus number of features for the Sen-

sorless Drive Diagnosis Data Set. The proposed algorithm achieves a 1.5640% lower

classification error rate on average than the mRMR when SVM is used as the basic

learner. The proposed algorithm achieves a 2.2091% lower classification error rate on

average than the mRMR when decision tree is used as the basic learner. Table 8.7

illustrates the improvement of the misclassification rate for the proposed algorithm over

mRMR when decision tree is used as the basic learner, where the mean improvement is

23.91%.
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Figure 8.9: Classification error rate versus No. of features for the Sensorless Drive
Diagnosis Data Set using (a) SVM and (b) decision tree.

8.4.4 Otto Group Product Dataset

Fig. 8.10 illustrates the classification error rate versus number of features for the Otto

Group Product Dataset. The proposed algorithm achieves a 3.9653% lower classification

error rate on average than the mRMR when SVM is used as the basic learner. The
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Table 8.7: Misclassification Rate for the Proposed Algorithm and mRMR for the Sen-
sorless Drive Diagnosis Data Set using Decision Tree.

# of Feature 1 4 7 10 13 15

Error rate 0.4851 0.0158 0.0193 0.0141 0.0142 0.0157
(proposed)

Error rate 0.4858 0.1184 0.0158 0.0197 0.0210 0.0211
(mRMR)

Improve by (%) 0.15 86.61 -21.94 28.74 32.65 25.78

proposed algorithm achieves a 3.1271% lower classification error rate on average than

the mRMR when decision tree is used as the basic learner. Table 8.8 illustrates the

improvement of the misclassification rate for the proposed algorithm over mRMR when

decision tree is used as the basic learner, where the mean improvement is 7.10%.
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Figure 8.10: Classification error rate versus No. of features for the Otto Group Product
Dataset using (a) SVM and (b) decision tree.
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Table 8.8: Misclassification Rate for the Proposed Algorithm and mRMR for the Otto
Group Product Dataset using Decision Tree.

# of Feature 1 4 7 10 13 15

Error rate 0.6217 0.4849 0.4021 0.3567 0.3331 0.3341
(proposed)

Error rate 0.6217 0.5013 0.4466 0.4003 0.3545 0.3487
(mRMR)

Improve by (%) 0.0 3.2754 9.9631 10.8841 6.0138 4.1848

Table 8.9: Misclassification Rate for the Proposed Algorithm and mRMR for the Forest
Type Prediction Dataset using Decision Tree.

# of Feature 1 4 7 10 13 15

Error rate 0.3272 0.3522 0.1587 0.1369 0.1236 0.1112
(proposed)

Error rate 0.3274 0.3192 0.3429 0.1349 0.1078 0.1013
(mRMR)

Improve by (%) 0.0652 -10.3153 53.7259 -1.4661 -14.5931 -9.7342

8.4.5 Forest Type Prediction Dataset

Fig. 8.11 illustrates the classification error rate versus number of features for the Forest

Type Prediction Dataset. The proposed algorithm achieves a 2.6398% lower classifica-

tion error rate on average than the mRMR. Table 8.9 illustrates the improvement of

the misclassification rate for the proposed algorithm over mRMR when decision tree is

used as the basic learner, where the mean improvement is 5.12%.
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Figure 8.11: Classification error rate versus No. of features for the Forest Type Predic-
tion Dataset using decision tree.
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8.5 Discussion

As illustrated in the experimental results from the Smartphone-Based Recognition of

Human Activities and Postural Transitions Data Set and the Otto Group Product

Dataset, the proposed algorithm achieves constantly a lower error rate than the m-

RMR. More importantly, as illustrated in the experimental results from the Sensorless

Drive Diagnosis Data Set and the Forest Type Prediction Dataset, the proposed al-

gorithm selects critical features which lead to a significant decrease of the error rate

in much earlier iterations. The error rate for the Sensorless Drive Diagnosis Data Set

decreases significantly when 3 features are selected when the proposed algorithm and

decision tree are used, as compared to 6 features when mRMR and decision tree are

used. The error rate for the Forest Type Prediction Dataset decreases significantly

when 6 features are selected when the proposed algorithm and decision tree are used,

as compared to 9 features when mRMR and decision tree are used.

8.6 Conclusion

A new recursive feature selection method has been presented in this chapter. Our feature

selection method places more emphasis on the predictive power of each individual feature

for part of the feature samples for multiclass classification. Our algorithm ultimately

selects a feature subset such that for each feature sample, there exists a feature that has

a lower uncertainty value in the selected feature subset.The proposed algorithm achieves

better performance than mRMR as misclassification rates are lower.
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