193,770 research outputs found

    Isolates, channels, and event streams for composable distributed programming

    Get PDF
    The actor model has been a model of choice for building reliable distributed systems. On one hand, it ensures that message-processing is serialized within each actor, preserving the familiar sequential programming model. On the other hand, programs written in the actor model are location-transparent. The model is sufficiently low-level to express arbitrary message protocols. Composing these protocols is the key to high-level abstractions. Unfortunately, it is difficult to reuse or compose message protocols with actors. Reactive isolates, proposed in this paper, simplify protocol composition with first-class typed channels and event streams. We compare reactive isolates and the actor model on concrete programs. We identify obstacles for composition in the classic actor model, and show how to overcome them. We then show how to build reusable, composable distributed computing components in the new model

    Object-oriented Tools for Distributed Computing

    Get PDF
    Distributed computing systems are proliferating, owing to the availability of powerful, affordable microcomputers and inexpensive communication networks. A critical problem in developing such systems is getting application programs to interact with one another across a computer network. Remote interprogram connectivity is particularly challenging across heterogeneous environments, where applications run on different kinds of computers and operating systems. NetWorks! (trademark) is an innovative software product that provides an object-oriented messaging solution to these problems. This paper describes the design and functionality of NetWorks! and illustrates how it is being used to build complex distributed applications for NASA and in the commercial sector

    Pervasive Parallel And Distributed Computing In A Liberal Arts College Curriculum

    Get PDF
    We present a model for incorporating parallel and distributed computing (PDC) throughout an undergraduate CS curriculum. Our curriculum is designed to introduce students early to parallel and distributed computing topics and to expose students to these topics repeatedly in the context of a wide variety of CS courses. The key to our approach is the development of a required intermediate-level course that serves as a introduction to computer systems and parallel computing. It serves as a requirement for every CS major and minor and is a prerequisite to upper-level courses that expand on parallel and distributed computing topics in different contexts. With the addition of this new course, we are able to easily make room in upper-level courses to add and expand parallel and distributed computing topics. The goal of our curricular design is to ensure that every graduating CS major has exposure to parallel and distributed computing, with both a breadth and depth of coverage. Our curriculum is particularly designed for the constraints of a small liberal arts college, however, much of its ideas and its design are applicable to any undergraduate CS curriculum
    • …
    corecore