3,341 research outputs found

    Robust Algorithm to Generate a Diverse Class of Dense Disordered and Ordered Sphere Packings via Linear Programming

    Full text link
    We have formulated the problem of generating periodic dense paritcle packings as an optimization problem called the Adaptive Shrinking Cell (ASC) formulation [S. Torquato and Y. Jiao, Phys. Rev. E {\bf 80}, 041104 (2009)]. Because the objective function and impenetrability constraints can be exactly linearized for sphere packings with a size distribution in dd-dimensional Euclidean space Rd\mathbb{R}^d, it is most suitable and natural to solve the corresponding ASC optimization problem using sequential linear programming (SLP) techniques. We implement an SLP solution to produce robustly a wide spectrum of jammed sphere packings in Rd\mathbb{R}^d for d=2,3,4,5d=2,3,4,5 and 66 with a diversity of disorder and densities up to the maximally densities. This deterministic algorithm can produce a broad range of inherent structures besides the usual disordered ones with very small computational cost by tuning the radius of the {\it influence sphere}. In three dimensions, we show that it can produce with high probability a variety of strictly jammed packings with a packing density anywhere in the wide range [0.6,0.7408...][0.6, 0.7408...]. We also apply the algorithm to generate various disordered packings as well as the maximally dense packings for d=2,3,4,5d=2,3, 4,5 and 6. Compared to the LS procedure, our SLP protocol is able to ensure that the final packings are truly jammed, produces disordered jammed packings with anomalously low densities, and is appreciably more robust and computationally faster at generating maximally dense packings, especially as the space dimension increases.Comment: 34 pages, 6 figure

    Hyperuniformity, quasi-long-range correlations, and void-space constraints in maximally random jammed particle packings. I. Polydisperse spheres

    Full text link
    Hyperuniform many-particle distributions possess a local number variance that grows more slowly than the volume of an observation window, implying that the local density is effectively homogeneous beyond a few characteristic length scales. Previous work on maximally random strictly jammed sphere packings in three dimensions has shown that these systems are hyperuniform and possess unusual quasi-long-range pair correlations, resulting in anomalous logarithmic growth in the number variance. However, recent work on maximally random jammed sphere packings with a size distribution has suggested that such quasi-long-range correlations and hyperuniformity are not universal among jammed hard-particle systems. In this paper we show that such systems are indeed hyperuniform with signature quasi-long-range correlations by characterizing the more general local-volume-fraction fluctuations. We argue that the regularity of the void space induced by the constraints of saturation and strict jamming overcomes the local inhomogeneity of the disk centers to induce hyperuniformity in the medium with a linear small-wavenumber nonanalytic behavior in the spectral density, resulting in quasi-long-range spatial correlations. A numerical and analytical analysis of the pore-size distribution for a binary MRJ system in addition to a local characterization of the n-particle loops governing the void space surrounding the inclusions is presented in support of our argument. This paper is the first part of a series of two papers considering the relationships among hyperuniformity, jamming, and regularity of the void space in hard-particle packings.Comment: 40 pages, 15 figure

    Basic Understanding of Condensed Phases of Matter via Packing Models

    Full text link
    Packing problems have been a source of fascination for millenia and their study has produced a rich literature that spans numerous disciplines. Investigations of hard-particle packing models have provided basic insights into the structure and bulk properties of condensed phases of matter, including low-temperature states (e.g., molecular and colloidal liquids, crystals and glasses), multiphase heterogeneous media, granular media, and biological systems. The densest packings are of great interest in pure mathematics, including discrete geometry and number theory. This perspective reviews pertinent theoretical and computational literature concerning the equilibrium, metastable and nonequilibrium packings of hard-particle packings in various Euclidean space dimensions. In the case of jammed packings, emphasis will be placed on the "geometric-structure" approach, which provides a powerful and unified means to quantitatively characterize individual packings via jamming categories and "order" maps. It incorporates extremal jammed states, including the densest packings, maximally random jammed states, and lowest-density jammed structures. Packings of identical spheres, spheres with a size distribution, and nonspherical particles are also surveyed. We close this review by identifying challenges and open questions for future research.Comment: 33 pages, 20 figures, Invited "Perspective" submitted to the Journal of Chemical Physics. arXiv admin note: text overlap with arXiv:1008.298

    On the hard sphere model and sphere packings in high dimensions

    Get PDF
    We prove a lower bound on the entropy of sphere packings of Rd\mathbb R^d of density Θ(d2d)\Theta(d \cdot 2^{-d}). The entropy measures how plentiful such packings are, and our result is significantly stronger than the trivial lower bound that can be obtained from the mere existence of a dense packing. Our method also provides a new, statistical-physics-based proof of the Ω(d2d)\Omega(d \cdot 2^{-d}) lower bound on the maximum sphere packing density by showing that the expected packing density of a random configuration from the hard sphere model is at least (1+od(1))log(2/3)d2d(1+o_d(1)) \log(2/\sqrt{3}) d \cdot 2^{-d} when the ratio of the fugacity parameter to the volume covered by a single sphere is at least 3d/23^{-d/2}. Such a bound on the sphere packing density was first achieved by Rogers, with subsequent improvements to the leading constant by Davenport and Rogers, Ball, Vance, and Venkatesh

    Densest local packing diversity. II. Application to three dimensions

    Full text link
    The densest local packings of N three-dimensional identical nonoverlapping spheres within a radius Rmin(N) of a fixed central sphere of the same size are obtained for selected values of N up to N = 1054. In the predecessor to this paper [A.B. Hopkins, F.H. Stillinger and S. Torquato, Phys. Rev. E 81 041305 (2010)], we described our method for finding the putative densest packings of N spheres in d-dimensional Euclidean space Rd and presented those packings in R2 for values of N up to N = 348. We analyze the properties and characteristics of the densest local packings in R3 and employ knowledge of the Rmin(N), using methods applicable in any d, to construct both a realizability condition for pair correlation functions of sphere packings and an upper bound on the maximal density of infinite sphere packings. In R3, we find wide variability in the densest local packings, including a multitude of packing symmetries such as perfect tetrahedral and imperfect icosahedral symmetry. We compare the densest local packings of N spheres near a central sphere to minimal-energy configurations of N+1 points interacting with short-range repulsive and long-range attractive pair potentials, e.g., 12-6 Lennard-Jones, and find that they are in general completely different, a result that has possible implications for nucleation theory. We also compare the densest local packings to finite subsets of stacking variants of the densest infinite packings in R3 (the Barlow packings) and find that the densest local packings are almost always most similar, as measured by a similarity metric, to the subsets of Barlow packings with the smallest number of coordination shells measured about a single central sphere, e.g., a subset of the FCC Barlow packing. We additionally observe that the densest local packings are dominated by the spheres arranged with centers at precisely distance Rmin(N) from the fixed sphere's center.Comment: 45 pages, 18 figures, 2 table
    corecore