7,075 research outputs found

    Anonymous subject identification and privacy information management in video surveillance

    Get PDF
    The widespread deployment of surveillance cameras has raised serious privacy concerns, and many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. Of equal importance are the privacy and efficiency of techniques to first, identify those individuals for privacy protection and second, provide access to original surveillance video contents for security analysis. In this paper, we propose an anonymous subject identification and privacy data management system to be used in privacy-aware video surveillance. The anonymous subject identification system uses iris patterns to identify individuals for privacy protection. Anonymity of the iris-matching process is guaranteed through the use of a garbled-circuit (GC)-based iris matching protocol. A novel GC complexity reduction scheme is proposed by simplifying the iris masking process in the protocol. A user-centric privacy information management system is also proposed that allows subjects to anonymously access their privacy information via their iris patterns. The system is composed of two encrypted-domain protocols: The privacy information encryption protocol encrypts the original video records using the iris pattern acquired during the subject identification phase; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of our framework

    Algorithmic Jim Crow

    Get PDF
    This Article contends that current immigration- and security-related vetting protocols risk promulgating an algorithmically driven form of Jim Crow. Under the “separate but equal” discrimination of a historic Jim Crow regime, state laws required mandatory separation and discrimination on the front end, while purportedly establishing equality on the back end. In contrast, an Algorithmic Jim Crow regime allows for “equal but separate” discrimination. Under Algorithmic Jim Crow, equal vetting and database screening of all citizens and noncitizens will make it appear that fairness and equality principles are preserved on the front end. Algorithmic Jim Crow, however, will enable discrimination on the back end in the form of designing, interpreting, and acting upon vetting and screening systems in ways that result in a disparate impact

    Security and Efficiency Analysis of the Hamming Distance Computation Protocol Based on Oblivious Transfer

    Get PDF
    open access articleBringer et al. proposed two cryptographic protocols for the computation of Hamming distance. Their first scheme uses Oblivious Transfer and provides security in the semi-honest model. The other scheme uses Committed Oblivious Transfer and is claimed to provide full security in the malicious case. The proposed protocols have direct implications to biometric authentication schemes between a prover and a verifier where the verifier has biometric data of the users in plain form. In this paper, we show that their protocol is not actually fully secure against malicious adversaries. More precisely, our attack breaks the soundness property of their protocol where a malicious user can compute a Hamming distance which is different from the actual value. For biometric authentication systems, this attack allows a malicious adversary to pass the authentication without knowledge of the honest user's input with at most O(n)O(n) complexity instead of O(2n)O(2^n), where nn is the input length. We propose an enhanced version of their protocol where this attack is eliminated. The security of our modified protocol is proven using the simulation-based paradigm. Furthermore, as for efficiency concerns, the modified protocol utilizes Verifiable Oblivious Transfer which does not require the commitments to outputs which improves its efficiency significantly

    FaceQnet: Quality Assessment for Face Recognition based on Deep Learning

    Full text link
    In this paper we develop a Quality Assessment approach for face recognition based on deep learning. The method consists of a Convolutional Neural Network, FaceQnet, that is used to predict the suitability of a specific input image for face recognition purposes. The training of FaceQnet is done using the VGGFace2 database. We employ the BioLab-ICAO framework for labeling the VGGFace2 images with quality information related to their ICAO compliance level. The groundtruth quality labels are obtained using FaceNet to generate comparison scores. We employ the groundtruth data to fine-tune a ResNet-based CNN, making it capable of returning a numerical quality measure for each input image. Finally, we verify if the FaceQnet scores are suitable to predict the expected performance when employing a specific image for face recognition with a COTS face recognition system. Several conclusions can be drawn from this work, most notably: 1) we managed to employ an existing ICAO compliance framework and a pretrained CNN to automatically label data with quality information, 2) we trained FaceQnet for quality estimation by fine-tuning a pre-trained face recognition network (ResNet-50), and 3) we have shown that the predictions from FaceQnet are highly correlated with the face recognition accuracy of a state-of-the-art commercial system not used during development. FaceQnet is publicly available in GitHub.Comment: Preprint version of a paper accepted at ICB 201
    • 

    corecore