24,053 research outputs found

    Challenges of Multi-Factor Authentication for Securing Advanced IoT (A-IoT) Applications

    Full text link
    The unprecedented proliferation of smart devices together with novel communication, computing, and control technologies have paved the way for the Advanced Internet of Things~(A-IoT). This development involves new categories of capable devices, such as high-end wearables, smart vehicles, and consumer drones aiming to enable efficient and collaborative utilization within the Smart City paradigm. While massive deployments of these objects may enrich people's lives, unauthorized access to the said equipment is potentially dangerous. Hence, highly-secure human authentication mechanisms have to be designed. At the same time, human beings desire comfortable interaction with their owned devices on a daily basis, thus demanding the authentication procedures to be seamless and user-friendly, mindful of the contemporary urban dynamics. In response to these unique challenges, this work advocates for the adoption of multi-factor authentication for A-IoT, such that multiple heterogeneous methods - both well-established and emerging - are combined intelligently to grant or deny access reliably. We thus discuss the pros and cons of various solutions as well as introduce tools to combine the authentication factors, with an emphasis on challenging Smart City environments. We finally outline the open questions to shape future research efforts in this emerging field.Comment: 7 pages, 4 figures, 2 tables. The work has been accepted for publication in IEEE Network, 2019. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Secure Pick Up: Implicit Authentication When You Start Using the Smartphone

    Full text link
    We propose Secure Pick Up (SPU), a convenient, lightweight, in-device, non-intrusive and automatic-learning system for smartphone user authentication. Operating in the background, our system implicitly observes users' phone pick-up movements, the way they bend their arms when they pick up a smartphone to interact with the device, to authenticate the users. Our SPU outperforms the state-of-the-art implicit authentication mechanisms in three main aspects: 1) SPU automatically learns the user's behavioral pattern without requiring a large amount of training data (especially those of other users) as previous methods did, making it more deployable. Towards this end, we propose a weighted multi-dimensional Dynamic Time Warping (DTW) algorithm to effectively quantify similarities between users' pick-up movements; 2) SPU does not rely on a remote server for providing further computational power, making SPU efficient and usable even without network access; and 3) our system can adaptively update a user's authentication model to accommodate user's behavioral drift over time with negligible overhead. Through extensive experiments on real world datasets, we demonstrate that SPU can achieve authentication accuracy up to 96.3% with a very low latency of 2.4 milliseconds. It reduces the number of times a user has to do explicit authentication by 32.9%, while effectively defending against various attacks.Comment: Published on ACM Symposium on Access Control Models and Technologies (SACMAT) 201

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE

    The Serums Tool-Chain:Ensuring Security and Privacy of Medical Data in Smart Patient-Centric Healthcare Systems

    Get PDF
    Digital technology is permeating all aspects of human society and life. This leads to humans becoming highly dependent on digital devices, including upon digital: assistance, intelligence, and decisions. A major concern of this digital dependence is the lack of human oversight or intervention in many of the ways humans use this technology. This dependence and reliance on digital technology raises concerns in how humans trust such systems, and how to ensure digital technology behaves appropriately. This works considers recent developments and projects that combine digital technology and artificial intelligence with human society. The focus is on critical scenarios where failure of digital technology can lead to significant harm or even death. We explore how to build trust for users of digital technology in such scenarios and considering many different challenges for digital technology. The approaches applied and proposed here address user trust along many dimensions and aim to build collaborative and empowering use of digital technologies in critical aspects of human society
    corecore