346 research outputs found

    Privacy-Preserving Electronic Ticket Scheme with Attribute-based Credentials

    Get PDF
    Electronic tickets (e-tickets) are electronic versions of paper tickets, which enable users to access intended services and improve services' efficiency. However, privacy may be a concern of e-ticket users. In this paper, a privacy-preserving electronic ticket scheme with attribute-based credentials is proposed to protect users' privacy and facilitate ticketing based on a user's attributes. Our proposed scheme makes the following contributions: (1) users can buy different tickets from ticket sellers without releasing their exact attributes; (2) two tickets of the same user cannot be linked; (3) a ticket cannot be transferred to another user; (4) a ticket cannot be double spent; (5) the security of the proposed scheme is formally proven and reduced to well known (q-strong Diffie-Hellman) complexity assumption; (6) the scheme has been implemented and its performance empirically evaluated. To the best of our knowledge, our privacy-preserving attribute-based e-ticket scheme is the first one providing these five features. Application areas of our scheme include event or transport tickets where users must convince ticket sellers that their attributes (e.g. age, profession, location) satisfy the ticket price policies to buy discounted tickets. More generally, our scheme can be used in any system where access to services is only dependent on a user's attributes (or entitlements) but not their identities.Comment: 18pages, 6 figures, 2 table

    Data Access in Multiauthority Cloud Storage: Expressive and Revocable Data Control System

    Get PDF
    ABSTRACT Cloud computing is rising enormously due to its advantages and the adaptable storage services being provided by it. Because of this, the number of users has reached the top level. The users will share the sensitive data through the cloud. Furthermore, the user can\u27t trust the untrusted cloud server. Subsequently, the data access control has turned out to be extremely challenging in cloud storage framework. In existing work, revocable data access control scheme proposed for multi-authority cloud storage frameworks which supports the access control in light of the authority control. The authorized users who have desirable attributes given by various authorities can access the data. However, it couldn\u27t control the attacks which can happen to the authorized user who is not having desirable attributes. In this work, they propose a new algorithm named Improved Security Data Access Control which beats the issue exists in the existing work. And furthermore, incorporates the efficient attribute revocation strategy for multi-authority cloud storage. Keywords: Access control, multi-authority, attribute revocation, cloud storage

    A secure IoT cloud storage system with fine-grained access control and decryption key exposure resistance

    Get PDF
    Internet of Things (IoT) cloud provides a practical and scalable solution to accommodate the data management in large-scale IoT systems by migrating the data storage and management tasks to cloud service providers (CSPs). However, there also exist many data security and privacy issues that must be well addressed in order to allow the wide adoption of the approach. To protect data confidentiality, attribute-based cryptosystems have been proposed to provide fine-grained access control over encrypted data in IoT cloud. Unfortunately, the existing attributed-based solutions are still insufficient in addressing some challenging security problems, especially when dealing with compromised or leaked user secret keys due to different reasons. In this paper, we present a practical attribute-based access control system for IoT cloud by introducing an efficient revocable attribute-based encryption scheme that permits the data owner to efficiently manage the credentials of data users. Our proposed system can efficiently deal with both secret key revocation for corrupted users and accidental decryption key exposure for honest users. We analyze the security of our scheme with formal proofs, and demonstrate the high performance of the proposed system via experiments

    A Zero-Knowledge Revocable Credential Verification Protocol Using Attribute-Based Encryption

    Full text link
    We introduce a zero-knowledge credential verification protocol leveraging on Ciphertext Policy Attribute-Based Encryption. The protocol supports revocation through cryptographic accumulators

    Towards Smart Contract-based Verification of Anonymous Credentials

    Get PDF
    Smart contracts often need to verify identity-related information of their users. However, such information is typically confidential, and its verification requires access to off-chain resources. Given the isolation and privacy limitations of blockchain technologies, this presents a problem for on-chain verification. In this paper, we show how CL-signature-based anonymous credentials can be verified in smart contracts using the example of Hyperledger Indy, a decentralized credential management platform, and Ethereum, a smart contract-enabled blockchain. Therefore, we first outline how smart contract-based verification can be integrated in the Hyperledger Indy credential management routine and, then, provide a technical evaluation based on a proof-of-concept implementation of CL-signature verification on Ethereum. While our results demonstrate technical feasibility of smart contract-based verification of anonymous credentials, they also reveal technical barriers for its real-world usage

    Identity and identification in an information society: Augmenting formal systems of identification with technological artefacts

    Get PDF
    Information and Communication Technology (ICT) are transforming society’s information flows. These new interactive environments decouple agents, information and actions from their original contexts and this introduces challenges when evaluating trustworthiness and intelligently placing trust.This thesis develops methods that can extend institutional trust into digitally enhanced interactive settings. By applying privacy-preserving cryptographic protocols within a technical architecture, this thesis demonstrates how existing human systems of identification that support institutional trust can be augmented with ICT in ways that distribute trust, respect privacy and limit the potential for abuse. Importantly, identification systems are located within a sociologically informed framework of interaction where identity is more than a collection of static attributes.A synthesis of the evolution and systematisation of cryptographic knowledge is presented and this is juxtaposed against the ideas developed within the digital identity community. The credential mechanism, first conceptualised by David Chaum, has matured into a number of well specified mathematical protocols. This thesis focuses on CL-RSA and BBS+, which are both signature schemes with efficient protocols that can instantiate a credential mechanism with strong privacy-preserving properties.The processes of managing the identification of healthcare professionals as they navigate their careers within the Scottish Healthcare Ecosystem provide a concrete case study for this work. The proposed architecture mediates the exchange of verifiable, integrity-assured evidence that has been cryptographically signed by relevant healthcare institutions, but is stored, managed and presented by the healthcare professionals to whom the evidence pertains.An evaluation of the integrity-assured transaction data produced by this architecture demonstrates how it could be integrated into digitally augmented identification processes, increasing the assurance that can be placed in these processes. The technical architecture is shown to be practical through a series of experiments run under realistic production-like settings.This work demonstrates that designing decentralised, standards-based, privacy-preserving identification systems for trusted professionals within highly assured social contexts can distribute institutionalised trust to trustworthy individuals and empower these individuals to interface with society’s increasingly socio-technical systems

    Privacy-preserving security solution for cloud services

    Get PDF
    AbstractWe propose a novel privacy-preserving security solution for cloud services. Our solution is based on an efficient non-bilinear group signature scheme providing the anonymous access to cloud services and shared storage servers. The novel solution offers anonymous authenticationfor registered users. Thus, users' personal attributes (age, valid registration, successful payment) can be proven without revealing users' identity, and users can use cloud services without any threat of profiling their behavior. However, if a user breaks provider's rules, his access right is revoked. Our solution provides anonymous access, unlinkability and the confidentiality of transmitted data. We implement our solution as a proof of concept applicationand present the experimental results. Further, we analyzecurrent privacy preserving solutions for cloud services and group signature schemes as basic parts of privacy enhancing solutions in cloud services. We compare the performance of our solution with the related solutionsand schemes

    Secure data sharing in cloud and IoT by leveraging attribute-based encryption and blockchain

    Get PDF
    “Data sharing is very important to enable different types of cloud and IoT-based services. For example, organizations migrate their data to the cloud and share it with employees and customers in order to enjoy better fault-tolerance, high-availability, and scalability offered by the cloud. Wearable devices such as smart watch share user’s activity, location, and health data (e.g., heart rate, ECG) with the service provider for smart analytic. However, data can be sensitive, and the cloud and IoT service providers cannot be fully trusted with maintaining the security, privacy, and confidentiality of the data. Hence, new schemes and protocols are required to enable secure data sharing in the cloud and IoT. This work outlines our research contribution towards secure data sharing in the cloud and IoT. For secure data sharing in the cloud, this work proposes several novel attribute-based encryption schemes. The core contributions to this end are efficient revocation, prevention of collusion attacks, and multi-group support. On the other hand, for secure data sharing in IoT, a permissioned blockchain-based access control system has been proposed. The system can be used to enforce fine-grained access control on IoT data where the access control decision is made by the blockchain-based on the consensus of the participating nodes”--Abstract, page iv
    corecore