4,524 research outputs found

    Accurate 3D maps from depth images and motion sensors via nonlinear Kalman filtering

    Full text link
    This paper investigates the use of depth images as localisation sensors for 3D map building. The localisation information is derived from the 3D data thanks to the ICP (Iterative Closest Point) algorithm. The covariance of the ICP, and thus of the localization error, is analysed, and described by a Fisher Information Matrix. It is advocated this error can be much reduced if the data is fused with measurements from other motion sensors, or even with prior knowledge on the motion. The data fusion is performed by a recently introduced specific extended Kalman filter, the so-called Invariant EKF, and is directly based on the estimated covariance of the ICP. The resulting filter is very natural, and is proved to possess strong properties. Experiments with a Kinect sensor and a three-axis gyroscope prove clear improvement in the accuracy of the localization, and thus in the accuracy of the built 3D map.Comment: Submitted to IROS 2012. 8 page

    Active SLAM for autonomous underwater exploration

    Get PDF
    Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps.Peer ReviewedPostprint (published version

    Invariant EKF Design for Scan Matching-aided Localization

    Full text link
    Localization in indoor environments is a technique which estimates the robot's pose by fusing data from onboard motion sensors with readings of the environment, in our case obtained by scan matching point clouds captured by a low-cost Kinect depth camera. We develop both an Invariant Extended Kalman Filter (IEKF)-based and a Multiplicative Extended Kalman Filter (MEKF)-based solution to this problem. The two designs are successfully validated in experiments and demonstrate the advantage of the IEKF design

    Robust Photogeometric Localization over Time for Map-Centric Loop Closure

    Full text link
    Map-centric SLAM is emerging as an alternative of conventional graph-based SLAM for its accuracy and efficiency in long-term mapping problems. However, in map-centric SLAM, the process of loop closure differs from that of conventional SLAM and the result of incorrect loop closure is more destructive and is not reversible. In this paper, we present a tightly coupled photogeometric metric localization for the loop closure problem in map-centric SLAM. In particular, our method combines complementary constraints from LiDAR and camera sensors, and validates loop closure candidates with sequential observations. The proposed method provides a visual evidence-based outlier rejection where failures caused by either place recognition or localization outliers can be effectively removed. We demonstrate the proposed method is not only more accurate than the conventional global ICP methods but is also robust to incorrect initial pose guesses.Comment: To Appear in IEEE ROBOTICS AND AUTOMATION LETTERS, ACCEPTED JANUARY 201
    • …
    corecore