932 research outputs found

    Recognition of Arabic handwritten words

    Get PDF
    Recognizing Arabic handwritten words is a difficult problem due to the deformations of different writing styles. Moreover, the cursive nature of the Arabic writing makes correct segmentation of characters an almost impossible task. While there are many sub systems in an Arabic words recognition system, in this work we develop a sub system to recognize Part of Arabic Words (PAW). We try to solve this problem using three different approaches, implicit segmentation and two variants of holistic approach. While Rothacker found similar conclusions while this work is being prepared, we report the difficulty in locating characters in PAW using Scale Invariant Feature Transforms under the first approach. In the second and third approaches, we use holistic approach to recognize PAW using Support Vector Machine (SVM) and Active Shape Models (ASM). While there are few works that use SVM to recognize PAW, they use a small dataset; we use a large dataset and a different set of features. We also explain the errors SVM and ASM make and propose some remedies to these errors as future work

    Recognition of off-line printed Arabic text using Hidden Markov Models.

    Get PDF
    yesThis paper describes a technique for automatic recognition of off-line printed Arabic text using Hidden Markov Models. In this work different sizes of overlapping and non-overlapping hierarchical windows are used to generate 16 features from each vertical sliding strip. Eight different Arabic fonts were used for testing (viz. Arial, Tahoma, Akhbar, Thuluth, Naskh, Simplified Arabic, Andalus, and Traditional Arabic). It was experimentally proven that different fonts have their highest recognition rates at different numbers of states (5 or 7) and codebook sizes (128 or 256). Arabic text is cursive, and each character may have up to four different shapes based on its location in a word. This research work considered each shape as a different class, resulting in a total of 126 classes (compared to 28 Arabic letters). The achieved average recognition rates were between 98.08% and 99.89% for the eight experimental fonts. The main contributions of this work are the novel hierarchical sliding window technique using only 16 features for each sliding window, considering each shape of Arabic characters as a separate class, bypassing the need for segmenting Arabic text, and its applicability to other languages
    corecore