1,753 research outputs found

    A New Analysis Method for Simulations Using Node Categorizations

    Full text link
    Most research concerning the influence of network structure on phenomena taking place on the network focus on relationships between global statistics of the network structure and characteristic properties of those phenomena, even though local structure has a significant effect on the dynamics of some phenomena. In the present paper, we propose a new analysis method for phenomena on networks based on a categorization of nodes. First, local statistics such as the average path length and the clustering coefficient for a node are calculated and assigned to the respective node. Then, the nodes are categorized using the self-organizing map (SOM) algorithm. Characteristic properties of the phenomena of interest are visualized for each category of nodes. The validity of our method is demonstrated using the results of two simulation models. The proposed method is useful as a research tool to understand the behavior of networks, in particular, for the large-scale networks that existing visualization techniques cannot work well.Comment: 9 pages, 8 figures. This paper will be published in Social Network Analysis and Mining(www.springerlink.com

    Towards Opportunistic Data Dissemination in Mobile Phone Sensor Networks

    Get PDF
    Recently, there has been a growing interest within the research community in developing opportunistic routing protocols. Many schemes have been proposed; however, they differ greatly in assumptions and in type of network for which they are evaluated. As a result, researchers have an ambiguous understanding of how these schemes compare against each other in their specific applications. To investigate the performance of existing opportunistic routing algorithms in realistic scenarios, we propose a heterogeneous architecture including fixed infrastructure, mobile infrastructure, and mobile nodes. The proposed architecture focuses on how to utilize the available, low cost short-range radios of mobile phones for data gathering and dissemination. We also propose a new realistic mobility model and metrics. Existing opportunistic routing protocols are simulated and evaluated with the proposed heterogeneous architecture, mobility models, and transmission interfaces. Results show that some protocols suffer long time-to-live (TTL), while others suffer short TTL. We show that heterogeneous sensor network architectures need heterogeneous routing algorithms, such as a combination of Epidemic and Spray and Wait

    Looking the Part: Social Status Cues Shape Race Perception

    Get PDF
    It is commonly believed that race is perceived through another's facial features, such as skin color. In the present research, we demonstrate that cues to social status that often surround a face systematically change the perception of its race. Participants categorized the race of faces that varied along White–Black morph continua and that were presented with high-status or low-status attire. Low-status attire increased the likelihood of categorization as Black, whereas high-status attire increased the likelihood of categorization as White; and this influence grew stronger as race became more ambiguous (Experiment 1). When faces with high-status attire were categorized as Black or faces with low-status attire were categorized as White, participants' hand movements nevertheless revealed a simultaneous attraction to select the other race-category response (stereotypically tied to the status cue) before arriving at a final categorization. Further, this attraction effect grew as race became more ambiguous (Experiment 2). Computational simulations then demonstrated that these effects may be accounted for by a neurally plausible person categorization system, in which contextual cues come to trigger stereotypes that in turn influence race perception. Together, the findings show how stereotypes interact with physical cues to shape person categorization, and suggest that social and contextual factors guide the perception of race

    Named data networking for efficient IoT-based disaster management in a smart campus

    Get PDF
    Disasters are uncertain occasions that can impose a drastic impact on human life and building infrastructures. Information and Communication Technology (ICT) plays a vital role in coping with such situations by enabling and integrating multiple technological resources to develop Disaster Management Systems (DMSs). In this context, a majority of the existing DMSs use networking architectures based upon the Internet Protocol (IP) focusing on location-dependent communications. However, IP-based communications face the limitations of inefficient bandwidth utilization, high processing, data security, and excessive memory intake. To address these issues, Named Data Networking (NDN) has emerged as a promising communication paradigm, which is based on the Information-Centric Networking (ICN) architecture. An NDN is among the self-organizing communication networks that reduces the complexity of networking systems in addition to provide content security. Given this, many NDN-based DMSs have been proposed. The problem with the existing NDN-based DMS is that they use a PULL-based mechanism that ultimately results in higher delay and more energy consumption. In order to cater for time-critical scenarios, emergence-driven network engineering communication and computation models are required. In this paper, a novel DMS is proposed, i.e., Named Data Networking Disaster Management (NDN-DM), where a producer forwards a fire alert message to neighbouring consumers. This makes the nodes converge according to the disaster situation in a more efficient and secure way. Furthermore, we consider a fire scenario in a university campus and mobile nodes in the campus collaborate with each other to manage the fire situation. The proposed framework has been mathematically modeled and formally proved using timed automata-based transition systems and a real-time model checker, respectively. Additionally, the evaluation of the proposed NDM-DM has been performed using NS2. The results prove that the proposed scheme has reduced the end-to-end delay up from 2% to 10% and minimized up to 20% energy consumption, as energy improved from 3% to 20% compared with a state-of-the-art NDN-based DMS
    corecore