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ABSTRACT

Aspects of Statistical Disclosure Control

A thesis submitted to The University of Manchester for the degree of 

Doctor of Philosophy 

in the Faculty of Humanities

2011

Duncan Geoffrey Smith

This work concerns the evaluation of statistical disclosure control risk by adopting the 
position of the data intruder. The underlying assertion is that risk metrics should be based 
on the actual inferences that an intruder can make. Ideally metrics would also take into 
account how sensitive the inferences would be, but that is subjective. A parallel theme is 
that of the knowledgeable data intruder; an intruder who has the technical skills to 
maximally exploit the information contained in released data. This also raises the issue of 
computational costs and the benefits of using good algorithms.

A metric for attribution risk in tabular data is presented. It addresses the issue that most 
measures for tabular data are based on the risk of identification. The metric can also take 
into account assumed levels of intruder knowledge regarding the population, and it can be 
applied to both exact and perturbed collections of tables.

An improved implementation of the Key Variable Mapping System (Elliot, et al., 2010) is 
presented. The problem is more precisely defined in terms of categorical variables rather 
than responses to survey questions. This allows much more efficient algorithms to be 
developed, leading to significant performance increases.

The advantages and disadvantages of alternative matching strategies are investigated. 
Some are shown to dominate others. The costs of searching for a match are also 
considered, providing insight into how a knowledgeable intruder might tailor a strategy to 
balance the probability of a correct match and the time and effort required to find a match.

A novel approach to model determination in decomposable graphical models is described. 
It offers purely computational advantages over existing schemes, but allows data sets to be 
more thoroughly checked for disclosure risk.

It is shown that a Bayesian strategy for matching between a sample and a population offers 
much higher probabilities of a correct match than traditional strategies would suggest.

The Special Uniques Detection Algorithm (Elliot et al., 2002) (Manning et al., 2008), for 
identifying risky sample counts of 1, is compared against Bayesian (using Markov Chain 
Monte Carlo and simulated annealing) alternatives. It is shown that the alternatives are 
better at identifying risky sample uniques, and can do so with reduced computational costs.
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CHAPTER 1

Introduction

There are many organizations that hold data on individuals or other organizations. In some 

cases the data are deliberately collected for planning, academic or marketing purposes. In 

other cases they are accumulated through the day-to-day operations of an organization. 

Data related to employees are held by almost every business.

In some cases data are collected for the explicit purpose of subsequent release. Data have 

been routinely collected on the British population every 10 years since 1801 (apart from 

1941) through national censuses. Census data are made available to government 

departments and other organizations for planning and research purposes. Some census data 

are also released to the general public, but generally in very less detailed forms.

Survey data are collected by various organizations. They might be put to academic use if 

collected by scientists. They are more likely to be used for marketing purposes if collected 

by private organizations such as supermarkets. Scientists and private organizations are less 

likely to want to share the data they hold, although aspects of the data will often be 

published in scientific papers or business reports.

The availability of data has the potential to lead to scientific advancement and to better 

policy making. Some might not agree that all scientific advances are a good thing, and few 

would argue that government policies are wholly objective and evidence based. But it is 

the use that private organizations might make of data that suggests that there might be 

advantages and disadvantages to letting others possess one's personal data. They could be 

used to benefit the customer, or possibly more likely, to benefit the organization. In the 

case of supermarket loyalty cards the customer generally receives some small incentive to 

provide their personal information, and that information is usually supplied willingly. A 

greater issue is the release of personal information held in databases to individuals or 

organizations without the consent of the individual concerned.
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Statistical disclosure control (SDC) is the practice of limiting the chances of released data  

enabling a 3rd party to infer confidential information about individuals or organizations  

through either logical and statistical means.

As a definition this is deliberately open as opinions will vary regarding what could 

reasonably be considered confidential. It raises questions regarding legality, trust, data 

utility and the sensitivity of the information contained in a potential data release. Clearly, 

the illegal sharing of data should be prevented. But even where the sharing is legal there 

should be some consideration of the trade off between the usefulness of the data and the 

potential impacts on both the targeted individuals through invasions of privacy and the data 

holder through a reduction in trust. Trust is very important for organizations, such as 

governments, who rely on public cooperation in the collection important data. A publicized 

statistical disclosure would damage that trust. This is where SDC comes in. It attempts to 

ensure that useful data can be shared for useful purposes without adversely impacting the 

privacy of the individuals concerned.

Basic formulation of the disclosure problem

In accordance with Duncan et al. (2011) a data holding organization will be referred to as a 

Data Stewardship Organization (DSO). 3rd parties seeking to discover information will be 

termed data intruders, and the individuals about whom the data intruders wish to discover 

information will be termed targets. Mechanisms by which a data intruder might recover 

information on targets will be termed attack scenarios (Elliot and Dale, 1999).

The basic premise is that a data intruder will attack the data in order to try to recover 

information on targets. The attack scenario describes both the type of intruder and the 

strategy employed by the intruder to recover information. For example, an intruder could 

be a member of the public who knows that a data record relating to a neighbour is 

contained in a published database. The intruder might attempt to identify the relevant 

record by matching against known information about the neighbour. A correct match based 

on a subset of the information in the record allows the remaining information in the record 
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to be inferred for the neighbour. An alternative scenario might involve a member of a 

company attempting to infer the salaries of other employees through payroll data.

The role of SDC is to limit disclosure. So it needs to consider alternative attack scenarios 

and quantify the chances and consequences of a successful attack. In order to help achieve 

this, measures of risk are often produced. A DSO can calculate the value of the risk 

measure for a potential data release and use it inform the decision about whether to release 

the data. Risk measures can be as simple as basic rules of thumb, or involve detailed 

calculations to estimate the probability of a disclosure taking place under a given scenario.

Motivation

The motivation for this work is to evaluate methods for SDC that adopt the position of the 

data intruder. This is not a wholly original idea, and has been the basis of other approaches 

(Paass 1988) (Mokken et al., 1992) (Elliot and Dale, 1999). But adopting this position does 

suggest new approaches and bring into question existing approaches.

In part this work concerns what might be called the knowledgeable data intruder. That is, 

an intruder who understands inferential methods and who is prepared to spend some time 

and effort attempting to recover sensitive information about targets. The idea is to establish 

exactly what an intruder is capable of inferring from data, to produce measures of risk that 

truly reflect what an intruder might infer, and to assess whether existing measures can be 

improved. Improvement also includes improvements in algorithms for approaches that are 

time consuming. Some SDC methods are computationally demanding, limiting the size (in 

terms of the number of records or dimensionality) of data sets that can be risk assessed. 

This work is primarily concerned with inferences that an intruder might make using 

published aggregate data. These are data that have had detailed information such as names 

and addresses removed, and which might be published in the form of contingency tables. 

Nevertheless, alternative forms of data and associated risks and risk measures are 

discussed briefly in Chapter 2.
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Inference

Statistical inference is inductive; sample data are used to make general inferences about 

populations. For instance, a randomized controlled trial (RCT) might be conducted to 

assess the efficacy of a new drug. Individuals with a given disease would be randomly 

allocated into a control group and a treatment group without being told which group they 

were in. The treatment group would be given the new drug, whilst the control group would 

be given a placebo. The trial would generally be double-blinded by making sure that those 

administering the drug / placebo would not be aware of which subjects were receiving the 

drug / placebo. The efficacy of the new drug would be assessed by comparing some pre-

specified outcome measure across the two groups. Typically the observed treatment effect 

would serve as an estimate of the population effect and a statistical test would be used to 

assess the weight of evidence that the population effect is non-zero. Thus the sample data 

are used to make inferences about a population effect.

Inferences that are performed by data intruders are generally deductive; using data to make 

inferences about individuals rather than the general population. For example, assume 

released population data for a small level of geography contains a 16 year old widow1 with 

a given medical history. An intruder might know a 16 year old widow who lives in the 

relevant geographical area and be able to match against the published record. As it is 

population data, a unique match implies a correct match (assuming the data are accurate 

and up to date). Thus the intruder can associate the medical history with the known 16 year 

old widow. Note that this is a purely logical, deductive inference.

However, if there was more than one possible match the intruder might not be able to make 

inferences using logic. There could be two 16 year old widows with identical medical 

histories (albeit unlikely), in which case logic could be used. The release of sample data 

would introduce the possibility of unsampled matching records, which might include the 

correct match. In such cases the intruder might be prepared to make assumptions or apply a 

probabilistic approach. Inferences would no longer be certain, but might still be of concern 

to a DSO if they could be made with a high enough degree of confidence.

1 This is a standard example of a type of individual who is so rare that they might be matched against data 
records with a high degree of confidence, particularly given a small geographical area. Such an individual 
known to an intruder might be 'spontaneously recognized' in the data.
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Assume the released data were actually sample data. Based on the rarity of 16 year old 

widows the intruder might infer that the 16 year old widow in the data set is almost 

certainly the known 16 year old widow. Thus the intruder could be highly confident that 

the known 16 year old widow has the medical history given in the data. The relevant 

question for the risk assessor is, “How confident?”. In this case the intruder can be at least 

as confident as he / she is in the correctness of the match.2

The above example demonstrates the trivial observation that intruder inferences are 

generally deductive. But it also shows that where wholly logical inferences are not possible 

the intruder's prior beliefs are relevant. The inference regarding the known 16 year old 

widow in the sample is a combination of prior belief and deductive inference. The prior 

belief might be based on personal experience or prejudice, or data analysis. In any case it is 

an inductive inference.

Whether uncertain inferences are an issue is dependent on context. Even an incorrect, but 

plausible claim that disclosure has occurred could be damaging to a national statistical 

agency. So it is clear that, where there is uncertainty, the risk of disclosure will need to be 

assessed in terms of a combination of inductive and deductive inferences. It is not 

something which can be addressed purely through logic or through traditional, frequentist 

statistical methods. It can, however, be addressed by Bayesian methods.

The Bayesian approach

Frequentist probabilities are based on proportions in the limit of repeated trials. If a fair 

coin is tossed repeatedly, then in the limit (as the number of trials tends to infinity) the 

proportion of heads will tend to 0.5. Thus the probability of a head resulting from a fair 

toss of a fair coin is 0.5. Frequentist probabilities are also referred to as objective 

probabilities.

But there is an alternative school of thought when it comes to probability. Bayesians view 

2 Given a correct match it follows logically that the medical history pertains to the target. However, an 
incorrect match might have the 'correct' medical history. Thus the degree of confidence in the correctness 
of the match is only a lower bound on the degree of confidence that can be assigned to the 'matching' of 
the medical history with the target.
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probabilities as degrees of belief. Thus there is no requirement for any notion of repeated 

trials and limiting proportions. Where such a notion exists frequentist and Bayesian 

probabilities coincide. But a Bayesian would be prepared to associate a probability 

measure with an event which has never occurred. An important distinction is that different 

individuals might hold different beliefs and therefore assign different probabilities to the 

same event. Thus Bayesian probabilities are sometimes termed subjective or personal 

probabilities.

An example of the distinction would be a coin toss. Given the assumptions of a fair toss 

and a fair coin a frequentist and a Bayesian would agree on the probability of a head being 

0.5. If a fair coin was tossed and covered so that neither the frequentist nor the Bayesian 

could see it, then the frequentist would hold that the probability of a head was either 0 or 1. 

The outcome is no longer probabilistic; it is just unknown. Knowing that the coin had been 

tossed would not affect the belief of the Bayesian in the outcome, so the probability for the 

Bayesian would still be 0.5.

Belief revision in the Bayesian framework stems from a simple rule of probability known 

as Bayes rule:

P  H∣D =
P  D∣H  P  H 

∑
H

P  D∣H  P  H 

The denominator term is equal to P(D) and for continuous H the summation is replaced 

with integration. Derivation follows simply from equating the two alternative 

factorizations for P(D,H) under dependence.

As a statement relating probabilities, Bayes rule is not problematic for frequentists. It is the 

interpretation of P(H) as a prior belief rather than an objective marginal probability that is 

the issue. But in SDC it is sometimes important to understand how confident a data 

intruder might be in a particular hypothesis; for instance the hypothesis that a sensitive 

level of a variable holds for a given target. Assessing this can be achieved by combining 

reasonable prior beliefs with information that is contained in data.
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Going back to the example of the 16 year old widow in the sample we might assume that 

the intruder's prior probability that the widow in the data is the known widow is 0.99. 

Assuming that the data are up to date and correct and that the given medical history only 

applies to 2% of 16 year old widows, then inference could proceed as follows.

The marginal probability that the medical history applies to the known widow is,

P  H =∑
M

P  H∣M  P  M 

P  H =1×0.990.02×0.01=0.9902 .

where M is a boolean variable for the correctness of the match.

Note that the probability that the history applies to the widow is slightly greater than 0.99 

because of the possibility that it would apply even if the match were incorrect.

But we could take a more complex approach to estimate P(M=True) based on the 

probability mass function for the population frequency for 16 year old widows, P(F), 

where F is not less than the sample frequency.

P  M=True =∑
F

1
F

P  F 

P(F) in turn will depend on the sampling fraction and the marginal probability of a 

population unit being a 16 year old widow. Thus a knowledgeable intruder might introduce 

more complexity and relevant information to attempt to generate more accurate posterior 

beliefs.

The point is that adopting the Bayesian view of probability allows the rules of probability 

to be used to generate the degrees of confidence that intruders might reasonably have in 

particular hypotheses. It also allows simplifying assumptions to be made and arbitrary 

sources of information to be incorporated. A naïve intruder might perform the sort of 
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calculation shown above, generating a fairly naïve posterior belief that the known widow 

possesses the published medical history with probability 0.9902. A less naïve intruder 

armed with more information might perform a more complex calculation and arrive at a 

different result. In either case it allows us to take an attack scenario, some data and to make 

inferences about the inferences that could be made by intruders. The external (to the data 

set) information held by the intruder and the methods and resources available to the 

intruder would form part of the attack scenario.

Costs

As an intruder adopts more complex approaches to making inferences computational costs 

can increase. Clearly this is also true for risk assessment methods based on discovering the 

inferences that would be possible to such a data intruder. So algorithms turn out to be very 

important. An intruder armed with better algorithms might be able to recover sensitive 

information from data sets that cannot be adequately assessed for risk.

A second aspect of cost is the cost of search. Many attack scenarios include matching data 

units (individuals or organizations which constitute 'records') and population units 

(individuals or organizations in the population). The time and effort required to find a 

match mitigates against some scenarios. But just as for computational costs, if the intruder 

can find a better way, there are potential problems for risk assessment.

Summary

Statistical disclosure control concerns the trade off between the benefits of making data 

available and the risks of allowing the disclosure of sensitive information about 

individuals or organizations. The basic premise is that of an intruder who will launch an 

attack on released data, and attempt to recover or infer sensitive information. In some cases 

purely logical inferences can be made. In other cases an intruder will only be able to make 

inferences with a certain degree of confidence. Depending on the type of DSO, and other 

factors such as the utility of the data and the inferences that can be made, either might be 
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of concern.

A computationally and mathematically literate intruder could conceivably launch attacks 

that would not be feasible for the average intruder. It is important to be able to limit the 

possibilities of disclosing information to such intruders, as well as protecting against 

disclosures under more basic attack scenarios. It could be the case that standard disclosure 

limitation methods and risk metrics do not adequately reflect the risks posed by the more 

knowledgeable intruder.

However, it is not simply the case that protecting data against a knowledgeable intruder 

will guarantee protection against a lay intruder. Perceptions of disclosure can be an issue, 

and a lay intruder might make a claim of disclosure where the knowledgeable intruder 

would realize that inferences could not be made with high degrees of confidence. A DSO 

might be concerned about such claims where they might have prima facie plausibility. 

Simply pointing out that the inference is incorrect could be problematic, as it might 

provide information that would lead to a disclosive inference; for instance, pointing out 

that a claimed match is incorrect when there are only two possible matches. A safer 

defence is to demonstrate the implausibility of the claim, which is most easily achieved by 

adopting the position of a knowledgeable data intruder and attempting to perform the same 

inference.

Another aspect of protection is the time and effort that would need to be employed by an 

intruder in order to effect a disclosure. A very costly attack might be unlikely to be 

launched. This might be computational time, which raises the issue of using high 

performance algorithms. It could also mean, for example, the time required to search a 

population for an individual who matches a given database record. These are issues that 

can change over time, with increased computational power and better algorithms, and with 

new data sources and attack scenarios. SDC approaches should take this into account. 

Once data are released they cannot be taken back, and the risks of disclosure might be 

expected to increase over time.

It seems reasonably clear that assessing the inferences that could be made by a 

knowledgeable data intruder is best achieved by placing oneself in the position of the data 

intruder. The gamekeeper should turn poacher (at least temporarily). This is the basic 
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position taken in this body of work. Some existing scenarios and risk assessment 

approaches are assessed, and new scenarios and assessment approaches are proposed. 

Some of the work focuses quite heavily on computational issues. This is important as it 

allows for better assessment of risks. The computational issues that face an intruder are 

equally as important for the risk assessor.

Core chapters

The core chapters are a collection of relatively self-contained contributions to SDC. 

However, excessive repetition is avoided by including material what would be common to 

Chapters 7 and 8 in Chapter 6. This also allows the data structures and algorithms to be 

explained in some detail. Without such detail the advantages of the precise implementation 

would not be appreciated, and an enormous amount of work would be hidden “under the 

hood”. In each chapter the work required a substantial amount of software development. 

The code is not included in appendices as it is being continually developed, and for reasons 

of space.

Chapter 2 provides a general review and introduction to the SDC methods and concepts 

that are relevant to the subsequent chapters. It describes different forms of data and 

different types of disclosure. This is a fairly gentle introduction to cover basic ground.

Chapter 3 describes a risk measure for tabular data which is based on a particular kind of 

attack scenario where an intruder has knowledge of the data units. This knowledge can be 

exploited to make inferences about unknown data units. It is shown how the measure can 

be calculated for simple forms of data release, and how it can be generalized to more 

complex forms of data release.

Chapter 4 describes novel graphical methods that can be used to assess possibilities for 

matching across the data sets within a data environment (set of data sets). It builds upon 

existing work carried out at the University of Manchester (Elliot et al., 2010). But it adds 

much in terms of mathematical definitions, the use of novel data structures and efficient 

algorithms.
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Chapter 5 discusses strategies for matching sample units and population units. Various 

scenarios are discussed and probabilities of success are derived. Again this builds on 

existing work (Smith, 2006), but this work generalizes it and demonstrates that certain 

classes of attack scenario dominate others in terms of the probability of success. The 

various strategies are also assessed in terms of search cost and similar dominance 

relationships are shown to exist.

Chapter 6 covers some theory and algorithms relating to graphical models that are required 

for a detailed understanding of subsequent chapters. Specifically it describes the use of a 

non-standard type of graphical model to manage the Markov Chain Monte Carlo and 

simulated annealing model determination schemes used in Chapters 7 and 8. The graphical 

model has been described once before in the literature (Smith, 2001) but not in such detail, 

and not in the context of model determination. The computational benefits over existing 

approaches are described. Computational cost is an extremely important issue, which 

justifies a distinct chapter to cover the detailed implementation.

Chapter 7 develops a Bayesian matching strategy and compares success probabilities and 

costs with the non-Bayesian strategies described in Chapter 5. It is shown that the Bayesian 

approach offers much higher probabilities of a successful match than any of the non-

Bayesian strategies.

Chapter 8 describes Bayesian alternatives to the special uniques detection algorithm 

(SUDA) approach for assessing the risk from sample counts of one (Elliot et al., 2002) 

(Manning et al., 2008). Both Markov Chain Monte Carlo and simulated annealing 

approaches are described and compared against SUDA. They are both shown to offer 

improved estimates of risk. Simulated annealing is shown to be much quicker at generating 

risk measures and to produce more reliable results than Markov Chain Monte Carlo. 

Potential category level, variable level and file level risk metrics are described. Possible 

improvements and alternatives to the Markov Chain Monte Carlo approach are discussed.

Chapter 9 summarizes and justifies the work. Future work and policy implications are 

discussed.

Appendix 1 contains a tutorial for the software developed using the algorithms detailed in 
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Chapter 4.

Appendix 2 contains a detailed exposition and analysis of the algorithms contained in 

Chapter 4.
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CHAPTER 2

Background

Data intruders and attack scenarios were discussed in Chapter 1. A data intruder could be 

anyone who has access to released data. An attack scenario is a description of how a 

disclosure might take place. It describes a type of intruder and how the intruder might 

discover or infer sensitive information about a target. In some cases an attack scenario 

might be detailed enough to describe the rules of a game and a strategy for winning the 

game. In this game-theoretic sense a strategy is a complete set of rules that will be 

followed by an intruder in an attempt to infer sensitive information.

The remainder of this chapter outlines concepts and theory that arise in the core chapters. It 

is not a comprehensive review of SDC. In particular, it omits much relating to microdata as 

the core chapters deal almost exclusively with aggregate data. See Duncan et al. (2011) for 

a comprehensive, and in parts, more detailed review of SDC.

Some basic SDC concepts

Before moving on to disclosure control methods and risk measures it would be sensible to 

cover some basic ideas relating to SDC. Some would be familiar to most readers, but some 

are specific to SDC. In effect, this section is a basic glossary, with some discussion, 

covering terms that will be met later in the document.

Microdata and aggregate data

In SDC there is usually a distinction made between microdata and aggregate data. 

Microdata are in the form of a collection of individual records, whereas aggregate data are 
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often in the form of a contingency table containing a count for each possible combination 

of variable values. Aggregate data are also called tabular data. A microdata file and an 

aggregate table could contain exactly the same information.

A microdata file might contain personally identifiable information such as names and 

addresses. It might also contain variables on a continuous scale with variable values 

specified to high levels of precision.  Thus, in a microdata file it would not be unusual to 

find many distinct or unique records, particularly if records contained a large number of 

variables.

In contrast, data that are provided in aggregate form generally do not include variables on a 

continuous scale or that have large numbers of possible values (such as names and 

addresses). Contingency tables are parsimonious representations of data sets covering a 

small number of categorical variables, and in SDC that is a reasonable description of the 

type of data contained in most aggregate tables.

Specific SDC methods will usually be predominantly associated with either microdata or 

aggregate data. That does not necessarily imply that they cannot be applied to data in the 

alternative form. For instance, it is a trivial exercise to convert aggregate data into 

microdata and generate risk measures designed for microdata.

Another form of data is magnitude data3, but it is not relevant to this work and will not be 

described in detail.

Anonymization

A common practice for DSOs such as national statistical agencies is to anonymize data 

before release. For most research purposes formal identifiers such as name and address are 

3 Magnitude data is in the form of totals, e.g. turnover. The disclosure risk is that a published industry total 
would enable a large firm to put upper bounds on the turnover of competing firms by simply subtracting 
its own turnover from the industry total. The (n, k) rule (Willenborg and de Waal, 2001) specifies that if 
any n units contribute more than a proportion k of the total, then the data are insecure. There is also a p% 
rule, where data are considered to be insecure if they would allow any respondent values to be estimated 
within p% of their true value.
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not required. So DSOs can be in the fortunate position that the data that would allow 

people to be easily identified are of least worth to the end user. Removal of obvious 

identifiers is usually termed anonymization, although the term de-identification is also 

sometimes used.

Categorization

Continuous variables can take an infinite number of values. In principle, each individual in 

a data set would have a distinct value for a continuous variable. In practice these values are 

not measured or recorded with infinite precision, so they are more like categorical 

variables with a very large number of levels. If recorded consistently across datasets they 

can offer the same possibilities for record linkage as formal identifiers. Therefore DSOs 

routinely categorize such variables. Categorization is the process of converting a 

continuous variable to a categorical scale. This would typically be done for variables such 

as age where 5 or 10 year age bands might be used.

Linking and matching

Linking data sources can provide much more detailed information on an individual than 

the individual data sources. Two records from distinct microdata files containing common 

variables could be used to construct a single record containing all the information in the 

individual records. Consider the case where the matching is done on a National Insurance 

number. One record might contain identifying variables such as name, address and birth 

date. The second record might contain information on income and employment status. 

Such matching on formal identifiers might happen for bona fide administrative or research 

purposes. An intruder will rarely have such an opportunity as the DSO will have removed 

them before releasing the data, so matching will be performed using a different set of 

variables. This set of variables is sometimes referred to as a key or as a set of key variables.
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Figure 1. Matching on key variables

In some cases it might not be possible to establish that a match on the key variables is 

actually the correct match. There might be more than one match, and some might be more 

plausible than others given the resulting fuller records. But probabilistic record linkage 

(see for example Fellegi and Sunter, 1969) might enable a sufficiently high probability of a 

correct match that it is considered to be an issue by a DSO. Of course, it might be that all 

the possible matches contain the same values for a sensitive variable. In this case the 

inference regarding the sensitive variable can be made with certainty even though any 

given match is likely to be incorrect.

Data divergence

Data-world divergence (Elliot and Dale, 1999) is the degree to which recorded data are 

different from the correct data. Sometimes variable levels are wrongly coded, and 

sometimes people lie about personal information. So there is usually a degree of 

uncertainty over the correctness of data. Data-world divergence is generally ignored for the 

purposes of SDC.

Data-data divergence (Elliot and Dale, 1999) is the degree to which data contained in 

different data sets is inconsistent. Parallel divergence describes the situation where data-

world divergence exists with respect to information, but the information is still consistent 

across different data sets. This might arise where an individual lies consistently.

Data-world divergence will tend to reduce the risks of identification and / or attribution 

(depending on which variables are affected). Data-data divergence reduces the chances of 

correctly matching records in distinct data sets if it affects key variables.

29



The goal in data collection is to have zero divergence, so it would be curious to rely on 

data divergence for security. Countering a claim of disclosure with the assertion that the 

data cannot be relied upon might be a little embarrassing for the data holder (even if it 

happens to be true).

Data utility

This is a fairly general term. It is clearly related to data-world divergence. In fact a high 

degree of divergence might imply negative utility, as inferences based on the data might be 

wholly unreliable and potentially misleading. It also depends on the way in which the data 

are to be used. Methods to limit the chances of disclosure often have a negative impact on 

data utility. They might be chosen so as to have minimal impact for certain use cases by 

preserving certain statistical qualities of the data. Data utility is not explicitly considered in 

the core chapters, but it is important to remember that the risk-utility trade off is at the 

heart of all decisions regarding the release of data. The trade off is explicitly considered in 

papers such as Duncan and Stokes (2004).

Sensitivity

An overriding issue in SDC is exactly what constitutes sensitive information. There are 

national and cultural differences, and even within a small defined population there will be 

significant variability in what people consider to be sensitive. Some people are happy, for 

example, to hand over much personal information when applying for a supermarket loyalty 

card. Others might question why lifestyle factors such as smoking status are required in 

order to even discuss taking out an Individual Savings Account (ISA).

As well as the issue of subjectivity it is clear that some levels of some variables are more 

sensitive than others. Very often it will be the more unusual levels of a variable that are 

considered to be most sensitive. Very high earners might be very keen that their earnings 

are kept confidential to avoid being labelled fat cats. Lower earners might be less 
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concerned about their earnings being known. The fact that somebody has a rare disease is 

likely to be much more sensitive than the fact that they do not.

Sensitivity can change over time. In the early 1960s homosexuality was a criminal offence 

in England and Wales. By the 1970s the threat of criminal prosecution was no longer 

present, yet many homosexuals would have considered their sexual orientation to be 

sensitive information. Today this is probably less so, although relatively few DSOs would 

consider sexual orientation not to be sensitive.

Sensitivity can change with age, and be different across different age groups. The 

sensitivity of a person's age can depend on age itself. The young and the old are often quite 

proud to be young, or to have lasted so long. Those in middle age are more likely to want 

to keep their age to themselves. The young are more used to sharing information with 

'friends' that they have never actually met and with the world at large through social 

networking. The elderly are more likely to consider sensitive that which they considered 

sensitive in their youth.

In SDC it is common to classify variables as sensitive or not sensitive. This is clearly an 

over-simplification that is made for practical reasons. There is often also an implicit 

assumption of a monotone relationship between the amount of information an intruder 

might have and the total sensitivity of that information. This does not necessarily follow. 

Imagine that an intruder has discovered that a target has recently had an HIV test. That 

could be considered highly sensitive as the intruder might infer that the target is a member 

of a high risk group. Additional information regarding, say, sexual orientation might lead 

the intruder to believe that the target is an intravenous drug user. On the other hand, 

information that the target worked in a medical role that required regular HIV tests would 

drastically reduce the intruder's confidence that the target was in a high risk group. In this 

example it is the joint information that matters rather than a single level of a single 

variable. In fact the sensitivity really relates to the inferences that the information allows 

regarding sexuality or intravenous drug use, variables upon which the DSO might hold no 

direct information.

So sensitivity is subjective, varies over time and can change quite dramatically when 

national or cultural boundaries are crossed. Ideally sensitivity should be considered jointly, 
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as it is not necessarily the case that more information is more sensitive. Nevertheless, 

simplifying assumptions and generalizations are often made in order to produce workable 

SDC methods. In general, the specification of sensitivities must be left up to the DSOs. In 

many cases this simply involves the classification of variables as sensitive or not sensitive. 

The proper handling of sensitivity is a much under-researched area of SDC. All the 

methods discussed in the core chapters adopt the standard convention of simply classifying 

certain variables as target variables. Although alternatives are not discussed in the core 

chapters, a potential approach would be to take the joint information available to an 

intruder and generate posterior probability distributions over a set of variables containing 

sensitive categories. Model determination and inference approaches that would facilitate 

this are described in Chapter 6.

Forms of disclosure

Identification and attribution

Most SDC methods are primarily concerned with identification. Identification is the 

linking of a record in a data set with an individual within a population. It does not 

necessarily imply that the person performing the identification learns anything new about 

the identified individual. All the information within the data might be needed to perform 

the identification, leaving nothing left to infer. Alternatively, the inferred information might 

be already known to the intruder. An obvious example of disclosure-free identification 

would be somebody recognising their own record, self-identification. Yet some 

organizations might wish to limit the chances of even this possibility, as it could potentially 

lead to a publicized (yet spurious) claim of disclosure, or simply the perception that 

disclosure was a possibility.

Attribution is the association of a previously unknown variable level with an individual. So 

it is paradigmatically disclosure. In principle, attribution can take place without 

identification. A release of population data might show that all people living in a particular 

postcode area are unemployed, and thus allow the logical inference that any individual 

known to live in that area is unemployed.
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It is clear from the two examples above that identification does not necessarily imply 

attribution, and attribution does not necessarily imply identification.  However, in many 

scenarios they do occur together. Being able to identify an individual from the detailed 

information in a microdata record allows all the previously unknown information in the 

record to be inferred. The properties of identification and attribution are discussed in more 

detail in Chapter 3.

Assessing risk

In SDC we are faced with a number of dichotomies:

• Perceived risk v. actual risk

• Identification v. attribution

• Sample data v. population data

• Microdata v. aggregate data

• Logical inferences v. probabilistic inferences

The last pair are sometimes referred to as “exact” and “approximate” inferences.

So there are potentially many different configurations that could require alternative 

approaches to risk assessment. This is compounded by the fact that we might want to 

produce measures of risk for individual records, cells in aggregate data, variables or 

complete microdata files / aggregate tables. This work does not consider all the various 

possibilities, so consideration will be limited to those that are relevant to the core chapters.

Attribution risk

Attribution risk is discussed in some detail in Chapter 3, so will not be dealt with at length 

here. In essence attribution occurs when an intruder can establish that a target belongs to a 
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group which share some common characteristic. The group does not need to be of size 1. 

This was originally discussed in U.S. Department of Commerce (1978). Inference from the 

point of view of an intruder would typically involve a released data set that is known to 

contain a target. Conditioning on known variable levels would allow the intruder to 

associate the target with smaller groups within the data set. Any shared characteristic could 

be inferred for the target. That includes any variable levels, or combinations of variable 

levels, that apply to no individuals in the group. The crucial thing to grasp is that it is the 

missing combinations of variable levels that enable exact attribution in population data. In 

aggregate data these correspond to zero counts. Without zeros an intruder could condition 

on any set of variable levels and would still be left with a reduced population containing 

individuals with every possible combination of levels on the unconditioned variables.

In situations where probabilistic inferences might be of concern, then small and large 

frequencies would represent risks. If 95% of the individuals in the relevant group shared a 

characteristic, then an intruder might be 95% confident that the characteristic is possessed 

by the target. A knowledgeable intruder might also condition on known information about 

the intruder relating to variables outside the data set. This would not produce a reduced 

population as would conditioning on a variable within the dataset. But it would place the 

target within a notional subpopulation that might be believed to have different 

characteristics. This could revise the degree of confidence either up or down.

Chapter 3 addresses attribution risk and develops a risk measure for aggregate data. The 

measure can also be applied to microdata. It also allows for an assumed level of intruder 

knowledge regarding the other data units and can handle released data that have been 

distorted to limit disclosure risk.

Identification risk

A lot of the work on identification risk concentrates on unique records. Uniqueness in 

released population data implies a risk that an intruder might associate a record with a 

unique set of characteristics with a target sharing the same characteristics. Any other 

information in the corresponding record would apply to the target. That is, it might lead to 
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attribution, which is where the real disclosure takes place. It might be that there is no 

additional information in the record to infer, or that the information is not sensitive. 

Nevertheless, it could still give rise to a claim of disclosure which could be damaging to 

the DSO.

Benedetti and Franconi (1998) noted that the probability that a match from the population 

to a sample unit is correct is simply 1/Fj where Fj is the number of matches in the 

population. Thus a suitable record level risk measure might be the probability of a correct 

match, 1/Fj, where Fj is the population frequency for the cell with index j in the aggregate 

table marginalized to the key variables. This implies that population uniques (with respect 

to the key variables) pose the greatest risk. However, it does not distinguish between 

different population uniques. These could be distinguished by considering the sensitivity of 

the information contained in the non-key variables, although the measure would then relate 

more to attribution risk. A more interesting problem is assessing identification risk in 

sample data.

Sample data

Releasing sample data essentially eliminates the possibility of exact attribution (attribution 

via logical inference). But the intruder can still make probabilistic inferences using the 

released data. Essentially the intruder can use the sample data to make inferences about the 

data generating process and make subsequent inferences regarding targets on the basis of 

fitted models. With small area geographic level aggregate data the intruder could pool the 

data for model determination purposes, and then combine the fitted model(s) with the data 

in a specific geographic area to make inductive inferences about specific targets in that 

area. A risk assessor could use the same approach to generate metrics based on posterior 

beliefs regarding sensitive inferences. This outline approach bears some similarity with 

methods employed in both Smith and Elliot (2003) and Smith and Elliot (2005). The 

measure proposed in Chapter 3 does not go this far, but does provide a metric that can be 

used with sample data.

Apart from the case of structural uniques, exact identification is not possible with sample 
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data. The following discussion applies to non-structural uniques. Identification risk might 

still be significant problem with sample data (see Chapter 7). Just as with exact 

identification, most of the focus is on uniques. But with sample data a match from the 

population against a sample unique might not be correct.

Uniques in released population data imply that a match will be correct, but in sample data 

the real relevance of uniqueness in the sample is in what it tells us about the population 

frequency. Firstly, the sample frequency fj is a lower bound on Fj. Therefore 1/fj provides 

an upper bound on the probability of a correct match. Only sample uniques can offer a 

probability of a correct match of greater than 0.5. Secondly, a sample unique might suggest 

that Fj is low, giving a higher probability of a correct match than a higher sample 

frequency. Uniques might be of particular concern to a DSO regarding approximate 

identification where the record contains an unusual combination of attribute levels. In this 

situation there is the issue of spontaneous recognition, as well as the intruder's prior belief 

producing a high posterior belief in a match being correct. The same advantages and 

disadvantages apply to the 1/Fj measure, although the risks will not generally be the same 

for all sample uniques.

File level measures for identification risk that have been proposed have been as simple as 

the proportion of population units which are population unique (Bethlehem et al., 1990) 

and the proportion of sample uniques which are also population unique (e.g. Fienberg and 

Makov, 1998). Other measures have been more closely linked to specific attack scenarios. 

For instance, an intruder might adopt the strategy of searching the population for a match 

against any sample unique. On the other hand, the intruder might select a particular sample 

unique for matching purposes. These strategies give rise to different probabilities of 

success. These probabilities can be used as risk metrics, and first appear in Skinner and 

Elliot (2002). These, and other strategies are investigated in Chapter 5. Some strategies are 

shown to dominate others in terms of the probability of an intruder achieving a correct 

match. The necessary search costs are also considered, as high search costs might render a 

scenario / strategy implausible.

When population counts are known to the DSO, then measures of the type discussed above 

can be calculated. But when a DSO is considering data from sample surveys the population 

frequencies are unknown. Estimating the 1/Fj from the data is one approach to generating a 
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suitable record level risk metric. This is the approach taken in Elamir and Skinner (2006) 

who used log-linear modelling, and in Forster and Webb (2007) who employed a Bayesian 

approach using Markov Chain Monte Carlo. Both these papers also discuss file level 

metrics.

The DIS formula (Elliot and Skinner, 2002) is a consistent estimator of the probability of a 

correct match given a unique match when matching from population to sample (that is, the 

strategy of searching the population for a match against any sample unique),

=
n1

n12 1−  n2

,

where π is the sampling fraction and n1 and n2 are the counts of 1 and 2 respectively in the 

sample table.

Other risk metrics are presented in Elliot et al. (2002) and Manning et al. (2008). Elliot 

(2003) proposes a metric that is hybrid of the metric in Elliot et al. (2002) and DIS. These 

are discussed in some detail in Chapter 8.

Chapter 7 shows that a Bayesian approach can offer very high probabilities of a correct 

match, even for small sampling fractions. This brings into question whether the above 

metrics are appropriate. Chapter 8 compares Bayesian approaches to identifying risky cells 

with those in Elliot et al. (2002), Elliot (2003) and Manning et al. (2008). Simulations 

show that the Bayesian methods offer improvements in both classification and execution 

times.

Scenario analysis

Scenario analysis (Elliot and Dale, 1999) is a method for assessing potential forms of 

attack. It assesses things like means, motive and opportunity in an effort to quantify the 

probability / plausibility of different forms of attack. Elliot and Dale (1999) also discuss 

the concepts of key and target variables. The set of key variables is essentially the 
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intersection of the set of variables contained in a data set and the set of variables known to 

an intruder with regard to a given target under a given attack scenario. The target variables 

are the ones classified as sensitive. They discuss how key variables might be identified by 

considering publicly available information (e.g. telephone directories), personal knowledge 

and organizational databases (commercial and governmental).

Elliot et al. (2010) describe a more formalized approach to the identification of key 

variables and the risks associated with record matching; data environment analysis (DEA). 

Data sets, such as those described in Elliot and Dale (1999), that are available to an 

intruder are identified. This constitutes the data environment. Possibilities for record 

matching across data sets within the environment are investigated via a spreadsheet 

application, the Key Variable Mapping System (KVMS). Chapter 4 describes the method 

in more detail. It also significantly extends the approach, developing new data structures 

and algorithms. More information on the software implementation is contained in 

Appendix 1.

The identification of attack scenarios and key / target variables is a very important part of 

disclosure risk limitation. The values of risk metrics often depend on which variables are 

classified as key variables and target variables. A good metric will relate directly to a 

particular form of attack. In the discussion of identification risk with sample data it was 

shown that there were a number of possible risk metrics stemming from different attack 

scenarios. They inform specific SDC risk limitation methods that generally fall into two 

categories; suppression and perturbation.

Risk limitation

There are different approaches for limiting risk in microdata and aggregate data, although 

in many cases the same methods can be used for both microdata and aggregate data. If 

necessary the aggregate data can be converted to a list of records, risk limitation applied, 

then a conversion back to aggregate form carried out for release. The equivalent might be 

achieved by the use of an alternative algorithm using the aggregate data. The following 

concentrates on methods for aggregate data as these are much more relevant to the core 
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chapters. Methods for microdata are discussed where they provide particularly good 

examples of the following types of risk limitation, or where the microdata algorithm is 

significantly easier to follow than the equivalent algorithm for aggregate data.

Suppression

Duncan et al. (2011) describe suppression as the “denial of data instances”. They discuss 

the deleting of records and variables in microdata, which they term record suppression and 

attribute suppression. Record suppression might be undertaken to remove unusual 

individuals who might be easily identified. Attribute suppression might be used to remove 

formal identifiers, key variables or sensitive variables. Thus, what is normally referred to 

as “anonymization” is actually a form of suppression. And each time a DSO decides to 

release aggregate data on a subset of the variables that they have information on, it is 

suppression of the unreleased variables.

Essentially, suppression is the act of not releasing information, and that information can be 

quite arbitrary. It is not limited to records and variables. Statistical outputs might be 

suppressed in order to prevent certain inferences regarding the analysed data. The total 

earnings within an industry might be suppressed if there were only 2 companies involved, 

to prevent each discovering the earnings of its rival by simply subtracting its own earnings 

from the total.

However, it is not the case that suppression of data prevents intruders from making 

inferences about the suppressed data. So it is important to understand how well suppression 

actually protects sensitive data, whether or not it was the sensitive data that were 

suppressed.

Suppression contrasts with perturbation, which is the act of changing data before it is 

released. Although they seem to be distinct concepts there are SDC methods which employ 

both. For instance, sensitive data might be suppressed and then replaced by values 

generated using multiple imputation methods (see for example Reiter, 2005). The resulting 

synthetic data are then released. As the released data contain no missing values it would 
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probably be sensible to think of this approach as perturbation. That is the distinction made 

here. If data or information is not released, then it is suppressed. If it is released having 

been subjected to some form of distortion, then it is perturbed.

Recoding

Recoding is the practice of changing the level of detail on a variable. A continuous variable 

might be made into a categorical variable. For instance income might be given only in 

terms of 'low' and 'high' levels. A categorical variable might be collapsed into a smaller 

number of categories, say 5 year age bands being collapsed into 10 year bands. Bottom-

coding and top-coding are terms used to describe recoding into 'less than' or 'greater than' 

categories. Recoding is sometimes called aggregation or table redesign. Certain cell values 

are suppressed, but aggregated values are published.

Figure 2. Data release with a risky cell

Figure 2 shows a possible data release. The count of 1 in the second row and second 

column might be considered to be too risky. For instance, the second level of the row 

variable might be unusual, enabling identification of the relevant individual for whom the 

second level of the column variable could then be inferred. Recoding could be used to 

eliminate this particular possibility.
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Figure 3. A recoded data release

Recoding by aggregating the first two levels of the row variable disguises the presence and 

location of the risky unique. Figure 3 shows the recoded table. An alternative would have 

been to aggregate the second and third levels of the row variable. In fact there are often 

many choices that could be made. Some recodings will generally make more sense than 

others. For instance, if the row variable was on an ordinal scale it would be unusual to 

aggregate non-adjacent levels. Alternative recodings will have different effects on data 

utility.

Note that it is often the practice to also release smaller marginal tables, or simply the table 

total. This does not actually provide more information than contained in the detail table 

over all the variables, as the marginal tables can be derived by summing across variables. 

This is also true after recoding. But some disclosure control methods do not treat detail cell 

counts (counts in the full table) and marginal cell counts in such a consistent manner.

Cell Suppression

Masking is often carried out on aggregate data. Certain combinations of attribute values are 

considered to be too risky because of the potential for identification or attribution. Thus the 

value for that combination of values will be suppressed. In outputs the count will simply be 

replaced by a symbol such as an asterix. Consider a contingency table for the variable 

'marital status', 'age' and some sensitive third variable 'X'. If 'widow' is included as a level 

of marital status and 'age' contains a category 'under 18' then it is very likely that the 
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number of under 18 year old widows will be very low. If the table is for some relatively 

small level of geography, then any 18 year old widow is likely to be unique, relatively 

easily identified and disclosure on the sensitive variable X will take place. One option 

would be to remove X by summing across its categories, producing a table for only marital 

status and age. An alternative would be to only mask the counts that enable disclosive 

inferences to be made. This could be achieved by suppressing the counts for 'widow' and 

'under 18' and each level of X. Great care must be taken in avoiding disclosure via 

masking. It is tempting to think that disclosure could be avoided by only suppressing the 

count for 'widow' and 'under 18' and, say, the single sensitive level of X. However, if the 

counts for 'widow' and 'under 18' and the other levels of the sensitive variable were all 

zero, then any 18 year old widow in the population would have to be associated with the 

suppressed value of X. Thus suppression on additional cells is required to make the data 

release safe.

When cell suppression is performed it is necessary to ensure that suppressed counts cannot 

be recovered by procedures as simple as subtracting the sum of all the published detail cell 

counts from a published table total. Thus complementary (secondary) cell suppressions 

might need to be performed. Finding a set of complementary suppressions which provides 

enough protection whilst minimising the impact on data quality is known as the 

complementary cell suppression problem.

Figure 4. Ineffective cell suppression
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Figure 4 shows an attempt to mask the risky cell in the previous example. It is clearly 

ineffective given the published margins.

Figure 5. A suppressed cell with suppressed marginal counts

Suppression of all the relevant margins, including the table total, is enough to disguise the 

true value of the risky unique in the detail table. Of course, a known strategy of only 

suppressing risky unique cells would give the game away. So there are also issues 

regarding how secure an SDC method is given the possibility that the precise details might 

be leaked, or might be inferred from a large number of released tables.

An intruder can in principle place bounds on the detail cell counts given the information 

contained in marginal counts. In Figure 5 there is a lower bound of 0 implied by the nature 

of the data. There is no finite upper bound.
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Figure 6. A suppressed cell with preserved marginal counts

Figure 6 shows one possibility, of several, for suppressing detail cells so that the risky cell 

is protected and marginal counts are preserved. But in this case the suppressed cell cannot 

take arbitrary non-negative integer values. It can only be a 0 or a 1 given the row total of 1. 

In fact, there are only 2 possible detail tables given the data release in Figure 6. Margins 

have been preserved, meaning univariate analyses can be performed with complete data. 

But the level of protection is lower. A little extra information such as a known, or even 

structural, 0 in cell (2,4) would allow the exact cell counts to be recovered.

Alternative cell suppression schemes will also have different impacts on data utility. 

Finding a scheme that provides adequate protection whilst minimising loss of data utility 

can be achieved using integer linear programming (ILP) methods. But the problem is NP 

hard and can be computationally demanding for larger problems (Fischetti and Salazar, 

1999; Salazar, 2008).

Sampling

Yet another form of suppression is sampling. Rather than releasing population data a 

random sample is released; that is, the non-sampled units are suppressed. This can be 

effective at reducing the chances of disclosure taking place without significantly impacting 

on data quality. The samples of anonymized records (SARs) from the UK census can be 

very large, useful data sets. Matching is problematic because the correct matching record 
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for a target might not have been sampled. But even in this case it might be possible to 

match against a highly unusual set of attribute levels with some confidence. There might 

well be only one individual in the country who lives in London and has the job title 

'mayor'. Although the samples of anonymized records do not contain the level of detail 

necessary to identify the Mayor of London, the example does serve to demonstrate the 

possible existence of structural ones in samples. Of course, with sampling the data utility is 

affected in predictable ways and standard analytical methods can be used with the released 

data. This is clearly not the case with methods such as cell suppression, where the analyst 

would need to handle the missing values.

Metadata suppression

It has already been pointed out that knowledge of a disclosure limitation policy can be 

useful to an intruder. It might help the intruder to infer narrow feasible ranges for 

suppressed counts, or even recover cell counts exactly. For instance, a very naïve policy of 

not releasing smaller margins and simple suppressing ones in the detail table would be 

pretty ineffective. Even without knowledge of the scheme it might be inferred from the fact 

that no released tables contained any 1s. The same is true of the perturbation methods that 

are discussed in the next section. Knowledge of the parameters of these schemes would aid 

an intruder in producing feasible ranges, or even credible intervals / posterior mass 

functions for the cell counts. Although suppression of metadata is an option for the DSO, it 

is inherently risky.

Kerckhoff's principle is the principle that a cryptosystem should be secure even if 

everything about the system (except the key) is public knowledge. This is a term that will 

not often be found in the SDC literature. An SDC analogy would be that any suppressed or 

perturbed released data set should be safe even if the data intruder were to find out the 

details of the protection scheme. Relying on keeping a scheme secret presents an enormous 

risk. Once data are released into the public domain they cannot be unreleased, and it would 

be catastrophic to find that large amounts of data that had been considered safe had 

suddenly become irretrievably compromised because of leaked metadata.
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It might seem reasonable to keep schemes secret as it offers an extra layer of protection. 

This is the case with military grade crypotography systems. But in SDC we have to balance 

safety with data utility. There is an argument that if the data are safe under the assumption 

that an intruder knows everything about the system other than original data, then that 

information should be made available to analysts. Security through obscurity is an option 

for SDC and it is used. But its use is questionable. It is not only the possibility that the 

details of a protection scheme could be leaked that needs to be considered. We also need to 

consider the inferences that a determined intruder could make regarding the details of the 

scheme from examining a large number of released tables generated by the scheme. 

Security through obscurity is inherently risky.

Access restriction

The degree of data suppression might vary across different sections of the population. Data 

might be released to those where the utility of the data is greater or the risk of disclosure is 

lower. The risk-utility trade off can be considered in terms other than for a release to the 

general public.

A physical environment might be provided where approved users could analyse the data on 

a computer reserved for this purpose. Measures would be taken to ensure that raw data 

could not be copied and removed, although the analyst at the computer would be able to 

see the data.

Another option would be to set up a data server that would only release data that were 

deemed to be safe according to some criterion. Users with higher levels of trust would have 

access to more data. The cumulative data released to an individual would be recorded so 

that a data request could be judged based on the accumulated risk / utility.

An alternative would be to provide a set of tools for analysing the data, but without 

allowing the raw data to be seen by the analyst. The types of analysis might be restricted 

and the precision of outputs might be limited or even perturbed. Perturbation would have 

to avoid changing the substantive conclusions of the analysis.  Standard data analysis 
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procedures such as residual model diagnostics might require some perturbation of the 

residuals.

Figure 7 shows flow diagrams for a notional web service allowing both data releases and 

analytical requests.

DATA REQUEST

SAFE?

RELEASE DATA

INFORM USER

ANALYTICAL
REQUEST

SAFE?

RELEASE
RESULTS

PERTURB
OUTPUT

ANALYSE
NO

YES

NO

YES

Figure 7. Flow diagram for a data release and analytical request Web service

Karr et al. (2002) develop a tool for releasing tabular data based on decomposable 

graphical releases (which are explained later in this chapter). Elliot et al. (2008) describes a 

similar tool that incorporates different levels of trust and attempts to minimize the 

possibility that a low utility data release will limit the possibilities for subsequent high 

utility releases. It is also based on the theory of decomposable graphs.
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Perturbation

Perturbation involves making changes to the data to limit the risk of disclosure. Thus for 

aggregate data, cells would not simply be suppressed, their counts would be changed in 

order to add sufficient uncertainty over their true values. Perturbation techniques generally 

attempt to maintain certain statistical qualities of the data, so that standard methods of data 

analysis can be employed. Clearly, suppressed counts would entail imputation of the 

missing values or analytical methods that could handle missing values.

Data swapping

Data swapping is the process of swapping part of a record with another record (Griffin, 

1989). So any attempts to match records are faced with the issue that the levels of variables 

used for matching might be incorrect, and any inferred levels of other variables might be 

incorrect even if the match is correct. Swapping will generally be limited to key or target 

variables. Clearly, with a simple data swapping scheme the univariate marginal 

distributions are preserved. Schemes might be implemented so as to preserve multivariate 

marginal distributions.

An analogous method for tabular data is to reduce some detail cell counts whilst increasing 

others so that certain marginal counts remain unchanged. This is known as controlled 

tabular adjustment (Cox et al., 2004).  Again, there is the problem of having to make 

complementary changes to preserve margins.

Controlled tabular adjustment

In controlled tabular adjustment (CTA) each risky cell is changed to a nearby safe value. 

For example, this might entail making a risky 1 either a 0 or a 2. Minimal adjustments are 

made, so for any given cell there are a maximum of two values to which it can be changed. 

The precise nearby values for a cell will depend on context. After adjusting the risky cells 

to non-risky values other cells are changed so as to preserve certain margins.
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The unsafe release in Figure 2 as an example, with the same risky cell, could be changed to 

the table in Figure 8.

Figure 8. Controlled tabular adjustment

The risky 1 has been changed to a 0. Three other cells have been changed in order to 

preserve the univariate margins. The changed cells are those that were suppressed in Figure 

6. But again there are alternatives which would potentially have different impacts on data 

utility.

The table still has a unique detail cell with a unique margin, thus disclosure would appear 

to be possible by the same means as in the true table. However, the fourth level of the 

column variable might not be sensitive, the inference would be incorrect, and the 

knowledge that the table had been subjected to CTA would create uncertainty over such 

inferences in the mind of the intruder. The latter of these considerations is fundamental to 

SDC. The fact that an SDC method has been applied should create uncertainty over 

disclosive (deductive) inferences. A good SDC method will do this adequately whilst 

minimizing the impact on legitimate, statistical (inductive) inferences.

Optimizing CTA to find a perturbed table that provides adequate protection whilst 

minimizing the impact on data utility is again a computationally difficult problem 

involving integer linear programming methods.
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Interval publication

Rather than simply masking a risky cell value, the value can be replaced by a feasible 

range of values. Fischetti and Salazar (2003) introduce the method, referring to it as a form 

of partial cell suppression. There is the usual issue of having to treat potentially non-risky 

cells in a similar fashion to avoid recovery of the risky cell values if margins are also 

published. Cell suppression is essentially interval publication with intervals [0, ∞], so 

interval publication offers a wider range of solutions. Thus it is possible to find higher 

utility solutions for a required level of protection. The problem of finding optimal solutions 

is claimed to be simpler than the complementary cell suppression problem for masking 

(Salazar, 2008).

Rounding

Rounding is the process of taking detail cell counts and rounding them up or down to 

disguise their true value. Rounding is generally carried out to a close multiple of a chosen 

base, n. n is usually chosen to be odd in situations where rounding is to be carried out to 

the nearest multiple of n, in order to avoid ties.

Barnardization

Barnardization adjusts all non-zero cell counts in tabular data according to the following 

scheme. Zero counts are left unchanged.
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P  j∣i ={
p if j=i

1− p 
2

if j=i−1

1− p 
2

if j=i1

0 otherwise

where P(j|i) is the conditional probability mass function for the published count j given the 

true count i. and p is the Barnardization parameter; the probability that a non-zero true 

count will be published (unperturbed).

Controlled rounding

Controlled (deterministic) rounding to base n implies the following conditional probability 

mass function for a rounded count j given a true count i,

P  j∣i ={
I i mod n

n
2  if j=i−i mod n

I i mod n
n
2  if j=in−i mod n

0 otherwise

where I(.) is the indicator function and a mod b is the remainder when a is divided by b and 

takes precedence over other operators.

Random rounding

Random rounding uses a probabilistic scheme such as the scheme below for rounding 

counts up or down.
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P  j∣i ={
1−

i mod n
n

if j=i−i mod n

i mod n
n

if j=in−i mod n

0 otherwise

In Barnardization, controlled rounding and random rounding the counts are rounded 

independently. In both Barnardization and random rounding the expected value of j is i. So 

the schemes are, in this particular sense, unbiased.  Of course, this also implies that 

marginal totals will not generally be preserved. Publishing marginal totals creates 

dependencies between cell bounds and raises the possibility of using integer linear 

programming methods to attempt to recover detail cell counts. Even the publication of a 

similarly rounded grand total can enable the recovery of all detail cells counts in some 

cases.  For instance, four published detail cell counts of 5 with a published grand total of 0 

under random rounding to base 5 can only occur if all true detail counts are equal to 1.

Inference

It is clear that many suppression and perturbation schemes allow lower and upper bounds 

to be placed on cell counts in aggregate data. The release of marginal tables creates 

dependencies between bounds, and integer linear programming methods can be used to 

generate the tightest possible bounds for each published count. These calculations might 

not require full knowledge of the disclosure limitation scheme. For instance, the bounds on 

the true cell counts implied by Barnardization do not depend on the Barnardization 

parameter, p. Finding the tightest possible bounds might be enough for an intruder to 

recover sensitive information. As shown earlier, in degenerate cases the detail cell counts 

can be recovered exactly, removing all protection from the data. The tightest bounds dictate 

the logical inferences that can be made by an intruder. For many data releases the time 

required to generate the tightest feasible bounds will be enormous. This offers some degree 

of security. However, as computational power increases and better algorithms are 

discovered the risk that a given data release can be compromised will tend to increase. 

Where it is possible to generate the tightest bounds before release they can be checked for 
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safety. Thus efficient bounds algorithms are also of interest to the risk analyst. 

Any scheme which allows bounds to be placed on cell counts also defines a set of feasible 

detail tables. Generating these tables or sampling from the set of feasible tables can be used 

to perform inference. A high proportion of feasible tables with a risky cell value equal to 1 

might lead an intruder to believe that the true cell value is 1. However, there is often more 

information available to an intruder. Knowledge of a rounding scheme allows the 

probability of the released table for a given detail table to be generated. These probabilities 

can be used to weight the tables and perform Bayesian inference. This is also true for the 

data analyst, and is a valuable tool for analysing disclosure-protected data. The difference 

would be that the intruder would be making inferences about individual targets, rather than 

hypotheses relating to the larger population. Nevertheless, the approach is basically the 

same.

Generating all feasible tables can be achieved as set out in Dobra and Fienberg (2008). An 

essentially identical approach was used for the risk analysis of Office for National 

Statistics (ONS) data in Smith and Elliot (2003). In some cases the number of feasible 

tables is enormous, and there is no realistic prospect of being able to generate them all in 

reasonable time. In these cases sampling can be achieved via Markov Chain Monte Carlo 

methods (Forster at al., 1996; Diaconis and Sturmfels, 1998; Dobra, 2003).

So, for both the intruder and the risk analyst, there are two important aspects regarding 

aggregate data. There is the issue of bounds and the logical inferences that they allow; and 

there is the issue of the Bayesian inferences that can be made by either generating all the 

feasible tables implied by the constraints or by sampling from those tables. This is an area 

where good algorithms are important. The analysis conducted in Smith and Elliot (2003) 

initially adopted the approach of generating all feasible tables in order to produce the 

chosen risk metric. This was expensive given the large number of aggregate data releases 

that were being considered. But the development of a new algorithm tailored to the form of 

release allowed the metric to be generated without the need to generate all the feasible 

tables. Computational costs decreased by orders of magnitude and the analysis could be 

completed in minutes rather than days. This also demonstrated that a sampling approach 

that had also been tried was performing poorly in terms of identifying the higher risk 

tables. The sampling variability was such that it masked the real differences in risk.
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The following sections cover some efficient methods for generating bounds along with 

some discussion of Bayesian methods, and their use in SDC. Inferential methods relating 

to identification risk are presented in Chapter 6 and the relevant core chapters..

Decomposable graphical releases

In many cases a set of marginal tables might be released rather than a full k-way table. For 

example, most aggregate output from the U.K. national census is in this form. Each 

released table might satisfy safety requirements individually. The question is whether the 

set of tables as a whole is safe. This can be addressed by calculating the implied bounds on 

the unreleased k-way table with dimensions equal to the union of the dimensions in the 

marginal tables.

The released marginal tables can be represented as an undirected graph, with a node for 

each variable and an edge between each pair of nodes that appear in a common margin. If 

each maximal pairwise connected subgraph in the graph corresponds to the variables in a 

released margin and the graph is decomposable, then bounds on the full k-way table can be 

calculated relatively efficiently. A graph is decomposable if it contains no unchorded cycles 

of length greater than 3. (This will be discussed in some detail in a subsequent chapter).

Assume margins with variable sets {A,B}, {A,D}, {B,C}, {B,E}, {D,E}, {F} are released. 

The corresponding graph is shown in Figure 9.
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Figure 9. A non-decomposable graph

The maximal pairwise connected subgraphs correspond exactly to the released tables. But 

there exists an unchorded cycle of length 4, [A,B,E,D,A]. It is unchorded because the only 

edges connecting these variables are on the cycle.

Now consider the graph in Figure 10. This is a decomposable graph because the longest 

unchorded cycles are of length less than 4.

Figure 10. A decomposable graph

If this was the graph for a release {A,B}, {A,D}, {B,C}, {B,D}, {B,E}, {D,E}, {F} we 

would have the issue that not all maximal pairwise connected subgraphs correspond to 

released margins. For instance, there is no released margin {A,B,D}. But if we had the 

release {A,B,D}, {B,C}, {B,D,E}, {F} then we have a decomposable graphical release and 

Dobra and Fienberg (2001) show how the bounds on the full 6-way table can be efficiently 
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calculated.

Figure 11. A junction tree

One approach to calculating bounds is to produce a junction tree from the graph. 

Algorithms for constructing junction trees appear in the literature (Lauritzen and 

Spiegelhalter, 1988). An algorithm is briefly outlined in a subsequent chapter. For most 

purposes it is sufficient to construct a forest of trees, one tree per connected component in 

the corresponding decomposable graph. For bounds calculations the number of 

components is relevant, so the choice has been taken to illustrate the calculations with a 

true tree. Hence the connection between nodes {B,D,E} and {F}. Separators are associated 

with each tree edge. Thus the tree comprises a collection of nodes associated with a set of 

released tables, C,  and a collection of separators that have an associated set of smaller 

marginal tables, S, which can be derived from the released tables. Each cell in each table in 

C and S is an aggregation of cells in the full k-way table. Thus each cell in the k-way table 

maps to a set of relevant cells in C and S. For the empty set each k-way cell maps to the 

scalar equal to the table sum.

For each cell in the k-way table its upper bound is the minimum of its relevant cells in C.

For each cell in the k-way table its lower bound is the sum of the relevant cells in C minus  

the sum of the relevant cells in S, or 0 if the calculated value is negative.

These results can be extended to decomposable graphical releases of perturbed tables 

where the bounds for the cell entries can be calculated from knowledge of the perturbation 
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method. When a release is not decomposable it is sometimes possible to break it down into 

irreducible components (Liemer, 1993), the solutions of which can be combined efficiently 

using the above approach. For instance, if the graph in Figure 10 had corresponded to the 

release {A,B}, {A,D}, {B,C}, {B,D}, {B,E}, {D,E}, {F}, then the bounds for the table 

with dimensions A,B,D,E could be solved using an alternative method. Then the solution 

could be combined with the BC and F, using the upper bounds for {A,B,D,E} in the 

calculation of the upper bounds for the k-way table, and the lower bounds for {A,B,D,E} in 

the calculation of  the lower bounds for the k-way table.

The generalized shuttle algorithm

Consider a database consisting of a k-way contingency table.  Release of the full k-way 

table might represent a risk of disclosure, generally from low counts.  In this case it is 

common to release contingency tables for strict subsets of the variables in the full k-way 

table.  The question from a statistical disclosure point of view is which sets of such 

marginal tables constitute safe releases.  The marginal tables themselves might constitute a 

disclosure risk, or they might allow the generation of lower and upper bounds on the cell 

counts in the full table which represent a disclosure risk.

Buzzigoli and Giusti (1999) introduced the shuttle algorithm for generating bounds on k-

way tables given a set of marginal tables.  This has since been generalized (Dobra and 

Fienberg, 2001; Dobra and Fienberg, 2008).

Assume we have the following 2 × 3 table.

n1 n3

n4 n6

n2

n5

n1 + n2 + n3 + n4 + n5 + n6n1+n4 n2+n5 n3+n6

n1+n2+n3

n4+n5+n6

Figure 12. An unreleased 2-way table with released margins
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The two 1-way margins are known (and hence the total), but the individual counts are 

unknown.  The bounds algorithm is based on iterating through a set of dependencies of the 

form shown in Figure 13.

NC

NA NB

Figure 13. A dependency

The cell NC represents a cell that might appear in a recoded table with NA and NB 

representing cells that would be aggregated in the recoding. It is convenient to denote the 

cells in terms of the sum over the detail cells for which they constitute an aggregation.

For example one dependency from the above table would be (n1+n2) + (n3) = (n1+n2+n3). 

The first term on the left hand of this dependency can be expressed as a second 

dependency, (n1) + (n2) = (n1 + n2). The set of all dependencies can be shown in a graph. 

Figure 14 shows the graph for the example table in Figure 12. The only issue with this 

representation is that it masks the fact that the dependencies it contains are of the one 

parent, two children form shown in Figure 13.
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Figure 14. The dependency graph for the tables in Figure 12

It is clear that if we had such a collection of dependencies with known detail cell counts, 

then we could propagate the sums for all nodes in the above graph by iterating through the 

dependencies. In each case the parent sum would equal the sum of its children. If we had a 

dependency where the parent sum and one child sum was known, then the sum for the 

other child could be easily calculated. But each dependency can be used to update bounds 

in a similar way. The lower bound for the parent implied by the lower bounds for the 

children is their sum. Similarly the upper bound for the parent is cannot be greater than the 

sum of the upper bounds of its children.

The shuttle algorithm instantiates known lower and upper bounds for each cell in the 

graph. It then repeatedly iterates through the cell dependencies, tightening existing bounds 

based solely on the simple relationships relating the bounds within each dependency. It 

stops when a sweep through the dependencies does not tighten any bounds. It is not 

generally guaranteed to find the tightest possible bounds, something that would be of 

interest to a data intruder and a DSO wishing to guarantee confidentiality. It does find the 

tightest possible bounds for some types of release. For instance, it does find the tightest 

possible bounds for a decomposable graphical release of unperturbed tables. However, it is 

less efficient than the previously outlined propagation algorithm for decomposable 

releases. The algorithm does place bounds on all cells in all possible recoded tables, which 
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can be useful for assessing recoding options.

It is possible to extend the basic shuttle algorithm to generate the tightest possible bounds. 

The cell bounds for a cell of interest can be tightened and a propagation through the 

dependencies performed. If the new bounds are too tight the algorithm will meet an 

inconsistency; for example, a dependency where the upper bound is less than the sum of 

the lower bounds of its children. When a consistency is found the sequence of bound 

tightenings needs to be retracted before proceeding to the next trial tightening. It can be a 

costly exercise.

For larger problems the number of dependencies becomes very large. Yet it is an anytime 

algorithm. It can be stopped before completion and the current bounds examined. This can 

be still be useful for problems that are too large to solve completely.

The algorithm can also be used to generate all feasible detail tables. This requires 

recursively instantiating feasible detail cell counts and solving for the remaining cells. It is 

time consuming, but useful for small releases.

Bayesian methods

Bayesian methods can be used to investigate any quantity of interest, whether it is a 

hypothesis relating to the population, or whether it is an inference regarding a particular 

member of the population. Although the calculation of the tightest bounds on detail cell 

values provides some information regarding the possibilities for disclosure, it does not 

provide a complete picture. An intruder prepared to adopt a Bayesian approach might be 

able to generate high probability disclosive inferences even if the range of possibilities is 

quite wide.

The ability to generate all feasible tables given a set of (possibly disclosure-protected) 

margins allows exact Bayesian inference. Where this is computationally prohibitive there 

are Markov Chain Monte Carlo methods for sampling from the set of feasible tables. 

Knowledge of perturbation schemes allows likelihoods to be calculated, potentially 
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generating high posterior probabilities for a given cell count (Smith and Elliot, 2003) 

(Forster and Gill, 2008). Even naïve schemes (which make questionable assumptions to 

reduce computational cost) can generate accurate posterior mass functions (Smith and 

Elliot, 2005).

But the possibilities for Bayesian methods are wider than this. Bayesian methods could be 

used to launch the type of attack on released data that might be employed by an intruder. A 

posterior sufficiently close to 1 (or perhaps also 0) and / or sufficiently different to the 

prior, might be considered too risky.

Attack scenarios dictate the inferences that an intruder might wish to make. The Bayesian 

approach can handle various forms of suppression and perturbation and estimate the 

chances of disclosure occurring under a given scenario. It naturally provides meaningful 

risk metrics. In principle such metrics could be applied to perturbed data, enabling the 

effectiveness of disclosure protection to be assessed. For instance, the Bayesian 

alternatives to the SUDA approach could be adapted for use with perturbed data. The 

SUDA approach itself requires exact sample data.

Summary

This work is primarily concerned with the inferences that can made about targets by a 

knowledgeable data intruder. Protection methods and risk metrics must reflect this. They 

must also reflect the costs to the intruder, in computational terms and other terms such as 

the cost of searching a population for a match. Thus both algorithms and attack scenarios 

are important aspects of SDC.

This chapter has covered some basic ground, explaining some fundamental concepts in 

SDC and summarising the risk assessment and risk limitation approaches that will be met, 

in some cases only tangentially, in the core chapters.

Utility and sensitivity are very important aspects of SDC and probably deserve much more 

attention than they have had in the literature. Due to the focus of this body of work they 
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also receive little attention here. But hopefully the preceding discussion (particularly 

regarding sensitivity) has demonstrated that they are often not handled particularly well in 

SDC.

Attribution risk is another under-researched area. The basic principles of conditioning on 

known information to revise beliefs is straightforward in principle, and certainly well-

known to Bayesians. Exact attribution stems from logical inferences that might require the 

solving of systems of linear constraints. Some efficient approaches for bounds calculations 

for certain forms of data release have been outlined, although discussion of general 

methods for integer linear programming have been avoided. Approximate attribution might 

simply use the proportions that can be derived from conditional tables of counts. However, 

it could be a much more involved affair, specifying a prior (or priors) over unobserved 

variables, and using Markov Chain Monte Carlo methods to generate posterior beliefs.

Identification risk is intimately related to population frequencies. Released population data 

that have not been disclosure-protected provide these to the data intruder. In such cases 

exact identification might be possible. In other cases the intruder can use the sample data to 

inform attack strategies and to make inferences regarding the population counts, and hence 

the probability that a given match is correct. The risk assessor with access to the correct 

population frequencies could use these to generate risk metrics. However, for survey data 

the assessor would not have access to the population data and would have to adopt a role 

very similar to the data intruder. In this case adequate risk assessment requires that the 

assessor is able to generate inferences as reliably as the intruder. Treating sample uniques 

equally would be a poor approach to risk assessment, and several approaches that avoid 

this have been referenced. They will be revisited in Chapter 8.

Some limitation methods have been outlined. These involve suppression and / or 

perturbation. Suppression involves not releasing data. Perturbation involves distorting the 

data before release. In some cases, such as interval publication, it could be argued to be 

either suppression or perturbation. The main issues with disclosure limitation methods are 

their impact on data quality and the level of protection they provide. Some methods of 

perturbation attempt to minimize loss in data quality by being, in some sense, unbiased.

One approach to data quality would be to perform statistical inferences with the disclosure-
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protected data and to compare them with the corresponding inferences using the 

unprotected data. Assessment of the adequacy of protection might involve attacking the 

data from the point of view of the intruder, generating deductive inferences regarding the 

data units under plausible attack scenarios. Thus data quality and the level of protection 

could both be assessed via Bayesian methods. Bayesian metrics can, in principle, be 

applied to both unprotected and protected data.

For aggregate data the main computational issues are the calculation of cell bounds (for 

exact inferences) and the generation of posterior beliefs (for approximate inferences). 

Some methods for cell bounds have been presented. An efficient Bayesian approach for 

modelling the processes that produce aggregate data is presented in Chapter 6. This might 

form part of an assessment of either attribution risk or identification risk.
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CHAPTER 3

A Measure of Disclosure Risk for Aggregate Data

Introduction

Releases of population data can be used by data intruders to glean sensitive information 

about individuals in the population. Disclosure occurs when a data intruder makes reliable 

inferences (i.e., with a high degree of confidence) about one or more population units. 

Statistical agencies need to guard against disclosure in order to meet their legal obligations 

to safeguard respondent confidentiality and to maintain public trust. Lack of trust can result 

in individuals refusing to complete, for example, census forms or returning forms with 

false or missing information. Most statistical agencies are mainly concerned with the risk 

of an intruder identifying a population unit, although this is not a requirement for 

disclosure of information about the individual concerned.

The need for appropriate measures of disclosure risk has been well discussed. Many 

authors have indicated that such measures should as far as possible take a data intruder’s 

perspective of the risk (see e.g. Paass, 1988; Mokken et al., 1992; Elliot and Dale, 1999). 

Although intruder-based measures have been established for identification risk (Skinner 

and Elliot, 2002), little progress has been made with generating appropriate risk metrics for 

the actual disclosure of information about members of the population in the absence of 

identification. This chapter describes the “subtraction - attribution probability” (SAP) 

method which attempts to fill this gap.

Disclosure Risk

Understanding of disclosure risk has evolved over the last twenty years and there is still no 
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unequivocal definition of the term. However, definitions of disclosure generally involve 

one or more of the following:

Identification – A one to one association between a data unit and a target.

Attribution – The association of one or more variable values with a target.

Here, a data unit is an individual or organization contained in microdata or tabulated data 

that is available to a data intruder; a target is an individual or organization about which a 

data intruder is trying to discover information.

In some cases it is possible for an intruder to perform identification or attribution with 

absolute certainty. In these cases the identification or attribution is termed exact. 

Otherwise, identification or attribution is termed approximate. Strictly speaking there will 

almost always be a degree of uncertainty regarding the correctness of the data, so all 

inferences are approximate. However, this source of uncertainty is generally ignored for 

disclosure risk assessment purposes, and this practice is followed here.

Samarati and Sweeney (1998) introduce k-anonymity. A dataset satisfies k-anonymity, for 

k>1, if at least k records exist in the dataset for each observed combination of key variable 

levels. Thus no exact match can be made against any record on the key variables. It does 

not generally protect against exact attribution because records might contain common 

variable levels (Smith and Elliot, 2008; Domingo-Ferrer and Torra, 2008).

Machanavajjhala et al. (2006) introduce l-diversity. In its simplest form l-diversity requires 

that there must be at least l distinct values for each sensitive variable, for each combination 

of key variable levels. Thus it protects against exact positive attribution, but not negative 

attribution. Other forms of l-diversity are discussed in Domingo-Ferrer and Torra (2008).

Neither k-anonymity or l-diversity constitute measures of risk. They are criteria which are 

either satisfied, or not.

This paper addresses the risk of exact attribution. Previous papers have tended to 

concentrate on attribution stemming from identification. Fellegi (1972) considers 
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disclosure in terms of “sufficiently narrowly defined” populations, and goes on to state that 

such a population may “contain only one identifiable respondent or, at least, information 

can be deduced from the published estimates that can be related to a particular identifiable 

respondent”. He then goes on to illustrate how disclosure can occur from the conditioning 

on known information about a target, the conditional frequency table containing only the 

target individual. Clearly, if an intruder can achieve this by conditioning on a subset of the 

variables in the tabulation, then the levels of all the remaining variables can be discovered. 

If the levels of the discovered variables were previously unknown to the intruder, then 

disclosure has taken place. Fellegi also considers that conditioning to a (sub-)population of 

size two can result in similar disclosure if the intruder is the other member of the 

conditional population.  A U.S. Department of Commerce report (U.S Department of 

Commerce , 1978) expands this idea by considering “coalitions” of individuals within a 

data set who might cooperate in order to discover new information about targeted 

individuals. The report also considers how disclosure can take place without the 

requirement for identification. Their examples are reproduced below.

In Figure 15 conditioning on a target being a resident of County B implies that the target is 

black. A risk of such exact disclosure exists if a marginal total (in dimension n-1) equals 

one of its detail cells (in dimension n). This contrasts with the example given by Fellegi 

(1972) which required also that the detail cell count be 1.

Race
County White Black Other Total
A 15 20 5 40
B 0 30 0 30

Figure 15. Number of beneficiaries by count and race

The U.S. Department of Commerce report contrasts this with the case when the sum of a 

proper subset of detail cells equals the total in the relevant margin (Figure 16). The report 

does not define the implication that a target in County B is either Black or Other as 

disclosure, because the subset of Black or Other is not as narrowly defined as possible. 

Similarly, the report authors do not consider exact inferences regarding age as disclosive 
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unless age is revealed to within a single year.

Race
County White Black Other Total
A 15 20 5 40
B 0 28 2 30

Figure 16. Number of beneficiaries by count and race

This distinction is fairly arbitrary as ethnicity can be broken down into more detailed 

classifications than those of the example, and any categorization of a continuous variable 

such as age will involve ranges that are not as narrowly defined as possible. One approach 

would be to associate sensitivities with any set / range of variable levels and consider 

disclosure to have taken place if the sensitivity of the discovered information exceeds some 

predefined threshold. However, data is often collected with an unqualified assurance of 

confidentiality, so that it is arguable that all data should be regarded as sufficiently 

sensitive to warrant protection. Therefore, for the purposes of this paper disclosure is 

considered to have taken place when an intruder, by whatever means, is able to condition 

to a population table which contains one or more zeros. This definition encompasses the 

two cases illustrated above, and the additional case where an intruder can infer that a 

particular combination of attribute levels does not apply to a target. For example, simply 

conditioning on a target being a member of the population in Figure 16 allows the intruder 

to infer that the target is not White and residing in County B (although either are 

individually possible). So in this strict sense, a risk of disclosure is present if a population 

table contains one or more zeros.

Skinner (1992) defines disclosure in the sense of Fellegi’s (1972) example (requiring 

identification and attribution) as identification disclosure, whereas disclosure that does not 

require identification is defined as prediction disclosure. He considers approximate 

disclosure in sample tables and develops an argument that identification disclosure is a 

necessary and sufficient condition for prediction disclosure. This paper concerns only the 

risk of exact disclosure in population tables. Under these circumstances it is clear that 

identification is neither necessary nor sufficient for attribution (prediction disclosure).
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Attribution risk from low population counts

Thus far in this paper the risks of attribution have only been considered in terms of 

conditioning on known information relating to some targeted individual. It is implicit that 

the intruder is also conditioning on a target being a member of the population. But 

conditioning on known variable levels (or known absence of variable levels) is not the only 

way an intruder might attempt to condition down to a smaller, more disclosive population. 

U.S. Department of Commerce (1978) describes the possibility of disclosure stemming 

from coalitions, the main questions arising regarding the likely size of coalition, and the 

distribution of the coalition within the population. However, the type of disclosure that can 

arise from coalitions does not require their existence. It is possible for an intruder to hold 

information on a number of population units, without their explicit cooperation. If they can 

be identified within the population, then their records can be removed from the data set, 

facilitating inferences regarding the residual sub-population. Removal of a unique clearly 

leads to the presence of a zero, and a risk of attribution. Of course, records of known 

individuals may be removed without identification, and partially known individuals might 

be ‘removed’ from the relevant margins, placing constraints on the counts in the full cross-

classification of the residual population. In essence, an intruder can use arbitrary known 

information about the population units in order to try to facilitate attribution. Lower counts 

represent a greater risk of the recovery of zeros by subtraction of known individuals.

The above requires information that can be considered external to the data set in question, 

and as such might not be considered an overriding issue. However, any inferences 

regarding a population unit require such information. Both exact identification and exact 

attribution require external information; at the very least an intruder must be able to 

condition on a target being a member of the relevant population.

Protection against attribution

Statistical agencies tend to guard against disclosure by suppressing (withholding) data or 

disguising the true counts by deterministic or stochastic perturbations; (see Duncan et al. 
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(2001) for a review). For example, one deterministic method is conventional rounding.  A 

suitable non-negative odd integer is chosen as base, and each count in the cross-

classification is rounded to the closest multiple of the base. Figure 18 contains the 

conventionally rounded, to base 3, cross-classifications corresponding to the exact cross-

classification in Figure 17.

A

B

FED

0

04

031

058

4

4

VAR1

VAR2

13

C 5

0

23

Figure 17.  A 2-way cross-classification with margins
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B

FED

0

03
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069

3

3

VAR1

VAR2

12

C 6

0

33

Figure 18.  A conventionally rounded cross-classification with conventionally rounded  

margins
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An intruder (with knowledge of the rounding scheme) can easily generate bounds on the 

counts in the exact 2-way cross-classification, given the corresponding rounded cross-

classification. Let these be termed trivial bounds as they are based solely on the rounding 

scheme.

A

B

FED

0

02

020

VAR1

VAR2

C

0

22

Figure 19.  Trivial lower bounds

A

B

FED

1

14

141

VAR1

VAR2

C

1

44

Figure 20.  Trivial upper bounds

Here the rounding has managed to disguise the exact value of all counts. But subtraction of 

a known individual in cell (A,D) would recover a zero.
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It is not unusual for statistical agencies releasing perturbed cross-classifications to also 

release perturbed, or occasionally exact, marginal tables. The presence of marginal counts 

places a system of linear constraints on the counts in the full (in this case 2-way) cross-

classification. Solving the system of constraints via integer linear programming methods 

can lead to tighter bounds than those derived solely from a full rounded cross-

classification. Dobra (2002) develops a method for solving cell bounds given marginal cell 

counts. Although his algorithm is designed to deal with exact cross-classifications it is 

relatively easily extended for dealing with perturbed counts (Smith and Elliot, 2003). The 

release of all the rounded cross-classifications (including both 1-way margins and rounded 

total) in Figure 18 results in the following lower and upper bounds.
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B
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0
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VAR1

VAR2

C

0

23

Figure 21.  Non-trivial lower bounds
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Figure 22.  Non-trivial upper bounds
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Three of the four zeros have been recovered. This stems from the fact that the trivial lower 

bounds for the VAR2 margin sum to 13, which is the trivial upper bound for the rounded 

total. Thus the total and VAR2 margin are recovered exactly. So the perturbation of the data 

has done little to remove the risk of attribution. Subtraction of known individuals could 

increase the risk still further.

A measure of attribution risk

A risk of attribution exists if, and only if, one or more zeros exist in some population cross-

classification. The population cross-classification in question need not necessarily have 

been released. In fact, it is possible to construct examples where the exact counts in a 3-

way cross-classification can be recovered from its three distinct 2-way margins. In any 

case, a set of population cross-classifications can be used to place bounds on any cross-

classification from which they could be derived. It is enough to consider only the ‘base’ 

cross-classification with axes corresponding to the union of the variables in the released 

cross-classifications. Any cross-classifications over a superset of the variables in the base 

cross-classification contain (recovered) zeros if, and only if, the base cross-classification 

contains (recovered) zeros. Bounds on smaller margins can be solved, but again this is 

unnecessary, as any zero in a margin implies zeros in the full cross-classification.

Given the questionable distinction between inferences on the basis of the ‘narrowness of 

definition’ a measure is proposed based simply on the presence of zeros in the full 

population cross-classification. Sensitivities are not considered for the reason given earlier, 

although the methodology can be applied to conditional tables as easily as marginal tables, 

in which case risk could be assessed for given population units or population cells given an 

assumed set of key variables. It would also be useful to take into account the additional risk 

stemming from intruder knowledge of the population, and to be able to apply the measure 

to relatively arbitrary releases of exact and / or perturbed cross-classifications. Specifically, 

the chosen measure is ‘the probability of recovering one or more zeros in the full cross-

classification given the subtraction of a random sample of n population units’. This is 
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termed the subtraction attribution probability (SAP). The parameter n is designed to 

encapsulate the intruder's knowledge of the population. The SAP measure can be generated 

for an assumed level of intruder knowledge, or across a range of values for n to investigate 

how risk varies with intruder knowledge.

Notwithstanding the previous discussion of the ‘narrowness of definition’, the presence of 

a few zeros in a base table with many cells might not be considered to be a major 

disclosure risk (although we would ideally consider both the probabilities of specific 

disclosures and their sensitivities in a full risk analysis). This suggests alternative measures 

such as ‘the probability of recovering k zeros in the full cross-classification given the 

subtraction of a random sample of n population units’ or ‘the expected number of 

recovered zeros in the full cross-classification given the subtraction of a random sample of 

n population units’. In fact the latter measure is more easily calculated than the chosen 

measure for some forms of data release. However, the measure adopted here was 

specifically designed for low dimensional tables at very small levels of geography where a 

single zero would constitute a significant risk.

Assume a base table of counts of arbitrary dimension with cell counts ci, i = 1 to m. 

Assume that an arbitrary set of perturbed marginal tables is published, each perturbed 

using some independent rounding scheme (i.e. each cell is perturbed independently of the 

others). Then each published count, x, implies a pair of constraints of the form, cl ≤ , 

uc ≤ , where l and u are the trivial bounds implied by the rounding scheme and c is the 

total of some set of cells in the base table. Dependencies between bounds might imply that 

there exist tighter bounds than the trivial bounds. These can be found by integer linear 

programming methods. The recovery of a zero by subtraction of a known sample of the 

population occurs if, and only if, the sample implies that iii ucs ′== , where si is the 

corresponding known sample count and u '  is the table of the tightest upper bounds on the 

base table implied by the set of all linear constraints.

The probability of recovering at least one zero for some assumed level of intruder 

knowledge, equivalent to a random sample of size n, is
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SAP n =
∑
s∈S

P  s∣ p  I ∑
i

si=n  I 0∈u '
−s 

∑
s∈S

P  s∣ p  I ∑
i

si=n 
,

where S is the set of all possible sample tables, p is the population table (known to the data 

holder), sampling is simple random sampling without replacement, subtraction of tables is 

pointwise, and I(.) is the indicator function.

For a data release comprising of a single rounded table there is a pair of constraints, ii cl ≤  

and  ii uc ≤  for each cell i. The mutual orthogonality of these pairs of constraints in Rn 

ensures that the trivial bounds are the tightest bounds. For a sample with corresponding 

sample counts, si, i = 1 to m, the SAP measure for a given sample size, n, can be calculated 

as follows.

Single rounded table

The marginal probability of recovering zeros in any set of cells with total x is simply the 

following Hypergeometric probability,

N−x
n−x 
N

x 
 

where N is the cross-classification total, ∑ci.

Applying the inclusion / exclusion principle it is simple to derive an expression for the 

probability that at least one cell is zero given a random sample of n population units.

Let Z denote the set of all subsets of cell indices, equal to the union of the sets of n-subsets 

Z(0), …, Z(m).  i.e. Z(0) = ∅, Z(1) = {{1}, …, {m}}, Z(2) = {{1,2}, {1,3}, …, {m-1, m}}, 

…, Z(m) = {{1, …, m}}.
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Let e.g. c1 + c2 be denoted by c{1,2}.

Then,

SAP n =∑
i=1

m  −1 
i−1 ∑

z∈Z  i 

N−c z

n−cz


Nn  
In practice many of the terms in the above summation will be equal to zero. For exact 

tables iii ucl ==  for all i, and all cell counts represent some risk of recovering a zero, 

although for a given level of risk, n, it is only necessary to consider cz such that ncz ≤ . 

For rounded tables it is only necessary to consider cz such that c z=∑
i∈ z

u i≤n .

Single rounded table and rounded total

In this case there is an additional pair of constraints, l t≤∑
i

ci  and ∑
i

ci≤ut , where ut 

denotes the trivial upper bound for the table total. There is also the obvious risk of 

subtraction where  ∑
i

si=u t , and this only occurs when ∑
i

si=∑
i

ci=u t . But this new 

constraint is not mutually orthogonal to the existing constraints, and the trivial upper 

bounds on the base table counts might not be the tightest possible bounds. With a rounded 

total and rounded sample the upper bound on a base table cell j is the minimum of the 

trivial upper bound and the upper bound implied by the bounds on the other base table cells 

and total,

u j
'
=min u j , u t−∑

i≠ j

l i
'



where l i
'=max l i , si  .
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Lemma

If there is any risk for the release without rounded total, then the release of the rounded 

total results in no increased risk.

Proof

Recovery of a zero by subtraction in the base table occurs if, and only if, u j
'=c j=s j  for 

some cell j. For this to occur due to a tightening of a trivial base table cell upper bound we 

require that for some cell j both  u j
'u j  and,

c j=ut−∑
i≠ j

l i
'
.

Let u t=∑
i

c ik  where k is a non-negative integer. Then,

c j=∑
i

c ik−∑
i≠ j

l i
'

c j−l j
'
=∑

i
c i−l i

' k .

This equality clearly does not hold for k>0.

The equality does hold if, and only if, both k=0 and ∑
i≠ j

c i−l i
' =0 . The latter would imply 

that either one or more base counts were not rounded, or that si=c i∀ i≠ j . But any non-

zero risk for any sample without rounded total implies that si=c i=ui  for at least one i, 

where i≠ j  because u j
'u j .

The Lemma is proved for all independent rounding schemes that perturb all base table 

counts.ÿ
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Corollary 1

If u t∑
i

c i , then the risk with rounded table is exactly the same as the risk without 

rounded table.

Corollary 2

If a rounded table represents zero risk, then the addition of a rounded total represents a risk 

if, and only if, u t=∑
i

c i . This risk pertains only to knowledge of the full table, unless 

exactly one cell count, say cj, is not equal to its trivial lower bound. In that case all tables 

such that s j=c j  represent a risk.

So if si=ui  for any s∈S or u t∑
i

c i , then the algorithm for single rounded tables can be 

used.

Otherwise, the above results lead to the following algorithm.

1. Construct a list containing the trivial lower bounds for the rounded base table 

counts (i.e. based solely on the rounding scheme).

2. Construct a corresponding list of counts for the exact cross-classification.

3. Find the sum, S, of those counts in the list of lower bounds that are equal to the 

corresponding count in the list of exact counts.

4. For all n in the range 0 to (T – S – 1) (where T is the exact cross-classification total) 

the SAP measure is zero.

5. For each n in the range (T – S) to T the SAP measure equals 
 S
n−TS 
Tn 

Figure 23 shows the system of constraints for a 2 cell table for Gender with randomly 
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rounded (to base 5) counts of 5, and a similarly rounded total of 0. Assuming the 

underlying counts are 3 females and 1 male, then the observable samples are indicated by 

the crosses.

With only the orthogonal constraints implied by the detail cells there is no risk of 

recovering a zero. It is only because the lower bound for the table total equals the actual 

table total that the rounded total implies additional risk. Clearly if all 4 individuals are 

known, then the residual table contains zeroes, SAP(4) = 1. But just knowing the 3 females 

implies that there are no more females, because there are at most 4 individuals and at least 

1 is male. The other possibility for n = 3 is knowing 2 females and 1 male. There is only 1 

way to observe 3 females, and 3 ways to observe 2 females and 1 male. Hence SAP(3) = 

0.25.

Females

Males

0

210

4

3

2

1

876543

10

9

8

7

6

5

11

1211109

Figure 23. System of constraints for rounded detail counts and rounded total
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General table releases

It is hoped that the existing results can be further generalized to provide efficient means for 

calculating SAP measures for more general table releases. The current approach is to use 

an extended version of Dobra’s (2002) shuttle algorithm to solve the initial bounds 

problem and then recursively generate all tables with non-zero risk (Smith and Elliot, 

2003). Randomly sampling tables is an alternative approach for generating approximate 

SAP measures.

A comparison of rounding schemes

An extensive SAP analysis has been conducted on the UK Neighbourhood Statistics 

(Smith and Elliot, 2003). The analysis is confidential and cannot be described here. Table 1 

contains some results for an analysis of a set of 1200 randomly generated 2×6 cross-

classifications. The cross-classification counts were generated from a Poisson distribution 

with mean 2. Each cross-classification was conventionally rounded to base 5, and the exact 

total was conventionally rounded (to base 5) to produce a rounded total. SAP measures for 

each cross-classification were generated for n=0 to 24. Table 1 contains the numbers of 

cross-classifications that had SAP scores in various ranges. SAP scores that were exactly 0 

or 1 are contained in the second left and rightmost columns respectively.

For n in {0,1} the SAP measure is necessarily 0 for all cross-classifications, due to the 

nature of the rounding scheme. For n=2 the SAP measure could be as high as 1, given a 

cross-classification total of 2.

The SAP measure for any individual cross-classification and value of n must be at least 

that for n-1, so there tends to be a migration of SAP measures from 0 to 1 as n is increased. 

For cross-classifications with no relevant cells, the SAP measure is zero for all n.
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Table 1 demonstrates how the risk of recovering a potentially attribute-disclosive cross-

classification tends to increase with greater intruder knowledge of the population. This also 

depends on the size of the cross-classifications, the distribution of counts and the rounding 

scheme. However, the pattern of results shown in Table 1 is reasonably close to that which 

have been found with real-world data sets. Analyses such as this can be used to help define 

threshold values for n for which a non-zero (or value greater than another threshold) SAP 

measure can be considered to constitute too great a risk for release. Similarly, analyses can 

be used to investigate the protection afforded by alternative perturbation schemes. Any 

comprehensive analysis of perturbation schemes would also consider the effect of 

perturbation on data quality.

SAP=0 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 SAP=1

n=0 1200 0 0 0 0 0 0 0 0 0 0 0

1 1200 0 0 0 0 0 0 0 0 0 0 0

2 26 1173 1 0 0 0 0 0 0 0 0 0

3 26 1137 36 0 0 1 0 0 0 0 0 0

4 25 869 275 28 2 0 0 0 1 0 0 0

5 25 460 497 160 40 16 1 0 0 0 0 1

6 25 234 471 267 127 48 20 6 1 0 0 1

7 23 108 332 365 169 113 59 13 14 2 0 2

8 23 60 226 266 292 115 117 50 28 17 4 2

9 23 33 144 201 254 212 115 102 64 31 17 4

10 23 14 93 146 188 203 220 93 105 75 30 10

11 23 9 58 110 158 150 205 176 125 95 72 19

12 22 4 42 63 108 149 186 154 188 113 138 33

13 22 4 21 51 84 126 126 169 211 148 186 52

14 22 3 12 37 57 104 111 138 157 234 244 81

15 22 3 8 33 32 65 104 124 159 217 303 130

16 22 3 2 18 32 46 80 108 127 199 379 184

17 22 3 0 12 30 31 46 101 118 182 395 260

18 21 4 0 7 16 28 39 73 93 144 442 333

19 20 5 0 2 13 26 25 45 84 143 409 428

20 20 5 0 0 9 12 29 40 54 105 423 503

21 20 4 1 0 7 9 26 18 43 104 365 603

22 20 3 1 0 2 10 9 27 35 74 318 701

23 20 3 1 0 0 7 10 16 26 42 290 785

24 19 3 1 1 0 5 6 10 26 33 235 861

Table 1. Simulation results showing, for 1200 randomly generated tables, the banded 

probabilities of producing a table containing at least one zero given subtraction of n  

randomly selected units from the population
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Summary

The SAP method provides an integrated approach for assessing attribute disclosure risk for 

any given release of cross-classifications. It incorporates the notion of intruder knowledge 

and allows the same metric to be produced for single released cross-classifications and 

multiple released cross-classifications, whether perturbed or unperturbed. Computational 

constraints mean that comprehensive analyses of large cross-classification releases can be 

time consuming. Although the computational burden can be ameliorated through sampling 

to derive approximate SAP measures, further work is needed on producing exact measures. 

Far more efficient algorithms have been found for certain special cases. These cases were 

chosen for no other reason than the fact that they are common forms of release from the 

Office for National Statistics; in fact, there are obvious extensions to other cases that are 

not detailed here. Nevertheless the SAP method provides a risk measure for attribute 

disclosure. Most existing risk measures only concern identification risk. Concentrating on 

identification risk, at the expense of attribution risk, raises the possibility of real disclosure 

occurring as a result of the release of data that are considered ‘safe’ by current risk 

measures.

It should be noted that actions taken as a result of risk assessment via methods such as SAP 

will tend to impact the desirable properties of schemes such as Barnardization and random 

rounding. These schemes are unbiased in the sense that the expected value of the change 

made to a cell is zero. If the release of a given perturbed table (or set of tables) depends on 

whether certain cells happened to be rounded in a particular direction, then a bias is 

introduced.

Alternatives to the chosen measure were briefly discussed, and these could be investigated 

in the future. The measure based on the expected number of recovered zeros offers some 

computational advantages for some forms of data release. Whether these advantages 

extend to the various forms of release discussed here has not yet been investigated. It 

would be interesting to see if the results that gave rise to an efficient algorithm for rounded 

single table and rounded total could be extended to produce similarly efficient algorithms 

for the aforementioned alternative measures.
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CHAPTER 4

A Graphical Modelling Approach to Key Variable Mapping

Introduction

Disclosure risk, whether it is expressed in terms of identification or attribution, clearly 

depends on the amount of information available to an intruder. Elliot and Dale (1999) 

incorporate this information though the development of intrusion scenarios, where a 

scenario is a description of how an intruder might launch an attack and what information 

they might use. Variables which the intruder might find useful for matching purposes under 

a given scenario are termed key variables.

The general assumption is that an attack will involve a target dataset which contains 

identifying variables such as name and address, and attempts will be made to match against 

anonymized data sets. The data environment is a collection of datasets to which, it is 

assumed, the intruder has access. Data Environment Analysis (DEA) is carried out at the 

University of Manchester and involves the collection and cataloguing of forms and 

questionnaires that result in datasets that might be available to intruders. The Key Variable 

Mapping System (KVMS) is an approach for identifying matching possibilities across 

datasets within a data environment (Elliot et al., 2010). It is a formalized approach for 

identifying key variables.

The existing KVMS is implemented in a spreadsheet with Visual Basic macros. This places 

practical limitations on the computational methods that can be employed, and on 

performance for large collections of datasets. It also limits the extent to which the 

application can be separated into data access, business logic, and presentation layers. This 

paper describes a more principled approach to Key Variable Mapping implemented using 

alternative development tools. It concentrates on the differences between the existing 

system and the new system, with particular emphasis on the graph-based algorithms used 
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in the new system. These also allow consistency checking on data entry. Information 

relating to the implementation and usage is contained in Appendix 1. The software is 

mainly implemented in the Python programming language.

Key Variable Mapping System

An overview of KVMS is provided in Elliot et al. (2010). But for the purposes of this 

chapter several terms must be defined in detail. Terminology might not correspond exactly 

with that in Elliot et al. (2010) as this treatise will necessarily be more mathematical.

Categorization – A categorization is a set of mutually exclusive and exhaustive categories 

for a given variable.

Code – A code is a unique identifier for a given categorization of a given variable. It is 

constructed as for the original KVMS with a letter denoting the type of code, followed by 

an integer denoting the number of categories, a dot, and another integer to disambiguate 

the code from other categorizations with the same number of categories.

For instance, C3.002 would indicate a categorization for a given variable with 3 categories 

contained within the data environment. It would be distinct from at least one other 

categorization of the variable within the data environment that also contains 3 categories 

(i.e. C3.001). Leading zeros are used to accommodate up to 999 categorizations for the 

same variable with the same number of categories.

Harmonization – The unique maximal categorization that can be reached via aggregation 

of the existing categories of two or more categorizations. Here maximal is with respect to 

the number of categories. For example, {England, Scotland, Wales, Northern Ireland or 

Non-UK} and {England or Wales, Scotland, Northern Ireland, Non-UK} would harmonize 

to {England or Wales, Scotland, Northern Ireland or Non-UK} rather than {England or 

Wales or Scotland, Northern Ireland or Non-UK}.

Similarly, a maximal harmonization is a member of a set of harmonizations that contains a 
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maximal number of categories with respect to the other members of the set. Codes for 

harmonizations are distinguished from codes contained in the data environment by using 

the letter H instead of C in the code.

Analysis

KVMS analysis proceeds as follows; where ∣⋅∣  denotes set cardinality and ⌊⋅⌋  denotes the 

floor function.

• Select a target dataset and a set E of datasets to match against (the data 

environment)

• Select a parameter, 0≤p≤1

• For each variable v in the target dataset

• Let S be the set containing all the elements of E that contain the variable x

• If ∣S∣∣E∣⋅p  then the output for x is null

• Otherwise, the output for x is a maximal harmonization over the set of 

harmonizations for x for all combinations of size ⌊∣E∣⋅p⌋  of the elements of S

So p defines a proportion of datasets that x can matched against, above which x might be 

considered a key variable. The maximal harmonization that is generated provides an 

indication of the risk associated with matching against x.

At first glance it might appear that many harmonizations might need to be generated to 

produce the above output; one for each combination of S of size ⌊∣E∣⋅p⌋ . However, 

although there might be many possible combinations of categorizations, they tend to give 

rise to a relatively low number of harmonizations. Searching through the possible 

harmonizations in a structured way and counting the number of elements of S which can 

produce each harmonization is a relatively efficient method for generating the above 

outputs, and is the method used in the original KVMS. The new KVMS uses a still more 

efficient approach which will be detailed later in this chapter.
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Aggregation graphs

A categorization is easily defined, but combining categorizations to find harmonizations is 

not quite so straightforward. The existing KVMS requires the user to specify 

harmonization codes and the categorizations within the data environment that can be 

aggregated to those codes. Data must be entered into more than one sheet and it is possible 

to introduce inconsistencies. The new KVMS addresses this by making data entry easier 

and by requiring the user to specify the relationships between categories by constructing an 

aggregation graph.

An aggregation graph for a variable X is a directed acyclic graph G(V, E) where each 

v∈V  is a category of X. The children of a node v are a set of mutually exclusive 

categories that aggregate exactly to v. The nodes of G without a parent (root nodes) are a 

categorization of the relevant variable. For convenience, let us say that an aggregation 

graph with these properties has the aggregation graph property. Figure 24 shows such a 

graph for a hypothetical variable Place of Residence.

Figure 24. An aggregation graph for Place of Residence

This clearly has the aggregation graph property. Britain comprises of England, Scotland 

and Wales; the UK comprises of Britain and Northern Ireland; and the 'Other' category 
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ensures that the categories are exhaustive. UK is an ancestor of all categories except Other, 

so Other represents 'non UK'.

The aggregation graph property implies a simple way for checking that a categorization is 

valid, that is, comprises of a set of mutually exclusive and exhaustive categories.

A categorization C is valid with respect to an aggregation graph G if, and only if, all leaf  

nodes in G are reachable from exactly one node in C.

If any leaf node is not reachable, then the categorization is not exhaustive.

If a leaf node is reachable from more than one node in C, then the categories are not 

mutually exclusive.

An aggregation graph can be constructed incrementally. An initial categorization {England, 

Scotland, Wales, Other} would simply result in a graph with 4 nodes and no edges. 

Accommodating a second categorization {UK, Other} would require England, Scotland 

and Wales to be reachable from UK and the addition of Northern Ireland to ensure that UK 

was the union of its children. It also implies that Other shifts its meaning from 'non Britain' 

to 'non UK'. Note that Britain and Northern Ireland appear in neither categorization. Britain 

might be added in the expectation that future categorizations might contain it. Northern 

Ireland had to be added to preserve the aggregation graph property. Note: in the new 

KVMS application consistency checks are performed. Once 'Other' has been added to a 

categorization with the meaning 'non UK' then it must continue to mean 'non UK'. So 

'Other' would be a poor name for a category.

Wherever categories overlap, such as UK and Britain, extra categories must be added so 

that a valid graph can be constructed. This is most easily demonstrated with a variable on 

an interval scale, categorized into subintervals.

Assume Age is categorized as {'0-18', '18-infinity'} in one dataset and as {'0-16', '16-21', 

'21-infinity'} in a second dataset. Clearly '0-16' must be a descendant of '0-18', but one or 

more mutually exclusive categories that aggregate to '16-18' must also be descendants of 

'0-18'. For interval scaled variables it is possible to construct all necessary categories by 
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constructing a sorted list of the lower and upper bounds and constructing intervals from all 

adjacent pairs of bounds. These intervals become leaf nodes, and all categories that are not 

already leaf can be added as nodes and their children found by finding the relevant 

sequence of nodes from the list of leaf nodes. This produces a very shallow graph, and 

other algorithms can be used to produce more pleasingly laid out graphs with fewer edges. 

Although variables which are not on interval scales cannot have their overlaps generated 

automatically, the same principle can be used to construct their aggregation graphs. Nodes 

are produced for all category overlaps, the maximal set of mutually exclusive and 

exhaustive categories (maximal valid categorization for the set of added categories) is the 

set of leaf nodes, and other nodes can be added as parents of the relevant leaf nodes.

Figure 25 shows the aggregation graph for the simple Age example described above. The 

set of leaf nodes of an aggregation graph will always represent a valid categorization. Here 

that is {'0-16', '16-18', '18-21', '21-infinity'}. But it is clear that {'0-18', '18-infinity'} and 

{'0-16', '16-21', '21-infinity'} are also valid categorizations as, in both cases, each leaf node 

is reachable from exactly one node in the categorization. This is only to be expected, as 

these were the categorizations used to construct the graph. But assuming we added a new 

dataset to the data environment with categorization {'0-18', '18-21', '21-infinity'}. It is a 

trivial exercise (a simple algorithm) to check that this new categorization is also valid.

Figure 25. An aggregation graph for Age generated using a simple algorithm

In the new KVMS the user is responsible for creating and updating an aggregation graph 

for each variable within the data environment. An editor is provided which allows nodes 

and edges to be added and removed via a simple graphical interface. Restrictions are 
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placed upon the edits, so that an edited graph remains consistent with previous 

incarnations. For example, the user is not permitted to delete any existing nodes or edges, 

or add new edges from existing non-leaf nodes. Deleting nodes or edges would make 

consistency checking difficult. Given that deletion of existing nodes and edges is not 

permitted, then adding new edges from a non-leaf node would imply that the existing 

children do not aggregate to their parent. Editing of an aggregation graph is only required 

when a new categorization is encountered which contains categories that are not already 

present in the graph.

A pragmatic approach would be to work out an aggregation graph for a variable and a 

given set of datasets, then add it to the system once. Then specifying a categorization for a 

given dataset would simply be a case of selecting the appropriate nodes, rather than editing 

as described above before selecting the nodes. Constructing an aggregation graph 

incrementally is likely to represent more work.

Categorizations and harmonization

A valid categorization for a variable is a set of nodes in the relevant aggregation graph such 

that each leaf node can be reached from exactly one node in the categorization. Thus any 

categorization can be expressed as a partition of the set of leaf nodes in an aggregation 

graph. The categorization {Britain, Northern Ireland, Other} from Figure 24 can be 

represented as the partition, {{England, Scotland, Wales}, {Northern Ireland}, {Other}}. 

The categorization {UK, Other} from Figure 24 can be represented as the partition, 

{{England, Scotland, Wales, Northern Ireland}, {Other}}. In the new KVMS a 

categorization is specified via the aggregation graph editor described above. The 

categorization nodes are selected and it is checked that each leaf node is reachable from 

exactly one selected node.

If every element of a partition α is a subset of some element of a partition β, then α is 

termed a refinement of β.

If α is a refinement of β then each element of β is the union of one or more elements of α. 
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Thus categories in the categorization corresponding to α can be aggregated (using set 

union) to produce the categorization represented by β. If α is not a refinement of β then 

there is some element of α that is not a subset of some element of β and any aggregation of 

α (including α itself) will have some element that is not in β.

Thus the harmonization, H, of two categorizations, C1 and C2, can be expressed as set 

operations on their set partition representations. The harmonization is the maximal set 

partition for which C1 and C2 are refinements of H. Each leaf node, v, is contained in 

exactly one element of C1 and one element of C2, and must be contained in exactly one 

element of H. Thus the element in H which contains v must be a superset of the element in 

C1 containing v and the element of C2 containing v. If not, then C1 and C2 are not 

refinements of H. If this holds for all leaf nodes, then all elements of C1 and C2 are subsets 

of some element of H and they are therefore refinements of H.

So performing set unions on the elements of C1 and C2 which have non-empty intersection 

will produce their harmonization, H. The new KVMS implements these operations by 

mapping them to graph operations.

Each categorization is represented as an undirected graph (a categorization graph), such 

that the connected components are the elements of the set partition representation of the 

categorization. Thus {{England, Scotland, Wales}, {Northern Ireland}, {Other}} might be 

represented as in Figure 26, and {{England, Scotland, Wales, Northern Ireland}, {Other}} 

might be represented as in Figure 27.

Figure 26. The categorization {{England, Scotland, Wales}, {Northern Ireland}, {Other}}
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Figure 27. The categorization {{England, Scotland, Wales, Northern Ireland}, {Other}}

The graphs in Figures 26 and 27 contain the same nodes (as they are both valid 

categorizations of the same variable). The graph sum operation on such graphs constructs a 

new graph with the same nodes and adds all edges from the summed graphs.

Figure 28. The harmonization of the graphs in Figures 26 and 27, {{England, Scotland,  

Wales, Northern Ireland}, {Other}}
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Note that the harmonization of these categorizations is the same as the categorization 

shown in Figure 27. This is because the categorization in Figure 26 is a refinement of the 

categorization in Figure 27. Also note that the graph in Figure 28 is not the same as the 

graph in Figure 27. Yet they represent the same categorization because they contain the 

same connected components.

Connected components are identified via breadth first search. A node is selected and 

marked as visited.  Then its nearest neighbours are marked as visited. Then their unvisited 

nearest neighbours are visited, and so on, until all the nodes in the component have been 

visited (and identified as belonging to the same connected component). Performing breadth 

first searches until all the graph nodes have been visited identifies all the connected 

components. The KVMS never changes these categorization graphs once they are created, 

and so equality can be tested on the basis of hash values generated on graph creation and 

which depend only on the connected components.

Harmonization graphs

The refinement relationship admits a partial ordering on the possible set partitions, and 

therefore on the set of categorizations for a given variable within a data environment. The 

set of categorizations for a given variable within a data environment and their possible 

harmonizations can be used to construct a directed acyclic graph G(V, E) such that a path 

v→w, {v , w }⊂V  implies that w is a refinement of v. The existing KVMS allows the user 

to manually construct such a graph, although the graph is not used for any purpose within 

the KVMS. The new KVMS constructs harmonization graphs automatically and imposes 

additional restrictions on their structure.

Let H(·) denote the function which returns the harmonization of its arguments.

If w is a refinement of v, then w is said to be finer than v, and v is said to be coarser than w. 

If w is finer than v, and v is not equal to w, then w is said to be strictly finer than v, and v is 
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said to be strictly coarser than w.

In order to be useful for looking up harmonizations the graph must possess the following 

two properties:

1. An edge (v,w) implies that w is strictly finer than v, and that no descendant of v is 

also strictly finer than w.

2. There exists a graph node for each H(x1, …, xN) where {x1, …, xN} is a subset of the 

set of categorizations, C,  for the relevant variable contained in the data 

environment.

Thus there will be a node in the graph for each possible harmonization of the 

categorizations in C. Property 1 minimizes the number of edges in the graph and is a 

necessary property for the correctness of certain algorithms which follow.

The size of the powerset (set of subsets) of C increases exponentially with the size of C, so 

generating all possible harmonizations can be computationally expensive. In practice the 

number of distinct harmonizations is much smaller than the powerset of C, so an algorithm 

is developed that ensures that all the necessary harmonizations are contained in the graph 

without having to generate a harmonization for each member of the powerset of C.

The algorithm adds categorizations from C to a DAG G in an arbitrary order, ensuring that 

the graph structure is updated to produce a valid harmonization graph (with respect to the 

subset of the data environment containing the added categorizations) on each node 

addition. Within the new KVMS a harmonization graph G(V, E) is valid if a path v → w, 

{v , w }⊂V , exists if, and only if, w is strictly finer than v and no other descendant of v is 

also strictly finer than w; and if it contains a node for the harmonization of each possible 

combination of the nodes in C.

For any given pair of distinct categorizations {v,w} the refinement relationship can be 

tested thus:

H(v,w) = v implies that w is strictly finer than v, and that v is strictly coarser than w.
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Assume that there exists an existing harmonization graph G and we wish to add a new 

node u. Consider the subgraph of G induced by all the nodes in G that are coarser than u. 

The leaf nodes of this subgraph are exactly the nodes that must be parents of u under 

property 1. Now consider the subgraph of G induced by all the nodes of G that are finer 

than u. The root nodes of this graph are exactly the nodes that must be children of u under 

property 1.

Having identified its parents and children we can insert the node u into the graph and add 

the necessary edges. The insertion of u clearly does not remove any of the existing 

refinement relationships as any paths between nodes that existed before still exist. It does 

not add any paths between nodes that do not reflect valid refinement relationships because 

its children are refinements of u and u is a refinement of its parents. However, where edges 

(v,u) and (u,w) have been added and there already exists an edge (v,w), then property 1 

does not hold for (v,w). But the refinement relationship between v and w is provided by the 

path v → u → w as are all relationships that were implied by (v,w). So the situation can be 

rectified by simple removing (v,w).

The remaining issue is ensuring that property 2 holds. Assume that the equivalent property 

holds for the current graph with respect to the powerset of the set of already added 

members of C. Then ensuring that the graph contains a node H(v,u) for each v∈V  will 

ensure that after addition of u the equivalent property will hold for the powerset of all the 

members of C added up to, and including, u. Thus after addition of all members of C 

property 2 will hold.

Assume a node u is added to the graph according to the above scheme and that the node v 

is an ancestor of u in the resulting graph. Then H(v,u) = v, and H(v,u) already exists in G. 

Assume that v is  a descendant of u in G. Then H(v,u) = u, and H(v,u) already exists in G. 

If v is neither an ancestor nor a descendant of u there is no simple graphical approach to 

determining if H(v,u) already exists in G or is to be added from C. So for each such node 

H(v,u) is calculated, and if it is not either in G or a member of C it must be added to a set 

of nodes to be added to G.

The following pseudocode provides a very high level description of the algorithm. 

Comments are preceded by a #. A much more detailed version appears in Appendix 2, 
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along with a discussion of its computational complexity.

def harmonization_graph(categorizations):
    # create an empty harmonization graph
    G = empty directed graph
    # create a set to hold categorizations
    # and harmonizations to be added to G
    C = empty set
    for c in categorizations:
        add c to C
    while C is not empty:
        # get the next graph node, u, and add it to G
        pop u from C
        add u to G
        # find the parents and children of u
        # using the criteria described above
        parents = parents of u
        children = children of u
        # add necessary edges to G
        for each parent in parents:
            add the edge (parent, u) to G
        for each child in children:
            add the edge (u, child) to G
        # remove any edges from nodes in parents
        # to nodes in children (i.e. ensure property 1 holds)
        for parent in parents:
            for child in children:
                if the edge (parent, child) is in G:
                    remove edge (parent, child) from G
        # generate any new harmonizations required
        # to ensure that property 2 holds for the final graph
        for each node v in G:
            h = H(v, u)
            if h != v and h != u:
                # v is neither ancestor nor descendant of u
                if h is not in either G or C:
                    add h to C
    return G
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Figure 29. Harmonization graph for Age

Figure 29 is the harmonization graph for the variable Age from a data environment 

containing almost 200 datasets, the vast majority containing a variable for Age. The 

corresponding aggregation graph contains 103 nodes in total with 61 leaf nodes. Yet there 

are only 5 distinct codes for Age within the data environment, and only 4 additional 

harmonization codes required to construct the harmonization graph. Codes that appear 

within the data environment are shown as blue ellipses, to distinguish them from the 

generated harmonization codes which are shown as yellow rectangles. The two types of 

code are also distinguished by their leading letter. As previously indicated the convention 

for distinguishing different categorizations of the same type and with equal numbers of 

categories is to use the number of categories and a unique (zero padded) integer separated 

by a full stop. Thus C45.001 is a code, for a categorization of Age, which is found within 

the data environment and has 45 categories. If there was another categorization of the same 

type and with the same number of categories it would be assigned the identifier C45.002. 

The C0.001 category is a special category corresponding to datasets containing 'Date of 

Birth' or where there is no specified categorization. Forms where a respondent is asked to 

write in a value result in the same form of code. It is assumed that the user could provide 

an arbitrary level of detail, and that harmonization with any other code c will reproduce c. 
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Although the code seems to imply 0 categories, it actually means 0 specified categories. In 

reality it is an arbitrarily high number of categories, and has to be special cased. Note that 

any harmonization graph that contains an arbitrary precision node will have that node as a 

single leaf node. All harmonization graphs will have a single root node corresponding to a 

zero precision code (a single category).

Figure 29 shows that there are only 5 distinct categorizations for age across all the datasets 

within the data environment, and one of these allows the user to provide an arbitrary 

degree of precision. If trying to match on Age between two data sets with categorizations 

C9.001 and C45.001, then any potential match can be mapped to one of 7 categories. These 

categories are given by the unique leaf node in the graph intersection of their ancestral 

graphs, H7.001. Similarly, trying to match across C9.001, C45.001 and C7.001 will allow 

any matches (across all three datasets) to be mapped to one of three categories, given by 

H3.001. Whether these matching possibilities have significant implications will depend on 

how many datasets have these specific codes and the categories in their harmonization. The 

following analysis method attempts to exploit this information to produce an indication of 

the likelihood that a variable will be employed as a key variable.

Analysis

The analysis procedure in the existing KVMS was outlined in the introduction section. 

Essentially a prevalence parameter is specified and this is used to calculate an integer 

parameter, N. Then a maximal harmonization h = H(c, x1, …, xN) is sought, where x1, …, xN 

are categorizations of the relevant variable from any N  distinct datasets in the data 

environment and c is the categorization within the target dataset. Note: the categorizations 

might not be distinct.

Naively iterating through all the combinations of datasets of a given size that contain the 

relevant variable from the data environment can be costly. The existing KVMS uses a more 

sensible approach based on searching through the possible harmonizations, from largest to 

smallest, until it finds a harmonization (if any) that is coarser than the categorizations of 

the relevant variable from at least N datasets.
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A more focussed search can be employed using the harmonization graph for the variable in 

question, constructed using all the data sets in the data environment. Here the data 

environment might be a subset of some larger data environment, perhaps conditioning the 

analysis on geographical location or some other dataset attribute.

Assume we have a valid harmonization graph, G, (note: a harmonization graph constructed 

from a superset of the data environment is still valid). The data environment can be 

scanned to produce a mapping of graph nodes (categorizations) to counts, so that finding 

the number of datasets with a given categorization of the variable is a simple lookup.

Once the mapping of categorizations to counts is performed the nodes of G are processed 

in order subject to the following constraint: each node must only be processed after its 

children have been processed. An appropriate ordering of the nodes can be generated by 

the well-known postorder depth first search algorithm which can be found in many 

introductory texts (e.g. Cormen et al., 2001).

The first step of processing a node is identifying its set of descendants. As the node's 

children have already been processed, this is simply a case of calculating the set union of 

the nodes' children and their sets of descendants. Once the descendants have been 

identified it is simple to calculate the number of datasets within the data environment that 

harmonize to the current node. The counts for the node and its descendants are simply 

summed. If this sum is greater than or equal to N, then the current node is a candidate 

solution. That is, the node is the harmonization of at least N categorizations for the relevant 

variable contained in the dataset. (Note that these are not necessarily distinct 

categorizations, which is why the mapping was required. The harmonization graph 

contains the distinct categorizations, but we also need to know how many times each 

occurs within the data environment.)

Once all the candidate solutions have been identified, then it is simply a matter of choosing 

one with a maximal number of categories. That is the analysis output for the variable in 

question. If no candidates are identified, then the result is null.

It should be noted that the cost of search can be reduced by exploiting the properties of 
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harmonization graphs. Only c and its ancestors can be candidate solutions as the solution is 

the harmonization of c and a set of other observed categorizations. Therefore only the 

subgraph induced by c and its ancestors need be searched. Also, a node in a harmonization 

graph contains fewer categories than any of its children. So the ancestors of a candidate 

solution are not solutions as they are not maximal. Pseudocode and a more detailed 

discussion of the algorithm are contained in Appendix 2.

Summary

A number of differences between the existing and new Key Variable Mapping Systems 

have been detailed. The most significant difference is the adoption of aggregation graphs to 

handle overlapping categories. In the original KVMS the user was expected to specify the 

harmonization codes and which categorizations harmonized to them. The new KVMS only 

requires that the user specify a categorization, and that the categorization is consistent with 

the corresponding aggregation graph. This is less error prone and guards against 

introducing inconsistencies. In fact, the system largely prevents inconsistencies by limiting 

how an existing aggregation graph can be edited. A general procedure for constructing 

aggregation graphs has been presented, and this provides an algorithm for constructing 

aggregation graphs automatically for a given set of categorizations if the variable is on a 

numeric interval scale.

It has been demonstrated that harmonization of categorizations can be viewed as a 

sequence of set operations on set partitions. This gives rise to a representation of a 

categorization as a set partition over the set of leaf nodes in an aggregation graph. This in 

turns gives rise to a graphical representation, where each leaf node in the aggregation 

graph has a corresponding node in an undirected graph, and  each partition element is a 

connected component in the graph. This provides an attractive object model, where 

harmonization becomes a simple graph sum operation.

Elliot et. al. (2010) show how the relationships between categorizations and 

harmonizations can be shown in a directed graph. However, Elliot et. al. (2010) do not 

provide a formal definition of harmonization graphs and they are not constructed or used in 
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the existing KVMS. In this work a formal definition has been provided along with an 

algorithm for constructing a harmonization graph from a set of categorizations. All the 

relevant harmonizations are generated automatically. Furthermore, it has been shown how 

the use of such a graph can be used to generate the KVMS outputs in a particularly 

efficient manner.

Using the new KVMS the user is responsible for providing valid categorizations, editing an 

aggregation graph as needed. After that, the system takes care of everything else. This is 

more straightforward than the existing KVMS. Implementing the system in a high level 

programming language allowed the separation of data access, business logic, and 

presentation layers. Thus the new KVMS is more easily maintained and extended. It also 

offers significant performance gains. Analyses conducted on a data environment with 

nearly 200 datasets complete almost instantaneously, whereas there can be an appreciable 

delay when conducting analyses with the existing KVMS.
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CHAPTER 5

An Evaluation of Strategies for Matching Population and Sample Units

Introduction

For disclosure control purposes data are often released as sample data, even if population 

data are available. Armed with sample data an intruder might attempt to make inferences 

about population units by matching against the sample, or vice versa. There are many 

strategies available to a data intruder, with varying probabilities of success and degrees of 

difficulty. The probabilities of a correct match for some strategies have been used as 

measures of risk (see e.g. Elamir and Skinner, 2006). This chapter examines a number of 

strategies, their probabilities of a correct match, their costs, and their appropriateness as 

risk measures.

In order to protect against disclosure it is usual to suppress (not publish) information 

regarding obvious identifiers such as name and address. Although a particular name and 

address does not necessarily correspond to a single individual in a population, it is 

generally felt that the publication of such information allows published records to be 

correctly matched with population units too easily. However, the suppression of obvious 

identifiers is not necessarily enough to prevent such matches being made with a high 

(personal) probability of correctness.

The variables that are contained within published records are often partitioned into key 

variables and target variables. It is assumed that an intruder will be able to condition on 

key variables and is intent on discovering the relevant values of the target variables.  The 

appropriate partitioning of the variables will generally depend on the type of intruder and 

the resources available (Elliot and Dale, 1999).

100



KEY
VARIABLES

TARGET
VARIABLES

Pop. Record

Sample Record

Figure 30. Matching between sample and population on key variables

The pairing of an individual in the population with a sample record with identical values 

on the key variables is known as a match. If the sample record is the record corresponding 

to the population unit, then the match is termed correct. A known correct match allows the 

levels of the target variables to be inferred for the population unit with certainty (assuming 

the data are accurate and up to date). With sample data it is not usually possible for an 

intruder to knowingly produce a correct match, although there are degenerate cases such as 

occupation = Prime Minister. But whatever personal probability of a correct match the 

intruder has, is a lower bound on the personal probability that the published values of the 

target variables hold for the population unit.

A number of risk measures have been proposed. These tend to be concerned with either 

population uniqueness (the general idea being that population counts of 1, on the key 

variables, will imply that a match against a sample unit will be correct) or the probability 

of generating a correct match.

Notation:

Assume we have a population table containing N individuals and a corresponding sample 

table containing n individuals.

X set of key variables

j = 1 to J distinct values / equivalence classes / cells for X

i = 1 to N population units
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Xi value of X for unit i

N population size

n sample size

[.] Iverson brackets

Fj,  j = 1 to J population frequencies

fj,  j = 1 to J sample frequencies

Iverson brackets are used in the manner detailed in Knuth (1992), where

[ P ]={1 if P istrue
0 if P is false

and resulting zeros are “very strong”, meaning they annihilate anything by which they are 

multiplied. So,

x
0

[ P ]=0  if P is false.

Assume throughout the rest of this chapter that both N and n are greater than 0.

Existing measures

Pr(PU) – the proportion of population units which are population unique (Bethlehem et al., 

1990),

Pr  PU =
∑

j
[ F j=1 ]

N
.

This measure has been criticized for being too optimistic (Skinner and Elliot, 2002) as it 

assigns an element of risk to population units that have no possible match in the sample.
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Pr(PU|SU) – the proportion of sample uniques which are also population unique (e.g. 

Fienberg and Makov, 1998),

Pr  PU∣SU =
∑

j
[ f j=1 ] [ F j=1 ]

∑
j

[ f j=1 ] [∑j
[ f j=1 ]0] .

However, this could also be criticized as being too optimistic as it is a lower bound on the 

probability that a proposed match against a sample unit is correct (which itself is only a 

lower bound on the probability that a target variable value applies to the relevant 

population unit).

The measure favoured by Skinner and Elliot is the probability of a correct match given a 

unique match, Pr(CM|UM),

Pr CM∣UM =
∑

j
[ f j=1 ]

∑
j

F j [ f j=1 ] [∑j
[ f j=1 ]0] .

This measure implies a particular strategy being employed by the intruder. The intruder 

searches through the population until a match against any sample unique is found. Under 

the assumption that at each point in the search all undiscovered population units are 

equally likely to be the next one found, the above gives the probability of a correct match. 

In fact, this assumption of an unfocused search is used throughout this chapter. However, 

there are alternative strategies that give rise to other probabilities of a correct match, with 

various degrees of work required on the part of the intruder.

Skinner and Elliot (2002) also briefly present the following measure which stems from the 

strategy of searching through the population for a match against a specific, but randomly 

selected sample unique,

Pr CM∣SU =
∑

j

1
F j

[ f j=1 ]

∑
j

[ f j=1 ] [∑j
[ f j=1 ]0 ] .
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Simple attack strategies

There are a number of strategies an intruder might employ in order to identify an 

individual. For instance, an intruder might set out to find a member of the population and 

match against the sample; or, might take some sample unit and try to find a match in the 

population. An intruder might attempt to increase the probability of a correct match by 

only selecting targets with certain attributes. The probability of a correct match for a given 

strategy can be used as a measure of risk. The following demonstrates that some strategies 

dominate others, and that some obvious strategies are not as effective as they may, at first, 

seem.

The strategies discussed in this chapter do not exploit prior information that might be held 

by the intruder. Thus the joint distribution of the variables is irrelevant, and the equivalence 

classes can be thought of as an unordered list of categories indexed 1 to J.

A strategy is defined in terms of a pair of statements, the first being whether matching is 

attempted from population to sample, or vice versa, and the second, P, describing a 

condition under which units constitute potential targets. Matching from population to 

sample involves finding a population unit that satisfies P and matching against the sample. 

Matching from sample to population involves randomly selecting a sample unit that 

satisfies P and searching the population for a match.

A given strategy will imply marginal probabilities of choosing given units for matching, 

and a probability of a correct match for each unit. The probability of a correct match for a 

given strategy is given by,

Pr cm =∑
i

Pr  xi Pr  cm∣x i 

where xi denotes the ith population unit and Pr(xi) is the probability of choosing xi for 

matching.
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As the units within an equivalence class are indistinguishable the resulting expressions 

generally involve summations over equivalence classes rather than population units.

Matching from population to sample

All potential targets are chosen from the population with equal probability. A target chosen 

from a non-sampled equivalence class cannot be matched against a sample unit. For any 

chosen unit from a sampled equivalence class j the probability of a correct match against a 

chosen sample unit is simply 1/Fj. As there are exactly Fj units in the equivalence class, 

then the sum of probabilities for a non-empty sample cell is trivially 1. Thus,

Pr cm =
∑

j

[ P ]

∑
j

F j [P ]
∑

j

F j [ P ]0 .

Matching from sample to population

All potential targets are chosen from the sample with equal probability. A target chosen 

from a sampled equivalence class j has a probability of a correct match against a chosen 

sample unit of 1/Fj. There are fj potential targets within the chosen equivalence class. Thus,

Pr cm = 1

∑
j

f j [ P ]
∑

j

f j

F j

[P ][∑j

f j [ P ]0] .
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Specific strategies

Strategy 1.  An intruder matches from sample to population using all cells

Equation 1.  Pr cm =
1
n
∑

j

f j

F j
[ f j≠0 ]

Strategy 2.  An intruder matches from population to sample using all cells

Equation 2.  Pr cm =
1
N ∑j

[ f j≠0 ]

or,

Pr cm =
no.of non−zero cells in sample table

N
.

However, it is reasonable to suspect that an intruder will at least continue searching for a 

population unit until there is a possible match.

Strategy 3.  An intruder matches from population to sample using all sampled cells

Equation 3. Pr cm =
∑

j
[ f j≠0 ]

∑
j

F j [ f j≠0 ]

or,
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Pr cm =
1

mean sizeof sampled populationcells
.

Strategy 4.  An intruder matches from sample to population using all sample unique cells

Equation 4. Pr cm =
∑

j

1
F j

[ f j=1 ]

∑
j

[ f j=1 ] [∑j
[ f j=1 ]0]

Strategy 5.  An intruder matches from population to sample using all sample unique cells

Equation 5. Pr cm =
∑

j
[ f j=1 ]

∑
j

F j [ f j=1 ] [∑j
[ f j=1 ]0]

It can be shown that the probability given by Equation 4 is equal to that for Equation 5. if 

all the relevant Fj (with corresponding fj = 1) are equal. But it is worth generalizing to 

sample cells of a given size, r, first.

Strategy 6.  An intruder matches from sample to population using all sample cells with  
count r

Pr cm =
∑

j

r
F j

[ f j=r ]

∑
j

r [ f j=r ] [∑j
[ f j=r ]0 ]
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and as the r’s cancel,

Equation 6. Pr cm =
∑

j

1
F j

[ f j=r ]

∑
j

[ f j=r ] [∑j
[ f j=r ]0 ] ,

or, if [∑j
[ f j=r ]0] ,

 Pr cm =
1

harmonic mean sizeof sampled  size=r  population cells
.

Strategy 7.  An intruder matches from population to sample using all sample cells with  
count r

As for Strategy 2 the sum of probabilities for each sampled cell is equal to 1. But here 

averaging is over only those population units corresponding to sample cells of size r. So N 

in Equation 2 is replaced by the number of population units in equivalence classes with 

corresponding sample counts of r,

Equation 7. Pr cm =
∑

j
[ f j=r ]

∑
j

F j [ f j=r ] [∑j
[ f j=r ]0] ,

or, if [∑j
[ f j=r ]0] ,

 Pr cm =
1

mean sizeof sampled  size=r  population cells
.
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Dominant strategies

An obvious question is whether there exists pairs of strategies {A, B} such that 

Pr A cm ≥Pr B cm    for all possible sets of population and sample frequencies.

The finite form of Jensen's inequality (Jensen, 1906) for a continuous convex function 

 ⋅  in a given interval, and positive weights a j  is given in Equation 8.

Equation 8.
∑

j

a j  z j 

∑
j

a j

≥∑j

a j z j

∑
j

a j 
For   z =

1
z

,

∑
j

a j

z j

∑
j

a j

≥

∑
j

a j

∑
j

a j z j

and,

∑
j

f j

F j

∑
j

f j

≥

∑
j

f j

∑
j

f j F j

with equality when the Fj are equal. The above holds as long as all sampled cells are 

positive.  Any attempt to match against a sample cell of zero has zero probability of 

success and we have equality.

Thus

1

∑
j

f j [P ]
∑

j

f j

F j

[ P ] [∑j

f j [P ]0]≥
∑

j

[ P ]

∑
j

F j [P ] [∑j

F j [ P ]0]
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holds if f j=r∀ j  and the strategies are such that [∑j

f j [ P ]0 ]=1 if [∑j

F j [ P ]0]=1

. This holds for strategies 6 and 7 as [ P ]=[ f j=r ]  and holds trivially for strategies 4 and 5. 

Jensen's inequality implies that equality will exist when the Fj are all equal. Equality will 

also exist if r = 0 or if there are no sample cells equal to r, when both probabilities are 0. 

The dominance of strategy 4 (Pr(CM|SU)) over Pr(PU|SU) is stated in Skinner and Elliot 

(2002).

Of the 7 listed strategies there is only one other dominance relationship. Strategy 3 

dominates strategy 2 as the only difference between them is that strategy 3 avoids selecting 

targets that cannot be matched. The two strategies are equal when all the equivalence 

classes are sampled. Counterexamples can be found for all other pairs of listed strategies. 

Another obvious question is whether strategies which choose target cells with low sample 

counts dominate similar strategies which choose target cells with higher sample counts. 

Strictly speaking the answer is no, because the probability of a correct match is zero if 

there are no sample cells with the desired count. Even when the probabilities for two 

distinct sample counts are both non-zero there is no dominance in the sense used here, 

although a Bayesian approach conditioning on the observed sample counts might generate 

dominance relationships in a different sense. A data intruder might well find that 

concentrating on low counts tends to yield better results.

Search costs

The measures discussed above have, wherever relevant, assumed that the intruder performs 

a completely unfocused search of the population. Essentially, it is as if the population units 

were contained in a list, with each unit equally likely to occupy any position, and with the 

intruder searching through the units in list order. Under this assumption it is possible to 

produce correct match probabilities for various strategies. However, it is also possible to 

calculate how costly those strategies would be under the same assumption.

Searching the sample data is assumed to take zero time, so the cost of a strategy is 
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expressed solely in terms of the population search. An obvious cost measure is the mean 

number of population units that would need to be searched before finding a potential 

match. The calculation is essentially a fairly standard urn problem.

Assume an urn contains a total of N balls with M matches and balls are drawn without 

replacement. Then the number of balls drawn, T, until the first match follows the following 

negative hypergeometric mass function,

Pr T=t =
 N−t
M−1
 N
M 

.

The expectation is given by,

E T =
N1
M1

.

However, it might be reasonable to expect that the search would be become harder over 

time. Although the order in which the population units are found might still be essentially 

random, finding new units might become progressively more difficult as the number of 

undiscovered units decreases. This corresponds to sampling with replacement.

Assume an urn contains a total of N balls with M matches and balls are drawn with 

replacement. Then the number of balls drawn, T, until the first match follows the following 

negative binomial mass function,

Pr T=t =1−M
N  M

N 
t−1

.
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The expectation is given by,

E T =
N
M

.

A strategy which matches from population to sample will involve a single search for a 

candidate population unit. The number of candidates will depend on the strategy, the 

population distribution and which cells have been sampled. A strategy which attempts to 

match from sample to population will have a number of possible searches depending on the 

sample unit chosen. In this case the expectation can be expressed as an average over the 

population units, where some of the Pr(xi) will necessarily be zero because the unit is not 

sampled and others might be zero because of the strategy,

E T =∑
i

Pr x iE T i .

Matching from population to sample

The probability of a correct match is reproduced below.

Pr cm =
∑

j

[ P ]

∑
j

F j [P ] [∑j

F j [ P ]0]

All eligible population units are selected with equal probability.

Without replacement,
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E T =
N1

1∑
j

F j [ P ] [∑j

F j [P ]0 ] .

With replacement,

E T =
N

∑
j

F j [P ] [∑j

F j [ P ]0] .

Matching from sample to population

The probability of a correct match is reproduced below.

Pr cm =
1

∑
j

f j [ P ]
∑

j

f j

F j

[P ][∑j

f j [ P ]0]

All eligible sample units are selected with equal probability and the expected costs are the 

same for each member of the same equivalence class.

Without replacement,

E T =
1

∑
j

f j [ P ]
∑

j

f j
N1
1F j

[ P ] [∑j

f j [ P ]0]

and

E T = N1

∑
j

f j [ P ]
∑

j

f j

1F j

[ P ] [∑j

f j [ P ]0] .
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With replacement,

E T =
1

∑
j

f j [ P ]
∑

j

f j
N
F j

[ P ] [∑j

f j [P ]0 ]

and

E T = N

∑
j

f j [ P ]
∑

j

f j

F j

[P ] [∑j

f j [P ]0] .

Cost dominance

By Jensen's inequality,

∑
j

a j

z j

∑
j

a j

≥

∑
j

a j

∑
j

a j z j

∑
j

f j

1F j

∑
j

f j

≥

∑
j

f j

∑
j

f j 1F j 

N1

∑
j

f j

∑
j

f j

1F j

≥
N1

1∑
j

f j F j /∑
j

f j

with equality when all the Fj are equal.

Thus, sampling without replacement, 
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N1

∑
j

f j [P ]
∑

j

f j

1F j

[ P ] [∑j

f j [ P ]0]≥
N1

1∑
j

F j [ P ] [∑j

F j [ P ]0]

holds if the strategies are such that [∑j

f j [ P ]0 ]=1 if [∑j

F j [ P ]0]=1 . Equality holds 

when there is only a single sampled equivalence class.

Sampling with replacement,

∑
j

f j

F j

∑
j

f j

≥

∑
j

f j

∑
j

f j F j

N

∑
j

f j

∑
j

f j

F j

≥
N

∑
j

f j F j /∑
j

f j

with equality when all the Fj are equal.

Thus, sampling with replacement, 

N

∑
j

f j [P ]
∑

j

f j

F j

[ P ] [∑j

f j [P ]0 ]≥
N

∑
j

F j [P ] [∑j

F j [ P ]0]

holds if the strategies are such that [∑j

f j [ P ]0 ]=1 if [∑j

F j [ P ]0]=1 . Again, 

equality holds when there is only a single sampled equivalence class.

The criteria (implied by Jensen's inequality) for dominance in cost are not the same as for 

dominance in the probability of a correct match. If Jensen's inequality implies dominance 
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in the probability of a correct match, then it also implies dominance in cost (for both 

sampling with and without replacement). Yet the converse is not true.

Efficiency

In reality an intruder might not stick to a simple strategy. Some strategies might offer zero 

probability of success given the sample. So an intruder might intend to launch an attack by 

matching sample uniques against the population, then revert to sample 2s if the sample 

contains no uniques. Alternatively, the intruder might note that a sample contains few 

uniques, and decide to launch an attack on sample 1s and 2s to reduce the cost of the 

population search. The intruder has direct access to the sample counts, and can use that 

information to inform the chosen strategy. Of course, the probabilities of a correct match 

and the expected costs can be calculated exactly as for simple strategies. But it suggests 

that the intruder might consider the trade-off between the probability of a correct match 

and the search cost. Thus it is also worth considering the ratio of these two quantities. It 

seems reasonable to term this the efficiency of an attack strategy.

Sampling without replacement

Matching from population to sample,

Pr cm =
∑

j

[ P ]

∑
j

F j [P ] [∑j

F j [ P ]0]

E T =
N1

1∑
j

F j [ P ] [∑j

F j [P ]0 ]

Pr cm 
E T 

=

∑
j

[ P ]

∑
j

F j [ P ]

1∑
j

F j [ P ]

N1 [∑j

F j [P ]0] .
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Matching from sample to population,

E T =
1

∑
j

f j [ P ]
∑

j

f j
N1
1F j

[ P ] [∑j

f j [ P ]0]

Pr cm 
E T 

=
1

N1

∑
j

f j

F j

[ P ]

∑
j

f j

1F j

[ P ]
[∑j

f j [P ]0] .

It can be shown that,

∑
j

[P ]

∑
j

F j [ P ]

1∑
j

F j [ P ]

N1 [∑j

F j [ P ]0]≥
1

N1

∑
j

f j

F j

[P ]

∑
j

f j

1F j

[ P ]
[∑j

f j [ P ]0] .

Simplifying and rearranging,

∑
j

f j∑
j

[ P ]

1F j

[ P ] 1∑j

F j [ P ] [∑j

F j [ P ]0 ]≥∑j

f j

F j

[ P ]∑
j

F j [ P ] [∑j

f j [ P ]0 ]

and we now have the product of 2 terms on each side of the inequality, with the first and 

second terms on the left hand side being greater than the corresponding terms on the right 

hand side if ∑
j

[ P ]1 . Also, [∑j

f j [ P ]0 ]  implies [∑j

F j [ P ]0]  so a zero on the left 

hand side implies a zero on the right hand side.
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Sampling with replacement

In this case the results are trivial and can simply be stated.

Matching from population to sample,

Pr cm 
E T 

=

∑
j

[ P ]

N
.

Matching from sample to population,

Pr cm 
E T 

=
1
N

.

It is clear that with both cost measures matching from a population to a sample dominates 

the reverse in terms of efficiency. In both cases equality occurs when ∑
j

[ P ]=1 . There is a 

form of “no free lunch” theorem for matching from sample to population; all strategies are 

equally efficient.

Simulation with real world data

A sample of 10,000 was taken from the 1991 SAR (Office for National Statistics,1993). 

This was used as a notional population. A cross-classification was produced over the 

variables AGE, SEX, DEPCHILD, ETHGROUP, OCCPATN. The counts in this table were 

treated as population counts. 40 3% samples (without replacement) were taken from this 

sample and probabilities of a correct match and expected search costs were generated.
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Figure 31. Sampling without replacement cost measure (with r=3 for strategies 6 and 7)

There were fairly low probabilities of a correct match for most strategies except strategies 

1, 4 and 5. Strategy 4 (matching a randomly selected sample unique to the population) 

demonstrates the highest probability of a correct match (mean=0.571), but at greatest cost 

(mean=3250.0). Strategy 5 (matching from the population to any sample unique) is highly 

efficient, but with a fairly low probability of success (mean=0.159) might not be 

considered as problematical from a disclosure control point of view. This is the Pr(CM|

UM) measure favoured by Skinner and Elliot. However, the expected cost is very low 

(mean=7.0), making it a far more plausible form of attack. 

It is a little surprising that strategy 4 has such a high probability of a correct match 

(mean=0.444), with mean cost 2556.9. This is due to the sparseness of the population data, 

with a total of 10,000 population units spread over 564,000 combinations of categories. 

With 3,036 population uniques and very low population counts generally, many sample 

units will have very low corresponding population counts. The variables chosen were 
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designed to be a set of variables that an intruder might be able to use to identify 

individuals. A smaller set of variables would have led to larger population counts, lower 

probabilities of a correct match and lower costs.

Figure 32. Sampling with replacement cost measure (with r=3 for strategies 6 and 7)

Using the cost measure based on sampling with replacement the costs tend to be much 

greater because of the type of search. But the overall picture is the same. All points for 

strategies 1, 4 and 6 (matching from sample to population) lie on the line Pr(cm) = cost / 

10,000. 

Summary

It has been shown that certain strategies for matching sample units with population units 

dominate others, in the sense that they offer higher probabilities of a correct match for any 
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population and sample counts. This does not necessarily make them more plausible risk 

measures because similar dominance relationships hold regarding search costs. 

Interestingly, there exists a general dominance relationship regarding efficiency, defined as 

the ratio of the probability of a correct match to the expected cost. Once a set of 

equivalence classes for consideration has been specified, then attempting to match from the 

population to the sample is at least as efficient as matching from the sample to the 

population. In fact for nc equivalence classes it is nc times as efficient. Of course, this 

implies a conditional “no free lunch theorem” for matching from the population to the 

sample given a specific number of equivalence classes. However, probabilities of success 

and costs could still vary widely. A strategy that includes a single sampled equivalence 

class that has a population count of 2 will have efficiency 1/N and Pr(cm) = 0.5. A strategy 

that includes two sampled equivalence classes with population counts of 1 will have the 

same cost (due to the same number of matching population units) but be twice as efficient 

with Pr(cm) = 1.

The Pr(CM|UM) measure favoured by Skinner and Elliot (2002) was shown to be highly 

efficient. This was because it matches from population to sample and the data were sparse, 

containing many sample uniques. However, it is dominated (in terms of the probability of a 

correct match) by Pr(CM|SU). This highlights the importance of considering how an 

intruder might search for a match.

Skinner and Elliot (2002) argue that Pr(PU|SU) is too optimistic as it does not take into 

account the risk from non-unique population counts, and show that Pr(CM|SU) ≥ Pr(PU|

SU). They also propose that Pr(CM|UM) is a more plausible strategy than Pr(CM|SU) 

because “the intruder makes fuller use of the microdata information”. However, Pr(CM|

UM) does not dominate Pr(PU|SU). (In simulation results that will be presented in Chapter 

7, Pr(PU|SU) is consistently greater than Pr(CM|UM).) The fact that Pr(PU|SU) does not 

take into account the risk from non-unique population counts does imply that an alternative 

measure which does might be a better metric. But that metric is Pr(CM|SU). However, the 

search costs associated with Pr(CM|SU) suggest that Pr(CM|UM) might be a more 

plausible attack scenario.

All search costs have been calculated on the basis of sampling from the population. If an 

intruder could reduce the costs of search by getting access to an appropriate population 

121



database, then Pr(CM|SU) could become a realistic attack option. More focused searches 

could also reduce costs.

It has also been shown that where dominance relationships do not exist the relative merits 

of different attack strategies are highly dependent on the equivalence class structure of the 

population (and via sampling, the sample). When considering a sparse dataset strategy 1 

offers a high probability of a correct match, whereas other simulations with larger 

population counts generally show that it has a lower probability of a correct match than 

Pr(CM|UM) and at much higher cost.

A pragmatic approach to assessing risk would be to consider a number of scenarios so that 

the equivalence structure of a proposed data release can be taken into account. Careful 

consideration of the search strategies that could be employed would be needed. A focused 

search could make an apparently very costly from of attack plausible.
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CHAPTER 6

A Brief Introduction to Dynamic Junction Trees and Model 

Determination in Decomposable Graphical Models

Introduction

Statistical models that can be represented as graphs are known as graphical models.  A 

graph, G=(V,E) is a vertex set V and an edge set E. Generally, each vertex / node represents 

a distinct variable or collection of variables, and each edge represents some relationship 

between its incident nodes. Edges may be directed from a source node to a target node, or 

be undirected. Some types of graph can have both undirected and directed edges, although 

all the types of graphical model discussed here will contain either only undirected or only 

directed edges. This chapter discusses a family of related graphical model types and 

outlines a novel approach for model determination for decomposable graphs. These models 

are useful for Bayesian inference (see for example Cowell et al., 1999), but have also been 

found useful for calculating Fréchet bounds in statistical disclosure control (Dobra and 

Fienberg, 2001).

Bayesian networks

A Bayesian network, G=(V,E), is a directed acyclic graph where each node represents a 

variable, and each node is associated with a probability distribution, p(v|pa(v)), where 

pa(v) is the parental set of v.  Nodes with no parents are termed marginal nodes, because 

the distribution associated with such a node is marginal, rather than conditional.  A node 

with no children is termed leaf, or barren (because it has no children).
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The joint distribution over all variables is given by,

Equation 9. p V =∏
v∈V

p  v∣ pa v   .

This equation can be used to perform inference, by conditioning on the relevant levels of 

any observed variables and marginalization to any queried variables (or sets of variables 

for joint posterior beliefs).  Normalization of the resulting posterior distributions might 

also be required (introducing a constant multiplier so that the distribution sums to 1).  In 

practice, the conditional independences encoded in the network usually allow these 

calculations to be performed in a piecemeal fashion, without the calculation of the full 

joint, p(V).

Strictly speaking a Bayesian network should be a minimal I-map (Pearl, 1988).  A graph G 

is an I-map of a distribution P if all the independences implied by G are satisfied by P. G is 

a minimal I-map of P if it is an I-map of P and no subgraph of G is also an I-map of P.

Figure 33 shows the well known Asia network (Lauritzen and Spiegelhalter, 1988) with the 

following variables:

A – recent trip to Asia

S – smoking

T – tuberculosis

L – lung cancer

B – bronchitis

E – tuberculosis or lung cancer (a superfluous variable that simplifies network structure)

X – X-ray result

D – dyspnoea (shortness of breath)
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Figure 33. The Asia network

This network will serve as an example throughout this chapter.

Markov graphs

A Markov graph is a simple undirected graph that represents probabilistic dependences 

between variables. Markov graphs have a number of Markov properties; but all boil down 

to the basic property that if all paths from a set of nodes X to a set of nodes Y include a 

node from a set of nodes S, then the set X is independent of the set Y given the set S.

Moralization

A Bayesian network can be converted to a Markov graph via a process termed 

moralization.  In moralization each node’s parental set is made complete by the addition of 

undirected edges between all pairs of unmarried parents, and the directions on the 

Bayesian network’s edges are removed (the edges are made undirected).  Note that each 

probability distribution associated with the underlying Bayesian network has its variables 
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as a clique in the Markov graph. Here the word clique is used in its usual graph-theoretic 

sense, meaning a pairwise connected subgraph. A clique that is not a subset of a larger 

clique will be referred to as a maximal clique when maximality is relevant. (In most of the 

Bayesian network literature the word clique is used to refer only to maximal pairwise 

connected subgraphs.)

Figure 34 shows the Markov graph produced from the Asia network. Only nodes D and E 

have more than a single parent, and adding the edges (E,B) and (T,L) and dropping the 

directions on the edges completes the conversion to a Markov graph.

Figure 34. The Markov graph of the Asia network with moralization edges (E,B) and (T,L)

Triangulation and decomposable graphs

A triangulation of a Markov graph, G=(V,E),  is a set of graph edges T such that 

G=(V,E∪Τ) has no unchorded cycles with length greater than 3 (Rose, 1970). That is, for 

any cycle of length greater than 3 there exists an edge between non-consecutive cycle 

nodes. The edges of T are sometimes referred to as fill-in edges.
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Figure 35. A decomposition of the Asia network with triangulation edge (B,L)

Figure 35 shows a triangulation of the Markov graph in Figure 34. The Markov graph only 

contains a single unchorded cycle of length greater than 3, the 4-cycle [S,B,E,L,S]. Adding 

the fill-in edge (B.L) triangulates the graph, leaving no unchorded cycles of length greater 

than 3.

It should be noted that performing inference according to Equation 9 involves conditioning 

on probability tables and marginalising across non-queried variables. Marginalization over 

a variable v can generally only take place after all probability tables containing v have been 

multiplied together elementwise. Multiplying all the tables containing a node v produces a 

generalized distribution with dimensions {v}∪adj(v) where adj(v) is the set of neighbours 

of v. Marginalization over v leaves a generalized distribution with dimensions adj(v) which 

might be combined with other distributions on the marginalization of subsequent variables. 

In terms of the graph, marginalization requires edges to be added such that adj(v) is 

pairwise connected to reflect the multiplication operation, followed by the removal of v 

and its incident edges from the graph to reflect the marginalization over v. The resulting 

graph has node set V-{v}, and edge set determined by E and the removed edges incident to 

v and the edges added to make adj(v) pairwise connected. Details can be found in e.g. Rose 

et al. (1976).
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An elimination ordering α is an ordered set of the nodes of G. Elimination of the nodes 

according to any such ordering will eliminate all the nodes in the graph. But the union of 

the edges added during the elimination will constitute a triangulation of the initial graph G. 

Choosing to marginalize variables in different orders will tend to produce different 

triangulations with potentially widely ranging costs in terms of the required numbers of 

multiplications and summations. This approach to triangulation is sometimes known as the 

elimination game. However, other algorithms for triangulation exist which are expressed 

solely in terms of the structure of the G. There are many papers on the subject of graph 

triangulation algorithms, such as Rose et al. (1976), Ohtsuki et al. (1976) and Leimer 

(1993).

An elimination ordering of the variables in a graph which does not imply the addition of 

extra edges is known as a perfect elimination ordering. A graph is decomposable if, and 

only if, there exists a perfect elimination ordering of its nodes.

The triangulation in Figure 35 is consistent with an elimination ordering starting with S. In 

order to eliminate S all the tables containing S would need to be combined, that is p(S), 

p(B|S) and p(L|S). This would produce a generalized table with variable set {B,L,S}. After 

marginalising across S we would be left with a generalized table (representing an induced 

dependency) with variable set {B,L}. Thus the edge (B,L) needs to be added so that the 

resulting graph is still a valid Markov graph for the remaining variables. Alternative 

elimination orderings, say one starting with D then B, would produce an alternative 

triangulation with the fill-in edge (E,S).

The elimination graph resulting from the elimination of a set of nodes is independent of 

the order of elimination (Ohtsuki et al., 1976).

A triangulation, T, of a graph, G, is minimal if, and only if, there exists no triangulation of 

G that is a strict subset of T.

There do exist algorithms for finding minimal graph triangulations (Rose et al., 1976) 

(Ohtsuki et al., 1976) (Leimer, 1993), although an arbitrary minimal triangulation is not 

necessarily optimal in terms of the computational cost of inference.
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The two triangulations {(B,L)} and {(E,S)} are clearly minimal. If all the variables were 

categorical we could work out the costs of inference (in terms of the numbers of 

multiplications and additions required to perform inference) to identify an optimal 

triangulation. Note that playing the elimination game with an ordering starting with E 

would produce a very poor triangulation, as B, D, E, L, T and X would  need to be pairwise 

connected.

The union of a Markov graph with a valid triangulation can be referred to as a 

decomposable graph. Thus a decomposable graph can be defined as a graph G=(V,E) 

which has no unchorded cycles with length greater than 3. It is more common to use the 

term decomposable for graphs which are decomposable, but are not the result of 

triangulating a Markov graph. They might also be referred to by other names such 

monotone transitive (Rose, 1970) or rigid circuit graphs (Dirac, 1961).

Junction trees

There is an alternative way of graphically representing a decomposable graph. A tree can 

be constructed with a node for each maximal clique in the graph. Edges are added between 

the cliques to construct a tree with the following property.

Running intersection property (Lauritzen and Spiegelhalter, 1988):

If a node is contained in two cliques, C1 and C2, then it is contained in all cliques on the  

unique path between C1 and C2.
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Figure 36. A junction tree for the Asia network

Figure 36 shows a junction tree corresponding to the triangulation {(B,L)}. Note that it 

possesses the running intersection property; each subtree induced by the cliques containing 

a given variable is connected. Note also that the clique {E,X} could have been connected 

to {B,D,E} or {E,L,T}. A given decomposable graph does not generally imply a unique 

junction tree.

Sometimes junction trees are shown with an extra separator node on each edge. A 

separator is the intersection of the nodes in the neighbouring cliques. 

There are a number of algorithms for constructing junction trees. One approach is to add 

the maximal cliques to a graph and then add edges between all pairs of cliques have non-

empty intersection. This produces a junction graph. A junction tree is a maximal weight 

spanning tree of the junction graph, where the edge weights are the cardinalities of the 

adjacent cliques' intersection (separator size).
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Figure 37. The junction graph for the Asia network

Figure 37 shows the junction graph for the Markov graph in Figure 34. Separators are 

shown and the spanning tree corresponding to Figure 36 is shown with blue separators. The 

edges with separators {L} and {B} cannot form part of a maximal weight spanning tree. 

Any one of the edges with {E} separators could have been chosen.

Junction trees are usually used as a data structure for performing inference. Multiplication 

of distributions and marginalizations to generate posterior beliefs can be thought of in 

terms of passing messages through the tree to a clique that contains the queried variables. 

Querying joint distributions which do not appear in a single clique can be achieved by 

passing multiple messages (Jensen, 1996). Another approach is to change the structure of 

the tree itself, so that a suitable clique is created. This approach was presented in Smith 

(2001) and uses the variation on the usual junction tree structure detailed in the following 

section.
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Dynamic Junction Trees

A dynamic junction tree is a rooted tree with labelled cliques (see Smith (2001) for an 

earlier but similar data structure). There is a node for each node in the underlying Bayesian 

network, thus the cliques are not necessarily maximal. Each node label corresponds to the 

elimination of a single variable and labels the root node of the subtree induced by the 

cliques that contain the label. Figure 38 shows a dynamic junction tree for the Asia 

network which is consistent with the triangulation in Figure 35. It contains all the cliques 

contained in Figure 36 but also some additional non-maximal cliques.

A dynamic junction tree can be constructed from an elimination ordering using the 

following algorithm. Not that madj(v) is the monotone adjacency of v with respect to an 

elimination ordering. It is the set of nodes adjacent to v when v is eliminated as part of the 

elimination game.

makeDJT(ordering):
    clique_pool = ∅
    tree = empty tree
    for v in ordering:
        clique = {v}∪ madj(v)
        add clique to tree
        for other_clique in clique_pool:
            if v is a member of other_clique:
                add directed edge from clique to other_clique
                remove other_clique from clique_pool
        add clique to clique_pool
    return tree
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Figure 38. A dynamic junction tree for the Asia network

A dynamic junction tree possesses the running intersection property. However, a dynamic 

junction tree must possess an additional property which distinguishes it from similar trees 

such as elimination trees (Cowell et al., 1999) and factor trees (Bloemeke and Valtorta, 

1998).

Dynamic junction tree property:

An edge between two cliques labelled v and w in a dynamic junction tree implies an edge  

(v,w) in the underlying decomposable graph.

In other words, the labels of a dynamic junction tree form a rooted spanning tree of the 

underlying decomposable graph. Unlike for clique trees, a given undirected graph and 

elimination ordering do imply a unique dynamic junction tree.  However, distinct 

elimination orderings might result in the same dynamic junction tree, so a dynamic 

junction tree represents an equivalence class of elimination orderings.
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The reasoning behind dynamic junction trees is that they can be used as a basis for 

managing changes to the underlying decomposable graph. For instance, the problem of 

finding an optimal graph triangulation can be viewed as the problem of finding a perfect 

elimination ordering that produces an optimal triangulation. The orderings can be searched 

by repeatedly swapping adjacent pairs of variables within an existing elimination ordering. 

This can be achieved via rotations of adjacent pairs of cliques in a dynamic junction tree. 

Details of the rotations have not previously been published and are given in the next 

section.

Inference using dynamic junction trees uses similar algorithms to those used in junction 

trees. But this will not be presented in detail as the reason they are being briefly outlined 

here is to illustrate their use in model determination.

Model determination

There are a number of approaches for model determination. One approach is to iteratively 

permute the structure of a Bayesian network to search for good models. Single edges can 

be added, removed or reversed in direction (e.g. Heckerman et al., 1995). More complex 

moves through the model space have been proposed (Grzegorczyk and Husmeier , 2008). 

The problem is to ensure that permutations do not induce cycles, as Bayesian networks are 

acyclic.

A more common approach is to search for a good decomposable graphical model. In this 

case the standard moves are edge addition and edge deletion. It has been shown that the 

space of all decomposable graphical models can be traversed by adding or removing single 

edges (Frydenberg and Lauritzen, 1989). In this case the problem is ensuring that no edge 

addition or deletion induces a cycle of length greater than 3. Note that we are actually 

dealing with a forest of trees, and the starting point for search will often be the full 

independence model (no edges in the decomposable graph or the corresponding dynamic 

junction tree).

The basic rules for edge addition / deletion in decomposable graphs are:
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An edge (v,w) can be added only if it is not already present, and v and w are either in  

adjacent maximal cliques or in distinct connected components.

An edge (v,w) can be deleted only if, and only if, it is present in exactly one maximal clique.

Most aspects of these rules can be checked quite efficiently with standard implementations 

of graphs (e.g. adjacency lists). The presence of an edge can be checked easily, and 

membership of adjacent maximal cliques implies that the neighbours of v and w have non-

empty intersection. Membership of distinct connected components would generally require 

a search of, say, the component containing v to see if it also contained w. Breadth first 

search could be relatively expensive for large numbers of variables or if it had to be 

performed many times during the running of a model determination algorithm. There is no 

obvious efficient algorithm for checking that an edge is a member of exactly one maximal 

clique.

Giudici and Green (1999) introduced the idea of using a junction tree representation of the 

decomposable graph in order to reduce the cost of establishing whether edges could be 

added or deleted. This allowed membership of exactly one clique to be checked via a local 

search. The junction tree is updated to reflect edge additions and removals. This is where 

dynamic junction trees offer an advantage, as they are designed to be permuted.

In a dynamic junction tree:

Two nodes v and w are in distinct connected components if, and only if,  the cliques 

labelled v and w are in components with different roots. Thus the dynamic junction forest 

can be used as a union-find data structure. Searches are conducted from the tree nodes with 

labels v and w along their ancestral paths, to identify their root node labels. v and w are in 

the same graph component if, and only if, they have identical root node labels. Search time 

is proportional to the depth of the relevant clique in its tree. The search can be shortened 

for cases where v and w are in the same tree by creating a set of visited cliques. If the path 

from the clique labelled w to its root contains a clique that is on the path from the clique 

labelled v to its root, then v and w are in the same component.
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If the edge (v,w) is in the underlying decomposable graph, then either the clique labelled v 

contains w, or the clique labelled w contains v. This follows from the running intersection 

property and the fact that a clique labels the root node of the subtree of cliques containing 

the label. Assume that the edge is present and the clique labelled v contains w. None of the 

ancestors of the clique labelled v can contain {v,w} (as they do not contain v). By the 

running intersection property the cliques containing {v,w} form a subtree rooted at v. A 

depth first search of this subtree will identify whether {v,w} is contained in more than one 

maximal clique. Initially the search attempts to identify a maximal clique containing {v,w} 

(the clique labelled v might not be maximal). If at any point the subtree branches, then the 

edge is contained in more than one maximal clique. Once a maximal clique is found it is a 

simple question of checking its children to see if any of them contain {v,w}. If not, then the 

maximal clique is the only maximal clique containing {v,w}. In other words, if {v,w} is 

contained in a single maximal clique, then the rooted subtree of the cliques containing 

nodes v and w has no branches and only one maximal clique. This is a very efficient check 

compared to, say, a breadth first search on the underlying decomposable graph / forest.

Consider the decomposable graph in Figure 35 and the corresponding dynamic junction 

tree in Figure 38. There are only 3 edges that would induce a cycle of length greater than 3 

if removed. These are (B,E), (B,L) and (E,L). Each of these appears in more than one 

maximal clique. Take (B,E) for instance. Removal would induce the cycle [B,D,E,L,B]. 

Checking the cliques labelled B and E in the dynamic junction tree would show that the 

clique labelled B, CB, is the root clique of the subtree induced by the cliques containing 

{B,E}. Checking the cardinalities of its children demonstrates that the CB is maximal. (If 

not, then at least one of its children would have cardinality one greater than the cardinality 

of CB. More than one such child would imply more than one maximal clique containing 

{B,E}.) Having identified it as a maximal clique and having not found any branches, then 

checking the members of its children would show that CD contains {B,E}. Thus {B,E} is 

contained in more than one maximal clique and removal of the edge (B,E) would induce a 

cycle of length greater than 3 in the underlying decomposable graph.
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Tree rotations

On edge addition and deletion the dynamic junction tree must be updated to reflect the 

change. Dynamic junction trees are updated by tree rotations which are similar to the 

rotations used for balancing red black trees (see e.g. Sleator et al., 1988). A rotation reflects 

a local change in an elimination ordering.

Assume we want to locally change an elimination ordering by reversing the ordering of 

variables v and w. Let Cx denote the clique with label x. Assume also that there exists a 

dynamic junction tree with corresponding cliques Cv and Cw with a tree edge (Cw,Cv). 

Firstly the orientation of the edge (Cw,Cv) is reversed. The edge from the parent of Cw is 

removed and an edge added from the parent to Cv. Children of Cw (other than Cv which is 

no longer a child of Cw) remain children of Cw. Children of Cv (other than Cw) remain 

children of Cv unless they contain w, in which cases the edge from Cv is removed and an 

edge added from Cw. These rules ensure that the running intersection and dynamic junction 

tree properties are maintained.

Having changed the structure the members of Cv and Cw must be updated. The rules are 

quite simple and are based on the result stated earlier regarding elimination graphs. The 

effects of changing the elimination ordering as above are local. The effect of eliminating 

all the variables labelling the descendants of Cv and Cw other than Cv and Cw produces a 

unique elimination graph. After the subsequent elimination of v and w we have a different 

unique elimination graph.

v w

Uv Uvw Uw

Figure 39.  Schematic showing the subgraph induced by two adjacent cliques
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Figure 39 shows a schematic of the subgraph induced by two adjacent cliques in a dynamic 

junction tree, Cv and Cw.  Uv, Uw and Uvw represent the sets of nodes adjacent to only v, only 

w, and both v and w, respectively. One or more of these sets can be empty. The edge (v,w) 

is implied by the dynamic junction tree property. The pairwise connectedness of Uv ∪ Uw 

∪ Uvw is implied by the elimination of v and w in either order; any missing edges will be 

added as fill-ins.

Given the ordering v, w we have the addition of fill-ins between w and all members of Uv. 

The alternative ordering w, v adds fill-ins between v and all members of Uw.  So the effect 

of locally changing the elimination ordering from v, w to w, v is to remove all edges 

between w and all members of Uv, and to add all edges between v and all members of Uw.

The first stage of a rotation is to identify the sets, Uv, Uw and Uvw. Nodes that are not 

adjacent to v are not members of Cv,

Uw = Cw – Cv

Finding Uv and Uvw usually requires reference to the set of fill-ins. Thus we need both the 

dynamic junction tree and the underlying triangulated graph (or triangulation).

Cv-{v,w} is the initial set of candidates for Uv.  Any members of this set, that are also 

members of the children of Cw (other than Cv) or the children of clique Cv which also 

contain w as a member, must be in Uvw.  Any other x∈Cv-{v,w} could be a member of either 

Uv or Uvw. That is, given only the dynamic junction tree, the edge (x,w) could be a graph 

edge, or a fill-in edge added on the elimination of v. Access to the triangulation allows 

these edges to be correctly classified.

The new clique members are easily calculated,

Cw = Uw ∪ Uvw ∪ {v,w}
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Cv = Uv ∪ Uw ∪ Uvw  - {w}.

On rotating a clique Cv and its parent, Cw,

1. If, and only if, |Cv| = |Cw| + 1 then no edges are added to the underlying graph.

2. If Cv has a child Cu such that |Cu| = |Cv| + 1 then no edges are removed from the 

underlying graph.

If both 1 and 2 hold, then the rotation is termed neutral with respect to the underlying 

graph as the triangulation is unchanged.

Neutral rotations can be performed very efficiently. In fact sequences of neutral rotations 

can be identified to make any clique the root of its dynamic junction tree, and to make any 

pair of cliques Cv and Cw adjacent if the edge (v,w) exists in the underlying graph [proofs 

omitted]. In essence, a neutral rotation is a move between distinct spanning trees (with 

respect to the clique labels) of the same underlying decomposable graph.

To add an edge (v,w) the required neutral rotations can be made so that, say, Cv is a child of 

a clique containing w. Then w is simply added to Cv. If Cv and Cw are in different 

components then, say, Cv  can be made a root of its tree and then connected as a child to an 

arbitrary clique containing w, again adding w to Cv.

The existence of the edge (v,w) requires that either Cv contains w or Cw contains v. Assume 

that Cv contains w. Cv is made maximal by iteratively rotating it with children with 

cardinality one greater than that of Cv. If there are no such cliques then Cv is maximal. If 

there is more than one such clique, then the edge cannot be removed without inducing a 

cycle of length greater than 4 in the underlying decomposable graph. Once Cv is maximal, 

then w is not contained in any of Cv's children. If it were, then {v,w} would be a subset of 

more than one maximal clique and the removal of (v,w) would induce a cycle of length 

greater than 4. Thus Cv is leaf in the subtree induced by the cliques containing w, and w can 

be removed from Cv without breaking the running intersection property. If Cv only contains 

v, then it must be disconnected from its parent, becoming the root node of a new dynamic 
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junction tree. Otherwise, if Cv is a child of Cw it must be disconnected and connected to an 

ancestor of Cw to restore the dynamic junction tree property.

An alternative way of expressing when edges can be legitimately added or removed is in 

terms of whether sequences of neutral rotations can be found according to the above 

scheme for edge addition / deletion. In fact, neutral rotations are so efficient that the 

software implementation actually identifies and performs neutral rotations until it becomes 

clear that a necessary sequence of rotations cannot be performed.

Consider the decomposable graph in Figure 35 and the corresponding dynamic junction 

tree in Figure 38. Assume we wanted to add the edge (A,E). CA has no parents and CE's 

parent does not contain contain A. Thus neutral rotations are required to make CA a child of 

a clique containing E or CE a child of a clique containing A. As CA is an ancestor of CE it is 

easier to make CE a child of a clique containing A. The cardinality of CE is one greater than 

its parent, thus their rotation will be neutral. This makes CE a child of CT. CT contains A, so 

adding A to CE completes the edge addition. The sequence of operations is shown in Figure 

40.

Figure 40. Edge addition using a dynamic junction tree

Now assume that we wanted to remove the edge (L,T). CL contains T, so must be made 

maximal. This involves the same initial rotation as the previous example. This makes CL 

maximal, allowing the edge (L,T) to be removed from the underlying decomposable graph 

by removing T from CL. The sequence of operations is shown in Figure 41.
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Figure 41. Edge deletion using a dynamic junction tree

There are slightly more complex cases where the best sequence of neutral rotations is less 

clear, such as adding an edge when the cliques with the relevant labels are in different 

branches. However, the algorithms are relatively straightforward. The main point is that 

adding and removing edges to traverse the space of decomposable graphs is much more 

efficient when based only on local structure.

Markov Chain Monte Carlo Model Composition

Bayesian model averaging (Hoeting et al., 1999) attempts to take into account model 

uncertainty by averaging inferences over a class of models. This requires a probability 

distribution over the model class. Given this distribution posterior distributions over any 

quantity of interest Δ  can be derived as in Equation 10. Here the model class contains K 

models and conditioning on the data D used to estimate the models is shown explicitly.

Equation 10. p  Δ∣D =∑
k=1

K

p Δ∣M k , D  p M k∣D 
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Markov Chain Monte Carlo Model Composition (MCMCMC or MC3) was first described 

in Madigan and York (1995). A Markov chain is constructed with equilibrium distribution 

p M k∣D  . This is usually achieved via the Metropolis-Hastings algorithm (Hastings, 

1970).

Metropolis-Hastings

A proposal distribution is defined to give the probabilities of attempting a transition to a 

model N' given a current model N, p(N'|N). A symmetric proposal distribution is often 

chosen in order to simplify the algorithm. In this case p(N'|N) = p(N|N'). The moves 

between models are made according to the following equation,

Equation 11. p  Accept N ' =min1,
p  N∣N '  p  N '∣D 
p  N '∣N  p  N∣D   .

Given a symmetric proposal distribution the ratio in Equation 11 reduces to a simple ratio 

of posterior model probabilities, otherwise known as a Bayes factor. For decomposable 

graphical models this is easily achieved by selecting a graph edge at random, and choosing 

it for deletion if it exists, or addition if it does not exist. Dawid and Lauritzen (1993) 

showed that the Bayes factor for decomposable graphical models differing by one edge can 

be expressed as a ratio involving only 4 terms, all of which can be computed locally. 

Assume that the edge (v,w) is being considered for addition / deletion and Cv is the clique 

to which w will be added / deleted on acceptance of the move. Then the Bayes factor is 

given by

Equation 12. Bayes factor=
p C v '  p C v−{v }
p C v  p Cv '−{v }

,
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where Cv and Cv' will only differ by {w}.

For categorical models the individual terms can be calculated as in Equation 13,

Equation 13. p C =
  

 n 
∏

i  ini 
 i   ,

where i indexes the counts ni in a contingency table of the data over the variables in C. The 

λi are parameters derived from a Hyperdirichlet prior. The Hyperdirichlet prior can be 

viewed as a contingency table over all the variables in the model containing counts 

equivalent to prior information. Parameters for a given set of variables can be derived from 

this table via marginalization, just as the contingency table of data for a set of variables can 

be obtained by marginalization from a contingency table over all the model variables. 

Common choices for the Hyperdirichlet prior are to make all the λi equal for the single 

table (over all model variables) corresponding to the full dependence model. Of course, 

when all the Hyperdirichlet parameters are equal there is no need to maintain a 

contingency table for the Hyperdirichlet, as the parameters for smaller tables can simply be 

calculated. Prior specification then reduces to the specification of a single parameter, which 

may be supplied as the value for the λi for the single table over all variables, or their sum. 

The latter is referred to as the total prior precision.

The remaining terms in Equation 13 are given by,

=∑
i

 i

and

n=∑
i

ni

and are clearly constants: the total prior precision and the table total respectively.
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The scheme described above allows the sampling of the posterior distribution over the 

model space. It accounts for model uncertainty, but does not incorporate parameter 

uncertainty. Similar, but more complex, schemes can allow for that (Green, 1995). It is 

important to note that the sample is not independent as there are usually only a small 

fraction of possible models that can be moved to from a given model. A common approach 

to avoid the problem of having an autocorrelated sample is to thin the Markov chain by 

only including every kth visited state in the sample for some suitable integer k. A suitable 

number of iterations are performed to allow the algorithm to burn in. This is designed to 

allow the first recorded state to be drawn from the posterior distribution of interest, rather 

than simply returning the chosen starting state. A pragmatic choice of starting state for the 

problem under discussion is the full independence model. Finding suitable choices for the 

burn-in period and the thinning parameter k generally require some experimentation for a 

given problem.

Using the simple proposal scheme of selecting an edge of a pair of graph nodes at random 

and attempting to add / remove the edge (depending on whether it already exists) allows a 

Metropolis-Hastings algorithm to generate a posterior mass function over the space of 

decomposable graphical models. Inferences can then be averaged across this mass function 

in accordance with Equation 10.

Simulated annealing

Markov Chain Monte Carlo samples from the posterior distribution of a quantity of 

interest, in the case under discussion the space of decomposable model structures. It can be 

time consuming, and there can be problems with mixing. When samples are highly 

autocorrelated the chain is said to mix poorly. Ideally the sample would be independently 

and identically distributed, and therefore so would any characteristics of the sample points. 

Thus poor mixing can potentially be diagnosed through plots of marginal log likelihoods or 

the number of model edges over time. Such plots can indicate suitable parameters for burn-

in and the thinning parameter.

In practice poor mixing is not always easily spotted. Chains can spend some time, 
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apparently mixing well, in certain regions of the model space whilst other similar regions 

remain unvisited. In cases of poor mixing or where computational costs are high, an 

alternative is to search for a single good model via simulated annealing (see e.g. Bertsimas 

and Tsitsiklis, 1993).

Given an existing MCMC scheme it is easily adapted to simulated annealing. The 

difference is in how the probability of a transition from one state to neighbouring state is 

generated. The goal is to end in a globally optimal state, rather than to sample from the 

posterior distribution.

Let the solution visited at time t be x(t). Then 

Equation 14. P [ x  t1 = j∣x  t =i ]=qij exp[− 1
T  t 

max {0, J  j −J  i }]

where qij is the probability of choosing j as the next candidate solution given the current 

solution i and where J is a real-valued cost function over the solution space.

T(t) is the temperature at time t. T is a non-increasing function termed the cooling 

schedule. At high enough temperatures the costs have little influence on the transition 

probabilities which are close to 1. At low enough temperatures the probability of moving 

from a low cost solution to a higher cost solution are low. Thus the search will traverse the 

space quickly during the initial search, gradually moving to areas of lower cost regions, 

and eventually finding a low cost solution. A common choice is the exponential cooling 

schedule where T(t) = T(t-1)·z,  0 < z < 1 and z is typically chosen to be slightly less than 1. 

T(0) and z are specified along with a finishing temperature at which point the algorithm 

will stop.

The MCMC scheme that has already been outlined can be used for simulate annealing. 

Neighbouring states are selected in the same way, but transition probabilities are generated 

according to Equation 14. A pragmatic cost function is the negative marginal log 

likelihood. Thus J(j) – J(i) in Equation 14 is simply the log of the Bayes factor given in 
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Equation 12.

Inference using decomposable graphical models

Inference using Bayesian networks has been only very briefly outlined. It relies on the 

factorization over the joint distribution of all model variables given in Equation 9. Junction 

trees (or dynamic junction trees) can be used to manage the necessary mathematical 

operations. These trees are alternative representations of decomposable graphs. Given a 

decomposable graphical model, one approach would be to try to work back to a set of 

distributions for a member of the equivalence class of Bayesian networks admitted by the 

decomposable graphical model. Parameters could be estimated from the data used to fit the 

model. However, a decomposable graphical model admits a more general form of 

factorization over the joint distribution; the product over the maximal cliques of their joint 

distributions divided by the product over the joint distributions of the clique separators. For 

a dynamic junction tree a similar expression is,

Equation 15. p V =
∏
v∈V

p C v

∏
v∈V

p C v−{v }

where p(∅) is defined as 1 (to handle the root cliques of dynamic junction trees).

It should be noted that terms in the numerator product will often cancel with terms in the 

denominator product. This results in the more usual expression in terms of maximal cliques 

and separators. Management of the mathematical operations can still be carried out using 

trees. But rather than having a conditional distribution associated with each clique, there 

are marginal distributions associated with both cliques and separators. Of course, the above 

factorization can be used directly, conditioning on known information and marginalising 

across non-queried variables. Performing marginalizations in a perfect elimination ordering 
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of the decomposable graph generally avoids much unnecessary computation. Again it must 

be ensured that all numerator and denominator terms involving a variable are combined 

(by multiplication or division) before marginalization across the variable. Using a junction 

tree (or dynamic junction tree) to manage the operations takes care of these issues. Belief 

propagation algorithms using trees are contained in several papers such as Lauritzen and 

Spiegelhalter (1988) and Bloemeke and Valtorta (1998).

Summary

A number of different, but related types of graphical model have been described. It has 

been shown how a Bayesian network can be converted to a Markov graph via moralization 

and dropping the directions on edges. It has been shown how a Markov graph can be 

converted into a decomposable graph through graph triangulation. Alternative 

representations of decomposable graphical models have been described.

A novel scheme for model determination in decomposable graphical models has been 

presented. The general methodology is standard, but the use of dynamic junction trees is 

not. It offers advantages over other schemes due to the efficiency of maintaining a structure 

that allows legal moves to be identified. Edges can be added and removed from a 

decomposable graph represented as a dynamic junction tree by performing simple tree 

rotations and set operations on the cliques. All the necessary rotations are of a neutral type, 

meaning no edges are added or removed. The actual edge addition / removal is simply the 

addition or removal of a single node from a single clique. The necessary rotations are very 

easy to identify and quick to perform.

There are similarities with an existing scheme proposed by Giudici and Green (1999). But 

the scheme detailed here is more efficient. For instance, it replaces the breadth first search 

implied by the existing scheme with simple depth first search of a rooted subtree. There is 

also the cunning use of dynamic junction trees as union-find data structures to identify 

nodes in distinct connected components, which requires that the trees are rooted.
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CHAPTER 7

A Bayesian Strategy for Matching Population and Sample Units

Introduction

In order to protect against statistical disclosure data are rarely released as unperturbed 

population data. A common approach is to release sample data, uncertainty regarding the 

missing data making it difficult for data intruders to make precise inferences about the 

members of the population. However, there are a number of strategies that a data intruder 

can employ to attempt to match sample units and population units. These strategies have 

given rise to a number of risk measures, based on the probability that an intruder can 

correctly match population and sample units. This chapter considers a Bayesian approach 

to the matching problem, and whether existing risk measures adequately reflect the actual 

risk posed by an intruder with the knowledge to launch such an attack.

Although it is usual to remove obvious identifiers such as name and address from data 

before release, an intruder can still attempt to link sample data and population data through 

other information. The relevant information is commonly assumed to be contained within a 

set of variables contained in the sample, and potentially available to the intruder about 

members of the population. These variables are known as key variables.
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Sample Record

Figure 42. Matching between sample and population on key variables

Variables contained in the sample data which are considered sensitive are termed target 

variables. Correctly matching an identified population unit with a sample record allows the 

values of the target variables to be inferred for the population unit. Thus several strategies / 

risk measures are based on matching against population units that are unique with respect 

to  a set of key variables.

Notation:

Assume we have a population table containing N individuals and a corresponding sample 

table containing n individuals.

X set of key variables

j = 1 to J distinct values / equivalence classes / cells for X

i = 1 to N population units

Xi value of X for unit i

N population size

n sample size

[.] Iverson brackets

Fj,  j = 1 to J population frequencies

fj,  j = 1 to J sample frequencies

Iverson brackets are used in the manner detailed in Knuth (1992), where
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[ P ]={1 if P istrue
0 if P is false

and resulting zeros are “very strong”, meaning they annihilate anything by which they are 

multiplied. So,

x
0

[ P ]=0  if P is false.

Assume throughout this paper that both N and n are greater than 0.

A few measures are:

Pr(PU) – the proportion of population units which are population unique (e.g. Bethlehem et 

al., 1990),

Pr  PU =
∑

j
[ F j=1 ]

N
.

Skinner and Elliot (2002) criticize this measure  for being too optimistic as it assigns an 

element of risk to population units that have no possible match in the sample.

Pr(PU|SU) – the proportion of sample uniques which are also population unique (e.g. 

Fienberg and Makov, 1998),

Pr  PU∣SU =
∑

j
[ f j=1 ] [ F j=1 ]

∑
j

[ f j=1 ] [∑j
[ f j=1 ]0] .

This could also be criticized as being too optimistic as it is a lower bound on the 

probability that a proposed match is correct (which itself is only a lower bound on the 

probability that a target variable value applies to the relevant population unit).
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Skinner and Elliot favour the probability of a correct match given a unique match, Pr(CM|

UM),

Pr CM∣UM =
∑

j
[ f j=1 ]

∑
j

F j [ f j=1 ] [∑j
[ f j=1 ]0] .

This measure implies a particular strategy being employed by the intruder. The intruder 

searches through the population until a match against any sample unique is found. Under 

the assumption that at each point in the search all undiscovered population units are 

equally likely to be the next one found, the above gives the probability of a correct match.

It can be shown that the strategy of randomly choosing a sample unique and searching the 

population for a match gives a higher probability of a correct match than the strategy 

underlying Pr(CM|UM) except when all the sample uniques have been sampled from equal 

population frequencies. In that case the probability of a correct match is the same. This 

gives rise to the following measure, which is also discussed in Skinner and Elliot (2002).

Pr CM∣SU =
∑

j

1
F j

[ f j=1 ]

∑
j

[ f j=1 ] [∑j
[ f j=1 ]0 ]

Although it could be argued that Pr(CM|SU) should be used in preference to Pr(CM|UM) 

as a risk measure, this does not take into account the difference in search cost. The 

dominance of Pr(CM|SU) over Pr(CM|UM) is reflected in a similar dominance relationship 

for cost (see Chapter 5).

Search costs

The assumption of an unfocussed search that underlies the Pr(CM|UM) measure can be 

used to generate expected costs for a given strategy. Assuming that searching a sample 
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takes negligible time, then the cost of a strategy can be expressed in terms of the expected 

number of population units that need to be inspected until a match is found. The search can 

thought of as a standard urn problem where population units are randomly drawn until a 

suitable population unit is found. If the strategy is to identify an individual in the 

population to match against a sample, then the search is for any population member that 

satisfies the conditions specified by the strategy. For instance, the strategy might be to only 

consider population units that can be matched against sample uniques (equivalence classes 

with sample counts of 1). In fact, this is the precise strategy that gives rise to the Pr(CM|

UM) measure. Alternatively the search might involve identifying a sample unit and 

searching through the population until a match is found.

Even given the unfocussed search assumption it is possible to identify alternative measures 

of cost. For example, sampling with and without replacement give rise to different 

measures. The more realistic measure is probably the one derived from sampling with 

replacement, as this reflects the increasing difficulty of finding population units that have 

not been previously found as the proportion of undiscovered units decreases. This is the 

measure that will be used in this paper and is simply,

E T =
N
M

where M is the number of candidate population units.

In the Pr(CM|UM) strategy the number of candidates is the sum of the population 

frequencies with sampled cells equal to 1. In the Pr(CM|SU) strategy there are a number of 

different costs depending on the sample unique chosen for matching. In this case the 

expected value of M is the mean of the population frequencies with sampled cells equal to 

1. Thus the search cost is greater, but it is less likely that the matched population unit 

comes from a higher frequency population cell.
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Estimation of risks in the absence of population counts

Calculating risks when both population and sample counts are known is trivial. But 

estimation of risks given the sample counts alone can be difficult. The DIS formula 

(Skinner and Elliot, 2002) is a good estimator of Pr(CM|UM) ,

Equation 16. =
n1

n12 1−  n2

,

where π is the sampling fraction and n1 and n2 are the counts of 1 and 2 respectively in the 

sample table.

Similarly straightforward estimators for other strategies are still to be found.

A Bayesian matching strategy

A matching strategy involves a trade-off between the probability of success (a correct 

match) and the cost of search. The Pr(CM|UM) and Pr(CM|SU) strategies both attempt to 

exploit some information in the sample, namely the sample uniques. They try to exploit the 

information in slightly different ways. However, neither strategy attempts to exploit the 

information contained in the joint distribution of the variables. In effect, they treat a multi-

dimensional sample table in the same way they would treat a one-way table for a single 

variable.

Simulations were carried out to investigate whether a Bayesian approach could 

significantly improve the chances of finding a correct match. Work by others such as 

Forster and Webb (2007) and Elamir and Skinner (2006) suggests that exploiting the 

dependence structure in the data leads to improved inferences.

A simple random sample of size 10,000 was taken from the 1991 SAR (Office for National 

Statistics, 1993) to serve as a notional population. It was assumed that an intruder would 

have access to information on the variables AGE, SEX, DEPCHILD, ETHGROUP, 
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OCCPATN. The cross-classification over these variables was sampled repeatedly with 

sample sizes from 1% to 99% in increments of 1% and each served as a notional sample 

release to be attacked.

The attack strategy

The first stage of the attack was to use the sample data to generate a posterior mass 

function over the space of decomposable graphical models. This was achieved using the 

Markov Chain Monte Carlo Model Composition (MCMCMC) scheme described in 

Chapter 6. The parameters (marginal probabilities for the probability tables implied by 

Equation 15) for each sampled model were estimated from the sample data using 

maximum likelihood estimation. Although there are MCMCMC approaches that can 

accommodate parameter uncertainty in addition to model uncertainty (e.g. Green, 1995), 

they were not investigated here.

For model fitting runs a Hyperdirichlet prior was used with total prior precision equal to 1. 

10,000 burn in iterations were used, with 1,000,000 subsequent fitting iterations. The 

thinning parameter k was set to 100. This was felt to be perfectly adequate given that the 

model space is relatively small with only 5 variables.

The second stage of the attack was to generate the probability of a correct match for each 

sampled model.

For a given model each cell j had the probability of a correct match calculated as follows:

Pr cm=∑
k=0

∞ Pr F j− f j=k 
 k f j 

[ f j0 ]

where,

F j− f j~Poisson  j 
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and,

 j=
n


1−  p j

where π is the sampling fraction, n is the sample size and pj is the marginal probability for 

the cell indexed j. pj is estimated from the model. These modelling assumptions follow 

Skinner and Holmes (1998).

These estimates were then averaged by summing using the posterior model probabilities as 

weights, producing a single model-averaged probability of a correct match.

Pr cm=∑
i

Pr cm∣M i Pr M i

The posterior probabilities of a correct match can be used to inform the final stage of an 

attack in a number of ways. An obvious strategy would be to take the cell with the highest 

estimated probability of a correct match and to attempt a match with the population. This 

would involve a search through the population for a small number of matching units (a 

single unit if the population count was 1). In order to reduce the search cost, and make the 

attack scenario a little more realistic, it was decided to take the 10 cells with the highest 

correct match probabilities and match with the population.

The effectiveness of the strategy was assessed by calculating the true probability of a 

correct match by reference to the population counts. This probability was taken as an 

estimate of the probability of a correct match under the strategy (only one simulation was 

performed for each sampling fraction). Thus a probability of a correct match of 1 actually 

implies that the 10 highest ranked cells were all population unique.

Results

For all sample sizes the Bayesian approach produced a high estimated probability of a 
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correct match. In fact, only for the 1% sample did the Bayesian approach not generate an 

estimated probability of a correct match of 1.

Figure 43. The probability of a correct match for various strategies and metrics against  

sampling fraction

It is clear that all strategies tend to have a higher probability of a correct match for larger 

sampling fractions. The results in Figure 43 clearly show the dominance of Pr(CM|SU) 

over Pr(CM|UM). They also demonstrate that the DIS measure is a good estimator for 

Pr(CM|UM) over the whole range of sample sizes. The remarkable thing is how well the 

Bayesian approach fares compared to the other strategies. Ranking cells using the 

information contained in the joint distribution can significantly improve upon strategies 

that ignore this information.

The search cost for Pr(CM|UM) can be shown to be,
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E T =
N

∑
j

F j [ f j=1 ] [∑j
[ f j=1 ]0]

and the cost for Pr(CM|SU),

E T =
N

∑
j

[ f j=1 ]
∑

j

1
F j

[ f j=1 ] [∑j
[ f j=1 ]0]

(see Chapter 5).

In both cases the relevant cells are those that are sample unique. The differences in the 

probabilities of a correct match and costs are due to matching from the population to the 

sample and vice versa. Both these options are also available for the Bayesian strategy.

The costs for matching from population to sample, and from sample to population  are, 

respectively,

E T =
N

∑
j

F j [P ] [∑j

F j [ P ]0]

E T = N

∑
j

f j [ P ]
∑

j

f j

F j

[P ] [∑j

f j [P ]0]

where [P] = 1 if the cell indexed j is chosen for matching, and 0 otherwise.

There are a number of possibilities for P under the Bayesian approach, as it generates a 

posterior probability for a correct match for each cell. It could exploit the estimated correct 
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match probabilities for the cells, or simply choose a given number of the highest ranked 

cells. The quite arbitrary strategy of taking the 10 highest ranked cells has shown that it can 

generate correct matches with far higher probabilities than Pr(CM|SU) or Pr(CM|UM) and 

at all sample sizes. An obvious question is whether it can offer better probabilities of a 

correct match at similar cost. We have the following relationships between Pr(cm) and 

E(T).

Matching from the population to the sample,

Pr cm 
E T 

=

∑
j

[ P ]

N
,

and matching from the sample to the population,

Pr cm 
E T 

=
1
N

(see Chapter 5).

So for Pr(CM|SU) an equal cost implies an equal probability of a correct match. The 

Bayesian approach can clearly offer higher probabilities of a correct match, but only at 

greater cost. For Pr(CM|UM) the Bayesian approach will offer higher probabilities of a 

correct match at equal cost if, and only if, it can identify a larger number of cells that 

produce equal search costs.

For matching from the sample to the population there is a form of “no free lunch theorem”. 

All such strategies are equally efficient (if we measure efficiency as the ratio of Pr(cm) to 

E(T)).

For matching from the population to the sample, maximising Pr(cm) for a given cost C 

involves finding a strategy that maximizes the number cells such that the sum of the 

corresponding cell population frequencies is equal to the constant, N/C. Thus an obvious 

strategy is to rank cells according to the expected cell population frequency, rather than the 
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probability of a correct match,

E F j∣ f j = f j j .

Summing these in increasing order of value until the sum approximates N/C, where C is 

the desired cost, is a pragmatic way to attempt to maximize Pr(cm) for a given 

(approximated) cost.

In order to investigate the possibilities for cost matching the analysis was repeated. 

Pr(CM|UM) and Pr(CM|SU) series were generated as before, along with series for two 

MC3 strategies. Both MC3 strategies ranked cells according to the expected cell population 

frequency as detailed above.  MCMCMC1 attempted to match the cost of Pr(CM|UM)  by 

referring to the actual population counts. MCMCMC2 attempted to match the cost of 

Pr(CM|UM)  by referring to the expected population counts used to rank the cells. Thus 

MCMCMC1 was used to investigate whether it was possible to produce higher correct 

match probabilities, at the same cost, using a Bayesian strategy rather than by simply 

selecting all sample uniques for matching. MCMCMC2 was used to investigate how 

effectively costs could be matched using the pragmatic cost matching strategy outlined 

above.
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Figure 44. The probability of a correct match for 2 standard strategies and 2 Bayesian 

strategies against sampling fraction

The MCMCMC1 series in Figure 44 shows that it is difficult to produce higher 

probabilities of a correct match than Pr(CM|UM) at equal cost. The probabilities are 

identical in most cases. To improve on Pr(CM|UM) at equal cost it is necessary to identify 

non-unique sample cells that have lower population counts than some of the sample unique 

cells. The Bayesian approach does identify some candidate cells, but with mixed results, 

and only for sampling fractions below around 0.15. For higher sampling fractions it selects 

the sample unique cells exactly leading to the same inferences as Pr(CM|UM).

The MCMCMC2 series is for the Bayesian approach that attempts to match a given cost 

using the estimated population counts. There is an apparent threshold at a sampling 

fraction of around 15%. Below this threshold Pr(cm) increases rapidly with sampling 
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fraction. Above this threshold Pr(cm) increases more slowly. Pr(cm) falls quite 

dramatically at this threshold before steadily increasing. As the MCMCMC2 series uses 

exactly the same ranking of cells as MCMCMC1 it is clear that the expected population 

frequencies are being underestimated. This leads to the selection of a larger number of cells 

for matching, which reduces both the search cost and Pr(cm). Above the threshold 

MCMCMC1 selects the sample uniques exactly which implies that MCMCMC2 is 

necessarily using sample non-uniques for matching. Comparison of the MCMCMC2 series 

with the Pr(CM|UM) series demonstrates that this is also true for sample fractions below 

the threshold. However, the similarity of the MCMCMC1 and Pr(CM|UM) series suggests 

that below the threshold there are sample non-uniques with similar population counts to 

those of sample uniques. This is not surprising for smaller sampling fractions and would 

explain the threshold effect evident in the MCMCMC2 series.

At a 20% sampling fraction MCMCMC2 considered 1,309 cells when MCMCMC1 only 

considered the 1,085 sample uniques. At this sampling fraction the largest expected 

population count for a sample unique was 1.445, and the lowest for any sample non-unique 

was fractionally above 2. Although there was still a large degree of uncertainty over the 

individual population counts (which were actually 6 and 2 respectively) the overall effect 

on Pr(cm) is quite marked.

It should be noted that the notional population data are very sparse and 31.4% of the 

population records are population unique. Simulations performed with less sparse datasets 

do not demonstrate a threshold effect over the selected range of sampling fractions.

Summary

The differences between matching from population to sample and from sample to 

population have been highlighted. For a given set of cells the latter dominates the former in 

both Pr(cm) and cost. If matching is restricted to cells that are sample unique, then the 

former strategy gives rise to the Pr(CM|UM) measure favoured by Skinner and Elliot 

(2002). The latter strategy gives rise to a Pr(CM|SU) measure. It is not proposed that the 

latter is a better measure than Pr(CM|UM), as the cost underlying the strategy is much 
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greater. However, it would be a more appropriate measure if the data intruder had some 

efficient way of searching a population for a match.

A Bayesian approach has been described. This allows the cells to be ranked so that cells 

with equal sample counts can be distinguished. For example, choosing a small number of 

the highest ranked cells can produce probabilities of a correct match which far exceed 

those from strategies which only depend on the sizes of sample counts. In the simulations 

that have been carried out there has been a large tendency for the highest ranked cells to be 

sample unique.

For sparse population data and smaller sampling fractions there is evidence of a significant 

increase in the predicted population counts when one moves from sample 1s to sample 2s. 

A similar simulation using all the 1,116,181 records in the 1991 SAR (Office for National 

Statistics, 1993) resulted in the MCMCMC1 approach exactly identifying the sample 

unique cells for all sampling fractions.

A method of estimating the cost was presented, but it tends to overestimate the number of 

cells that should be considered. Nevertheless it provides an intruder with a strategy for 

trading off search costs and the probability of a correct match. This suggests that an 

appropriate risk measure should consider the search cost. An intruder who is prepared to 

spend more time searching a population can achieve higher probabilities of a correct 

match, either by considering fewer cells, or by matching from the sample to the population. 

In fact, it suggests that the Bayesian approach could be used to provide a measure of risk 

that can be tuned to detailed attack scenarios.

The Bayesian methodology is identical to that used in Smith (2006).
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CHAPTER 8

A Bayesian Alternative to the Special Uniques Detection Algorithm

Introduction

The release of sample data provides an opportunity for matching against a population. 

Matches that have a high personal probability of a correct match are considered to be an 

issue for statistical disclosure control. A data intruder might infer sensitive levels of a 

variable for some identified population unit. Even where the inferences do not relate to 

sensitive information, a plausible claim of a correct match could reduce public confidence 

in the safety of a data release. Often sampling is used as a statistical disclosure measure, 

the non-sampled units creating uncertainty over the correctness of any matches. In this case 

the data stewardship organization (DSO) can assess risk by generating measures based on 

the released sample counts and known (to the DSO) population counts. But sometimes the 

population counts are not known to the DSO. This is the case when the released data result 

from a sample survey. The Special Uniques Detection Algorithm (SUDA) was developed 

at the University Of Manchester to try to address the issue of sample uniques and to 

categorize them according to risk. The approach is based on observations originally 

detailed in Elliot et al. (1998). This paper describes a Bayesian alternative to SUDA. The 

measures are evaluated by applying them to samples from a notional population, the 1991 

SAR (Office for National Statistics, 1993).

Sample counts of zero offer no possibility for matching. In other cases, under many attack 

scenarios, the probability of a correct match for any sample unit and key variable set is 1/F, 

where F is the population count with respect to the same variable set and matching variable 

levels (the number of possible matches). As the sample count provides a lower bound for F 

it is only the sample uniques that can provide correct match probabilities greater than 0.5.

Elliot et al. (1998) discuss 'special uniques' and 'random uniques'. Special uniques have an 
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unusual combination of categories, and can be recognized spontaneously. The standard 

example is the 16 year old widow in a small geographic region. Random uniques are, 

essentially, the remaining uniques. Clearly, there is not a clear dividing line between these 

two categories and what might be considered spontaneously recognizable by some, might 

not be by others. Nevertheless, attempting to rank sample uniques in order of their 

probability of population uniqueness is a worthwhile exercise. It helps to identify sample 

uniques which are more likely to give rise to a correct match, and thus pose a greater risk 

of statistical disclosure. With an effective ranking system, spontaneously recognizable 

uniques would be included amongst those with higher probabilities of population 

uniqueness. These could be considered to be of particularly high risk, because spontaneous 

recognition could lead to disclosure without the need for the sort of population search 

required by other attack scenarios (see Chapter 5).  Spontaneous recognition could lead to 

an attack that would otherwise not take place.

Special Uniques Detection Algorithm

The general idea behind the SUDA approach is that a sample unique record over a set of 

variables is more likely to be population unique if it is also sample unique over subsets of 

the variables in the larger record. The simplest way to think of it is in terms of the detail 

cells in an n dimensional table of counts, where the n dimensions correspond to a set of key 

variables. Corresponding tables for subsets of the n variables can be produced by summing 

across the dimensions of the n-way table. Each member of the powerset (set containing all 

subsets) of the n variables implies a distinct marginal table, with the dimensionless table 

corresponding to the empty set being the scalar equal to the table total. Thus the tables 

form a subset lattice. Figure 45 shows a subset lattice for three variables. Each edge in the 

lattice corresponds to a marginalization over a single variable.

It is also clear that there is a transitive property in terms of sample counts. As 

marginalization involves summing of non-negative integers each marginal count must be at 

least as great as any of the counts that were summed to produce it. Thus a count of 1 in the 

1-dimensional table over the set of variables {B} must have been produced by summing a 

1 and a number of 0s. Therefore the corresponding record must also be sample unique in 
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tables {A,B}, {B,C} and {A,B,C}. This implies that the set of tables in which a given 

record is a sample unique can be specified in terms of the minimal tables in which the 

record is sample unique, where minimality is with respect to the set of table variables. 

Elliot et al. (2002) refer to these tables / sets of variables as minimal sample uniques 

(MSUs). The SUDA approach is to identify the MSUs for each sample unique in the n-

dimensional detail table, then to produce risk measures based on this information. (It 

should be noted that the SUDA algorithms presented in Elliot et al. (2002) and Manning et 

al. (2008) are for microdata, but I explain the principles in terms of aggregate data for 

simplicity and convenience.)

A,B,C

A,B B,CA,C

A CB

Ø

Figure 45. The subset lattice for the 3 variables A,B and C

The original algorithm appeared in Elliot et al. (2002). It is based on the well-known 'a 

priori' algorithm for association rule discovery (Agrawal and Srikant, 1994). Details of the 

SUDA algorithm are contained in Elliot et al. (2002). However, a brief exposition of a 
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simple search will provide a flavour of the algorithm without having to go into great detail. 

Note that this is not intended to be a precise exposition of the original SUDA algorithm, 

rather it is an exposition of a basic a priori search for MSUs.

Search commences at the bottom of the lattice. The empty set only represents a minimal 

unique if the sample size is 1. So search can generally be started at the univariate level. An 

ordering of the variables would be chosen; for convenience let us assume 3 key variables 

and the order A, B, C. The record set would be searched for records that were unique on 

{A}. If none were found search would progress to the variable set {A,B}. Assume that a 

record is found to be unique on {A,B}. This might be, for instance, our 16 year old widow. 

In order to establish whether this is a minimal unique it would have to be checked whether 

the record is unique on any of its strict subsets. This leaves only {B} to check. If the record 

is not unique on {B} then it is minimally unique on {A,B}. If it is unique on {B} then that 

is a minimal unique (as it is not unique on the empty set). Assume that {A,B} is found to 

be a minimal unique for the record in question. Therefore it cannot be unique on {B}, and 

uniqueness on {B,C} cannot be discounted. If it is found not to be unique on {B,C} then 

the search is over. If it is found to be unique on {B,C} a final check for uniqueness on {C} 

would be performed to decide which of {B,C} and {C} is minimally unique.

The SUDA algorithm is expensive for large sets of variables. A more efficient algorithm 

(SUDA2) has been developed more recently (Manning et al., 2008).

Classification

Elliot et al. (2002) contend that the 'riskiness' of a record depends on both the number and 

size of its minimal uniques. For each record a SUDA score is generated. Each minimal 

unique is assigned the following weight, equal to the number of its unique supersets,

∑
i=1

ATT−s

ATT −s
i 
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where ATT is the total number of variables and s is the size of the minimal unique.

This is more efficiently expressed (and computed) as,

2ATT− s−1 .

Each weight is then divided by the number of attribute sets of size s,

ATT
s  .

The resulting quantities are then multiplied by a suitably large power of 10 and truncated to 

integer values, before being summed to produce a score for the record. The scores are used 

to classify the records into various risk categories, higher scores suggesting higher levels of 

risk.

There is no theoretical basis provided for the above measure. It is largely based on 

simulation experiments and calibration.

However, this measure has since been largely superseded by an alternative measure, the 

intermediate SUDA metric (IS),

IS=ATT −s! .

This equals the number of distinct paths (of length ATT-s) from a minimal unique to the 

lattice node for the complete set of key variables. This gives rise to the proportion of lattice 

(POL) measure,

POL=
 ATT−s!

ATT !

which equals the number of distinct minimal paths from the MSU to the full set of key 

variables, divided by the  number of distinct minimal paths from the empty set to the full 

set of key variables.
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Calibration with the DIS score

The DIS formula (Elliot and Skinner, 2002) is a good estimator of Pr(CM|UM), the 

probability of a correct match given a unique match when matching from population to 

sample (see Chapter 5),

=
n1

n12 1−  n2

,

where π is the sampling fraction and n1 and n2 are the counts of 1 and 2 respectively in the 

sample table.

Elliot (2003) describes how the DIS score is used to calibrate SUDA outputs to produce 

estimated probabilities of a correct match. However, the current approach used by the 

commercial SUDA software uses the DIS score to calibrate the IS metric to the same ends.

To obtain an approximate matching probability from the IS metric for a sample unique 

with index j,

LET D = The DIS matching probability for the file

LET U = the number of sample uniques in the file

LET K = the number of key variables

LET S = IS metric

LET Q = 1+(8-K)/20

Then,

DIS−IS=1
1

S j
Q

∑
i

1

S j
Q ×UD−U 

−1

.
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Again, there is no theoretical justification for the approach. It is a result of 

experimentation.

So there are alternative methods for ranking sample uniques according to risk. The SUDA 

score and IS measure (or equivalently POL) will not generally produce identical rankings. 

The DIS-IS measure would produce the same rankings as IS or POL, but is designed to 

produce an estimate of the probability of a correct match given a unique match, Pr(CM|

UM).

An alternative approach

The SUDA approach is an automatic approach. It generates measures directly from the 

sample data, and from the sample data and sampling fraction in the case of DIS-IS. It 

requires no specification of assumptions or prior information. An alternative approach 

could specify a model form, fit the model from the data, then use the fitted model for 

inferences. Any such model would have to distinguish between different sample uniques. 

This suggests that the relationships between variables must be exploited. An increasingly 

more common method for modelling multi-way contingency tables is based on Markov 

Chain Monte Carlo methods and decomposable graphical models. This is the approach 

investigated here.

Graphical models

Dependencies between groups of variables can be represented as graphs. Graphs have a 

single node for each variable and graph edges denote relationships between variables. One 

of the simplest forms of graphical model is the Markov graph where conditional 

independence between variables v and w given a set of variables S is implied if the removal 

of the variables in S (and their incident edges) would result in v and w being members of 

distinct graph components.
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A decomposable graph is a graph with no unchorded cycles of length greater than 3. A 

cycle is chorded if there exists an edge between any two nodes on the cycle that is not an 

edge on the cycle. Decomposable graphical models have the advantage that they admit a 

simple decomposition of the joint distribution over the graph nodes (variables). There are 

relatively simple methods for adding and removing single edges from a decomposable 

graph whilst maintaining decomposability. Thus the class of decomposable graphs allow a 

straightforward means of searching the model space for good models. Single edges can be 

added and removed whilst Bayes factors (ratios of posterior model probabilities) can be 

generated efficiently. Details of such schemes can be found in Giudici and Green (1999) or 

Chapter 6. The algorithmic details of the scheme employed in this chapter and appropriate 

references can be found in Chapter 6.

Markov Chain Monte Carlo Model Composition

Construction of a Markov chain sampler using decomposable graphical models is simple 

for the reasons stated above. Valid moves are easily identified and Bayes factors can be 

efficiently calculated. It is the efficient calculation of Bayes factors that leads to the class 

of decomposable graphical models being searched rather than the class of Markov graphs. 

Decomposable graphs are clearly a subset of the Markov graphs and are less rich in terms 

of specifying complex conditional independence relationships. Nevertheless, they are still a 

rich class of models and still imply independence of variables using the separation property 

described for Markov graphs above. One difference is that an edge does not imply a 

marginal dependence, as it could be an edge required for decomposability.

Markov Chain Monte Carlo (MCMC) can be used to generate a posterior mass function 

over the space of decomposable models. This is sometimes referred to as MCMCMC, MC3 

or Markov Chain Monte Carlo Model Composition (Madigan and York, 1995). Inferences 

can then be averaged over this posterior mass function to provide model-averaged 

estimates (Hoeting et al., 1999). 

MCMCMC offers an approach for modelling the joint mass function over the key variables 

170



used in a SUDA analysis. The sample data are used to fit a posterior distribution over the 

space of decomposable models, and inferences regarding population counts are then 

averaged using the posterior distribution. The details of generating probabilities of a 

correct match under such a scheme can be found in Chapter 7. The scheme used here is 

identical.

Simulation experiments

Data from the 1991 2% Individual Sample of Anonymised Records (SAR) were treated as 

a notional population (Office for National Statistics, 1993).  The population was taken to 

be all SAR records from the North West SAR region (the 10th level of REGIONP). This 

contains 126,251 individuals. The chosen key variables were AGE (age), ECONPRIM 

(primary economic position), ETHGROUP (ethnic group), LTILL (limiting long-term 

illness), MSTATUS (marital status), SEX (gender), BATH (bath / shower), CARS (number 

of cars), TENURE (tenure of household space), RESIDNTS (number of residents in 

household), DEPCHILD (number of dependent children in household) and PENSINHH 

(number of residents of pensionable age in household). Both 1% and 5% samples were 

taken for the purposes of simulation.

Sample uniques were ranked according to SUDA scores and the IS metric. Probabilities of 

a correct match given a unique match were estimated using DIS-IS. These were compared 

with rankings and probabilities based on the above MCMCMC approach. Due to poor 

mixing of the Markov chain a simulated annealing (see e.g. Bertsimas and Tsitsiklis,1993) 

approach was also tested.

MSUs were generated using an alternative algorithm to SUDA and SUDA2 recently 

developed by the author. A Fortran implementation of the algorithm has broadly similar 

performance to the C++ implementation of SUDA2 judging by the running times reported 

in Manning et al. (2008). However, a Python implementation was used so that the running 

times could be approximately matched with those of the MCMCMC and simulated 

annealing approaches, which are both implemented in Python.
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The Bayesian approach used the Markov Chain Monte Carlo Model Composition 

(MCMCMC) scheme used in the attack strategy described in Chapter 7, but with the 

following parameters.

A Hyperdirichlet prior was used with total prior precision equal to 1. 1,000 burn in 

iterations were performed before 20,000 fitting iterations. The thinning parameter was 20. 

This is a short burn-in and a much smaller number of fitting iterations than would ideally 

be chosen. A more appropriate thinning parameter would have been at least 100. Some 

initial experimentation showed these to be reasonable given the constraint of trying to 

match the computational cost of the SUDA approach.

Unfortunately the mixing of the chain was extremely poor. Several runs were attempted 

with alternative priors, but resulted in similarly poor mixing. A hierarchical approach using 

a Gamma prior for the total prior precision was also tried in an attempt to improve the 

mixing (Tarantola, 2004). However, the hierarchical approach is significantly more 

expensive as it negates the speed ups that can be achieved by caching the results of 

intermediate calculations. It was abandoned on the basis of both computational cost and the 

fact that it did not appreciably improve mixing. An alternative approach is to start multiple 

chains from well dispersed starting models (Gelman and Rubin, 1992) . This was not 

attempted as the mixing was so poor that many runs resulted in only a single model being 

visited during a run. Essentially it would have constituted an expensive way to generate a 

small number of plausible models, although suitable weights for averaging could have 

been easily derived from the models' marginal log likelihoods.

It does sometimes happen that with several variables the fitness landscapes are highly 

multi-modal. However, it is relatively unusual for mixing to be quite so bad. There is 

always the alternative of foregoing model averaging and using a single model instead. 

Simulated annealing allows a search to be carried out for a globally optimum model, the 

maximum a posteriori model. It was found that simulated annealing allowed good models 

to be found quickly. Multiple runs demonstrated that a variety of models were found, but 

they were very similar in terms of their edge sets. The Markov chain runs also tended to 

find models with similar edge sets, although they had greater variability than those 

resulting from the simulated annealing runs. Simulated annealing runs consistently found 

higher probability models than those visited in the MCMCMC runs.

172



The simulated annealing runs were also designed to find the best models possible within a 

similar time to that taken by SUDA analysis. The initial and finishing temperatures were 

1014 and 0.01 respectively. The chosen cooling schedule was exponential with parameter 

0.99.

Even a poorly mixing Markov chain will converge eventually, and a simulated annealing 

algorithm with appropriate parameters will find the optimal model with probability 

arbitrarily close to 1. However, for comparison purposes the various approaches were 

engineered to have comparable computational costs for the analysis based on the 12 key 

variables above for the North West region. The MCMCMC running times actually varied 

much more than the simulated annealing and SUDA running times across a number of trial 

runs. Once the various algorithms had been approximately calibrated to have similar costs 

a single run for each was performed for each of the two samples. The results of those runs 

are reported here.

One percent sample

Predictive performance was compared by generating probabilities of a correct match 

(given a unique match) and comparing against the correct probabilities derived from the 

population counts. These were plotted against each other on a log10 scale to ensure a 

reasonable spread of data points. Only a random sample of 500 data points were plotted as 

this produced a clearer plot. Perfect predictive performance corresponds to a 450 line. 

Robust loess smooths (Cleveland, 1979) were also plotted.
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Figure 46. Predictive performance for DIS-IS with the 1% sample

The plot in Figure 46 certainly demonstrates a correlation between the true match 

probabilities and those predicted by DIS-IS. There appears to be a tendency for DIS-IS to 

overestimate the true probabilities except for smaller population counts, where the 

matching probabilities are underestimated. It is inevitable that any reasonable estimator 

will underestimate the true probabilities for population uniques (log10[1/F]=0) because the 

match probability is 1.
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Figure 47. Predictive performance for MC3 with the 1% sample

The MCMCMC run visited 2 models, but the most probable model (p=0.995) only differed 

from the less probable model by a single edge. The best models visited by the MCMCMC 

and SA (simulated annealing) runs had 11 and 14 edges respectively with 8 common edges. 

The most probable model overall was the 11 edge MCMCMC model. Figures 47 and 48 

both demonstrate a clear tendency to overestimate the matching probabilities for 

population counts above 1. The MCMCMC and SA estimated match probabilities for 

population uniques are certainly much more accurate than the DIS-IS estimates, as 

suggested by the loess smooths. These results do not unequivocally demonstrate that the 

MCMCMC or SA approaches are better than the DIS-IS measure in distinguishing between 

sample uniques that are population unique and those that are not. The plots seem to 

demonstrate that MCMCMC and SA will often produce high probabilities of a correct 

match for population uniques, but they will also tend to overestimate the probabilities for 

population non-uniques.
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Figure 48. Predictive performance for simulated annealing with the 1% sample

A comparison of the relative merits of these measures should concentrate on how well they 

can rank the sample counts from low to high risk (of population uniqueness). In other 

words, they should be judged on how well they are able to discriminate population uniques 

and non-uniques. This depends only on how well they can order the sample uniques in 

terms of risk, rather than the actual values of the risk measures. Copas (1999) develops a 

method of comparing scores based on exactly this idea. He assumes that a score is related 

to the probability of an event through some monotone transformation of the score. But he 

assesses the effectiveness of a score independently of the accuracy of the monotone 

transformation. Thus he assesses the potential of a score to discriminate, rather than the 

accuracy of calibration. This allows DIS-IS to be compared with MCMCMC and SA 

independently of how well they are calibrated.
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Copas (1999) plots the logit transformed ranks against the logit transformed probabilities 

associated with the ranks. This requires the correct probabilities to be known or estimable 

from data. For scores that take a finite number of values, such as IS, the true probability of 

population uniqueness can be estimated from the proportion of sample uniques with a 

given score that are also population unique. When scores do not have a finite number of 

possible values, or where the number of values is small in comparison to the available data, 

Copas (1999) suggests the fitting of a locally weighted logistic regression as detailed 

below.

For each of the considered measures we have data in the form (yi, si), i = 1, …, n, where yi 

equals 1 if the population count equals 1 and 0 otherwise, si is the corresponding score, n is 

the number of uniques in the sample, and the i are ordered in increasing size of the score.

A suitable number, m, of plotting points is chosen,

t=log  j
m1− j   j = 1, …, m.

Weights are calculated for each t,

w t ,i=exp {−1
2

t− ti 
2

h t
2 }

where,

h t=
h

4 t

and

  t = t  {1−  t }

is the logistic density function, and 
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 t =
exp  t 

1exp  t 

is the logistic distribution function, and

−1  t =log  t
1−t 

is the logit function.

h is a smoothing parameter (the desired standard deviation of the smoothing window at the 

centre of the plot).

For each t, at and bt are the solutions to the simultaneous non-linear equations

∑ wt ,i { y i− atbt t i  }t i
l=0

for l = 0, 1.

The logit rank plot is the plot of at + btt against t.

The code for the plots was written in Python with the weighted regression being carried out 

using the statistical programming language R.

Properties of the logit rank plot are discussed in Copas (1999), particularly with reference 

to interpreting the slope and its advantages over the more often used receiver-operating 

characteristic curve (see e.g. Fawcett, 2006). For the current comparisons the basic 

interpretation is that better scores have greater slope. Figure 49 shows the logit rank plot 

for the SUDA score, IS, MCMCMC and SA. As the logit rank plot method is invariant to 

monotone transformations the IS curve applies equally to DIS-IS. MCMCMC and SA have 

greater slope than the other metrics. The SUDA score appears to be similar in performance 

to the IS metric. The curves suggest that if we were to take the n riskiest sample uniques 

according to the various scores, then we would generally expect to find a greater 
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proportion of population uniques for MCMCMC and SA, regardless of the value of n.

Figure 49. Logit rank plot for the 1% sample

The joint distribution of the population and sample counts is shown in Table 2. The table is 

very sparse, with 3,639,639,605 of the 3,639,680,000 population cells being zero. There 

are a total of 1019 sample uniques, 280 of which are population unique.
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Population counts

0 1 2 3 4 5 6-10 11-20 21+ Total

Sample 

counts

0 3639639605 26604 5327 2275 1256 822 1647 824 527 3639678887

1 280 102 73 53 47 141 104 219 1019

2 1 1 0 1 0 9 47 59

3 0 0 0 0 0 21 21

4 0 0 0 0 9 9

5 0 0 0 4 4

6-10 0 0 1 1

11-20 0 0 0

21+ 0 0

Total 3639639605 26884 5430 2349 1309 870 1788 937 828 3639680000

Table 2. Joint distribution of population and table counts for the 1% sample

Figure 50. Best model found by simulated annealing for the 1% sample

It is always worth checking that the fitted model makes sense. The model found by the SA 

run is shown in Figure 50. It implies a number of marginal and conditional independence 

relationships. For instance, ETHGROUP is marginally independent of all other variables. 

CARS is independent of all other variables given RESIDNTS. There are several 

relationships that might be questioned, such as the independence of CARS and 

ECONPRIM given RESIDNTS. Nevertheless, the above model does lead to improved 
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inferences over the existing SUDA and IS measures.

Figure 51. Convergence of simulated annealing for the 1% sample

It is also worth checking the convergence of the simulated annealing run. It should be 

characterized by a more or less random search at higher temperatures, gradually 

converging to a good solution at lower temperatures. Figure 51 shows the marginal log 

likelihoods for the visited models during the run. Models with higher marginal log 

likelihoods have higher posterior probabilities. The convergence appears to be reasonable, 

particularly given the constraint of finding a schedule that matches the SUDA approach in 

terms of running time.

There are similar diagnostics that could be produced for the MCMCMC run. However, 

they are not worth generating when the mixing is so awful. The simulated annealing run 

clearly visited many distinct models, whilst (after burn-in) the MCMCMC run visited only 
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two.

Five per cent sample

The results for the 5% sample are similar. There is evidence that all measures overestimate 

the true probabilities of a correct match for non-unique population counts. This is more so 

for the MCMCMC and SA approaches.

Figure 52. Predictive performance for DIS-IS with the 5% sample

Again, it appears that MCMCMC and SA produce better estimated probabilities of 

uniqueness for population uniques.
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Figure 53. Predictive performance for MC3 with the 5% sample
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Figure 54. Predictive performance for simulated annealing with the 5% sample

The logit rank plot in Figure 55 demonstrates that MCMCMC and SA provide the better 

scores. In this instance the MCMCMC run visited four models after the burn-in period. The 

highest probability model (p=0.920) was more probable than the best model visited during 

the SA run. As for the 1% sample, MCMCMC and SA both outperform SUDA and IS.
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Figure 55. Logit rank plot for the 5% sample

Population counts

0 1 2 3 4 5 6-10 11-20 21+ Total

Sample 

counts

0 3639639605 25567 4938 2016 1042 671 1195 447 125 3639675606

1 1317 479 319 243 179 499 333 214 3583

2 13 14 24 19 86 126 173 455

3 0 0 1 8 27 122 158

4 0 0 0 4 53 57

5 0 0 0 40 40

6-10 0 0 75 75

11-20 0 25 25

21+ 1 1

Total 3639639605 26884 5430 2349 1309 870 1788 937 828 3639680000

Table 3. Joint distribution of population and table counts for the 5% sample
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Figure 56. Best model found by simulated annealing for the 5% sample

It can be seen that the best model found for the 5% sample differs somewhat from the best 

model found for the 1% sample. There are no marginal independences and the conditional 

independences are largely different. Nevertheless it does lead to improved inferences.

Sensitivity to table sparseness

SUDA and DIS-IS have been calibrated against analyses involving around a dozen 

variables. Essentially, this is their 'sweet spot'. Conditioning on variables, such as the 

conditioning on REGIONP in the above analyses, will reduce the number of population 

units without reducing the number of cells (assuming REGIONP would not have been 
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included in the analysis otherwise). On the other hand, including more variables will 

increase the number of cells and tend to increase the number of sample uniques and the 

sparseness of the table. In order to investigate the possible effects the analysis was repeated 

with TENURE, RESIDNTS, DEPCHILD and PENSINHH removed. It was also repeated 

with a further 4 variables added; COBIRTH (country of birth), ECONSEC (secondary 

economic position), FAMTYPE (family type) and SOCLASS (social class). The same 1% 

and 5% data samples were used across all analyses.

Subsequent discussion will focus on the 16 variable analysis of the 1% sample and the 8 

variable analysis of the 5% sample. These represent the most sparse and least sparse of all 

the analyses. Not all outputs are shown.

1% sample with 16 variables

The DIS-IS estimates of population uniqueness do not appear to be largely biased except 

for low population counts. This is not dissimilar to the previous results.
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Figure 57. Predictive performance for DIS-IS with the 1% sample and 16 variables
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Figure 58. Predictive performance for MC3 with the 1% sample and 16 variables

On the other hand the results for MCMCMC demonstrate a consistent overestimation of 

the true correct match probabilities (apart from population uniques). The plot for the 

simulated annealing run is not shown, but is very similar to that for MCMCMC, 

emphasising that the overestimation might not be due to chance. Additional simulated 

annealing runs with alternative cooling schedules demonstrate that this is not simply down 

to the relatively rapid cooling resulting from the fixed parameterization. It appears to be a 

more general result with sparse tabular data.  However, the logit rank plot demonstrates 

that SA and MCMCMC show a marked advantage over SUDA and DIS-IS when it comes 

to distinguishing unique from non-unique population counts (given sample uniqueness). In 

this case MCMCMC and SA present almost identical results. The MCMCMC visited 8 

distinct model (after burn-in), but SA found the highest probability model overall.
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Figure 59. Logit rank plot for the 1% sample with 16 variables

5% sample with 8 variables

There is evidence of overestimation for both DIS-IS and SA. The SA results (not shown) 

are similar to the MCMCMC results.
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Figure 60. Predictive performance for DIS-IS with the 5% sample and 8 variables
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Figure 61. Predictive performance for MC3 with the 5% sample and 8 variables
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Figure 62. Logit rank plot for the 5% sample and 8 variables

The logit rank plot demonstrates that SA provides the better score, and MCMCMC 

performs worse than SUDA or DIS-IS. In this instance the MCMCMC run only visited two 

distinct models after the burn-in period, and SA produced the highest probability overall.

SA seems to be more reliable than MCMCMC, which suffers from mixing problems. 

Longer MCMCMC runs would produce more consistent results, and different cooling 

schedules might produce better results for SA. But the parameters were fixed during the 12 

variable 1% sample run. This allows a comparison of how the various approaches might 

scale in computational terms. It also reflects the fact that users of the existing SUDA 

software might not feel comfortable performing diagnostics and tuning parameters in order 

to generate reliable results. It also gives an unfair advantage to the SUDA approach, 

making this a more stringent test of the MCMCMC and SA alternatives.
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Costs

Computational costs will tend to vary with problem size for all the methods. For sparse 

tables there will tend to be more sample uniques to investigate. Sparse tables will also tend 

to have larger MSUs, which can be a good or a bad thing depending on the precise 

algorithm used to find them. The running times for the various algorithms are shown in 

Figures 63, 64 and 65. The MCMCMC and SA algorithms were calibrated to have similar 

cost to DIS-IS for the 12 variable 1% sample runs. However, the running times 

(MCMCMC in particular) were quite variable.

Number of Variables

Sample 

proportion

8 12 16

     1% 0.54 8.63 138.20

     5% 1.01 21.66 519.50

Figure 63. DIS-IS running times (secs)

Number of Variables

Sample 

proportion

8 12 16

     1% 9.62 10.66 34.62

     5% 16.72 48.90 50.76

Figure 64. MC3 running times (secs)
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Number of Variables

Sample 

proportion

8 12 16

     1% 5.40 11.03 21.01

     5% 9.75 34.04 76.17

Figure 65. Simulated annealing running times (secs)

The DIS-IS results show increasing computational cost with the number of variables. Costs 

rise quite quickly as the tables become sparser. The effect of sample proportion is less 

clear, although the 5% sample runs carried out here took longer than the 1% sample runs. 

As population units are sampled unique sample counts appear, but a sample unique 

disappears when a further unit is drawn from the same equivalence class. In any case, the 

algorithm used here differs from both SUDA and SUDA2, so any general inferences about 

how the approach scales would have to be tentative.

The MCMCMC algorithm used the same parameters for all runs. Thus it was not affected 

by problem size as it would have been if appropriate parameters were used for each run. 

Costs do increase with the number of variables, but this is largely due to the increased 

number of sample uniques. There is no obvious reason why the model fitting should take 

significantly longer for larger problems. Much of the measured cost is taken up by 

generating the posterior probabilities from the discovered models. One potential issue is 

that there are more models to visit with larger numbers of variables, and previously cached 

calculations can be reused less frequently. More experimentation and code profiling will 

enable these issues to be investigated.

The SA costs are far less variable than the MCMCMC costs. They generally compare very 

favourably with the other approaches for larger problem sizes.
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Risk measures

The SUDA / DIS-IS software generates record level risk measures for each sample unique. 

This is clearly the case for the MCMCMC and SA approaches. However, the commercial 

SUDA software also generates measures at the file, variable and category levels.

The basic building block of these measures is the IS metric. For each sample unique the IS 

metric is calculated for each MSU, the sum of these metrics constituting a record level risk 

measure. (This might be divided by the factorial of the number of variables to produce the 

POL measure.)

The file level risk measure is the sum of the measures for the sample uniques. In other 

words, the sum of the IS metrics for all the MSUs for all the sample uniques.

The variable level risk measure is calculated in the same way as the file level measure, 

except only the MSUs that contain the variable concerned are summed.

The category level risk measure is calculated in the same way as the variable level 

measure, except only the sample uniques that have the given variable at the given category 

level are summed.

The variable level and category level measures are generally divided by the file level 

measure to produce percentage contributions to the file level measure.

The above measures are not based on any underlying theory, or are intended to have 

anything other than the obvious interpretation stemming from their construction. It does 

indicate that users might want measures associated with files, variables and variable 

categories. There are certainly sensible file level measures that can be generated. In 

Chapter 5 a number of measures were discussed, some of which were based on similar 

outputs. It is simple to generate estimated probabilities of correctly matching from sample 

to population, or population to sample, given MCMCMC or SA results. A candidate for a 

file level risk measure would be the probability of a correct match given a unique match, 

Pr(CM|UM). This is easily estimated.
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Of more interest is how meaningful measures could be generated at the variable and 

category levels.

Variable level

A possible approach would be to assess the change in risk produced by removing a variable 

from a data release. A variable could be removed, an analysis repeated, and the change in 

the file level measure reported. If Pr(CM|UM) was the file level measure in use, then the 

ratio of the measure given all variables and the measure given a reduced set of variables 

would provide a relative risk of including the variables in the set difference. As in the 

simulations above, it would be sensible to use the same sample. Both the MCMCMC and 

SA approaches generate a joint mass function over all the variables. The joint mass 

function over a subset of variables can be generated by marginalization. This is 

accommodated in standard Bayesian network inference algorithms (see Chapter 6). So 

there is no need to repeat analyses. Variable level relative risk measures can be generated 

from the already fitted model(s) considering those sample uniques that survive 

marginalization.

Category level

A variable level measure can be generated by marginalization. But marginalization simply 

involves collapsing across all the categories of a variable. Exactly the same approach could 

be used but only collapsing over a subset of categories. Thus the first two categories of a 

variable could be collapsed into a single category. Some sample uniques would disappear, 

but the inferences for those that remained would be different, leading to a different file 

level measure. Again, a relative risk measure could be produced. The issue here is which 

categories to collapse and how to generate a single measure for a single category.

The worth of being able to investigate the effect on risk of recoding a variable by 

collapsing categories is clear. That is exactly the type of measure that a statistical agency 

might consider for disclosure control. A possibility for generating a measure for a single 
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category would be to collapse the category with each other category and to average the 

resulting relative risk measures. Thus a total of  n·(n-1)/2 relative risk measures would 

need to be generated in order to generate single scores for each of n variable categories. 

For variables that are categorized interval scaled variables it would be sensible to only 

consider neighbouring categories, which would also reduce cost.

An alternative approach would be to simply not include any sample uniques that had the 

relevant variable at the given category level. A file level measure could be generated for 

the remaining sample uniques, which would be equivalent to the risk if the variable 

category was simply suppressed. A relative risk associated with the inclusion of the 

category would be the ratio of the file risk measure for full analysis to the file risk measure 

associated with the suppression of the category. This measure could be generated much 

more efficiently than the previously suggested measure based on recoding rather than 

suppression.

Another possibility would be to provide a desired reduction in risk and to carry out a 

search for recodings / marginalizations that reduced the risk sufficiently whilst minimising 

loss of utility.

Discussion

The SUDA and DIS-IS approaches have been used in statistical disclosure control for 

several years. They are surprisingly effective methods for identifying sample uniques that 

are likely to be population unique.  However, evidence has been presented that approaches 

based on fitting models via Markov Chain Monte Carlo methods and simulated annealing 

offer improvements in terms of the accuracy of classification. Although all approaches tend 

to overestimate Pr(CM|UM) for non-unique population counts, MCMCMC and SA 

approaches are better at distinguishing population uniques from non-uniques. MCMCMC 

results can be a little unreliable due to poor mixing of the chains. There is some evidence 

that the SUDA score distinguishes population uniques better than the IS metric, although it 

is not terribly evident from the simulations reported here. The experiments used a fixed 

parameterization for both MCMCMC and SA, based on trying to match computational 
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costs with DIS-IS for a particular problem. They would be expected to perform better if 

parameters were allowed to depend on relevant factors such as problem size and table 

sparseness.

It appears that MCMCMC and SA also scale better. SUDA and DIS-IS require a search for 

MSUs which can become very costly. The search can be limited to MSUs below a given 

size; and this option is available in the commercial software. However, this is likely to 

mitigate the problem, rather than to solve it. Sparser tables will tend to have more sample 

uniques, inevitably pushing up computational costs. Although this affects the MCMCMC 

and SA methods too, it is through the generation of estimated probabilities rather than 

through the model fitting.

There is an issue with mixing for MCMCMC. This seems to be worse for sparser tables. 

The analyses in Smith (2006) and in Chapter 7 used a lower number of variables and there 

were no particular issues with mixing. Alternative schemes might allow better mixing. This 

would allow the potential advantages of model averaging to be properly assessed. 

Nevertheless, even locally good models found by MCMCMC often perform well compared 

to SUDA and DIS-IS.

It should be noted that Forster and Webb (2007) adopted an alternative approach when 

estimating different risk measures that would normally require access to population data 

for calculation. They used a decomposable graphical modelling approach, but used a 

scheme that branches out from the full independence model to find a number of local 

optima. They then generated weights for model averaging, and produced model averaged 

estimates. This scheme was first presented in Madigan and Raftery (1994). This is a fairly 

pragmatic and efficient approach and would be worth comparing against SA and potential 

alternative MCMCMC schemes (with better mixing).

As the MCMCMC and SA approaches generate full probability models they can be used to 

generate risk metrics for smaller marginal and conditional tables. This offers the potential 

to generate meaningful file, variable and category level risk metrics. In particular, it has 

been shown how these metrics could reflect alternative options available to the DSO. That 

is, metrics could be based on potential recoding and suppression schemes. This raises the 

question of whether these metrics could be generalized to other options available to DSOs. 

199



In principle the answer is yes. Smith and Elliot (2003) and Forster et al. (2008) both 

assessed rounding schemes using a similar Bayesian approach. The difference would be 

that model fitting runs would need to be repeated.

Strictly speaking the variable and category level measures suggested could also involve 

refitting. They assume that refitting after suppression of a variable or category will produce 

posteriors that are marginal or conditional distributions of the model fitted to the complete 

table. This is not necessarily the case. But refitting would introduce model uncertainty that 

could render the measures less reliable. A relative risk different to 1 might be explained by 

the variability in posterior distributions that would be experienced across multiple fits on 

the same data.

The fact that MCMCMC and SA produce full probability models also increases the options 

for the metrics used. DIS-IS is restricted to Pr(CM|UM). Yet arbitrary types of measure can 

be generated from full probability models.
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CHAPTER 9

Summary

Motivation

The main assertion underlying this body of work is that any person or organization wanting 

to assess disclosure risk should put themselves in the position of the data intruder. Then, 

risk should be assessed in terms of what an intruder can reasonably infer from the data that 

are available. This is not, in itself, a novel argument, but there is a tendency – in both 

research and practice - to focus on simple data-centric measures that do not reflect true 

risks. Also, some existing approaches do not fully take into account the inferences that 

could be made by a knowledgeable intruder. In some instances this is because they use 

modelling approaches which can be improved or because they use inefficient algorithms 

leading to long running times and / or unnecessary approximations.

The core of the thesis is several relatively self-contained chapters demonstrating these 

issues and offering new or improved approaches.

Core chapters

U.S. Department of Commerce (1978) discussed the risk of attribution and the mechanism 

by which it occurs over 30 years ago. Much work in SDC since has concentrated on the 

risk of identification. Disclosure implies making previously unknown inferences about 

individuals. This is attribution, and attribution can occur without identification. Exact 

attribution requires that the intruder knows that a target is a unit in a relevant data release, 

but does not require a correct match against a published record. Knowing that an individual 

is male and on a low income would allow the inference that he is unemployed if all males 

on low income within the population were known to be unemployed from a data release. It 
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is the fact that there are no employed males on low income that makes the inference 

possible. An exact match against a population unit would clearly allow the same inference, 

and also inferences regarding any other published attributes. This raises a second point. 

Identification is not necessary for attribution, but neither is it sufficient. If all the 

information in a released record is required to generate a correct match, then there is no 

remaining information to infer about the target. Identification occurs, but there is no 

attribution. A DSO might still be concerned that an individual might be identified, even if it 

is self-identification, because of the possible perception of disclosure. It is important to 

distinguish real disclosures of information from perceptions of disclosure.

The SAP measure was developed with this in mind. Much emphasis had been placed on 

cell counts of 1 in released tabular data. Little attention has been given to the presence of 

the zeros which actually allow attribution to take place. A number of different measures 

could have been chosen. For released population data containing zeros there is a clear risk, 

and simple measures such as the proportion of zero count cells could be used. At the time 

the method was developed the data releases that were being considered were perturbed 

releases of population data at small levels of geography. Thus there was also the possibility 

that the intruder might know some individuals within the population and be able to exploit 

this information. So the chosen SAP measure was the probability of being able to recover 

one or more zeros after removal of k randomly selected individuals from the population. It 

was assumed that an intruder would know the perturbation scheme, would have some local 

knowledge, and would be able to exploit this by recovering zeros in a table for unknown 

individuals. The measure was quite easily calculated for simple releases, and an efficient 

approach was developed for the specific forms of release that were under consideration. 

Generalizations were also considered. The main issue that was being addressed was the 

lack of a suitable measure for the risk of attribution. It was felt that attribution risk was 

more relevant than identification risk for data at low levels of geography where an intruder 

might have substantial information on the local population. A neighbour discovering 

previously unknown information about a target would have had more impact than self-

identification.

The chapter on the new Key Variable Mapping System (KVMS) showed how an existing 

piece of SDC software could be improved. Spreadsheets are often awkward for a user, as 
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there is inadequate separation of concerns. Data, application logic and user interface are 

lumped together. A user can make arbitrary changes to the spreadsheet and consistency 

checking data is difficult. Usability is severely compromised by having to navigate around 

a large number of distinct worksheets to accomplish relatively simple objectives. Appendix 

1 contains a KVMS tutorial which demonstrates the data entry system, designed to prevent 

users from entering inconsistent information. It demonstrates functionality that was not 

described in the KVMS chapter. However, the more interesting developments related to a 

more concrete, mathematical specification of the objectives of Key Variable Mapping and 

the data structures and algorithms it led to. This led to significant performance 

improvements.

KVMS (Elliot et al., 2010) concerns the possibilities for matching that are available across 

data sets contained within a data environment. The environment stems from a 

consideration of intrusion scenarios. The data sets generally stem from questionnaires and 

it is the possible answers to questions that can be matched on. It is not always the case that 

a question corresponds to a variable and that the possible responses are mutually exclusive 

and exhaustive. Sometimes it is necessary to consider all the possible responses before the 

meanings become clear. For instance, 'terraced house' would not include 'end terrace' if that 

was a distinct option. The decision was taken that the new KVMS would deal with 

variables with mutually exclusive and exhaustive categories. Thus the user would have to 

sort out ambiguities such as the precise meaning of 'end terrace'. This, and the consistency 

checking, helps to ensure that categories for a variable within the KVMS have a clear and 

distinct meaning. Once it is clear that the KVMS is dealing with variables and valid 

categorizations, then the possibilities for matching can be specified mathematically. This 

enables the development of improved data structures and algorithms.

Aggregation graphs are a simple idea, but they allow valid categorizations to specified 

easily and checked automatically (assuming the existing graph is correct). Any edits to the 

graph (to accommodate new categories) can be checked for validity (consistency with 

existing categorizations). Harmonization can be defined precisely, allowing a very efficient 

means of harmonising categorizations by generating set partitions using the aggregation 

graph and using simple graph sum operations on graph representations of the set partitions. 

An efficient algorithm for constructing harmonization graphs allows these structures to be 

used for generating analysis outputs. Although the analysis is the same as in the original 
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KVMS, the harmonization graph could be used to answer other queries regarding matching 

possibilities. This offers the potential to extend the functionality of the system. The 

performance improvements will allow much larger data environments to be assessed in 

reasonable time.

The chapter on evaluating strategies for matching sample and population units builds upon 

work presented at the International Conference of the Royal Statistical Society, 2006. It is 

an attempt to find out what matching strategies might be most useful to an intruder. It 

looked at the specific strategies underlying some commonly used risk measures and 

considered more general forms of strategy and their probability of success. One of the 

main results was that matching from sample to population dominates matching from 

population to sample, although there are degenerate cases where the probability of a 

correct match is the same for both strategies. It was also found that similar dominance 

relationships were evident for the costs of search, and that these held whether search was 

costed in terms of sampling with or without replacement. In fact, for the perhaps more 

realistic costing with replacement measure, the ratio of the probability of a correct match to 

the search cost (efficiency) was constant for matching from sample to population, equal to 

the reciprocal of the population size. It was shown that simple strategies could be 

constructed with widely varying probabilities of success, and therefore costs. In contrast to 

the “no free lunch” of matching from sample to population, matching from population to 

sample could offer e.g. improved probabilities of success for no additional cost. This 

would involve attempting to find a larger number of equivalence classes without increasing 

the sum of their population counts.

A Bayesian approach was shown to offer very high probabilities of a correct match for 

anything but very small sampling fractions. Essentially the Bayesian approach allows 

equivalence classes to be ranked so that those with lower expected population counts can 

be included in a strategy. The efficiency of the strategy is fixed for matching from sample 

to population, but simulations showed that matching from population to sample could be 

made much more efficient without significantly impacting the probability of a correct 

match. The Bayesian approach also offers a means of trying to maximize the probability of 

a correct match for a given cost. Trying to match the cost of simply selecting the sample 

unique equivalence classes tended to produce strategies with lower probabilities of a 
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correct match (at lower costs). This was due to the Bayesian approach tending to 

underestimate the population counts and thus including sample non-unique cells. 

Nevertheless, this issue could have been identified if the expected counts had been 

examined, as there tended to be a noticeable difference in the expected counts for sample 

uniques and sample 2s. But the important point is that the Bayesian approach allows 

probabilities of a correct match and costs to be traded off. An intruder using this approach 

can tailor the attack strategy. Moreover, it highlights the importance of how efficiently the 

intruder can search the population. An intruder who can search the population efficiently 

can generate correct matches with very high degrees of confidence.

The chapter describing graphical models and the Metropolis-Hastings and simulated 

annealing schemes is needed to understand the details of the Bayesian approach. Other 

approaches are also based on the idea of adding and removing single edges from 

decomposable graphical models. But there is one area where the schemes differ, and that 

can make a large difference to computational costs. A move to a proposed model must be 

made with probability zero if the proposed model is not decomposable. There are a number 

of algorithms for testing for decomposability contained in the references. But performing 

any of these on each iteration of a Metropolis-Hastings run would be expensive. Giudici 

and Green (1999) realized this and used a junction tree to enable checks that only relied on 

local structure. Checks were performed much more efficiently than using global checks 

with existing algorithms. But junction trees were never designed to be dynamic structures 

and were not optimized for this purpose. Although dynamic junction trees were not 

designed with model determination in mind (e.g. Smith, 2001) they were always designed 

to be dynamic analogues of junction trees. They were actually initially designed to 

facilitate finding good triangulations for Markov graphs. Nevertheless, they are perfectly 

suited to decomposability checks given the addition or removal of an edge. No empirical 

evidence of their superiority is provided as this would require a comparable 

implementation using standard junction trees. However, comparison of the algorithms 

required suffices here. Establishing whether two nodes are in the same connected 

component and whether two nodes are present in a single clique are both steps that imply 

breadth first searches in a junction tree. In dynamic junction trees (or forests) the former is 

achieved by  iterating through parental nodes to find the root(s), and the second is achieved 

by a simple depth first traversal of a subtree. Although a separate union-find data structure 
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could be used alongside a junction tree to eliminate the former breadth first search, it 

would involve having to update two data structures rather than one. There are also means 

of improving performance in identifying whether an edge is a member of exactly one 

maximal clique by maintaining a mapping of variables to the maximal cliques of the 

junction tree that contain them. But the dynamic junction tree representation encapsulates 

all these data structures in one. The relevance of this to SDC is the performance that it 

offers. A naïve implementation using one of the standard algorithms that could be used to 

check for decomposability would be far less efficient. A testament to this is the fact that 

Giudici and Green found it very much worthwhile finding something better. A testament to 

the performance of dynamic junction trees is that for Markov Chain Monte Carlo Model 

Composition the performance bottleneck is the calculation of gamma functions, even 

though they are coded in Fortran and results are cached for reuse. Efficiency means being 

able to risk-check more data potential data releases in a given time, or being able to check 

the same releases more thoroughly.

The final core chapter compared DIS-IS with an alternative Bayesian approach. DIS-IS is 

an approach used to generate probabilities of a correct match for sample uniques when the 

population counts are unknown. It was shown via simulations that Bayesian approaches 

using Markov Chain Monte Carlo and simulated annealing offer both increased 

performance and better results than SUDA and DIS-IS. The Markov Chain Monte Carlo 

approach was almost identical to the Metropolis-Hastings scheme used for estimating 

correct match probabilities. Although simulations showed that it tended to perform better 

than DIS-IS the mixing of the Markov chain tended to be poor. Thus a simulated annealing 

approach was also investigated. DIS-IS had lower running costs than MCMCMC and SA 

for small numbers of variables. But for larger problems where cost is more significant SA 

outperformed DIS-IS and MCMCMC by a significant factor. Better estimation at lower 

computational costs is a worthwhile achievement in itself. However, MCMCMC and SA 

approaches produce full probability models. This allows the generation of arbitrary risk 

measures, rather than just Pr(CM|UM). In fact Forster and Webb (2007) have used a 

similar MCMCMC scheme to estimate other risk measures in the absence of population 

counts. This also allows more meaningful measures to be generated for variables and 

variable categories. Most of the measures generated by the SUDA software (the 

commercial implementation of DIS-IS) have no simple interpretation in terms of disclosure 
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risk. The MCMCMC and SA approaches allow measures to be produced that have direct 

interpretations in terms of relative risks. What is more, they can be generated for various 

recoding, suppression and rounding schemes. These are distinct advantages over the 

existing DIS-IS scheme.

Policy implications

The work on attribution risk in tabular data revisits concerns first raised in U.S. 

Department of Commerce (1978). It emphasizes that SDC is not only about identification 

risk, and that it is important to put oneself in the position of an intruder when assessing 

risk. The original motivation for the measure stemmed from exactly that type of 

consideration. The method was originally used to risk assess proposed releases for the UK 

Office for National Statistics (Smith and Elliot, 2003). Published Office for National 

Statistics guidance on disclosure control will now often be found to refer to the risk from 

table zeros and scenarios where intruders use known information to make inferences about 

residual populations4. Available software would increase the impact on policy, allowing 

risk measures to be generated. Nevertheless, concern over the issue of zeros does appear to 

be more prevalent than it once was.

The new KVMS has been implemented in software with a user friendly interface. It is not 

of production quality, and some desirable features such as automatically generating 

aggregation graphs for variables on a numeric ordinal scale have not been implemented. 

Nevertheless, it does provide distinct advantages over the original spreadsheet model. 

There is potential for further development. It is being tested at the University of 

Manchester and is being used to construct a data environment from the same forms used 

for the original KVMS. It is a useful tool that could be made more useful with some extra 

work. Available production quality software (whether free or commercial) would increase 

its impact on policy.

The work on matching between samples and populations certainly provides some insight 

into how a knowledgeable intruder might launch an attack. Using the Bayesian approach 

4  e.g. www.statistics.gov.uk/about/data/disclosure/downloads/GSS-Microdata-Policy.pdf
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an intruder can trade off the probability of a correct match against search costs, rather than 

sticking to one of the standard scenarios where both probabilities of success and costs are 

fixed (although unknown to the intruder) by the population and sample data. Risk 

assessment could also exploit the trade-off rather than sticking to standard attack scenarios. 

In particular the work drives home the potential issue of easily searched population data. 

This might require a specific type of intruder. Nevertheless, it is possible to generate 

correct matches with extremely high degrees of confidence. The only thing discouraging 

such an attack is the cost of searching the population for a potential match. Potential search 

strategies deserve more attention.

The MCMCMC and simulated annealing alternatives to DIS-IS need to be implemented in 

software in order to have much impact on policy. They offer better ranking (in terms of 

riskiness) of sample uniques, more easily interpreted risk measures, and the potential to 

deal with more variables through improved scaling of the computational costs. But without 

available software these advantages would only be slowly realized. DIS-IS is used by 

national statistical agencies. There is no reason to think they would not appreciate 

something of a similar nature with large performance improvements.

There are perhaps two main implications for the detailed implementation work using 

dynamic junction trees. Firstly, it directly improves the performance of the Bayesian 

matching approach and both the alternatives to DIS-IS. Secondly, it has the potential to 

produce new schemes which avoid the issue of poor mixing when dealing with more than 

half a dozen or so variables. It has much wider implications than record matching and the 

alternatives to DIS-IS. This requires extra work. There are other advantages to dynamic 

junction trees, but they are less directly relevant to SDC.

Future work

The new KVMS was designed to generate the same analysis outputs as the original 

KVMS. But now that harmonization graphs are used as the basis of generating these 

outputs it opens the way to alternative analyses. At the moment a target data set is 

specified; and a single threshold parameter, p, is specified; and the output is an arbitrary 
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maximal harmonization, hv, for each variable, v, in the target data set such that a fraction p 

of the forms that contain v harmonize to hv. The new KVMS would be able to generate 

plots of maximal harmonization sizes against p. It was shown that a harmonization graph 

for a superset of a data environment was also valid for the data environment. Thus all data 

sets could be entered into a super data environment and analyses performed on subsets of 

forms. This is already implemented in the new KVMS via the specification of groups. But 

it suggests that a large single super-environment could be maintained to ensure consistency 

of variable naming across environments and to eliminate duplication of work specifying 

aggregation graphs. In such cases it might be worthwhile saving the harmonization graphs. 

At the moment they are constructed from saved aggregation graphs and form data when the 

application is opened. This works well enough for a data environment with about 200 

forms.

A harmonization graph has a number of properties that could be useful for generating other 

outputs. For instance, the graph induced by the nodes in {{v}∪anc(v)}∩{{w}∪anc(w)}, 

where anc(x) denotes the ancestors of x, has a single leaf node which is the harmonization 

of v and w. In fact, this can be extended to more than two nodes. So once a harmonization 

graph has been constructed for a variable the harmonization for any set of categorizations 

can be looked up relatively efficiently. Although the alternative graph sum operation on the 

categorizations is hardly inefficient, having all harmonization relationships between all sets 

of categorizations encoded in a graph suggests that many useful outputs might be 

generated via simple graph traversal algorithms. The current analysis output is just one 

example.

The dominance relationships for matching between samples and populations were derived 

for any population and any possible sample from the population. So they hold even for 

degenerate samples. If we were to take into account sampling distributions other 

dominance relationships might exist. For instance, strategies based on equivalence classes 

with low (but non-zero) sample counts do not dominate strategies based on equivalence 

classes with higher sample counts. Yet it is intuitive that they will generally produce higher 

correct match probabilities. The work could be extended to investigate this.

It has been shown that the MCMCMC scheme is problematic for some data sets. It 

performed well for the matching simulations, but badly for the DIS-IS simulations where 
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the chains mixed very poorly. It seems to perform well for small sets of variables, but for 

more than about half a dozen variables mixing can become poor. There are possibilities for 

improving this. An obvious potential solution would be to generate candidate moves on the 

basis of adding or removing more than a single edge. It is easy to construct a valid chain, 

but generating Bayes factors would involve more computation, as moves would be less 

localized. An alternative is to add or remove more than one edge but retain the local 

updating of Bayes factors. A solution using dynamic junction trees (or forests) has been 

implemented for inhomogeneous Markov chains. It has not yet been tested. A solution for 

homogeneous Markov chains has been developed, but involves an implicit uniform prior 

over the space of dynamic junction forests rather than over the space of decomposable 

graphical models. This might still produce good results, generating a useful posterior 

distribution. This could be tested. But a little extra work might allow the proposal 

distribution to be adjusted to allow the same implicit uniform prior over the space of 

decomposable graphical models that is used in other schemes. Thus the comparison with 

existing schemes would be more meaningful. One option is to try alternative schemes for 

generating plausible models and applying model averaging to those. The scheme used in 

Forster and Webb (2007) and due to Madigan and Raftery (1994) might be useful for this. 

Finding a good scheme would allow model averaging to be compared against simulated 

annealing. It is also likely that schemes such as Madigan and Raftery's will be significantly 

more efficient than MCMCMC, and perhaps even quicker than simulated annealing. 

Simulated annealing is a global search algorithm specifically designed to avoid local 

optima and therefore does not suffer from the mixing issue. The disadvantage is that it 

finds a single model, foregoing the potential benefits of model averaging. It does, however, 

provide good solutions in reasonable time, and will be useful for comparing with the 

MCMCMC approaches listed above.

Final comment

It is difficult to argue with the position that SDC should focus on the inferences that can be 

made by a data intruder. Some of those inferences would constitute disclosure. But in order 

to properly assess risk the assessor should have access to the best performing tools 

available. In essence there is a kind of arms race. A knowledgeable intruder could do much 
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better in, say, matching between sample data and a population than would be suggested by 

some standard attack scenarios and risk measures. It is important to know what can be 

achieved by an intruder today, and to bear in mind what might be achievable in the future 

with increased computational resources or better algorithms.

A lot of risk assessment is carried out by statistical agencies that might not always possess 

the expertise to implement the type of methods discussed here. So it is important that 

software tools be made available to them. In essence, they need to be armed. This work has 

shown that there is potential for better tools using better models and better algorithms. In 

order to have a significant impact on policy they need to be made available in software.
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APPENDIX 1

KVMS Application Tutorial

Introduction

Data environment analysis coupled with the Key Variable Mapping System (KVMS) is a 

methodology designed to identify sets of key variables within a data environment. It is 

discussed in Elliot et al. (2010). The method was originally implemented in a spreadsheet. 

This tutorial describes an implementation of KVMS written in Python and available for 

Windows, Linux and Mac (currently untested on Mac). The screenshots show the 

application running on Ubuntu (Linux). It contains several extensions to the spreadsheet 

version, simplifies data entry, and contains many checks to avoid the entry of inconsistent 

data.

On start up

On starting the application for the first time 4 new directories are created in the application 

directory. These are Forms, Aggregations, Groups and Backup. The first 3 are used for 

application data whilst the 4th is used to store all application data from the previous session. 

Files in Backup are overwritten each time the application is used (when it is closed), so the 

directory should not be used for important backups. It simply provides a 'last known good 

configuration' set of files that can be copied back to the data directories if the application 

cannot parse the existing data files on opening. Although data entry is designed to avoid 

inconsistencies in the data it is possible to create inconsistencies if the data files are edited 

manually or the data environment is edited via the shell.

The interface contains a notebook with 5 tabs.
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Figure 66. The Analysis tab

The Analysis tab contains a panel used for performing analyses.

Figure 67. The Forms tab

The Forms tab contains a grid for displaying form data. Initially there is no data to display 

and it only contains 3 empty columns for form metadata. The column labels are specified 
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in config.cfg which can be manually edited to specify alternative column labels.

Figure 68. The Variables tab

The Variables and Harmonizations tabs contain notebooks which have tabs for each 

variable. Initially these notebooks have zero tabs.

Figure 69. The shell
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The 5th tab contains a Python shell. This can be used to interact with the data environment 

directly, although only certain types of interaction will be reflected in the user interface. 

For instance, it is perfectly possible to add new forms via the shell, but the changes would 

not be reflected in the user interface until the application was restarted.

On starting, all the application data is loaded into a namespace. User actions (via the user 

interface or the shell) can edit the namespace. On closing the application the data in the 

namespace are dumped to the data directories after moving any existing data files to the 

Backup directory. So saving and opening data is automatic.

Data entry

The Edit menu should be used for data entry. Attempting to enter data directly via the data 

grids will have no effect on the data environment, and will only result in incorrect data 

being displayed. In the future these might be made non-editable.

The Edit menu contains Forms and Groups menu items. The Forms menu item is used for 

all data entry other than groups. The general procedure is to create a form, add variables to 

the form, and specifying the categorizations for the variables.
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Figure 70. The Edit menu

Figure 71. The Form editor

A form name must be entered into the Form Editor. Metadata are optional. The editor 

provides text controls for the names specified in the configuration file. Other name, value 

pairs can be entered via a grid that can be accessed via the Metadata button. The Clear 

button will clear the controls ready for entry of a new form. The Delete button will delete 

an existing form from the data environment.
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Although initially a form name must be entered manually, once forms have been added 

they can be selected by name from the combobox. When a form is selected in this way it 

becomes the 'working form' and can be edited before saving. In fact, a copy of the existing 

form is created which can be freely edited. The changes are only committed to the data 

environment once the add button is clicked. The changes are not committed to file until the 

application is closed. To work with a blank form after selecting an existing form via the 

combobox the editor must be cleared by clicking on the Clear button.

To recap, the editor initially has a blank working form, selecting a form via the combobox 

selects a copy of an existing form as working form, and clearing the editor creates a new 

blank working form. The editor does not close when a form is added. It must be explicitly 

closed once the user has finished with data entry.

To add or edit the variables associated with a form a Variable Editor is invoked via the 

Variables button.

Figure 72. The Variable Editor

The Variable Editor is similar to the form editor. Initially it contains a blank working 

variable. But a copy of an existing variable can be made the working variable via selection 
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from the combobox. The combobox separates variables already contained in the form from 

other variables contained in other forms so that the user can identify the variables already 

added to a form. The buttons operate similarly to those in the Form editor. Clearing the 

editor makes a new blank variable the working variable. Deleting a variable removes it 

from the working form. Essentially, the form is the data environment for the variable. No 

changes (other than variable deletion) are made to the form until the Add button is clicked. 

Note: no change is made to the underlying application data environment until the form is 

also added. To edit a variable in a given form the user would have to open a copy of the 

form, select and edit the relevant variable, then add the variable to the form (overwriting 

the existing variable instance), and then add the form to the environment (overwriting the 

existing form).

The second combobox should be ignored in the current version. Only 'Categorical' can be 

selected, but in the future it might be possible to select an interval scale for suitable 

variables, allowing automation of the creation of aggregation graphs. An aggregation graph 

is a directed acyclic graph with nodes for variable levels and the properties that a parent is 

equal to the union of its children and the children are mutually exclusive. Thus Britain 

could be a parent of England, Scotland and Wales. Aggregation graphs contain information 

regarding the relationships between different categorizations. Each variable has a single 

aggregation graph.

The categorization for a variable is specified via an Aggregation Editor which is invoked 

by clicking the Levels button. This is the 3rd and final level of data entry.

Figure 73. The Aggregation Editor
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The Aggregation Editor consists of a canvas and a grid. These are used to specify the 

categories for a variable and the relationships between different categories in different 

variable instances. The category names are entered into the grid, whilst an aggregation 

graph can be created / edited via the canvas:

• Right click canvas to add a node

• Single left click to highlight a node or edge

• Highlight a node and hold shift key down whilst left clicking on another node to 

add an edge from the highlighted node to the clicked node

• Hit delete key to delete a highlighted node or edge

• Double click a node to toggle selection status (unselected nodes are white, 

whilst selected nodes are orange)

After creating / editing an aggregation graph the relevant variable levels are selected on the 

canvas.

Figure 74. The Aggregation Editor with selected categories

In Figure 74 the categorization of Country of Residence is England, Scotland, Wales and 

Other. Clicking the OK button adds the categories to the working variable and closes the 

editor. Any changes to the aggregation graph are also saved (but again, only saved to the 
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underlying data environment when the form is added). If none of the nodes is selected the 

variable contains no levels in its categorization. This is valid, and represents a form 

variable where the respondent is invited to enter any value they want.

After adding the variable to the working form and adding the form to the data environment 

the user interface is automatically updated.

A second form was added by loading the existing form and variable in the editors, editing 

the aggregation graph, specifying an alternative categorization, and changing the form 

name before adding to the data environment. Figure 75 shows the edited aggregation 

graph.

Figure 75. The edited aggregation graph

The 'Other' category was renamed to 'Not Britain' and 'Northern Ireland', 'UK', 'Non UK' 

and 'Britain' categories were added. The categorization of this second form for Country of 

Residence is England, Scotland, Wales, Northern Ireland and Non UK.

The editor only allows valid changes to be made to an existing aggregation graph. Thus it 

is important that the first time an aggregation graph is specified the categories are mutually 

exclusive and exhaustive. If the Other category had not been specified originally, then 

creating the new categorization would not have been possible. Note that a valid 
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categorization is a set of nodes such that all the leaf nodes (nodes with no children) are 

reachable (along directed paths) from the nodes in the categorization, and each leaf node is 

reachable from exactly one node in the categorization. Note that this is still true, in Figure 

75, for the categorization in the first form; England, Scotland, Wales and Other (renamed 

to Not Britain). Renaming of categories is performed globally, renaming the category in 

any instances of the variable contained in the data environment.

The following figures show the user interface after adding several more forms containing 

various categorizations of Country of Residence.

Figure 76. The Forms grid with 5 forms added

When a form is added to the environment a row is added to the forms grid and new 

metadata and variable columns are added as needed. The reverse happens when forms are 

deleted. Figure 76 shows that form metadata on Form Type have been added.
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Figure 77. The Variables notebook page for Country of Residence

When a variable is added to the data environment a new tab is added to the notebook under 

the Variables tab. This contains a grid and a canvas. The grid contains information about 

variable codes (corresponding to categorizations). The codes are of the form CX.Y, where 

X is the number of categories and Y is a positive integer (less than 1000) which 

distinguishes between codes with the same number of categories. The canvas contains a 

harmonization graph where an edge from a code v to a code w implies that w can be 

aggregated to form the categorization v (and therefore any of v's ancestors). This graph is 

unique and the ancestors of a node represent exactly the other categorizations within the 

data environment into which the node can be transformed by aggregation.
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Figure 78. The Harmonizations notebook page for Country of Residence

When a variable is added to the data environment a new tab is also added to the notebook 

under the Harmonizations tab. This also contains a grid and a canvas. The grid provides 

details of the categorizations corresponding to the codes. The canvas contains the 

aggregation graph corresponding to the variable. If a column cell is selected the nodes 

corresponding to the categorization are selected in the aggregation graph. Editing the graph 

on this canvas makes no difference to the underlying data environment. To do that the user 

would have to go back into the data entry system.

When a variable is deleted from the data environment (i.e. all forms) the corresponding 

tabs are removed from the notebooks under the Variables and Harmonizations tabs.

Adding groups

Groups can be added / edited via the Groups menu item under the Edit menu. The group 

must be given a unique name. Forms can be selected individually or selected as a group by 

selecting an existing group. Selecting or deselecting a group selects or deselects all forms 
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within the group. Thus, for example, the set difference of two groups can be selected by 

selecting both groups and then deselecting one of them. Groups can be deleted from the 

data environment by selecting the group(s) and clicking the Delete button.

Figure 79. Creating and adding a group
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Figure 80. Selecting all nodes in a group by selecting the group

Figure 81. Adding a group via the shell
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A more flexible way to create groups is to use the shell. The data environment can be 

imported and groups added via Python. The environment contains a global dictionary 

mapping group names to lists of form names. This dictionary is named 'groups' and can be 

manipulated directly. There is also a function 'add_group' that takes a name and a list of 

form names as parameters. Figure 81 shows how to create a new group on the basis of 

metadata values.

Figure 82. Confirmation that the new group has been added

Analysis

The analysis tab contains a panel that allows the selection of a target form, a group / single 

form and a prevalence. If no group / form is selected then a group comprising all the forms 

is used. The results are displayed in a text control.
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The Strict checkbox allows the consistency constraints on the analysis to be relaxed. 

Although it is difficult to enter inconsistent categorizations for a variable, it is not 

impossible. After all, the user has direct access to the data environment via the shell. In 

normal use the application will check for inconsistent categorizations and print a relevant 

message in the output, rather than to try to compute a result. If the checkbox is unchecked, 

then the consistency check is skipped and a result is computed. However, the user should 

not place too much trust in such outputs.

Figure 83. Analysis output

The codes can be looked up in the notebook under the Harmonizations tab if they are 

existing categorizations. If they are not, then they will be of the form HX.Y and can be 

looked up via the shell, as can any such codes shown in the harmonizations graphs in the 

notebook under the Variables tab. For instance, the harmonization code in Figure 77 can be 

looked up as shown in Figure 84 (although the code is obvious as it only contains one 

category).
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Figure 84. Querying codes via the shell

Code H1.001 is one category containing all the lowest level categories (leaf nodes in the 

aggregation graph). In contrast, code C3.001 contains the three categories {Northern 

Ireland}, {England, Scotland and Wales} and {Non UK}. The function 'get_frozen' takes a 

variable name and a code as arguments. It is slightly curiously named, as it returns the 

representation of a categorization as a frozen set of frozen sets.

The queries shown in Figure 84 require a little more knowledge of the data environment 

(and a little knowledge of Python). The environment contains a 'forms' dictionary mapping 

form names to form objects. A form object has a 'metadata' attribute which is bound to a 

dictionary which maps names to values.

Saving outputs

Under the File menu there is a Save As... menu item. This allows the saving to file of 

various outputs. If the analysis tab is open it allows the saving of the results to a text file. 

Under the Variables and Harmonizations tabs it allows the saving of the harmonization 

graph or aggregation graph of whatever notebook tab is open.
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Under the Tools menu there is an Aggregation Editor menu item. This launches an 

independent application which is similar to the editor in Figure 75. The difference is that 

there are fewer restrictions placed on how the graph can be edited. This should only really 

be used when the user wants to create a suitable aggregation graph for a number of forms 

in one attempt, rather than incrementally building it up as forms are added. However, it is 

possible to introduce errors which are prevented by the incremental approach, so it must be 

used carefully (if at all). Inconsistent data can prevent the KVMS application from 

opening. In such cases the data files must be edited manually to restore consistency. All 

files are in a plain text (JSON) format, so this is feasible. But it is best avoided. It should 

be noted that any files created in the Aggregation Editor should initially be saved to a 

location other than the Aggregations directory if the KVMS application is open. Otherwise 

they will be overwritten when the KVMS application is closed if there are aggregation 

graphs for the same variables in the data environment. The Aggregation Editor is not 

closed when the KVMS application is closed, and can be launched from the application 

directory without opening the KVMS application.
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APPENDIX 2

KVMS Algorithms

Introduction

Chapter 4 includes two algorithms which will be discussed in more detail here. The first is 

an algorithm for constructing a harmonization graph from a set of distinct categorizations 

(of a single variable).

The second is an algorithm for finding a harmonization, h=H(c, x1, …, xN), of a 

categorization c and a subset of N other categorizations for a variable within a data 

environment such that h is maximal with respect to the set of subsets of size N.

Both these algorithms will be discussed in turn, with emphasis on their computational 

complexity and potential optimizations. Computational complexity will generally be 

discussed in terms of amortized costs (see Tarjan, 1985). Analyses are relatively informal.

Harmonization graph construction

The basic algorithm presented in Chapter 4 is reproduced below. 

def harmonization_graph(categorizations):
    # create an empty harmonization graph
    G = empty directed graph
    # create a set to hold categorizations
    # and harmonizations to be added to G
    C = empty set
    for c in categorizations:
        add c to C
    while C is not empty:
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        # get the next graph node, u, and add it to G
        pop u from C
        add u to G
        # find the parents and children of u
        # using the criteria described above
        parents = parents of u
        children = children of u
        # add necessary edges to G
        for each parent in parents:
            add the edge (parent, u) to G
        for each child in children:
            add the edge (u, child) to G
        # remove any edges from nodes in parents
        # to nodes in children (i.e. ensure property 1 holds)
        for parent in parents:
            for child in children:
                if the edge (parent, child) is in G:
                    remove edge (parent, child) from G
        # generate any new harmonizations required
        # to ensure that property 2 holds for the final graph
        for each node v in G:
            h = H(v, u)
            if h != v and h != u:
                # v is neither ancestor nor descendant of u
                if h is not in either G or C:
                    add h to C
    return G

What it does not describe in detail is the algorithm used for finding the parents and 

children of u in G. As explained in Chapter 4 the parents of u are the leaf nodes in the 

subgraph of G induced by the nodes that are coarser than u. The children of u are the root 

nodes in the subgraph of G induced by the nodes that are finer than u. The nodes in these 

subgraphs can be identified easily using the refinement relationship: H(v,w) = v implies 

that w is finer than v, and that v is coarser than w. In cases where H(v,w) is not in the set 

{v,w} then v is neither finer nor coarser that w. In the basic algorithm when a node u is 

added it is the nodes that are neither finer nor coarser than u that give rise to harmonization 

codes. So calculating H(v,u) for each node v in G will allow the two subgraphs to be 

identified as well as those nodes that might give rise to new harmonizations.

The remaining issue is the identification of the leaf nodes (parents of u) and root nodes 

(children of u) of the induced subgraphs described above. Processing the nodes in an 

appropriate ordering can help with this. A preorder depth first search of a graph visits a 

node before visiting its children. If searches are performed from each root node in G, then 

231



all nodes in G will be visited.

def preorder(G, v):
    visit(v)
    for child in the children of v in G:
        if child has not been visited:
            preorder(child)

Slightly expanding the above pseudocode demonstrates how the leaf nodes of the subgraph 

induced by the nodes coarser than u can be identified. The argument 'ancestors' is a 

reference to a set, initially empty, that will contain the visited ancestors of u. The argument 

'parents' is a reference to a set, initially empty, that will contain the parents of u after the 

traversal is complete.

def preorder(G, u, v, ancestors, parents):
    visit(v)
    h = H(v, u)
    if h == v:
        # v is a candidate parent (will be an ancestor of u)
        add v to ancestors
        is_parent = True
        for child in the children of v in G:
            if child has not been visited:
                preorder(G, u, child, ancestors, parents)
            if c is in ancestors:
                # v is not a parent
                is_parent = False
       if is_parent == True:
           add v to parents

If a node v is a candidate parent (coarser than u) it is added to 'ancestors'. Once a child of v 

has been visited it will be in 'ancestors' if, and only if, it is a candidate parent. If all the 

children of v have been visited and none of them are members of 'ancestors', then v must be 

a parent of u. Note that the search proceeds (recursively) until nodes that are not an 

ancestors are visited. Such nodes act as sentinels, stopping the search.

The preorder algorithm allow the identification of the parents of u.  The sentinels that are 

encountered are either finer that u, or are nodes that might give rise to new harmonizations. 

An obvious strategy to identify the children of u and potential new harmonizations is to 

extend the search to the remaining graph nodes. A node that is finer than u is a candidate 

child of u (a descendant of u after the addition of u to G). Such nodes can be added to a set 
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of candidate children. Any child of a candidate child must be finer than u and cannot be a 

child of u. Such nodes can be added to a set of non-children, and after the search is 

completed the children of u is the set difference of the candidate children and the non-

children.

So the parents and the children can be identified via a depth first search. It simply requires 

different processing of the nodes depending on the result of H(v, u). In fact, if a reference 

to the set of variables to be added to G is passed to 'preorder' the result of H(v, u) can be 

added from within the function. Adding the required arguments and the set of visited nodes 

needed to manage the traversal we end up with the following:

def preorder(G, u, v, ancestors,
             parents, non_children,
             candidate_children, visited, C):
    add v to visited
    h = H(v, u)
    if h == v:
        # v is a candidate parent (will be an ancestor of u)
        add v to ancestors
        is_parent = True
        for child in the children of v in G:
            if child is not in visited:
                preorder(G, u, child, ancestors,
                         parents, non_children,
                         candidate_children, visited, C)
            if c is in ancestors:
                # v is not a parent
                is_parent = False
       if is_parent == True:
           add v to parents
    elif h == u:
        # v is a candidate child (will be an descendant of u)
        add v to candidate_children
        for child in the children of v in G:
            add child to non_children
            if child is not in visited:
                preorder(G, u, child, ancestors,
                         parents, non_children,
                         candidate_children, visited, C)
    else:
        # if h is not in G it must be added later
        if h is not in G:
            add h to C
        for child in the children of v in G:
            if child is not in visited:
                preorder(G, u, child, ancestors,
                         parents, non_children,
                         candidate_children, visited, C)
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Some unneeded checks for set membership have been removed, to reflect the fact that 

adding an element that is already in a set has no effect on the set. Now the complete, 

detailed algorithm for constructing a harmonization graph can be presented.

def harmonization_graph(categorizations):
    # create a harmonization graph
    G = empty directed graph
    C = empty set
    for c in categorizations:
        add c to C # eliminating duplicates if present
    while C is not empty:
        # get the next categorization/harmonization, u
        pop u from C
        # set up the sets required for the preorder traversal
        ancestors = empty set
        parents = empty set
        non_children = empty set
        candidate_children = empty set
        visited = empty set
        # perform the preorder traversal
        for v in the root nodes of G:
            preorder(G, u, child, ancestors,
                     parents, non_children,
                     candidate_children, visited, C)
        # get the children of u (using set difference)
        children = candidate_children - non_children
        # add u and the necessary edges to G
        add u to G
        for parent in parents:
            add the edge (parent, u) to G
        for child in children:
            add the edge (u, child) to G
        # remove any edge from parents to children
        for parent in parents:
            for child in children:
                if the edge (parent, child) is in G:
                    remove the edge (parent, child) from G

A detailed complexity analysis of the algorithm is far from easy. Initializing C takes time 

proportional to the number of categorizations. This would dominate the computational cost 

in the degenerate case that all the categorizations were identical. In other cases the cost 

would be dominated by the preorder traversals. For most problems the cost of the 

traversals would be dominated by the generation of harmonizations. The input is a 

sequence of categorizations and these have many parameters as they are represented as 
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undirected graphs. The actual cost is likely to be a complex function of these parameters. A 

worst case analysis would have to identify the worst case inputs, which would be a 

complex issue in itself. However, an approximate cost can be generated if some 

simplifying assumptions are made.

Firstly it is assumed that the categorizations are distinct. Thus the cost is dominated by the 

'while' loop.

Although there is some housekeeping required after the preorder traversal, the cost 

depends largely on the number of parents and children generated by the traversal. Adding 

and removing graph nodes and edges is generally fairly efficient. Thus the traversals will 

tend to dominate.

The cost of a preorder traversal is O(|V| + |E|) where V and E are the node and edge sets of 

the graph and ∣⋅∣  denotes set cardinality. Each node is visited and the number of children 

(which are in essence visited within the 'for' loops) in the graph is equal to the size of the 

edge set. Here the cost is generally going to be dominated by the processing of the nodes, 

which is going to be dominated by the generation of harmonizations. Harmonization is a 

graph sum operation on undirected graphs that contain a node for each possible leaf node 

in an aggregation graph.

Assume there are k leaf nodes in the relevant aggregation graph. A pairwise connected 

undirected graph with k nodes has k(k-1)/2 edges. But a categorization with only a single 

level can be represented as a connected graph with only k-1 edges. Categorizations with 

more categories can be represented by graphs with fewer edges. Assuming the most 

parsimonious representation of a categorization the graph sum operation is going to require 

the addition of k nodes and at most 2(k-1) edges, which is O(k).

Initially the graph will be empty. On each iteration of the 'while' loop the number of nodes 

in the graph will increase by 1. Thus the total number of nodes processed in the preorder 

traversals will be 0+1+...+(|V| -1), where V is the set of nodes in the completed 

harmonization graph. This equals |V|(|V|-1)/2, or (|V|2 - |V|)/2.

Thus we have an approximate average complexity of,
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O(k|V|2)

where k is the number of root nodes in the relevant aggregation graph and |V| is the number 

of nodes in the constructed harmonization graph. However, |V| is the size of the solution 

rather than the size of the problem. It is possible for n (non arbitrary precision) 

categorizations to produce a distinct harmonization code for each combination of 

categorizations of size greater than 1, leading to a harmonization graph with 2n-1 nodes. 

Thus the complexity in terms of the input size would be approximately,

O(k22n).

This is a sub-exponential running time. But as the number of harmonizations generated is 

typically far fewer than this, the average case complexity is likely to be more quadratic in 

nature. It is also worth noting that in this 'worst case' scenario the non-leaf nodes have 

exactly 2 children, meaning that the number of edges is bounded by 2n. The cost of 

processing nodes would still dominate that of processing the edges.

Figure 85. Harmonization graph for Age
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The example from Chapter 4 is reproduced in Figure 85. The data environment contained 

almost 200 categorizations for age, but only 5 were distinct. One was an arbitrary precision 

category which does not give rise to new categorizations when harmonized with other 

categorizations. The other 4 categorizations only generated 4 harmonization codes. The 

aggregation graph contained 61 leaf nodes. This is an untypically large figure due to some 

categories being 1 year age rages. So the generation of this graph would have required 81 

harmonizations, each harmonization involving the graph sum of a pair of undirected graphs 

with 61 nodes.

It should be noted that a harmonization graph need only be constructed incrementally, 

adding a new categorization for a variable as it is added to the data environment. When 

viewed in this context the cost of adding a new categorization, c, to an existing graph G 

with node set V is approximately,

O(k(|V|+|X|/2))

where X is the set of new harmonizations generated on the addition of c.

The KVMS generates harmonization graphs using the algorithm described above because 

it simplifies the software and does not represent a noticeable computational burden. 

Adding categorizations to existing harmonization graphs remains an alternative. This is 

exactly what the algorithm above does, but repeatedly, for each categorization within a 

collection of distinct categorizations.

Perhaps the most questionable assumption above relates to the cost of harmonization. A 

parsimonious graph representation results in linear time. The worst case is quadratic. This 

emphasizes the importance of parsimony. It will be worthwhile investigating approaches to 

maintain a minimum number of edges for generated harmonizations. A minimum number 

of edges for a category is achieved when the relevant connected component is a tree. In 

other words, the graph should be a forest. Well-known algorithms such as that due to 

Kruskal (1956) can produce such a forest from a graph, G = (V, E), in O(|E|log2(|V|)) time. 

As the number of edges for the current problem is bounded by 2V this is O(|V|log2(|V|)), or 

using the notation above, O(klog2(k)).
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Analysis

The output of an analysis (for a given variable) is a categorization or harmonization that is 

the harmonization of a target node c and N other (not necessarily distinct) categorizations, 

and that is maximal with respect to the number of categories it contains. An algorithm for 

this is described in Chapter 4. Here it will be provided in the form of pseudocode and its 

computational complexity discussed.

The first step of the algorithm is to scan the data environment to count the number of times 

each categorization appears. The time for this is clearly linear in the number of datasets. 

Once this is done we can associate a count with each observed categorization. (The 

observed categorizations in Figure 85 are shown as blue ovals.)

In the previous section the algorithm for generating a harmonization graph used preorder 

depth first traversals of the graph. The algorithm in this section uses a postorder depth first 

traversal of the graph. The difference is quite simple. A preorder traversal visits a node 

before visiting its children. A postorder traversal visits a node's children before visiting the 

node. As before, visiting a node involves some processing of information as well as 

marking the node as visited.

def postorder(G, v):
    for child in the children of v in G:
        if child has not been visited:
            postorder(child)
    visit(v)

The postorder graph traversal propagates the descendant sets to each node in the 

harmonization graph. (They are actually stored in a mapping of nodes to descendant sets.) 

Finding the descendants of a node, v, is simply a case of generating the union of v's 

children and its children's descendant sets. Once the descendants are found it is simple to 

sum the associated counts for v's descendants and v itself to produce a count of the 

maximal number of (not necessarily distinct) observed categorizations that harmonize to v. 

If this is at least N, and H(v, c) = v, then v is a candidate solution. A reference is kept to the 
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visited candidate that is maximal with respect to the number of categories it contains. After 

traversing the graph the referenced candidate is the solution.

Note that the pseudocode is based on Python, which does not have variables in the same 

sense as languages such as Fortran. Nevertheless the code has been written as if it does 

have variables. (Python programmers will know how to adjust the code accordingly, and 

those who do not know Python need not be distracted by this note.)

def postorder(G, c, v, visited, counts, descendants, N, res):
    for child in the children of v in G:
        if child is not in visited:
            postorder(G, c, child, visited,
                      counts, descendants, N, res)
    add v to visited
    # process v
    # get the descendant set and store in descendants
    descendants[v] = empty set
    for child in the children of v in G:
        add child to descendants
        # add the descendants of child
        descendants[v] = descendants[v] | descendants[child]
    # check if the solution is candidate
    # check the H(v, c) == v criterion first
    if H(v, c) == v:
        # get the total number of datasets
        num_datasets = counts[v]
        for d in descendants[v]:
            num_datasets = num_datasets + counts[d]
        # check the 'at least N' criterion
        if num_datasets >= N:
            # it is a candidate solution
            if res is None:
                res = v
            elif v has more categories than res:
                # it is the best solution found so far
                res = v

def maximal_harmonization(G, c, counts, N):
    visited = empty set
    counts = empty mapping
    descendants = empty set
    res = None # the default solution if no candidates are found
    for v in the root nodes of G:
        postorder(G, c, v, visited, counts, descendants, N, res)
    return res
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It is clear that each node is visited once. On visiting a node a harmonization is performed 

and a descendant set is generated. In some cases the number of datasets is generated and 

this requires a number of lookups that is proportional to the size of relevant descendant set. 

The average size of the descendant set is bounded by |V|/2  where V is the set of nodes in 

the harmonization graph.

Assume there are k leaf nodes in the relevant aggregation graph. Following the same 

argument as in the previous section the approximate cost of harmonization is k. Thus we 

have an approximate average complexity of,

O(k|V|2).
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