999 research outputs found

    Computing control invariant sets in high dimension is easy

    Full text link
    In this paper we consider the problem of computing control invariant sets for linear controlled high-dimensional systems with constraints on the input and on the states. Set inclusions conditions for control invariance are presented that involve the N-step sets and are posed in form of linear programming problems. Such conditions allow to overcome the complexity limitation inherent to the set addition and vertices enumeration and can be applied also to high dimensional systems. The efficiency and scalability of the method are illustrated by computing approximations of the maximal control invariant set, based on the 10-step operator, for a system whose state and input dimensions are 30 and 15, respectively.Comment: arXiv admin note: substantial text overlap with arXiv:1708.0479

    Reach Set Approximation through Decomposition with Low-dimensional Sets and High-dimensional Matrices

    Full text link
    Approximating the set of reachable states of a dynamical system is an algorithmic yet mathematically rigorous way to reason about its safety. Although progress has been made in the development of efficient algorithms for affine dynamical systems, available algorithms still lack scalability to ensure their wide adoption in the industrial setting. While modern linear algebra packages are efficient for matrices with tens of thousands of dimensions, set-based image computations are limited to a few hundred. We propose to decompose reach set computations such that set operations are performed in low dimensions, while matrix operations like exponentiation are carried out in the full dimension. Our method is applicable both in dense- and discrete-time settings. For a set of standard benchmarks, it shows a speed-up of up to two orders of magnitude compared to the respective state-of-the art tools, with only modest losses in accuracy. For the dense-time case, we show an experiment with more than 10.000 variables, roughly two orders of magnitude higher than possible with previous approaches

    Computing control invariant sets is easy

    Full text link
    In this paper we consider the problem of computing control invariant sets for linear controlled systems with constraints on the input and on the states. We focus in particular on the complexity of the computation of the N-step operator, given by the Minkowski addition of sets, that is the basis of many of the iterative procedures for obtaining control invariant sets. Set inclusions conditions for control invariance are presented that involve the N-step sets and are posed in form of linear programming problems. Such conditions are employed in algorithms based on LP problems that allow to overcome the complexity limitation inherent to the set addition and can be applied also to high dimensional systems. The efficiency and scalability of the method are illustrated by computing in less than two seconds an approximation of the maximal control invariant set, based on the 15-step operator, for a system whose state and input dimensions are 20 and 10 respectively

    Computation of Atomic Fibers of Z-Linear Maps

    Full text link
    For given matrix AZd×nA\in\Z^{d\times n}, the set Pb={z:Az=b,zZ+n}P_{b}=\{z:Az=b,z\in\Z^n_+\} describes the preimage or fiber of bZdb\in\Z^d under the Z\Z-linear map fA:Z+nZdf_A:\Z^n_+\to\Z^d, xAxx\mapsto Ax. The fiber PbP_{b} is called atomic, if Pb=Pb1+Pb2P_{b}=P_{b_1}+P_{b_2} implies b=b1b=b_1 or b=b2b=b_2. In this paper we present a novel algorithm to compute such atomic fibers. An algorithmic solution to appearing subproblems, computational examples and applications are included as well.Comment: 27 page

    Computing the vertices of tropical polyhedra using directed hypergraphs

    Get PDF
    We establish a characterization of the vertices of a tropical polyhedron defined as the intersection of finitely many half-spaces. We show that a point is a vertex if, and only if, a directed hypergraph, constructed from the subdifferentials of the active constraints at this point, admits a unique strongly connected component that is maximal with respect to the reachability relation (all the other strongly connected components have access to it). This property can be checked in almost linear-time. This allows us to develop a tropical analogue of the classical double description method, which computes a minimal internal representation (in terms of vertices) of a polyhedron defined externally (by half-spaces or hyperplanes). We provide theoretical worst case complexity bounds and report extensive experimental tests performed using the library TPLib, showing that this method outperforms the other existing approaches.Comment: 29 pages (A4), 10 figures, 1 table; v2: Improved algorithm in section 5 (using directed hypergraphs), detailed appendix; v3: major revision of the article (adding tropical hyperplanes, alternative method by arrangements, etc); v4: minor revisio
    corecore