4,714 research outputs found

    A Forward Reachability Algorithm for Bounded Timed-Arc Petri Nets

    Full text link
    Timed-arc Petri nets (TAPN) are a well-known time extension of the Petri net model and several translations to networks of timed automata have been proposed for this model. We present a direct, DBM-based algorithm for forward reachability analysis of bounded TAPNs extended with transport arcs, inhibitor arcs and age invariants. We also give a complete proof of its correctness, including reduction techniques based on symmetries and extrapolation. Finally, we augment the algorithm with a novel state-space reduction technique introducing a monotonic ordering on markings and prove its soundness even in the presence of monotonicity-breaking features like age invariants and inhibitor arcs. We implement the algorithm within the model-checker TAPAAL and the experimental results document an encouraging performance compared to verification approaches that translate TAPN models to UPPAAL timed automata.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Model checking embedded system designs

    Get PDF
    We survey the basic principles behind the application of model checking to controller verification and synthesis. A promising development is the area of guided model checking, in which the state space search strategy of the model checking algorithm can be influenced to visit more interesting sets of states first. In particular, we discuss how model checking can be combined with heuristic cost functions to guide search strategies. Finally, we list a number of current research developments, especially in the area of reachability analysis for optimal control and related issues

    Model Checking One-clock Priced Timed Automata

    Full text link
    We consider the model of priced (a.k.a. weighted) timed automata, an extension of timed automata with cost information on both locations and transitions, and we study various model-checking problems for that model based on extensions of classical temporal logics with cost constraints on modalities. We prove that, under the assumption that the model has only one clock, model-checking this class of models against the logic WCTL, CTL with cost-constrained modalities, is PSPACE-complete (while it has been shown undecidable as soon as the model has three clocks). We also prove that model-checking WMTL, LTL with cost-constrained modalities, is decidable only if there is a single clock in the model and a single stopwatch cost variable (i.e., whose slopes lie in {0,1}).Comment: 28 page

    Formal Modeling of Connectionism using Concurrency Theory, an Approach Based on Automata and Model Checking

    Get PDF
    This paper illustrates a framework for applying formal methods techniques, which are symbolic in nature, to specifying and verifying neural networks, which are sub-symbolic in nature. The paper describes a communicating automata [Bowman & Gomez, 2006] model of neural networks. We also implement the model using timed automata [Alur & Dill, 1994] and then undertake a verification of these models using the model checker Uppaal [Pettersson, 2000] in order to evaluate the performance of learning algorithms. This paper also presents discussion of a number of broad issues concerning cognitive neuroscience and the debate as to whether symbolic processing or connectionism is a suitable representation of cognitive systems. Additionally, the issue of integrating symbolic techniques, such as formal methods, with complex neural networks is discussed. We then argue that symbolic verifications may give theoretically well-founded ways to evaluate and justify neural learning systems in the field of both theoretical research and real world applications
    • ā€¦
    corecore