3 research outputs found

    A Precise Neural-disturbance Learning Controller of Constrained Robotic Manipulators

    Get PDF
    An adaptive robust controller is introduced for high-precision tracking control problems of robotic manipulators with output constraints. A nonlinear function is employed to transform the constrained control objective to new free variables that are then synthesized using a sliding-mode-like function as an indirect control mission. A robust nonlinear control signal is derived to ensure the boundedness of the main control objective without violation of physical output constraints. The control performance is improved by adopting a neural-network model with conditioned nonlinear learning laws to deal with nonlinear uncertainties and disturbances inside the system dynamics. A disturbance-observer-based control signal is additionally properly injected into the neural nonlinear system to eliminate the approximation error for achieving asymptotically tracking control accuracy. Performance of the overall control system is validated by intensive theoretical proofs and comparative simulation results

    A Nonlinear Sliding Mode Controller of Serial Robot Manipulators with Two-level Gain-learning Ability

    Get PDF
    This article presents a learning robust controller for high-quality position tracking control of robot manipulators. A basic time-delay estimator is adopted to effectively approximate the system dynamics. A low-level control layer is structured from the control error as an indirect control objective using new nonlinear sliding-mode synthetization. To realize the control objective with desired transient time, a robust sliding mode control signal is then designed based on the obtained estimation results in a high-level control layer. To promptly suppress unpredictable disturbances, adaptation ability is integrated to the controller using two-level gain-learning laws. Reaching gains and sliding gain are automatically tuned for asymptotic control performance. Effectiveness of the designed controller is concretely confirmed by the Lyapunov-based stability criterion, comparative simulations, and real-time experiments

    A New Adaptive Time-Delay Control Scheme for Cable-Driven Manipulators

    No full text
    corecore