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ABSTRACT An adaptive robust controller is introduced for high-precision tracking control problems of
robotic manipulators with output constraints. A nonlinear function is employed to transform the constrained
control objective to new free variables that are then synthesized using a sliding-mode-like function as an
indirect control mission. A robust nonlinear control signal is derived to ensure the boundedness of the main
control objective without violation of physical output constraints. The control performance is improved
by adopting a neural-network model with conditioned nonlinear learning laws to deal with nonlinear
uncertainties and disturbances inside the system dynamics. A disturbance-observer-based control signal
is additionally properly injected into the neural nonlinear system to eliminate the approximation error for
achieving asymptotically tracking control accuracy. Performance of the overall control system is validated
by intensive theoretical proofs and comparative simulation results.

INDEX TERMS Robotics, manipulators, adaptive robust control, nonlinear control, position control, output
constrained control, neural network, disturbance observer.

I. INTRODUCTION
During a few past decades, robots have played a crucial
role in industrial, manufacturing, discovering, rescuing and
day-life activities. Precise position controllers are required
in most of industrial robots [1], [2]. Nonlinear uncertainties
and unpredictable external disturbances effected from work-
ing environment are barriers in exhibiting excellent control
performances [3]–[6]. Furthermore, in real-time control sit-
uations, robot joints work in limit regions. Violation of the
physical constraints could activate many serious problems
that make danger to the control systems [4], [5]. To realize
control objectives under certain severe conditions, a vast
of important research on output constrained control have
been published. The advanced techniques were successfully
applied to a 2 degree-of-freedom hydraulic robot arm [7] or
a wheel inverted pendulum system [8]. Backstepping control
methods have been recently favorite employed to deal with
the constrained control objective [9], [10]. Designing pro-
cedures of the nonlinear controllers were mainly based on
Barrier Lyapunov functions [11], [12]. Static and dynamical
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constraints were investigated to bring the systems closed to
practical uses [11], [13]. Sliding mode driving control meth-
odswere also interesting approacheswhose design flowcharts
were simpler than the backstepping ones [14], [15]. Soft
boundaries were adopted to squash the control objectives
converge to arbitrary vicinity following desired transient per-
formances [16], [17].

To improve the control quality, the nonlinear uncertain-
ties and external disturbances inside the system dynamics
need to be tackled [14]–[18]. The system behaviors could
be derived using typical analyses such as Newton-Euler or
Lagrange methods, or decomposition principles [18], [19].
Such methods could only be possible to apply for simple
or specific robots [7], [20]. To reduce the analysis effort
of the classical methods, time-delay estimation approaches
were considered as potential solutions [21], [22]. The total
systematic dynamics could easily be computed from the
acceleration signals measured and selected input-gain matri-
ces [23], [24]. Success of the fast estimation approaches
have been proven by theoretical proofs and real-time applica-
tions [24], [25]. Due to the use of high-order time-derivative
terms, amplifying noise effect could overwhelm the orig-
inal dynamics [26], [27]. To attenuate the unexpected
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deviation in functional approximation process but still
preserve the model-free properties, original disturbance
observers are promising candidates [28], [14]. All dynam-
ical effects, including nonlinear uncertainties and exter-
nal disturbances, could be completely estimated by
first-order or high-order observer structures. Strictly
constrained-asymptotic observation performances were
obtained using linear excitation functions [29]–[32]. The
estimation power could be further enhanced with nonlinear
activation functions [33]–[35]. As a result, excellent control
outcomes were normally resulted in from the disturbance-
observer-based control [14], [28]–[36]. Adoption of a single
channel to estimate complicated dynamics of robots under
diverse working conditions however limited their perfor-
mances especially for large disturbances in high working
frequencies [36], [37]. This drawback could be overcome
by integrating nominal system models into the disturbance
techniques [15], [38]. Although ones lost little effort to build
up the simple model, it is worth achieving higher control
performances with this combination.

Thanks to the ability of universal approximation, learn-
ing the system dynamics using black-box models such
as neural networks or fuzzy-logic engines are inter-
esting alternative remedies [39]–[41]. As comparing to
the disturbance-observer structures, such the intelligent
approaches yield better estimation efficiency for large model
variation at high-speed working thanks to multi-channel
learning characteristics [38], [42]. In intelligent robust con-
trol processes, Radial-basis function (RBF) networks or
Fuzzy-hybrid-networks were activated by various informa-
tion of control errors [43]–[45]. Since network convergences
depended on the richness of the excitation signals, the con-
trollers were difficult to yield outstanding transient con-
trol performances [42], [46]. As a solution, learning laws
of such the networks have been modified by using lin-
ear leakage terms [4], [47]. The new learning rules could
ensure finite bounds of weighting coefficients. Because the
learning behaviors still worked outside of activation ranges,
the convergence rates became slow in the whole process.
Even though, neural networks could well estimate various
nonlinear functions with arbitrary degree of accuracy, for
excellent control performances, one needs to cope with the
approximation errors remaining [11], [13]–[48].

Combination of neural networks and disturbance observers
has attracted large attention from the engineers and
researchers [49]–[51]. In [52], such the combination was
successfully employed for stiffness control of a certain robot.
The structure recently also showed impressive control results
on exoskeleton or cooperative robots [34], [38]. However,
adoption of leakage functions in neural networks obliged the
control phase employing strong robust gains for asymptotic
control performance. Furthermore, integration of neural net-
work and disturbance still ensure certain bounds of the control
error.

Motivated by themerging techniques, in this paper, we pro-
posed a new adaptive robust controller for high-precision

position tracking control of constrained robotic manipulators.
Constraints of the control objective is first tackled using a
nonlinear transformation function. A sliding-mode-like con-
trol framework is employed to drive the control objective
to a certain bound around zero. A proper combination of
the neural network and disturbance observer is utilized to
force the closed-loop system converge to zero in infinite time.
Contributions of the proposed controller is summarized as
follows:
• A new constrained nonlinear controller is developed as a
multipurpose background in which the control objective
is at least stabilized inside arbitrary vicinity of zero
without violation of the physical constraints.

• Nonlinear uncertainties and external disturbances in the
system dynamics are efficiently dealt with by an RBF
neural network which is connected with the controller
by nonlinear learning laws.

• A nonlinear disturbance observer is then properly
injected to the neural control signal to eliminate the
neural approximation errors for maintaining asymptotic
stability of the overall system.

• Effectiveness of the proposed controller is verified by
conditioned Lyapunov-based theories and intensive sim-
ulation results.

Remainder of the paper is organized as follows. General
dynamics of the robots and problems statements are pre-
sented in Section II. The proposed controller incorporated
with neural network and disturbance observer are designed
in Section III. Validation results of the whole control system
are discussed in Section IV. Finally, the paper is concluded in
Section V.

Notation: ∗
⌊
ιi, ιj

⌋
denotes a specific function ∗ of

the variables ιi and ιj. For a n-dimensional vector • =
[·1, ·2, . . . , ·i, . . . , ·n]T , ·i|i=1..n stands for its i-th element,
and min b•c and max b•c respectively present the minimum
and maximum values of its all elements. |•| and sgn b•c are
element-wise absolute and signum functions, respectively.

II. SYSTEM MODELING AND PROBLEM STATEMENTS
Dynamics of a serial n-joint robot is generally formulated as
follows [18], [19]:

M bqc q̈+ C bq, q̇c ˙q+ g bqc+f bq̇c+τd = τ (1)

where q, q̇, q̈ ∈ <n are the vectors of joint positions, veloc-
ities, and accelerations, respectively, τ ∈ <n is the vector
of the joint torques or the control input, M bqc ∈ <n×n is
the symmetric-positive inertia matrix, (C bq, q̇c q̇) ∈ <n is
the Coriolis/Centripetal vector, g bqc , f bq̇c ∈ <n are the
gravitational and frictional torques, respectively, and τd ∈ <n

are external disturbance torques.
Remark 1: The disturbance τd presents influence of exter-

nal environments on the system dynamics. For real-time
robotic applications, the maximum powers of the systems are
finite values. They only possibly complete their ownmissions
under effect of finite-energy external disturbances [38], [53].
Hence, the following assumption is reasonable:
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Assumption 1: The disturbance (τd) and its time derivative
(τ̇d) are assumed to be bounded.
Remark 2: The system is a passivity model with bounded

time-derivative states [18], [21], [35]. Robot joints are fur-
thermore limited in physical ranges:

q < q < q̄ (2)

where (q̄ andq) are respectively the upper and lower physical
bounds of the system output (q).

In fact, physical collisions could activate unexpected
impacts and make the system danger.
Assumption 2: The desired trajectory (qd) is a known,

bounded, twice continuously differentiable signal and lies
inside the physical range (q; q̄) of the system output. The
system states (q, q̇) are measurable.
Remark 3: The main objective of this paper is to design a

proper model-free controller to drive a tracking error of the
system output (q) and a reference profile (qd) to zero or as
small as possible and ensure the feasible range of the system
output. This task is challenged by problems of unknown
nonlinear dynamics, uncertainties, modeling errors, compli-
cated disturbance from different working environments, and
collision avoidance.

III. CONSTRAINED NEURAL-DISTURBANCE LEARNING
NONLINEAR CONTROLLER
In this section, a proper procedure is employed to design the
adaptive robust controller based on constrained sliding mode
scheme incorporated with learning ability of a neural network
and disturbance observer. Stability of the overall system is
then verifying by theoretical analyses.

A. CONSTRAINED NEURAL SLIDING MODE CONTROL
First, the dynamics (1) could be simplified as follows

q̈+ v = M̄
−1
τ (3)

in which, v =M−1(Cq̇+g+ f+τd)− (M−1−M̄−1)τ ∈ <n

is a lumped dynamical term that is combined from the Corio-
lis/Centripetal vector, the gravitational, frictional, and exter-
nal disturbance torques, and M̄ = diag b[m̄1, m̄2, . . . , m̄m]c
is a selected diagonal positive-definite matrix.

With serial manipulators, the lumped dynamics (v) are
bounded [18], [52] but its detailed description is not easy to
derive [19]. To assist this work, an RBF neural network could
be employed as a corresponding approximator. The dynamics
v = [v1, v2, . . . , vn]T could be expressed as the following
linear combination:

v = vc + vdc = [vc1, vc2, . . . , vcn]T + vdc
vdc = −(M−1 − M̄−1)τ dc
vci|i=1..n = wT

i ξ i bq, q̇, τ cc + δi

(4)

where (vdc, τ dc) and (vc, τ c) are respectively discontinuous
and continuous portions of the lumped dynamics and control
input, ξ i bq, q̇, τ cc ,wi, δi are respectively regression, opti-
mal weight, and neural approximation error vectors.

Approximation v̂ci of the dynamics vci is designed
as [16], [52]

v̂ci|i=1..n = ŵT
i ξ i bq, q̇, τ cc (5)

here, ŵi is estimate of the weight vector wi.
The main control error is now defined as follows

e = q− qd (6)

The constraint (2) yields the following feasible range of the
main error: 

e < e < ē
e = q− qd < 0
ē = q̄− qd > 0

(7)

where (ē and e) are respectively the upper and lower physical
bounds of the system output (e).
A free-constrained variable is then employed as a pro-

jection of the constrained error on another space using the
following transformation:

σi|i=1..n =

(
(1− ρ beic)

eiei
ei − ei

+ ρ beic
ēiei

ēi − ei

)
(8)

where σ = [σ1, σ2, . . . , σn]T is the transformed error,
ei is an specific entry of the control error vector e =
[e1, e2, ..ei., en]T , and ρ beic is a step function:

ρ beic =

{
0 if ei < 0
1 otherwise

A nonlinear sliding manifold is synthesized as an indirect
control objective of the studied system:

s = ė+K0σ (9)

where K0 = diag bk0c = diag b[k01; ...; k0n]c is a
positive-definite diagonal gain matrix.

By differentiating the manifold (9) with respect to time and
noting the dynamics (3), we have

ṡ = −v+ M̄−1τ − q̈d +K0σ̇ (10)

From the system (10), the final control signal can be simply
designed to stabilize the tracking error to zero in infinite time
using the following structure:

τ = M̄ (τMOD + τDRI + τROB) (11)

Roles of the detailed control signals (τMOD, τDRI, τROB)
are explained hereafter. τMOD is a model-compensation sig-
nal that is used to eliminate the internal dynamics (v) and
other terms of the manifold dynamics (10). Hence, the signal
is structured as follows:

τMOD = v̂c + q̈d −K0σ̇ (12)

By applying the dynamical control signal (12), the dynam-
ics (10) of the sliding manifold could be reformed as

ṡ = ṽc − vdc+τDRI + τROB (13)
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where ṽc = v̂c−vc ∈ <n is an overall continuous estimation-
error vector.

The role of the signal τDRI is to force the sliding manifold
from a certain initial position back to around zero. Thus, it is
designed as

τDRI = −K1diag bsc
(
p+ s2

)
(14)

where K1 = diag bk1c = diag b[k11; ...; k1n]c is
a positive-definite diagonal driving gain matrix, p =

[p1, p2, . . . , pn]T is a vector of positive constants such that
pi|i=1..n ≥ 1.
The last signal τROB is a robust control term that is used

to suppress the overall error (ṽc). The signal is selected as
follows:

τROB = −K2 sgn bsc (15)

where K2 = diag bk2c = diag b[k21; ...; k2n]c is a
positive-definite robust gain.

The manifold dynamics (13) become

ṡ = ṽc −K1diag bsc
(
p+ s2

)
−K2M−1M̄ sgn bsc (16)

Remark 4: The dynamics (13) reveal that once the estimate
(v̂c) is bounded, the closed-loop system is stabilized in an
arbitrary vicinity of zero. A large robust gain (k2) that sat-
isfies a condition of (min

⌊
eig

⌊
K2M−1M̄

⌋⌋
> max

⌊∣∣ṽc∣∣⌋)
could theoretically yield the asymptotic control performance,
but it could activate chattering phenomena. On contrast,
the control precision is degraded with small robust control
gains.

To effectively estimate the systematic dynamics (vc), the
RBF network (5) is connected with the sliding mode back-
ground (16) by the following learning laws:

˙̂wi|i=1..n = −diag
⌊
η1
⌋
diag

⌊
ξ2i

⌋ s2i
1+ s2i

ŵi − εisiξ i (17)

where 4 = diag b[ε1, ε2, . . . , εi, . . . , εn]c and diag⌊
η1i
⌋
i=1..n are positive-definite diagonal constant matrices.

Control performance of the neural sliding mode system is
evaluated by the following statements.
Theorem 1: Given serial robotic dynamics (1) within an

output constraint (2) and Assumptions 1, 2, and employing a
robust control laws (6)-(15) under learning rules (5), (17), the
closed-loop system is asymptotically stable from any initial
constrained conditions if the proper control gains are selected
satisfying{

k1i|i=1..n > 1
4εi
ξTi diag

⌊
η1i
⌋ ∣∣w2

i

∣∣
min

⌊
eig

⌊
K2M−1M̄

⌋⌋
> max b|δ|c

(18)

Theorem 1 is proven in Appendix A.
Remark 5: If the estimate (v̂) approaches the real dynamics

(v) with an arbitrarily small accuracy, the robust burden is
significantly reduced. At that time, employing small robust
gains would provide excellent control performances.

B. INTEGRATION OF DISTURBANCE OBSERVER CONTROL
Dominant terms of the lumped dynamics (vc) could be learnt
by the network. The neural sliding mode control struc-
ture exhibits the outstanding control performance with large
robust control gains K2. To alleviate the discontinuous terms
in the control signal, it is required to compensate for the neu-
ral approximation error (δ) by a smooth estimation technique.
Hence, an additional disturbance-observer-based control term
is an understandable candidate. The following assumption is
taken into account:
Assumption 3: The neural error (δ) and its first-order time

derivative are bounded. Its dynamics are thus synthesized as

δ̇ = −diag bαc δ + ζ (19)

where diag bαc = diag b[αi, α2, . . . , αn]c is a positive-
definite diagonal constant matrix. ζ = [ς1, ς2, . . . , ςn]T is
a virtual bounded disturbance vector.

To actively eliminate the error (δ), the robust control sys-
tem (15) is modified by adding an observer-learning term:

τROB = −K2 sgn bsc + δ̂ (20)

at which δ̂ =
[
δ̂1, δ̂2, . . . , δ̂n

]T
is estimate vector of the error

(δ) and is updated by the following mechanism

˙̂
δ = −diag bαc δ̂ −4B−1s−K3 sgn bsc (21)

Here, B=diag b[β1, β2, . . . , βn]c , K3=diag
⌊
[k31, k32,

. . . , k3n]
⌋
are positive-definite diagonal constant matrices.

As noted in [35], the disturbance observer (21) demon-
strated excellent learning efficiency for simple systems.
However, the observer execution with a MIMO system espe-
cially in combining with another parallel learning phase,
such as neural networks, is definitely a different story.
To integrate the new designed signal (20)-(21) to the work-
ing system, the learning rule of the network is modified
as

˙̂wi|i=1..n

= −diag
⌊
η1i
⌋
diag

⌊
ξ2i

⌋ s2i
1+ s2i

ŵi

−diag
⌊
η2i
⌋
diag

⌊
ξ2i

⌋
ŵi − (εisi + βik3i sgn bsic) ξ i

(22)

where diag
⌊
η2i
⌋
i=1..n is a positive-definite diagonal constant

matrix.
Control performance of the overall system is investigated

by the following confirmation.
Theorem 2: Given serial robotic dynamics (1) within an

output constraint (2), Assumptions 1, 2 and 3, and employing
a robust control laws (6)-(15) under learning rules of the
neural network (5), (22) and disturbance observer (20), (21),
the closed-loop system is asymptotically stable from any
initial constrained conditions if the proper control gains are
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FIGURE 1. Structure of the proposed controller.

selected
k1i|i=1..n > 1

4εi
ξTi diag

⌊
η1i
⌋ ∣∣w2

i

∣∣
k2i > 0
k3i > |ςi|max +

1
4βimin

⌊
eig
⌊
K2M−1M̄

⌋⌋ξTi diag ⌊η2i⌋ ∣∣w2
i

∣∣ (23)
Theorem 2 is proven in Appendix B.
Remark 6: Theorem 2 implies that the robust control gain

(k2) does not need to be larger than a certain value for an
excellent control performance. Obviously, the integral learn-
ing gain (k3) would take on the responsibility of the robust
burden.
Remark 7: Once the indirect control objective is stabilized

at origin, the main control objective will be then realizing
under a sliding phase [24], [26]. Employing the nonlinear
combination (9) would speed up the convergence time of
the sliding process [16], [17]. Overview of the proposed
controller is graphically summarized in Fig. 1.

IV. VALIDATION RESULTS
Performance of the proposed controller was assessed by
intensive numerical simulation. A linear neural-disturbance-
observer backstepping (LND) controller and conven-
tional Proportional-Integral-Derivative (PID) controller were
implemented on the same system as benchmarks of the
control-efficiency comparison. Design of the LND controller
is presented in Appendix C . Simulation results obtained are
discussed in the following section.

A. SIMULATION RESULTS
The comparative and proposed controllers were applied
for position-tracking control on simulation of a 3-Degree-
of-freedom (DOF) robot, as sketched in Fig. 2. Dynamics
of the robot could be easily derived using classical methods
works [4], [18], as presented in Appendix D. Regression
vector (ξ bq, q̇, τ cc) of the RBF network was built up from 93

nodes which were encoded from 9 inputs (qi, q̇i, τci)|i=1,2,3
using Gaussian functions [35], [52]. From the design (11),
the continuous control signal was τ c = M̄(τMOD+τDRI+ δ̂).
All of initial values of the weight vectors (ŵi|i=1,2,3) were
selected to be zeros. Other simulation parameters of the
controllers and the dynamics are shown in Tables 1 and 2,
respectively.

FIGURE 2. Configuration of a 3DOF robot.

TABLE 1. Detailed parameters of the simulation model.

TABLE 2. Selected parameters of the controllers.

In this first simulation, sinusoidal trajectories with differ-
ent frequencies (0.1 (Hz), 0.3 (Hz), and 0.5 (Hz)), as depicted
in Fig. 3, were selected as desired profiles of the robot

VOLUME 9, 2021 50385



D. X. Ba, J. Bae: Precise Neural-Disturbance Learning Controller of Constrained Robotic Manipulators

FIGURE 3. Desired trajectories of the robot joints in the first simulation.

FIGURE 4. System output generated by the controllers in the first.

joints. Physical ranges of the robot joints were set to be
[−90; 90](deg). The control results obtained are presented in
Figs. 4, 5 and 6.

As shown in Fig. 5, the PID controller could ensure stabil-
ity of the closed-loop systemwith good control errors: 1 (deg)
at joint 1, 3.9 (deg) at joint 2, and 5.6 (deg) at joint 3. How-
ever, as observed in Fig. 4, transient PID output violated the
physical constraints. To void the danger collision, one pos-
sible way is improvement of both transient and steady-state
errors. To efficiently suppress the nonlinear uncertainties for
higher control performance, the LND controller employed
a combination of neural network and disturbance-observer
estimation inside a backstepping control scheme. As a result,
excellent control accuracies were provided by the LND con-
trol method: 0.095 (deg) at joint 1, 0.11 (deg) at joint 2,
and 1.9 (deg) at joint 3. Another alternative solution of the
physical-output avoidance is adoption of constrained control
algorithm proposed. Furthermore, nonlinear neural distur-
bance combination was used as well to promptly eliminate
the systematic dynamics for impressive control precision.
Control performance of the proposed controller was thus
remarkably increased as comparing to the PID one, in which
control errors of joints 1 and 2 were 0.1 (deg) and 0.12 (deg),
respectively. As indicated in Fig. 5, the control errors of the
LND and proposed controllers were not much different at
low frequency working conditions. Nevertheless, high fre-
quency control is another interesting problem. By working
under nonlinear learning laws proposed, control accuracy
(0.4 (deg)) of the proposed controller at 0.5 Hz sinusoidal
trajectory was higher than that of the LND controller. Esti-
mation effect of the neural network and disturbance observer
is shown in Fig. 6.
In the second simulation, the frequencies of the desired

trajectories of joints 1, 2, and 3 were changes to be 1 (Hz), 0.3
(Hz), and (0.7 Hz), respectively. The new desired profiles are
shown in Fig. 7. Furthermore, a sinusoidal signal of τd3 =
10 + 50 sin b4π tc was created as an external disturbance

FIGURE 5. Comparative control errors in the first simulation.

FIGURE 6. Learning performance of the nonlinear neural disturbance.

FIGURE 7. Desired profiles of the robot joints in the second simulation.

effecting to joint 3. Applying the same controllers to the
robotic system, the results obtained are shown in Fig. 8.

Without any adaptation feature, performances of the PID
controller were seriously degraded with severe working con-
ditions: new control errors at joint 1 and 3 were 10.9 (deg)
and 12.9 (deg), respectively. By possessing the intelligent
estimation technology, the control precision of the LND con-
troller was restrained in acceptable ranges: control accuracies
of joints 1 and 3 were 0.7 (deg) and 7.5 (deg), respectively.
As carefully observed in Fig. 8 and as proven in the previ-
ous work [38], the LND controller however only ensured a
finite bounded control error instead of the asymptotic one.
The shortcoming was completely dealt with by the proposed
learning mechanism. Nonlinear estimation rules were prop-
erly designed such that the control and estimation errors
could converge to zero or as small as possible. As also seen
in Fig. 8, gradually reduction of the proposed control error
with respect to time implies that the nonlinear uncertainties
and the external disturbance were approximated well by the
collaborative learning mechanism. Hence, these results could
confirm the overall effectiveness of the designed controller.

B. DISCUSSION
By recalling the results of the two simulations, particularly
in Figs. 5 and 8, control performances of the two neural-
disturbance-based controllers were almost same at low fre-
quency reference signals, but significantly divergent at high
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FIGURE 8. Comparative control errors in the second simulation.

FIGURE 9. Learning performance of the nonlinear neural disturbance
mechanism proposed in the second simulation.

FIGURE 10. Control signals generated by the controllers in the second
simulation.

TABLE 3. Statistical computation of the controllers from the validation
results.

frequency cases. The improvement of the proposed con-
troller came from the success of the nonlinear learning laws.
As observed in Figs. 7 and 9, the neural network played as
key terms in estimating system dynamics while the distur-
bance observer would cover approximation errors remaining.
Furthermore, as presented in Fig. 9, the estimation results of
the neural network and disturbance were stabilized in certain
ranges that resulted in smooth control signals, as illustrated
in Fig. 10.

The maximum absolute (MA) and root-mean-square
(RMS) values of the control performances for a specific
manipulated time (80s to 90s) are presented in Table 3 . The
proposed control controllers always provided the best RMS
error even though in some cases its MA performances were
not the highest one. The ratios of RMS/MA errors of the
PID, LND and proposed controllers were in range of 0.65,
0.4, and 0.3, respective. These factors indicate the nonlinear
uncertainties and disturbances were efficiently compensated

for by the proposed control technology. Hence, the analytical
and testing results have proved the outperformance of the
studied control method over the previous ones.

V. CONCLUSION
In this paper, an adaptive robust controller is pro-
posed for high-precision position-tracking control of con-
strained robotic manipulators based on a new neural-
disturbance-based sliding mode scheme. A nonlinear control
signal is generated to realize the control objective within
feasible physical output constrains. Influence of the system-
atic nonlinearities, uncertainties, and unpredictable external
disturbances on the control performance are suppressed by
neural network estimation throughout a modified learning
law. A special disturbance observer was properly integrated
in the developing control framework to obtain higher control
accuracy by eliminating the remaining approximation error.
Control performance of the closed-loop system was inten-
sively verified by theoretical proofs and extended simulation
results.

APPENDIX A
PROOF OF THEOREM 1
We consider the following Lyapunov function:

L1 = 0.5
n∑
i=1

(
εis2i + w̃T

i w̃i

)
(A.1)

By noting the dynamics (16) and (17), the time derivative of
the function (1) is

L̇1 = −
n∑
i=1

(
εik1s2i

(
pi + s2i

)
+

s2i
1+ s2i

w̃T
i diag

⌊
η1i
⌋
diag

⌊
ξ2i

⌋
ŵi

)
−sT

(
K2M−1M̄ sgn bsc + δ

)
≤ −

n∑
i=1

(
εik1s2i

(
pi + s2i

)
+

s2i
1+ s2i

w̃T
i diag

⌊
η1i
⌋
diag

⌊
ξ2i

⌋
w̃i

)

+

n∑
i=1

(
s2i

1+ s2i

∣∣w̃i
∣∣T diag

⌊
η1i
⌋
diag

⌊
ξ2i

⌋
|wi|

)
−sT

(
K2M−1M̄ sgn bsc + δ

)
(A.2)

If the condition (18) is satisfied, there always exist two pos-
itive constants λi1|i=1..n, λi2 complying with the following
inequality:

L̇1 ≤ −
n∑
i=1

(
λi1εik1s2i + εik1(pi − 1)s2i

)
−

n∑
i=1

(
λi2

s2i
1+ s2i

w̃T
i diag

⌊
η1i
⌋
diag

⌊
ξ2i

⌋
w̃i

)
(A.3)

This leads to the proof of Theorem 1. �
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APPENDIX B
PROOF OF THEOREM 2
By combining (16), (19)-(21), we have the following new
element-wise dynamics:

i=1..n


ṡi = w̃T

i ξ i − k1si
(
pi + s2i

)
− sgn

⌊
sT
⌋
K2M−1M̄

δs
δsi
+ δ̃i

˙̃
δi = −αiδ̃i −

εi

βi
si − k3i sgn bsic − ςi

(B.1)

We synthesize a new Lyapunov function:

L2 = L1 +
n∑
i=1

0.5βiδ̃2i +

si∫
sib0c

(k3i sgn bsic + ςi) dsi

+L20i) (B.2)

where L20i|i=1..n is a positive constant selected as [35]:

L20i =

(
k3i + |ςi|max

)2
2εi

+
(
k3i + |ςi|max

)
si b0c (B.3)

Differentiating the function (B. 2) with respect to time and
employing the dynamics (B. 1) and (22) lead to the following
inequality:

L̇2 ≤ −
n∑
i=1

(
εisi

(
k1si

(
pi + s2i

)
+ sgn

⌊
sT
⌋
K2M−1M̄

δs
δsi

)
+ αiβiδ̃

2
i

)
−

n∑
i=1

(
w̃T
i

(
diag

⌊
η1i
⌋ s2i
1+ s2i

+diag
⌊
η2i
⌋)

diag
⌊
ξ2i

⌋
w̃i

)
−

n∑
i=1

(
βi

(
k1si

(
pi + s2i

)
+ sgn

⌊
sT
⌋
K2M−1M̄

δs
δsi

)
(k3i sgn bsic + ςi)

)
+

n∑
i=1

(∣∣w̃i
∣∣T (diag ⌊η1i⌋ s2i

1+ s2i

+diag
⌊
η2i
⌋)

diag
⌊
ξ2i

⌋
|wi|

)
(B.4)

Under the gain constraint (23), there always exist another
constant λi3|i=1..n such that:

L̇1 ≤ −
n∑
i=1

(
λi1εik1s2i + (pi − 1)k1s2i + αiβiδ̃

2
i

)
−

n∑
i=1

(
w̃T
i

(
λi2

s2i
1+ s2i

diag
⌊
η1i
⌋

+λi3diag
⌊
η2i
⌋)

diag
⌊
ξ2i

⌋
w̃i

)
(B.5)

It means that Theorem 2 has been proven.

APPENDIX C
REDESIGN OF COMPARATIVE LINEAR
NEURAL-DISTURBANCE-OBSERVER BACKSTEPPING
CONTROLLER
The linear neural-disturbance-observer backstepping (LND)
controller is designed based on a previous work [38]. With-
out loss of generality, the comparative controller is derived
in specific joint perspective. From the main control objec-
tive (6), a virtual control signal ri|i=1..n and virtual control
error zi|i=1..n are chosen as

i=1..n

{
ri = −kc0ie+ q̇di
zi = q̇i − ri

(C.1)

where kc0i|i=1..n is a positive control gain.
The final control signal of the control scheme is then

derived as

τi|i=1..n = −e− kc1iz− ϕ̂i + ri + ŵT
i ψ i bpc (C.2)

where kc1i is a positive control gain, p = [q, q̇, ż, ṙ]T is the
input variable of the regression vector ψ i|i=1..n of the RBF
neural network. ŵi|i=1..n is the weight vector of the neural
network, and is updated by the following law:

˙̂wi = −0i
(
ψ izi + µiŵi

)
(C.3)

where µi is a positive leakage rate, and 0i is a
positive-definite diagonal matrix.
ϕ̂i|i=1..n is estimate of systematic disturbances, and is com-

puted throughout an auxiliary variable φ̂i|i=1..n, that is esti-
mated by the following learning mechanism:{

ϕ̂i = φ̂i + kc2iz
˙̂
φi = −kc2im̄

−1
i

(
τi − q̇i + ϕ̂i

) (C.4)

where, kc2i is a positive disturbance gain selected.

APPENDIX D
DYNAMICS OF A 3-DOF ROBOT
The detailed dynamics (1) of the robot, as sketched in Fig. 2,
are derived as follows:

m11 = m2l21 + m3 (l1 + l2c2)2

+m4 (l1 + l2c2 + l3c23)2

m22 = m3l22 + m4

(
l22 + l

2
3 + 2l2l3c3

)
m23 = m32 = m4

(
l2l3c3 + l23

)
m33 = m4l23 (D.1)

M bqc =

m11 0 0
0 m22 m23
0 m32 m33

 (D.2)

v1 = −2m3 (l1 + l2c2) l2s2θ̇2θ̇1
−2m4 (l1 + l2c2 + l3c23)

(
l2θ̇2s2

+
(
θ̇2 + θ̇3

)
l3s23

)
θ̇1

v2 = −2m4l2l3s3θ̇2θ̇3 − m4l2l3s3θ̇23
+l2s2 (l1 + l2c2)m3θ̇

2
1
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−m4 (−l2s2 − l3s23) (l1 + l2c2 + l3c23) θ̇21
v3 = m4

(
l2l3s3θ̇3

)
θ̇2

+m4 (l1 + l2c2 + l3c23) l3s23θ̇21
+m4l2l3s3θ̇22 + m4l2l3s3θ̇2θ̇3

C bq, q̇c q̇ =

 v1v2
v3

 (D.3)

g bqc = −g0

 0
2l2c2 + l3c23

l3c23

 (D.4)

f bq̇c =

 a1q̇1a2q̇2
a3q̇3

 (D.5)

where qi, li, mi and ai|i=1,2,3 are joint positions, link
lengths, link masses and frictional coefficients, respec-
tively; g0 is the absolute gravitational-acceleration value;
and ci, si, cij and sij stand for cos(qi), sin(qi), cos(qi +
qj) and sin(qi + qj), respectively.
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